Sample records for fear conditioning study

  1. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  2. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing.

    PubMed

    Pickens, C L; Navarre, B M; Nair, S G

    2010-09-15

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-s tone-shock pairings) fear training and high fear after 1-2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18-20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Fear conditioned responses and PTSD symptoms in children: Sex differences in fear-related symptoms.

    PubMed

    Gamwell, Kaitlyn; Nylocks, Maria; Cross, Dorthie; Bradley, Bekh; Norrholm, Seth D; Jovanovic, Tanja

    2015-11-01

    Fear conditioning studies in adults have found that posttraumatic stress disorder (PTSD) is associated with heightened fear responses and impaired discrimination. The objective of the current study was to examine the association between PTSD symptoms and fear conditioned responses in children from a highly traumatized urban population. Children between 8 and 13 years old participated in a fear conditioning study in addition to providing information about their trauma history and PTSD symptoms. Results showed that females showed less discrimination between danger and safety signals during conditioning compared to age-matched males. In boys, intrusive symptoms were predictive of fear responses, even after controlling for trauma exposure. However, in girls, conditioned fear to the danger cue was predictive of self-blame and fear of repeated trauma. This study suggests there are early sex differences in the patterns of fear conditioning and that these sex differences may translate to differential risk for trauma-related psychopathology. © 2015 Wiley Periodicals, Inc.

  4. The Genetic Covariation between Fear Conditioning and Self-Report Fears

    PubMed Central

    Hettema, John M.; Annas, Peter; Neale, Michael C.; Fredrikson, Mats; Sci, Dr Med; Kendler, Kenneth S.

    2008-01-01

    Background Fear conditioning is a traditional model for the acquisition of phobias, while behavioral therapies utilize processes underlying extinction to treat phobic and other anxiety disorders. Furthermore, fear conditioning has been proposed as an endophenotype for genetic studies of anxiety disorders. While prior studies have demonstrated that fear conditioning and self-report fears are heritable, no studies have determined whether they share a common genetic basis. Methods We obtained fear conditioning data from 173 twin pairs from the Swedish Twin Registry who also provided self-report ratings of 16 common fears. Using multivariate structural equation modeling, we analyzed factor-derived scores for the subjective fear ratings together with the electrophysiologic skin conductance responses during habituation, acquisition, and extinction to determine the extent of their genetic covariation. Results Phenotypic correlations between experimental and self-report fear measures were modest and, and counter-intuitively, negative; that is, subjects who reported themselves as more fearful had smaller electrophysiologic responses. Best-fit models estimated a significant (negative) genetic correlation between them, although genetic factors underlying fear conditioning accounted for only 9% of individual differences in self-report fears. Conclusions Experimentally-derived fear conditioning measures share only a small portion of the genetic factors underlying individual differences in subjective fears, cautioning against relying too heavily on the former as an endophenotype for genetic studies of phobic disorders. PMID:17698042

  5. Response-Specific Sex Difference in the Retention of Fear Extinction

    ERIC Educational Resources Information Center

    Voulo, Meagan E.; Parsons, Ryan G.

    2017-01-01

    Fear conditioning studies in rodents allow us to assess vulnerability factors which might underlie fear-based psychopathology such as post-traumatic stress disorder (PTSD). Despite PTSD being more prevalent in females than males, very few fear conditioning studies in rodents have tested females. Our study assessed fear conditioning and extinction…

  6. A twin study of the genetics of fear conditioning.

    PubMed

    Hettema, John M; Annas, Peter; Neale, Michael C; Kendler, Kenneth S; Fredrikson, Mats

    2003-07-01

    Fear conditioning is a traditional model for the acquisition of fears and phobias. Studies of the genetic architecture of fear conditioning may inform gene-finding strategies for anxiety disorders. The objective of this study was to determine the genetic and environmental sources of individual differences in fear conditioning by means of a twin sample. Classic fear conditioning data were experimentally obtained from 173 same-sex twin pairs (90 monozygotic and 83 dizygotic). Sequences of evolutionary fear-relevant (snakes and spiders) and fear-irrelevant (circles and triangles) pictorial stimuli served as conditioned stimuli paired with a mild electric shock serving as the unconditioned stimulus. The outcome measure was the electrodermal skin conductance response. We applied structural equation modeling methods to the 3 conditioning phases of habituation, acquisition, and extinction to determine the extent to which genetic and environmental factors underlie individual variation in associative and nonassociative learning. All components of the fear conditioning process in humans demonstrated moderate heritability, in the range of 35% to 45%. Best-fitting multivariate models suggest that 2 sets of genes may underlie the trait of fear conditioning: one that most strongly affects nonassociative processes of habituation that also is shared with acquisition and extinction, and a second that appears related to associative fear conditioning processes. In addition, these data provide tentative evidence of differences in heritability based on the fear relevance of the stimuli. Genes represent a significant source of individual variation in the habituation, acquisition, and extinction of fears, and genetic effects specific to fear conditioning are involved.

  7. Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans.

    PubMed

    Grillon, Christian; Cordova, Jeremy; Morgan, Charles Andrew; Charney, Dennis S; Davis, Michael

    2004-09-01

    Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade. This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans. Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal. The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol. These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.

  8. Blockade of CB1 receptors prevents retention of extinction but does not increase low preincubated conditioned fear in the fear incubation procedure.

    PubMed

    Pickens, Charles L; Theberge, Florence R

    2014-02-01

    We recently developed a procedure to study fear incubation, in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We subjected rats to 10 days of fear conditioning and then administered systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test was conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days after training) to examine retention of fear extinction. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction; however, it impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation does not suppress fear soon after extended fear conditioning in the fear incubation task. The data also add to the existing literature on the role of CB1 receptors in extinction of conditioned fear.

  9. Blockade of CB1 receptors prevents retention of extinction but does not increase low pre-incubated conditioned fear in the fear incubation procedure

    PubMed Central

    Pickens, Charles L.; Theberge, Florence R.

    2015-01-01

    We recently developed a procedure to study fear incubation in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We gave rats 10 days of fear conditioning and then gave systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days post-training) to examine fear extinction retention. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction, but impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation is not suppressing fear soon after extended fear conditioning in the fear incubation task. The data also add to an existing literature on the effects of CB1 receptors in extinction of conditioned fear. PMID:24346290

  10. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.

    PubMed

    Chau, Lily S; Prakapenka, Alesia; Fleming, Stephen A; Davis, Ashley S; Galvez, Roberto

    2013-11-01

    The underlying neuronal mechanisms of learning and memory have been heavily explored using associative learning paradigms. Two of the more commonly employed learning paradigms have been contextual and delay fear conditioning. In fear conditioning, a subject learns to associate a neutral stimulus (conditioned stimulus; CS), such as a tone or the context of the room, with a fear provoking stimulus (unconditioned stimulus; US), such as a mild footshock. Utilizing these two paradigms, various analyses have elegantly demonstrated that the amygdala plays a role in both fear-related associative learning paradigms. However, the amygdala's involvement in trace fear conditioning, a forebrain-dependent fear associative learning paradigm that has been suggested to tap into higher cognitive processes, has not been closely investigated. Furthermore, to our knowledge, the specific amygdala nuclei involved with trace fear conditioning has not been examined. The present study used Arc expression as an activity marker to determine the amygdala's involvement in trace fear associative learning and to further explore involvement of specific amygdalar nuclei. Arc is an immediate early gene that has been shown to be associated with neuronal activation and is believed to be necessary for neuronal plasticity. Findings from the present study demonstrated that trace-conditioned mice, compared to backward-conditioned (stimulation-control), delay-conditioned and naïve mice, exhibited elevated amygdalar Arc expression in the basolateral (BLA) but not the central (CeA) or the lateral amygdala (LA). These findings are consistent with previous reports demonstrating that the amygdala plays a critical role in trace conditioning. Furthermore, these findings parallel studies demonstrating hippocampal-BLA activation following contextual fear conditioning, suggesting that trace fear conditioning and contextual fear conditioning may involve similar amygdala nuclei. Together, findings from this study demonstrate similarities in the pathway for trace and contextual fear conditioning, and further suggest possible underlying mechanisms for acquisition and consolidation of these two types of fear-related learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Conditioned Fear Acquisition and Generalization in Generalized Anxiety Disorder.

    PubMed

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Blasco, María Jesús; Farré, Magí; Torrubia, Rafael

    2015-09-01

    Abnormal fear conditioning processes (including fear acquisition and conditioned fear-generalization) have been implicated in the pathogenesis of anxiety disorders. Previous research has shown that individuals with panic disorder present enhanced conditioned fear-generalization in comparison to healthy controls. Enhanced conditioned fear-generalization could also characterize generalized anxiety disorder (GAD), but research so far is inconclusive. An important confounding factor in previous research is comorbidity. The present study examined conditioned fear-acquisition and fear-generalization in 28 patients with GAD and 30 healthy controls using a recently developed fear acquisition and generalization paradigm assessing fear-potentiated startle and online expectancies of the unconditioned stimulus. Analyses focused on GAD patients without comorbidity but included also patients with comorbid anxiety disorders. Patients and controls did not differ as regards fear acquisition. However, contrary to our hypothesis, both groups did not differ either in most indexes of conditioned fear-generalization. Moreover, dimensional measures of GAD symptoms were not correlated with conditioned fear-generalization indexes. Comorbidity did not have a significant impact on the results. Our data suggest that conditioned fear-generalization is not enhanced in GAD. Results are discussed with special attention to the possible effects of comorbidity on fear learning abnormalities. Copyright © 2014. Published by Elsevier Ltd.

  12. Excitatory strength of expressive faces: effects of happy and fear expressions and context on the extinction of a conditioned fear response.

    PubMed

    Lanzetta, J T; Orr, S P

    1986-01-01

    In a recent study, Orr and Lanzetta (1984) showed that the excitatory properties of fear facial expressions previously described (Lanzetta & Orr, 1981; Orr & Lanzetta, 1980) do not depend on associative mechanisms; even in the absence of reinforcement, fear faces intensify the emotional reaction to a previously conditioned stimulus and disrupt extinction of an acquired fear response. In conjunction with the findings on acquisition, the failure to obtain extinction suggests that fear faces have some of the functional properties of "prepared" (fear-relevant) stimuli. In the present study we compared the magnitude of conditioned fear responses to happy and fear faces when a potent danger signal, the shock electrodes, are attached or unattached. If fear faces are functionally analogous to prepared stimuli, then, even in the absence of veridical support for an expectation of shock, they should retain excitatory strength, whereas happy faces should not. The results are consistent with this view of fear expressions. In the absence of reinforcement, and with shock electrodes removed, conditioned fear responses and basal levels of arousal were of greater magnitude for the fear-face condition than for the happy-face condition.

  13. Contextual and Auditory Fear Conditioning Continue to Emerge during the Periweaning Period in Rats

    PubMed Central

    Burman, Michael A.; Erickson, Kristen J.; Deal, Alex L.; Jacobson, Rose E.

    2014-01-01

    Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23–24) than explicitly cued fear conditioning (postnatal day 15–17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit. PMID:24977415

  14. Opioid receptors regulate blocking and overexpectation of fear learning in conditioned suppression.

    PubMed

    Arico, Carolyn; McNally, Gavan P

    2014-04-01

    Endogenous opioids play an important role in prediction error during fear learning. However, the evidence for this role has been obtained almost exclusively using the species-specific defense response of freezing as the measure of learned fear. It is unknown whether opioid receptors regulate predictive fear learning when other measures of learned fear are used. Here, we used conditioned suppression as the measure of learned fear to assess the role of opioid receptors in fear learning. Experiment 1a studied associative blocking of fear learning. Rats in an experimental group received conditioned stimulus A (CSA) + training in Stage I and conditioned stimulus A and B (CSAB) + training in Stage II, whereas rats in a control group received only CSAB + training in Stage II. The prior fear conditioning of CSA blocked fear learning to conditioned stimulus B (CSB) in the experimental group. In Experiment 1b, naloxone (4 mg/kg) administered before Stage II prevented this blocking, thereby enabling normal fear learning to CSB. Experiment 2a studied overexpectation of fear. Rats received CSA + training and CSB + training in Stage I, and then rats in the experimental group received CSAB + training in Stage II whereas control rats did not. The Stage II compound training of CSAB reduced fear to CSA and CSB on test. In Experiment 2b, naloxone (4 mg/kg) administered before Stage II prevented this overexpectation. These results show that opioid receptors regulate Pavlovian fear learning, augmenting learning in response to positive prediction error and impairing learning in response to negative prediction error, when fear is assessed via conditioned suppression. These effects are identical to those observed when freezing is used as the measure of learned fear. These findings show that the role for opioid receptors in regulating fear learning extends across multiple measures of learned fear.

  15. An "egr-1" ("zif268") Antisense Oligodeoxynucleotide Infused into the Amygdala Disrupts Fear Conditioning

    ERIC Educational Resources Information Center

    Donley, Melanie P.; Rosen, Jeffrey B.; Malkani, Seema; Wallace, Karin J.

    2004-01-01

    Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, "egr-1," is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that "egr-1" and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To…

  16. The Melatonergic System in Anxiety Disorders and the Role of Melatonin in Conditional Fear.

    PubMed

    Huang, F; Yang, Z; Li, C-Q

    2017-01-01

    Resistance to extinction of certain conditioned responses forms the basis of anxieties, phobias, and compulsions. There has been an available effective means of extinction-based exposure psychotherapy for the treatment of anxiety disorders, such as posttraumatic stress disorder (PTSD) that has been hypothesized to result from impaired extinction of fear memory. PTSD is considered as a memory disorder within a Pavlovian fear conditioning and extinction framework. Therefore, the aim of this review was to report the preclinical profile of melatonin, a pineal gland hormone, as a potential pharmacological option in the treatment of anxiety disorders such as PTSD, tested with the Pavlovian fear conditioning paradigm. We performed a literature review regarding studies that evaluated the effects of melatonin on fear conditioning and fear extinction. Results showed that a single administration 30min before conditioning has no effect on the acquisition of cued fear, but impaired contextual fear conditioning. Compared to rats injected with vehicle, rats injected with melatonin 30min before extinction training presented a significant lower freezing during both extinction training and extinction test phases. However, melatonin injected immediately after extinction training was ineffective on extinction learning. Melatonin impaired contextual fear conditioning, a hippocampus-dependent task. On the contrary, melatonin facilitates the extinction of conditional cued fear without affecting its acquisition or expression, and melatonin facilitates cued fear extinction only when it is present during extinction training. Although further studies are necessary, the research undertaken until now shows that melatonin modulates fear conditioning and fear extinction and consequently melatonin may serve as an agent for the treatment of PTSD. © 2017 Elsevier Inc. All rights reserved.

  17. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies.

    PubMed

    Shi, C; Davis, M

    1999-01-01

    It is well established that the basolateral amygdala is critically involved in the association between an unconditioned stimulus (US), such as a foot shock, and a conditioned stimulus (CS), such as a light, during classic fear conditioning. However, little is known about how the US (pain) inputs are relayed to the basolateral amygdala. The present studies were designed to define potential US pathways to the amygdala using lesion methods. Electrolytic lesions before or after training were placed in caudal granular/dysgranular insular cortex (IC) alone or in conjunction with the posterior intralaminar nuclei of the thalamus (PoT/PIL), and the effects on fear conditioning were examined. Pretraining lesions of both IC and PoT/PIL, but not lesions of IC alone, blocked the acquisition of fear-potentiated startle. However, post-training combined lesions of IC and PoT/PIL did not prevent expression of conditioned fear. Given that previous studies have shown that lesions of PoT/PIL alone had no effect on acquisition of conditioned fear, these results suggest that two parallel cortical (insula-amygdala) and subcortical (PoT/PIL-amygdala) pathways are involved in relaying shock information to the basolateral amygdala during fear conditioning.

  18. Bupropion Dose-Dependently Reverses Nicotine Withdrawal Deficits in Contextual Fear Conditioning

    PubMed Central

    Portugal, George S.; Gould, Thomas J.

    2007-01-01

    Bupropion, a norepinephrine and dopamine reuptake inhibitor and nicotinic acetylcholine receptor antagonist, facilitates smoking cessation and reduces some symptoms of nicotine withdrawal. However, the effects of bupropion on nicotine withdrawal-associated deficits in learning remain unclear. The present study investigated whether bupropion has effects on contextual and cued fear conditioning following withdrawal from chronic nicotine or when administered alone. Bupropion was administered alone for a range of doses (2.5, 5, 10, 20 or 40 mg/kg), and dose-dependent impairments in contextual and cued fear conditioning were observed (20 or 40 mg/kg). Follow-up studies investigated if bupropion disrupted acquisition or expression of fear conditioning. Bupropion (40 mg/kg) administration on training day only produced deficits in contextual fear conditioning. Alternatively, bupropion (20 or 40 mg/kg) administration during testing dose-dependently produced deficits in contextual and cued fear conditioning. To test the effect of bupropion on nicotine withdrawal, mice were withdrawn from 12 days of chronic nicotine (6.3 mg/kg/day) or saline treatment. Withdrawal from chronic nicotine disrupted contextual fear conditioning; however, 5 mg/kg bupropion reversed this deficit. Overall, these results indicate that a low dose of bupropion can reverse nicotine withdrawal deficits in contextual fear conditioning, but that high doses of bupropion produce deficits in fear conditioning. PMID:17868796

  19. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    PubMed

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  20. No effect of trait anxiety on differential fear conditioning or fear generalization.

    PubMed

    Torrents-Rodas, David; Fullana, Miquel A; Bonillo, Albert; Caseras, Xavier; Andión, Oscar; Torrubia, Rafael

    2013-02-01

    Previous studies have shown that individuals with anxiety disorders exhibit deficits in fear inhibition and excessive generalization of fear, but little data exist on individuals at risk from these disorders. The present study examined the role of trait anxiety in the acquisition and generalization of fear in 126 healthy participants selected on the basis of their trait-anxiety scores. Measures of conditioning included fear-potentiated startle, skin conductance response and online risk ratings for the unconditioned stimulus. Contrary to our hypotheses, trait anxiety did not have any effect either on the acquisition or the generalization of fear. Our results suggest that these fear conditioning processes are not impaired in individuals at risk from anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Generalization of conditioned fear along a dimension of increasing fear intensity

    PubMed Central

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS−). In Experiment 1 the CS− was a relatively neutral face stimulus, while in Experiment 2 the CS− was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli. PMID:19553384

  2. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review

    PubMed Central

    Kim, Jeansok J.; Jung, Min Whan

    2015-01-01

    Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular–molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex–amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity. PMID:16120461

  3. Association of poor childhood fear conditioning and adult crime.

    PubMed

    Gao, Yu; Raine, Adrian; Venables, Peter H; Dawson, Michael E; Mednick, Sarnoff A

    2010-01-01

    Amygdala dysfunction is theorized to give rise to poor fear conditioning, which in turn predisposes to crime, but it is not known whether poor conditioning precedes criminal offending. This study prospectively assessed whether poor fear conditioning early in life predisposes to adult crime in a large cohort. Electrodermal fear conditioning was assessed in a cohort of 1,795 children at age 3, and registration for criminal offending was ascertained at age 23. In a case-control design, 137 cohort members with a criminal record were matched on gender, ethnicity, and social adversity with 274 noncriminal comparison members. Statistical analyses compared childhood fear conditioning for the two groups. Criminal offenders showed significantly reduced electrodermal fear conditioning at age 3 compared to matched comparison subjects. Poor fear conditioning at age 3 predisposes to crime at age 23. Poor fear conditioning early in life implicates amygdala and ventral prefrontal cortex dysfunction and a lack of fear of socializing punishments in children who grow up to become criminals. These findings are consistent with a neurodevelopmental contribution to crime causation.

  4. Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity

    ERIC Educational Resources Information Center

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two…

  5. Thalamocortical interactions underlying visual fear conditioning in humans.

    PubMed

    Lithari, Chrysa; Moratti, Stephan; Weisz, Nathan

    2015-11-01

    Despite a strong focus on the role of the amygdala in fear conditioning, recent works point to a more distributed network supporting fear conditioning. We aimed to elucidate interactions between subcortical and cortical regions in fear conditioning in humans. To do this, we used two fearful faces as conditioned stimuli (CS) and an electrical stimulation at the left hand, paired with one of the CS, as unconditioned stimulus (US). The luminance of the CS was rhythmically modulated leading to "entrainment" of brain oscillations at a predefined modulation frequency. Steady-state responses (SSR) were recorded by MEG. In addition to occipital regions, spectral analysis of SSR revealed increased power during fear conditioning particularly for thalamus and cerebellum contralateral to the upcoming US. Using thalamus and amygdala as seed-regions, directed functional connectivity was calculated to capture the modulation of interactions that underlie fear conditioning. Importantly, this analysis showed that the thalamus drives the fusiform area during fear conditioning, while amygdala captures the more general effect of fearful faces perception. This study confirms ideas from the animal literature, and demonstrates for the first time the central role of the thalamus in fear conditioning in humans. © 2015 Wiley Periodicals, Inc.

  6. Stressor controllability modulates fear extinction in humans

    PubMed Central

    Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.

    2014-01-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646

  7. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  8. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    PubMed Central

    Qureshi, Munazah F.; Jha, Sushil K.

    2017-01-01

    The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i) sleep deprivation on contextual fear conditioned memory, and also (ii) contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a) non-sleep deprived (NSD); (b) stress control (SC); and (c) sleep-deprived (SD) groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001) on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM) sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation. PMID:29238297

  9. What Can Ethobehavioral Studies Tell Us About The Brain’s Fear System?

    PubMed Central

    Pellman, Blake A.; Kim, Jeansok J.

    2016-01-01

    Foraging-associated predation risk is a natural problem all prey must face. Fear evolved due to its protective functions, guiding and shaping behaviors that help animals adapt to various ecological challenges. Despite the breadth of risky situations in nature that demand diversity in fear behaviors, contemporary neurobiological models of fear stem largely from Pavlovian fear conditioning studies that focus on how a particular cue becomes capable of eliciting learned fear responses, thus oversimplifying the brain’s fear system. Here we review fear from functional, mechanistic, and phylogenetic perspectives where environmental threats cause animals to alter their foraging strategies in terms of spatial and temporal navigation, and discuss whether the inferences we draw from fear conditioning studies operate in the natural world. PMID:27130660

  10. Interoceptive fear conditioning and panic disorder: the role of conditioned stimulus-unconditioned stimulus predictability.

    PubMed

    Acheson, Dean T; Forsyth, John P; Moses, Erica

    2012-03-01

    Interoceptive fear conditioning is at the core of contemporary behavioral accounts of panic disorder. Yet, to date only one study has attempted to evaluate interoceptive fear conditioning in humans (see Acheson, Forsyth, Prenoveau, & Bouton, 2007). That study used brief (physiologically inert) and longer-duration (panicogenic) inhalations of 20% CO(2)-enriched air as an interoceptive conditioned (CS) and unconditioned (US) stimulus and evaluated fear learning in three conditions: CS only, CS-US paired, and CS-US unpaired. Results showed fear conditioning in the paired condition, and fearful responding and resistance to extinction in an unpaired condition. The authors speculated that such effects may be due to difficulty discriminating between the CS and the US. The aims of the present study are to (a) replicate and expand this line of work using an improved methodology, and (b) clarify the role of CS-US discrimination difficulties in either potentiating or depotentiating fear learning. Healthy participants (N=104) were randomly assigned to one of four conditions: (a) CS only, (b) contingent CS-US pairings, (c) unpaired CS and US presentations, or (d) an unpaired "discrimination" contingency, which included an exteroceptive discrimination cue concurrently with CS onset. Electrodermal and self-report ratings served as indices of conditioned responding. Consistent with expectation, the paired contingency and unpaired contingencies yielded elevated fearful responding to the CS alone. Moreover, adding a discrimination cue to the unpaired contingency effectively attenuated fearful responding. Overall, findings are consistent with modern learning theory accounts of panic and highlight the role of interoceptive conditioning and unpredictability in the etiology of panic disorder. Copyright © 2011. Published by Elsevier Ltd.

  11. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    PubMed

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  12. Assessing Fear Following Retrieval + Extinction Through Suppression of Baseline Reward Seeking vs. Freezing

    PubMed Central

    Shumake, Jason; Monfils, Marie H.

    2015-01-01

    Freezing has become the predominant measure used in rodent studies of conditioned fear, but conditioned suppression of reward-seeking behavior may provide a measure that is more relevant to human anxiety disorders; that is, a measure of how fear interferes with the enjoyment of pleasurable activities. Previous work has found that an isolated presentation of a fear conditioned stimulus (CS) prior to extinction training (retrieval + extinction) results in a more robust and longer-lasting reduction in fear. The objective of this study was to assess whether the retrieval + extinction effect is evident using conditioned suppression of reward seeking, operationalized as a reduction in baseline licking (without prior water deprivation) for a 10% sucrose solution. We found that, compared to freezing, conditioned suppression of reward seeking was much more sensitive to fear conditioning and far less responsive to extinction training. As in previous work, we found that retrieval + extinction reduced post-extinction fear reinstatement when measured as freezing, but it did not reduce fear reinstatement when measured as conditioned suppression. This suggests that there is still residual fear following retrieval + extinction, or that this procedure only modifies memory traces in neural circuits relevant to the expression of freezing, but not to the suppression of reward seeking. PMID:26778985

  13. The Topological Properties of Stimuli Influence Fear Generalization and Extinction in Humans

    PubMed Central

    Xu, Liang; Su, Hongyu; Xie, Xiaoyuan; Yan, Pei; Li, Junjiao; Zheng, Xifu

    2018-01-01

    Fear generalization is an etiologically significant indicator of anxiety disorders, and understanding how to inhibit it is important in their treatment. Prior studies have found that reducing fear generalization using a generalization stimulus (GS) is ineffective in removing a conditioned fear that incorporates local features, and that topological properties appear to play a comparatively more significant role in the processes of perception and categorization. Our study utilized a conditioned-fear generalization design to examine whether the topological properties of stimuli influence the generalization and return of fear. Fear was indexed using online expectancy ratings and skin conductance responses (SCRs). The study’s 52 participants were divided into three groups: Group 1, conditioned danger cue (CS+) extinction; Group 2, extinction of one GS; Group 3, extinction of three GSs. We found that the three groups acquired conditioned fear at the same level. In the generalization and extinction phase, fear was transferred to the GS with the same topological properties as CS+, and gradual decreases in both shock expectancy and SCRs over non-reinforced extinction trials were observed. In the test phase, participants’ online expectancy ratings indicated that fear did not return in Group 1, but did return in Groups 2 and 3. All three groups demonstrated successful GS fear extinction, but only Group 1 did not show a return of fear for CS+. Regarding SCRs results, none of the groups demonstrated a return of fear, suggesting that utilization of topological properties successfully reduced the return of conditioned fear. Our results indicate that, in clinical settings, using GS with topological equivalence to CS+ might offer a potential method with which to extinct conditioned fear. PMID:29643824

  14. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

    PubMed

    Sengupta, Auntora; McNally, Gavan P

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  15. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  16. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice

    PubMed Central

    Heinrichs, Stephen C.; Leite-Morris, Kimberly A.; Guy, Marsha D.; Goldberg, Lisa R.; Young, Angela J.; Kaplan, Gary B.

    2015-01-01

    Previous research suggests that morphology and arborization of dendritic spines change as a result of fear conditioning in cortical and subcortical brain regions. This study uniquely aims to delineate these structural changes in the basolateral amygdala (BLA) after both fear conditioning and fear extinction. C57BL/6 mice acquired robust conditioned fear responses (70–80% cued freezing behavior) after six pairings with a tone cue associated with footshock in comparison to unshocked controls. During fear acquisition, freezing behavior was significantly affected by both shock exposure and trial number. For fear extinction, mice were exposed to the conditioned stimulus tone in the absence of shock administration and behavioral responses significantly varied by shock treatment. In the retention tests over 3 weeks, the percentage time spent freezing varied with the factor of extinction training. In all treatment groups, alterations in dendritic plasticity were analyzed using Golgi–Cox staining of dendrites in the BLA. Spine density differed between the fear conditioned group and both the fear extinction and control groups on third order dendrites. Spine density was significantly increased in the fear conditioned group compared to the fear extinction group and controls. Similarly in Sholl analyses, fear conditioning significantly increased BLA spine numbers and dendritic intersections while subsequent extinction training reversed these effects. In summary, fear extinction produced enduring behavioral plasticity that is associated with a reversal of alterations in BLA dendritic plasticity produced by fear conditioning. These neuroplasticity findings can inform our understanding of structural mechanisms underlying stress-related pathology can inform treatment research into these disorders. PMID:23570859

  17. Mechanisms of Pavlovian fear conditioning: has the engram been located?

    PubMed

    Paré, Denis

    2002-09-01

    Uncertainty persists as to whether the amygdala is a crucial site of plasticity for classically conditioned fear or merely a sensory relay to structures generating fear responses. A recent Nature study suggests that associative synaptic changes take place in neurons of the amygdala during fear conditioning, and that these changes require dopamine-mediated modulation. Nevertheless, these findings do not prove that the amygdala is a sufficient site of plasticity for fear memory.

  18. Distinct state anxiety after predictable and unpredictable fear training in mice.

    PubMed

    Seidenbecher, Thomas; Remmes, Jasmin; Daldrup, Thiemo; Lesting, Jörg; Pape, Hans-Christian

    2016-05-01

    Sustained fear paradigms in rodents have been developed to monitor states of anxious apprehension and to model situations in patients suffering from long-lasting anxiety disorders. A recent report describes a fear conditioning paradigm, allowing distinction between phasic and sustained states of conditioned fear in non-restrained mice. However, so far no prospective studies have yet been conducted to elucidate whether induction of phasic or sustained fear can affect states of anxiety. Here, we used CS (conditioned stimulus) and US (unconditioned stimulus) pairing with predictable and unpredictable timing to induce phasic and sustained fear in mice. State anxiety during various fear response components was assessed using the elevated plus-maze test. Training with unpredictable CS-US timing resulted in CS-evoked sustained components of fear (freezing), while predictable CS-US timing resulted in rapid decline. Data suggested the influence of training procedure on state anxiety which is dependent on progression of conditioned fear during fear memory retrieval. Animals trained with unpredictable CS-US timing showed an unchanged high anxiety state throughout behavioral observation. In contrast, mice trained with predictable CS-US timing showed anxiolytic-like behavior 3 min after CS onset, which was accompanied by a fast decline of the fear conditioned response (freezing). Further systematic studies are needed to validate the phasic/sustained fear model in rodents as translational model for anxiety disorders in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning-Implications for Renewal Research.

    PubMed

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  20. Predicting fear of heights, snakes, and public speaking from multimodal classical conditioning events.

    PubMed

    Wu, Ning Ying; Conger, Anthony J; Dygdon, Judith A

    2006-04-01

    Two hundred fifty one men and women participated in a study of the prediction of fear of heights, snakes, and public speaking by providing retrospective accounts of multimodal classical conditioning events involving those stimuli. The fears selected for study represent those believed by some to be innate (i.e., heights), prepared (i.e., snakes), and purely experientially learned (i.e., public speaking). This study evaluated the extent to which classical conditioning experiences in direct, observational, and verbal modes contributed to the prediction of the current level of fear severity. Subjects were asked to describe their current level of fear and to estimate their experience with fear response-augmenting events (first- and higher-order aversive pairings) and fear response-moderating events (first- and higher-order appetitive pairings, and pre- and post-conditioning neutral presentations) in direct, observational, and verbal modes. For each stimulus, fear was predictable from direct response-augmenting events and prediction was enhanced by the inclusion of response-moderating events. Furthermore, for each fear, maximum prediction was attained by the addition of variables tapping experiences in the observational and/or verbal modes. Conclusions are offered regarding the importance of including response-augmenting and response-moderating events in all three modes in both research and clinical applications of classical conditioning.

  1. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder

    PubMed Central

    Morey, R A; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J; Stjepanovic, D; Wagner, H R; Brancu, Mira; Marx, Christine E; Naylor, Jennifer C; Van Voorhees, Elizabeth; Taber, Katherine H; Beckham, Jean C; Calhoun, Patrick S; Fairbank, John A; Szabo, Steven T; LaBar, K S

    2015-01-01

    Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala–calcarine (P=0.01) and amygdala–thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala–ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma. PMID:26670285

  2. Double Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning

    PubMed Central

    Raybuck, Jonathan D.; Lattal, K. Matthew

    2011-01-01

    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA A agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning. PMID:21283812

  3. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  4. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    PubMed Central

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  5. Post-Extinction Conditional Stimulus Valence Predicts Reinstatement Fear: Relevance for Long Term Outcomes of Exposure Therapy

    PubMed Central

    Zbozinek, Tomislav D.; Hermans, Dirk; Prenoveau, Jason M.; Liao, Betty; Craske, Michelle G.

    2014-01-01

    Exposure therapy for anxiety disorders is translated from fear conditioning and extinction. While exposure therapy is effective in treating anxiety, fear sometimes returns after exposure. One pathway for return of fear is reinstatement: unsignaled unconditional stimuli following completion of extinction. The present study investigated the extent to which valence of the conditional stimulus (CS+) after extinction predicts return of CS+ fear after reinstatement. Participants (N = 84) engaged in a differential fear conditioning paradigm and were randomized to reinstatement or non-reinstatement. We hypothesized that more negative post-extinction CS+ valence would predict higher CS+ fear after reinstatement relative to non-reinstatement and relative to extinction retest. Results supported the hypotheses and suggest that strategies designed to decrease negative valence of the CS+ may reduce the return of fear via reinstatement following exposure therapy. PMID:24957680

  6. Worrying affects associative fear learning: a startle fear conditioning study.

    PubMed

    Gazendam, Femke J; Kindt, Merel

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  7. Metyrapone Reveals That Previous Chronic Stress Differentially Impairs Hippocampal-dependent Memory

    PubMed Central

    CONRAD, CHERYL D.; MAULDIN-JOURDAIN, MELISSA L.; HOBBS, REBECCA J.

    2007-01-01

    Chronic stress facilitates fear conditioning in rats with hippocampal neuronal atrophy and in rats in which the atrophy is prevented with tianeptine, a serotonin re-uptake enhancer. The purpose of this study was to determine whether the lack of dissociation between fear conditioning performance and hippocampal integrity was masked by the presence of endogenous corticosteroids during training. As in previous studies, rats were stressed by daily restraint (6 h/day for 21 days), trained in the conditioning chamber (day 23), and then assessed for conditioned fear (day 25) at a time when hippocampal dendritic atrophy persists. On the training day, half of the control and stressed rats were injected with metyrapone to reduce corticosterone release. Two hours later, two paired or unpaired presentations of tone and footshock were delivered. Although metyrapone reduced conditioned fear in all rats, only stressed rats showed dissociated fear conditioning (i.e. tone conditioning was reduced while contextual conditioning was eliminated). Chronically stressed rats, regardless of metyrapone treatment displayed more rearing in the open field when tested immediately after the completion of fear conditioning. These data support the hypothesis that increased emotionality and enhanced fear conditioning exhibited by chronically stressed rats may be due to endogenous corticosterone secretion at the time of fear conditioned training. Moreover, these data suggest that chronic stress impairs hippocampal-dependent processes more robustly than hippocampal-independent processes after metyrapone to reduce corticosterone secretion during aversive training. PMID:18301732

  8. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    PubMed

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  9. Skin conductance fear conditioning impairments and aggression: a longitudinal study.

    PubMed

    Gao, Yu; Tuvblad, Catherine; Schell, Anne; Baker, Laura; Raine, Adrian

    2015-02-01

    Autonomic fear conditioning deficits have been linked to child aggression and adult criminal behavior. However, it is unknown if fear conditioning deficits are specific to certain subtypes of aggression, and longitudinal research is rare. In the current study, reactive and proactive aggression were assessed in a sample of males and females when aged 10, 12, 15, and 18 years old. Skin conductance fear conditioning data were collected when they were 18 years old. Individuals who were persistently high on proactive aggression measures had significantly poorer conditioned responses at 18 years old when compared to others. This association was not found for reactive aggression. Consistent with prior literature, findings suggest that persistent antisocial individuals have unique neurobiological characteristics and that poor autonomic fear conditioning is associated with the presence of increased instrumental aggressive behavior. © 2014 Society for Psychophysiological Research.

  10. Negative Social Evaluative Fears Produce Social Anxiety, Food Intake, and Body Dissatisfaction: Evidence of Similar Mechanisms through Different Pathways

    PubMed Central

    Levinson, Cheri A.; Rodebaugh, Thomas L.

    2014-01-01

    Social anxiety and eating disorders are highly comorbid, suggesting there are shared vulnerabilities that underlie the development of these disorders. Two proposed vulnerabilities are fear of negative evaluation and social appearance anxiety (i.e., fear of negative evaluation regarding one's appearance). In the current experimental study (N=160 women) we measured these fears: (a) through a manipulation comparing fear conditions, (b) with trait fears, and (c) state fears. Results indicated that participants in the fear of negative evaluation condition increased food consumption, whereas participants in the social appearance anxiety condition and high in trait social appearance anxiety experienced the highest amounts of body dissatisfaction. Participants in the fear of evaluation and social appearance anxiety conditions experienced elevated social anxiety. These results support the idea that negative evaluation fears are shared vulnerabilities for eating and social anxiety disorders, but that the way these variables exert their effects may lead to disorder specific behaviors. PMID:26504674

  11. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  12. Temporary inhibition of dorsal or ventral hippocampus by muscimol: distinct effects on measures of innate anxiety on the elevated plus maze, but similar disruption of contextual fear conditioning.

    PubMed

    Zhang, Wei-Ning; Bast, Tobias; Xu, Yan; Feldon, Joram

    2014-04-01

    Studies in rats, involving hippocampal lesions and hippocampal drug infusions, have implicated the hippocampus in the modulation of anxiety-related behaviors and conditioned fear. The ventral hippocampus is considered to be more important for anxiety- and fear-related behaviors than the dorsal hippocampus. In the present study, we compared the role of dorsal and ventral hippocampus in innate anxiety and classical fear conditioning in Wistar rats, examining the effects of temporary pharmacological inhibition by the GABA-A agonist muscimol (0.5 ug/0.5 ul/side) in the elevated plus maze and on fear conditioning to a tone and the conditioning context. In the elevated plus maze, dorsal and ventral hippocampal muscimol caused distinct behavioral changes. The effects of ventral hippocampal muscimol were consistent with suppression of locomotion, possibly accompanied by anxiolytic effects, whereas the pattern of changes caused by dorsal hippocampal muscimol was consistent with anxiogenic effects. In contrast, dorsal and ventral hippocampal muscimol caused similar effects in the fear conditioning experiments, disrupting contextual, but not tone, fear conditioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rapid Remission of Conditioned Fear Expression with Extinction Training Paired with Vagus Nerve Stimulation

    PubMed Central

    Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.

    2012-01-01

    Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749

  14. Human Fear Conditioning Conducted in Full Immersion 3-Dimensional Virtual Reality

    PubMed Central

    Huff, Nicole C.; Zielinski, David J.; Fecteau, Matthew E.; Brady, Rachael; LaBar, Kevin S.

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment1. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses. In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects 2 . Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction. PMID:20736913

  15. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure.

    PubMed

    Burgos-Robles, Anthony; Vidal-Gonzalez, Ivan; Quirk, Gregory J

    2009-07-01

    During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.

  16. High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response.

    PubMed

    Wang, Hongbo; Xing, Xiaoli; Liang, Jing; Bai, Yunjing; Lui, Zhengkui; Zheng, Xigeng

    2014-09-01

    Exposure therapy is widely used to treat anxiety disorders, including posttraumatic stress disorder (PTSD). However, preventing the return of fear is still a major challenge after this behavioral treatment. An increasing number of studies suggest that high-dose glucocorticoid treatment immediately after trauma can alleviate the symptoms of PTSD in humans. Unknown is whether high-dose glucocorticoid treatment following fear conditioning suppresses the return of fear. In the present study, a typical fear renewal paradigm (AAB) was used, in which the fear response to an auditory cue can be restored in a novel context (context B) when both training and extinction occur in the same context (context A). We trained rats for auditory fear conditioning and administered corticosterone (CORT; 5 and 25mg/kg, i.p.) or vehicle with different delays (1 and 24h). Forty-eight hours after drug injection, extinction was conducted with no drug in the training context, followed by a test of tone-induced freezing behavior in the same (AAA) or a shifted (AAB) context. Both immediate and delayed administration of high-dose CORT after fear conditioning reduced fear renewal. To examine the anxiolytic effect of CORT, independent rats were trained for cued or contextual fear conditioning, followed by an injection of CORT (5 and 25mg/kg, i.p.) or vehicle at a 1 or 24h delay. One week later, anxiety-like behavior was assessed in the elevated plus maze (EPM) before and after fear expression. We found that high-dose CORT decreased anxiety-like behavior without changing tone- or context-induced freezing. These findings indicate that a single high-dose CORT administration given after fear conditioning may selectively suppress fear renewal by reducing anxiety-like behavior and not by altering the consolidation, retrieval, or extinction of fear memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear.

    PubMed

    Lonsdorf, Tina B; Menz, Mareike M; Andreatta, Marta; Fullana, Miguel A; Golkar, Armita; Haaker, Jan; Heitland, Ivo; Hermann, Andrea; Kuhn, Manuel; Kruse, Onno; Meir Drexler, Shira; Meulders, Ann; Nees, Frauke; Pittig, Andre; Richter, Jan; Römer, Sonja; Shiban, Youssef; Schmitz, Anja; Straube, Benjamin; Vervliet, Bram; Wendt, Julia; Baas, Johanna M P; Merz, Christian J

    2017-06-01

    The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and in anxiety disorders

    PubMed Central

    VanElzakker, Michael B.; Dahlgren, M. Kathryn; Davis, F. Caroline; Dubois, Stacey; Shin, Lisa M.

    2014-01-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  19. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders.

    PubMed

    VanElzakker, Michael B; Dahlgren, M Kathryn; Davis, F Caroline; Dubois, Stacey; Shin, Lisa M

    2014-09-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  1. Developing and validating trace fear conditioning protocols in C57BL/6 mice.

    PubMed

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2014-01-30

    Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Developing and Validating Trace Fear Conditioning Protocols in C57BL/6 Mice

    PubMed Central

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2013-01-01

    Background Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. New Method The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Results Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. Comparison with Existing Methods A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Conclusions Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. PMID:24269252

  3. The Amygdala Is Critical for Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Kochli, Daniel E.; Thompson, Elaine C.; Fricke, Elizabeth A.; Postle, Abagail F.; Quinn, Jennifer J.

    2015-01-01

    Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei…

  4. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms

    PubMed Central

    Seo, Dong-oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F.

    2015-01-01

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult neurogenesis supports fear learning through two distinct mechanisms: it supports the ability to learn associations between traumatic events (unconditioned stimuli) and predictors (conditioned stimuli) while also buffering against nonassociative, anxiogenic effects of a traumatic experience. As a result, arrest of neurogenesis can enhance or impair learned fear depending on intensity of the traumatic experience and the extent to which it recruits associative versus nonassociative learning. PMID:26269640

  5. Dexamethasone facilitates fear extinction and safety discrimination in PTSD: A placebo-controlled, double-blind study.

    PubMed

    Michopoulos, Vasiliki; Norrholm, Seth D; Stevens, Jennifer S; Glover, Ebony M; Rothbaum, Barbara O; Gillespie, Charles F; Schwartz, Ann C; Ressler, Kerry J; Jovanovic, Tanja

    2017-09-01

    Psychophysiological hallmarks of posttraumatic stress disorder (PTSD) include exaggerated fear responses, impaired inhibition and extinction of conditioned fear, and decreased discrimination between safety and fear cues. This increased fear load associated with PTSD can be a barrier to effective therapy thus indicating the need for new treatments to reduce fear expression in people with PTSD. One potential biological target for reducing fear expression in PTSD is the hypothalamic-pituitary-adrenal (HPA) axis, which is dysregulated in PTSD. Recent translational rodent studies and cross-sectional clinical studies have shown that dexamethasone administration and the resulting suppression of cortisol in individuals with PTSD leads to a decrease in the fear responses characteristic of PTSD. These data, taken together, suggest that dexamethasone may serve as a novel pharmacologic intervention for heightened fear responses in PTSD. We conducted a double-blind, placebo-controlled trial to test our hypothesis that dexamethasone administration and the concomitant suppression of HPA axis hyperactivity would attenuate fear expression and enhance fear extinction in individuals with PTSD. Study participants (n=62) were recruited from Grady Memorial Hospital in Atlanta, GA. Participants were randomized to receive dexamethasone or placebo prior to fear conditioning and extinction, in a counterbalanced design (treatments separated by a week). Both PTSD- (n=37) and PTSD+ (n=25) participants showed significant startle increases in the presence of the danger signal during placebo and dexamethasone treatments (all p<0.05). However, only PTSD- control participants showed decreases in fear-potentiated startle across extinction blocks during both conditions (p's≤0.001), with PTSD+ participants showing deficits in fear extinction and safety discrimination in the placebo condition. Notably, extinction and discrimination deficits in PTSD+ subjects were markedly reversed with dexamethasone (p<0.001). These data suggest that dexamethasone may serve as a pharmacological agent with which to facilitate fear extinction and discrimination in individuals with PTSD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample.

    PubMed

    Acheson, Dean; Feifel, David; de Wilde, Sofieke; McKinney, Rebecca; Lohr, James; Risbrough, Victoria

    2013-09-01

    To improve outcomes for patients undergoing extinction-based therapies (e.g., exposure therapy) for anxiety disorders such as post-traumatic stress disorder (PTSD), there has been interest in identifying pharmaceutical compounds that might facilitate fear extinction learning and recall. Oxytocin (OT) is a mammalian neuropeptide that modulates activation of fear extinction-based neural circuits and fear responses. Little is known, however, about the effects of OT treatment on conditioned fear responding and extinction in humans. The purpose of the present study was to assess the effects of OT in a fear-potentiated startle task of fear conditioning and extinction. A double-blind, placebo-controlled study of 44 healthy human participants was conducted. Participants underwent a conditioned fear acquisition procedure, after which they were randomized to treatment group and delivered OT (24 IU) or placebo via intranasal (IN) spray. Forty-five minutes after treatment, participants underwent extinction training. Twenty-four hours later, subjects were tested for extinction recall. Relative to placebo, the OT group showed increased fear-potentiated startle responding during the earliest stage of extinction training relative to placebo; however, all treatment groups showed the same level of reduced responding by the end of extinction training. Twenty-four hours later, the OT group showed significantly higher recall of extinction relative to placebo. The current study provides preliminary evidence that OT may facilitate fear extinction recall in humans. These results support further study of OT as a potential adjunctive treatment for extinction-based therapies in fear-related disorders.

  7. Molecular mechanisms of fear learning and memory.

    PubMed

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Stress hormones are associated with the neuronal correlates of instructed fear conditioning.

    PubMed

    Merz, Christian Josef; Stark, Rudolf; Vaitl, Dieter; Tabbert, Katharina; Wolf, Oliver Tobias

    2013-01-01

    The effects of sex and stress hormones on classical fear conditioning have been subject of recent experimental studies. A correlation approach between basal cortisol concentrations and neuronal activation in fear-related structures seems to be a promising alternative approach in order to foster our understanding of how cortisol influences emotional learning. In this functional magnetic resonance imaging study, participants with varying sex hormone status (20 men, 15 women taking oral contraceptives, 15 women tested in the luteal phase) underwent an instructed fear conditioning protocol with geometrical figures as conditioned stimuli and an electrical stimulation as unconditioned stimulus. Salivary cortisol concentrations were measured and afterwards correlated with fear conditioned brain responses. Results revealed a positive correlation between basal cortisol levels and differential activation in the amygdala in men and OC women only. These results suggest that elevated endogenous cortisol levels are associated with enhanced fear anticipation depending on current sex hormone availability. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Emotion-attention interactions in fear conditioning: Moderation by executive load, neuroticism, and awareness.

    PubMed

    Hur, Juyoen; Iordan, Alexandru D; Berenbaum, Howard; Dolcos, Florin

    2016-12-01

    Despite increasing evidence suggesting interactive effects of emotion and attention on perceptual processing, it still remains unclear how their interplay influences affective learning, such as fear conditioning. In the present study, a conditioning procedure using threat-related conditioned stimuli (CSs) was implemented while executive load and attentional focus were manipulated. The modulation effects of neuroticism and contingency awareness were also examined. Results showed that fear conditioning depended on the available executive resources even with threat-related CSs. In addition, although individuals with high neuroticism showed an enhanced conditioning effect overall, this facilitation effect still depended on the availability of executive resources. Finally, the impact of attentional focus was most evident among individuals with high neuroticism who were aware of the contingency. Overall, the present study demonstrates interactive effects of emotion and attention in fear conditioning, while illuminating mechanisms of individual differences and clarifying the controversial role of contingency awareness in fear conditioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy.

    PubMed

    MacPherson, Kathryn; Whittle, Nigel; Camp, Marguerite; Gunduz-Cinar, Ozge; Singewald, Nicolas; Holmes, Andrew

    2013-07-05

    Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Conducting extinction training soon after ('immediately') conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish.

  11. Minocycline attenuates interferon-α-induced impairments in rat fear extinction.

    PubMed

    Bi, Qiang; Shi, Lijuan; Yang, Pingting; Wang, Jianing; Qin, Ling

    2016-06-30

    Extinction of conditioned fear is an important brain function for animals to adapt to a new environment. Accumulating evidence suggests that innate immune cytokines are involved in the pathology of psychotic disorders. However, the involvement of cytokines in fear dysregulation remains less investigated. In the present study, we investigated how interferon (IFN)-α disrupts the extinction of conditioned fear and propose an approach to rescue IFN-α-induced neurologic impairment. We used a rat model of auditory fear conditioning to study the effect of IFN-α on the fear memory process. IFN-α was infused directly into the amygdala of rats and examined the rats' behavioral response (freezing) to fear-conditioned stimuli. Immunohistochemical staining was used to examine the glia activity status of glia in the amygdala. The levels of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the amygdala were measured by enzyme-linked immunosorbent assay. We also administrated minocycline, a microglial activation inhibitor, before the IFN-α infusion to testify the possibility to reverse the IFN-α-induced effects. Infusing the amygdala with IFN-α impaired the extinction of conditioned fear in rats and activated microglia and astrocytes in the amygdala. Administering minocycline prevented IFN-α from impairing fear extinction. The immunohistochemical and biochemical results show that minocycline inhibited IFN-α-induced microglial activation and reduced IL-1β and TNF-α production. Our findings suggest that IFN-α disrupts the extinction of auditory fear by activating glia in the amygdala and provides direction for clinical studies of novel treatments to modulate the innate immune system in patients with psychotic disorders.

  12. Fear conditioning and extinction across development: Evidence from human studies and animal models☆

    PubMed Central

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C.; Pine, Daniel S.; Fox, Nathan A.

    2015-01-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  13. Testing conditions in shock-based contextual fear conditioning influence both the behavioral responses and the activation of circuits potentially involved in contextual avoidance.

    PubMed

    Viellard, Juliette; Baldo, Marcus Vinicius C; Canteras, Newton Sabino

    2016-12-15

    Previous studies from our group have shown that risk assessment behaviors are the primary contextual fear responses to predatory and social threats, whereas freezing is the main contextual fear response to physically harmful events. To test contextual fear responses to a predator or aggressive conspecific threat, we developed a model that involves placing the animal in an apparatus where it can avoid the threat-associated environment. Conversely, in studies that use shock-based fear conditioning, the animals are usually confined inside the conditioning chamber during the contextual fear test. In the present study, we tested shock-based contextual fear responses using two different behavioral testing conditions: confining the animal in the conditioning chamber or placing the animal in an apparatus with free access to the conditioning compartment. Our results showed that during the contextual fear test, the animals confined to the shock chamber exhibited significantly more freezing. In contrast, the animals that could avoid the conditioning compartment displayed almost no freezing and exhibited risk assessment responses (i.e., crouch-sniff and stretch postures) and burying behavior. In addition, the animals that were able to avoid the shock chamber had increased Fos expression in the juxtadorsomedial lateral hypothalamic area, the dorsomedial part of the dorsal premammillary nucleus and the lateral and dorsomedial parts of the periaqueductal gray, which are elements of a septo/hippocampal-hypothalamic-brainstem circuit that is putatively involved in mediating contextual avoidance. Overall, the present findings show that testing conditions significantly influence both behavioral responses and the activation of circuits involved in contextual avoidance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Delay and trace fear conditioning in C57BL/6 and DBA/2 mice: issues of measurement and performance.

    PubMed

    Tipps, Megan E; Raybuck, Jonathan D; Buck, Kari J; Lattal, K Matthew

    2014-08-01

    Strain comparison studies have been critical to the identification of novel genetic and molecular mechanisms in learning and memory. However, even within a single learning paradigm, the behavioral data for the same strain can vary greatly, making it difficult to form meaningful conclusions at both the behavioral and cellular level. In fear conditioning, there is a high level of variability across reports, especially regarding responses to the conditioned stimulus (CS). Here, we compare C57BL/6 and DBA/2 mice using delay fear conditioning, trace fear conditioning, and a nonassociative condition. Our data highlight both the significant strain differences apparent in these fear conditioning paradigms and the significant differences in conditioning type within each strain. We then compare our data to an extensive literature review of delay and trace fear conditioning in these two strains. Finally, we apply a number of commonly used baseline normalization approaches to compare how they alter the reported differences. Our findings highlight three major sources of variability in the fear conditioning literature: CS duration, number of CS presentations, and data normalization to baseline measures. © 2014 Tipps et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory

    PubMed Central

    Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.

    2012-01-01

    Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders. PMID:22802593

  16. Influence of cued-fear conditioning and its impairment on NREM sleep.

    PubMed

    Kumar, Tankesh; Jha, Sushil K

    2017-10-01

    Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    PubMed

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans

    PubMed Central

    Indovina, Iole; Robbins, Trevor W.; Núñez-Elizalde, Anwar O.; Dunn, Barnaby D.; Bishop, Sonia J.

    2011-01-01

    Summary Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety. PMID:21315265

  19. Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review

    PubMed Central

    Sehlmeyer, Christina; Schöning, Sonja; Zwitserlood, Pienie; Pfleiderer, Bettina; Kircher, Tilo; Arolt, Volker; Konrad, Carsten

    2009-01-01

    Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance between neuroimaging investigations on human fear conditioning and extinction and should, therefore, be taken into serious consideration in the planning and the interpretation of research projects. PMID:19517024

  20. Dopamine D1-like receptor signalling in the hippocampus and amygdala modulates the acquisition of contextual fear conditioning.

    PubMed

    Heath, Florence C; Jurkus, Regimantas; Bast, Tobias; Pezze, Marie A; Lee, Jonathan L C; Voigt, J Peter; Stevenson, Carl W

    2015-07-01

    Dopamine D1-like receptor signalling is involved in contextual fear conditioning, but the brain regions involved and its role in other contextual fear memory processes remain unclear. The objective of this study was to investigate (1) the effects of SCH 23390, a dopamine D1/D5 receptor antagonist, on contextual fear memory encoding, retrieval and reconsolidation, and (2) if the effects of SCH 23390 on conditioning involve the dorsal hippocampus (DH) and/or basolateral amygdala (BLA). Rats were used to examine the effects of systemically administering SCH 23390 on the acquisition, consolidation, retrieval and reconsolidation of contextual fear memory, and on locomotor activity and shock sensitivity. We also determined the effects of MK-801, an NMDA receptor antagonist, on contextual fear memory reconsolidation. The effects of infusing SCH 23390 locally into DH or BLA on contextual fear conditioning and locomotor activity were also examined. Systemic administration of SCH 23390 impaired contextual fear conditioning but had no effects on fear memory consolidation, retrieval or reconsolidation. MK-801 was found to impair reconsolidation, suggesting that the behavioural parameters used allowed for the pharmacological disruption of memory reconsolidation. The effects of SCH 23390 on conditioning were unlikely the result of any lasting drug effects on locomotor activity at memory test or any acute drug effects on shock sensitivity during conditioning. SCH 23390 infused into either DH or BLA impaired contextual fear conditioning and decreased locomotor activity. These findings suggest that dopamine D1-like receptor signalling in DH and BLA contributes to the acquisition of contextual fear memory.

  1. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear.

    PubMed

    Hermans, Erno J; Kanen, Jonathan W; Tambini, Arielle; Fernández, Guillén; Davachi, Lila; Phelps, Elizabeth A

    2017-05-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

    PubMed Central

    Sangha, Susan

    2015-01-01

    Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838

  3. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear

    PubMed Central

    Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.

    2017-01-01

    The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552

  4. Medial prefrontal cortex activity during the extinction of conditioned fear: an investigation using functional near-infrared spectroscopy.

    PubMed

    Guhn, Anne; Dresler, Thomas; Hahn, Tim; Mühlberger, Andreas; Ströhle, Andreas; Deckert, Jürgen; Herrmann, Martin J

    2012-06-01

    The majority of fear conditioning studies in humans have focused on fear acquisition rather than fear extinction. For this reason only a few functional imaging studies on fear extinction are available. A large number of animal studies indicate the medial prefrontal cortex (mPFC) as neuronal substrate of extinction. We therefore determined mPFC contribution during extinction learning after a discriminative fear conditioning in 34 healthy human subjects by using functional near-infrared spectroscopy. During the extinction training, a previously conditioned neutral face (conditioned stimulus, CS+) no longer predicted an aversive scream (unconditioned stimulus, UCS). Considering differential valence and arousal ratings as well as skin conductance responses during the acquisition phase, we found a CS+ related increase in oxygenated haemoglobin concentration changes within the mPFC over the time course of extinction. Late CS+ trials further revealed higher activation than CS- trials in a cluster of probe set channels covering the mPFC. These results are in line with previous findings on extinction and further emphasize the mPFC as significant for associative learning processes. During extinction, the diminished fear association between a former CS+ and a UCS is inversely correlated with mPFC activity--a process presumably dysfunctional in anxiety disorders. Copyright © 2012 S. Karger AG, Basel.

  5. Low Endogenous Fibroblast Growth Factor 2 Levels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans.

    PubMed

    Graham, Bronwyn M; Zagic, Dino; Richardson, Rick

    2017-10-15

    Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. The relative effectiveness of extinction and counter-conditioning in diminishing children's fear.

    PubMed

    Newall, Carol; Watson, Tiffany; Grant, Kerry-Ann; Richardson, Rick

    2017-08-01

    Two behavioural strategies for reducing learned fear are extinction and counter-conditioning, and in this study we compared the relative effectiveness of the two procedures at diminishing fear in children. Seventy-three children aged 7-12 years old (M = 9.30, SD = 1.62) were exposed to pictures of two novel animals on a computer screen during the fear acquisition phase. One of these animals was paired with a picture of a scared human face (CS+) while the other was not (CS-). The children were then randomly assigned to one of three conditions: counter-conditioning (animal paired with a happy face), extinction (animal without scared face), or control (no fear reduction procedure). Changes in fear beliefs and behavioural avoidance of the animal were measured. Counter-conditioning was more effective at reducing fear to the CS + than extinction. The findings are discussed in terms of implications for behavioural treatments of childhood anxiety disorders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Contextual fear conditioning depresses infralimbic excitability.

    PubMed

    Soler-Cedeño, Omar; Cruz, Emmanuel; Criado-Marrero, Marangelie; Porter, James T

    2016-04-01

    Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  9. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  10. Fear conditioning and extinction across development: evidence from human studies and animal models.

    PubMed

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction

    PubMed Central

    Kim, Hyung-Su; Cho, Hye-Yeon; Augustine, George J; Han, Jin-Hee

    2016-01-01

    Evidence from rodent and human studies has identified the ventromedial prefrontal cortex, specifically the infralimbic cortex (IL), as a critical brain structure in the extinction of conditioned fear. However, how IL activity controls fear expression at the time of extinction memory retrieval is unclear and controversial. To address this issue, we used optogenetics to precisely manipulate the activity of genetically targeted cells and to examine the real-time contribution of IL activity to expression of auditory-conditioned fear extinction in mice. We found that inactivation of IL, but not prelimbic cortex, impaired extinction retrieval. Conversely, photostimulation of IL excitatory neurons robustly enhanced the inhibition of fear expression after extinction, but not before extinction. Moreover, this effect was specific to the conditioned stimulus (CS): IL activity had no effect on expression of fear in response to the conditioned context after auditory fear extinction. Thus, in contrast to the expectation from a generally held view, artificial activation of IL produced no significant effect on expression of non-extinguished conditioned fear. Therefore, our data provide compelling evidence that IL activity is critical for expression of fear extinction and establish a causal role for IL activity in controlling fear expression in a CS-specific manner after extinction. PMID:26354044

  12. Human fear extinction and return of fear using reconsolidation update mechanisms: The contribution of on-line expectancy ratings

    PubMed Central

    Warren, Victor Taylor; Anderson, Kemp M.; Kwon, Cliffe; Bosshardt, Lauren; Jovanovic, Tanja; Bradley, Bekh; Norrholm, Seth Davin

    2015-01-01

    Disruption of the reconsolidation of conditioned fear memories has been suggested as a non-pharmacological means of preventing the return of learned fear in human populations. A reconsolidation update paradigm was developed in which a reconsolidation window is opened by a single isolated retrieval trial of a previously reinforced CS+ which is then followed by Extinction Training within that window. However, follow-up studies in humans using multi-methods fear conditioning indices (e.g., fear-potentiated startle, skin conductance, US-expectancy) have failed to replicate the retrieval + extinction effects. In the present study, we further investigated the retrieval + extinction reconsolidation update paradigm by directly comparing the acquisition, extinction, and return of fear-potentiated startle in the absence or presence of US-expectancy measures (using a trial-by-trial response keypad) with and without retrieval of a previously acquired CS-US association. Participants were fear conditioned to two visual cue CS+'s, one of which was presented as a single, isolated retrieval trial before Extinction Training and one that was extinguished as usual. The results show that the inclusion of US-expectancy measures strengthens the CS–US association to provide enhanced fear conditioning and maintenance of fear memories over the experimental sessions. In addition, in the groups that used on-line US-expectancy measures, the retrieval + extinction procedure reduced reinstatement of fear-potentiated startle to both previously reinforced CS+'s, as compared to the extinction as usual group. PMID:24183839

  13. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The roles of Eph receptors in contextual fear conditioning memory formation.

    PubMed

    Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael

    2015-10-01

    Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy

    PubMed Central

    2013-01-01

    Background Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Methods Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Results Conducting extinction training soon after (‘immediately’) conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. Conclusions These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish. PMID:23830244

  16. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.

    PubMed

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-07-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children.

  17. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents

    PubMed Central

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-01-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6–18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS−) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS−, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS− during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat–safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children. PMID:26677946

  18. Expatriates' Multiple Fears, from Terrorism to Working Conditions: Development of a Model.

    PubMed

    Giorgi, Gabriele; Montani, Francesco; Fiz-Perez, Javier; Arcangeli, Giulio; Mucci, Nicola

    2016-01-01

    Companies' internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates' potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions) and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although, the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research.

  19. Expatriates’ Multiple Fears, from Terrorism to Working Conditions: Development of a Model

    PubMed Central

    Giorgi, Gabriele; Montani, Francesco; Fiz-Perez, Javier; Arcangeli, Giulio; Mucci, Nicola

    2016-01-01

    Companies’ internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates’ potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions) and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although, the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research. PMID:27790173

  20. Development of fear acquisition and extinction in children: effects of age and anxiety.

    PubMed

    Jovanovic, Tanja; Nylocks, Karin Maria; Gamwell, Kaitlyn L; Smith, Ami; Davis, Telsie A; Norrholm, Seth Davin; Bradley, Bekh

    2014-09-01

    Development of anxiety disorders is associated with neurobiological changes in areas that are a critical part of the fear neurocircuitry. Fear conditioning paradigms can offer insight into the mechanisms underlying the neurobiological ontogeny of anxiety. A small number of studies have focused on the effects of age and anxiety separately in school age children. The present study aimed to investigate these effects in 8-13 year old children with higher and lower trait anxiety. We examined differential fear conditioning and extinction using skin conductance responses and fear-potentiated startle in 60 children recruited from a low-income urban population. The results indicated that children under 10 years of age show poor discrimination of conditioned stimuli, and that anxiety increases fear responses during fear acquisition. After controlling for age and trauma exposure, fear-potentiated startle to the safety cue predicted child anxiety levels suggesting that impaired safety signal learning may be a risk factor for anxiety disorders in adulthood. Identifying risk phenotypes in children may provide opportunities for early intervention and prevention of illness. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Development of Fear Acquisition and Extinction in Children: Effects of Age and Anxiety

    PubMed Central

    Jovanovic, Tanja; Nylocks, Karin Maria; Gamwell, Kaitlyn L.; Smith, Ami; Davis, Telsie A.; Norrholm, Seth Davin; Bradley, Bekh

    2013-01-01

    Development of anxiety disorders is associated with neurobiological changes in areas that are a critical part of the fear neurocircuitry. Fear conditioning paradigms can offer insight into the mechanisms underlying the neurobiological ontogeny of anxiety. A small number of studies have focused on the effects of age and anxiety separately in school age children. The present study aimed to investigate these effects in 8-13 year old children with higher and lower trait anxiety. We examined differential fear conditioning and extinction using skin conductance responses and fear-potentiated startle in 60 children recruited from a low-income urban population. The results indicated that children under 10 years of age show poor discrimination of conditioned stimuli, and that anxiety increases fear responses during fear acquisition. After controlling for age and trauma exposure, fear-potentiated startle to the safety cue predicted child anxiety levels suggesting that impaired safety signal learning may be a risk factor for anxiety disorders in adulthood. Identifying risk phenotypes in children may provide opportunities for early intervention and prevention of illness. PMID:24183838

  2. Compound Stimulus Extinction Reduces Spontaneous Recovery in Humans

    ERIC Educational Resources Information Center

    Coelho, Cesar A. O.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.

    2015-01-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately…

  3. Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning

    PubMed Central

    Miskovic, Vladimir; Keil, Andreas

    2012-01-01

    The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatio-temporal patterns of mass neuronal activity we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered and several avenues for future work are outlined. PMID:22891639

  4. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans.

    PubMed

    Indovina, Iole; Robbins, Trevor W; Núñez-Elizalde, Anwar O; Dunn, Barnaby D; Bishop, Sonia J

    2011-02-10

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Origins of common fears in South African children.

    PubMed

    Muris, Peter; du Plessis, Michelle; Loxton, Helene

    2008-12-01

    The present study examined the origins of common childhood fears within a South African context. Six-hundred-and-fifty-five 10- to 14-year-old children were given a brief fear list that helped them to identify their most intense fear and then completed a brief questionnaire for assessing the origins of fears that was based on Rachman's [Rachman, S. (1977). The conditioning theory of fear acquisition: A critical examination. Behaviour Research and Therapy, 15, 375-387; Rachman, S. (1991). Neoconditioning and the classical theory of fear acquisition. Clinical Psychology Review, 17, 47-67] three-pathways theory. More precisely, children were asked to report whether they had experienced conditioning, modeling, and negative information experiences in relation to their most feared stimulus or situation, and also had to indicate to what extent such experiences had actually played a role in the onset and/or intensification of their fears. Results showed that children most frequently reported indirect learning experiences (i.e., modeling and negative information) in relation to their fears, whereas conditioning was clearly less often mentioned. The majority of the children had no precise idea of how their fear had actually begun, but a substantial proportion of them reported various learning experiences in relation to the onset and intensification of fears. Significant cultural differences were not only observed in the prevalence of common fears, but also in the pathways reported for the origins of fears. The results are briefly discussed in terms of the living conditions of South African children from various cultural backgrounds.

  6. The effect of fear and anger on selective attention.

    PubMed

    Finucane, Anne M

    2011-08-01

    This experiment examined the effects of two discrete negative emotions, fear and anger, on selective attention. A within-subjects design was used, and all participants (N = 98) experienced the control, anger, and fear conditions. During each condition, participants viewed a film clip eliciting the target emotion and subsequently completed a flanker task and emotion report. Selective attention costs were assessed by comparing reaction times (RTs) on congruent (baseline) trials with RTs on incongruent trials. There was a significant interaction between emotion condition (control, anger, fear) and flanker type (congruent, incongruent). Contrasts further revealed a significant interaction between emotion and flanker type when comparing RTs in the control and fear conditions, and a marginally significant interaction when comparing RTs in the control and anger conditions. This indicates that selective attention costs were significantly lower in the fear compared to the control condition and were marginally lower in the anger compared with the control condition. Further analysis of participants reporting heightened anger in the anger condition revealed significantly lower selective attention costs during anger compared to a control state. These findings support the general prediction that high arousal negative emotional states inhibit processing of nontarget information and enhance selective attention. This study is the first to show an enhancing effect of anger on selective attention. It also offers convergent evidence to studies that have previously shown an influence of fear on attentional focus using the global-local paradigm. 2011 APA, all rights reserved

  7. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    PubMed

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The role of safety signals in fear extinction: An analogue study.

    PubMed

    Restrepo-Castro, Juan C; Castro-Camacho, Leonidas; Javier Labrador, Francisco

    2017-12-01

    Safety signals are conditioned inhibitory stimuli that indicate the absence of unconditioned stimuli. It is not clear whether the presence of safety signals is detrimental or beneficial in extinction-based interventions. The purpose of this study was to evaluate the effect of safety signals on autonomic and expectancy fear-related responses. Following the conditional discrimination paradigm (AX +, BX-), undergraduate students (N = 48) underwent an aversive conditioning procedure, while safety signals were experimentally created. Participants were randomly assigned to one of two conditions during extinction: presence or absence of safety signals. Significant reductions of fear-related responses were found in both groups. Expectancy measures showed that the presence of safety signals did not interfere with reduction of fear related responses at follow-up. The analogue nature of the study affects its ecological validity. There are some methodological issues. Safety signals did not interfere with extinction learning. Attention may be a mechanism associated with the maintenance of fear responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    PubMed

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization.

    PubMed

    Lissek, Shmuel

    2012-04-01

    The past two decades have brought dramatic progress in the neuroscience of anxiety due, in no small part, to animal findings specifying the neurobiology of Pavlovian fear-conditioning. Fortuitously, this neurally mapped process of fear learning is widely expressed in humans, and has been centrally implicated in the etiology of clinical anxiety. Fear-conditioning experiments in anxiety patients thus represent a unique opportunity to bring recent advances in animal neuroscience to bear on working, brain-based models of clinical anxiety. The current presentation details the neural basis and clinical relevance of fear conditioning, and highlights generalization of conditioned fear to stimuli resembling the conditioned danger cue as one of the more robust conditioning markers of clinical anxiety. Studies testing such generalization across a variety of anxiety disorders (panic, generalized anxiety disorder, and social anxiety disorder) with systematic methods developed in animals will next be presented. Finally, neural accounts of overgeneralization deriving from animal and human data will be described with emphasis given to implications for the neurobiology and treatment of clinical anxiety. © 2012 Wiley Periodicals, Inc.

  11. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats.

    PubMed

    Noble, L J; Gonzalez, I J; Meruva, V B; Callahan, K A; Belfort, B D; Ramanathan, K R; Meyers, E; Kilgard, M P; Rennaker, R L; McIntyre, C K

    2017-08-22

    Exposure-based therapies help patients with post-traumatic stress disorder (PTSD) to extinguish conditioned fear of trauma reminders. However, controlled laboratory studies indicate that PTSD patients do not extinguish conditioned fear as well as healthy controls, and exposure therapy has high failure and dropout rates. The present study examined whether vagus nerve stimulation (VNS) augments extinction of conditioned fear and attenuates PTSD-like symptoms in an animal model of PTSD. To model PTSD, rats were subjected to a single prolonged stress (SPS) protocol, which consisted of restraint, forced swim, loss of consciousness, and 1 week of social isolation. Like PTSD patients, rats subjected to SPS show impaired extinction of conditioned fear. The SPS procedure was followed, 1 week later, by auditory fear conditioning (AFC) and extinction. VNS or sham stimulation was administered during half of the extinction days, and was paired with presentations of the conditioned stimulus. One week after completion of extinction training, rats were given a battery of behavioral tests to assess anxiety, arousal and avoidance. Results indicated that rats given SPS 1 week prior to AFC (PTSD model) failed to extinguish the freezing response after eleven consecutive days of extinction. Administration of VNS reversed the extinction impairment and attenuated reinstatement of the conditioned fear response. Delivery of VNS during extinction also eliminated the PTSD-like symptoms, such as anxiety, hyperarousal and social avoidance for more than 1 week after VNS treatment. These results provide evidence that extinction paired with VNS treatment can lead to remission of fear and improvements in PTSD-like symptoms. Taken together, these findings suggest that VNS may be an effective adjunct to exposure therapy for the treatment of PTSD.

  12. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning.

    PubMed

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Belda, Xavier; Armario, Antonio; Nadal, Roser

    2018-05-30

    Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  13. Extinction after fear memory reactivation fails to eliminate renewal in rats.

    PubMed

    Goode, Travis D; Holloway-Erickson, Crystal M; Maren, Stephen

    2017-07-01

    Retrieving fear memories just prior to extinction has been reported to effectively erase fear memories and prevent fear relapse. The current study examined whether the type of retrieval procedure influences the ability of extinction to impair fear renewal, a form of relapse in which responding to a conditional stimulus (CS) returns outside of the extinction context. Rats first underwent Pavlovian fear conditioning with an auditory CS and footshock unconditional stimulus (US); freezing behavior served as the index of conditioned fear. Twenty-four hours later, the rats underwent a retrieval-extinction procedure. Specifically, 1h prior to extinction (45 CS-alone trials; 44 for rats receiving a CS reminder), fear memory was retrieved by either a single exposure to the CS alone, the US alone, a CS paired with the US, or exposure to the conditioning context itself. Over the next few days, conditional freezing to the extinguished CS was tested in the extinction and conditioning context in that order (i.e., an ABBA design). In the extinction context, rats that received a CS+US trial before extinction exhibited higher levels of conditional freezing than animals in all other groups, which did not differ from one another. In the renewal context, all groups showed renewal, and none of the reactivation procedures reduced renewal relative to a control group that did not receive a reactivation procedure prior to extinction. These data suggest retrieval-extinction procedures may have limited efficacy in preventing fear renewal. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  15. In Search for Boundary Conditions of Reconsolidation: A Failure of Fear Memory Interference

    PubMed Central

    Schroyens, Natalie; Beckers, Tom; Kindt, Merel

    2017-01-01

    The presentation of a fear memory cue can result in mere memory retrieval, destabilization of the reactivated memory trace, or the formation of an extinction memory. The interaction between the degree of novelty during reactivation and previous learning conditions is thought to determine the outcome of a reactivation session. This study aimed to evaluate whether contextual novelty can prevent cue-induced destabilization and disruption of a fear memory acquired by non-asymptotic learning. To this end, fear memory was reactivated in a novel context or in the original context of learning, and fear memory reactivation was followed by the administration of propranolol, an amnestic drug. Remarkably, fear memory was not impaired by post-reactivation propranolol administration or extinction training under the usual conditions used in our lab, irrespective of the reactivation context. These unexpected findings are discussed in the light of our current experimental parameters and alleged boundary conditions on memory destabilization. PMID:28469565

  16. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  17. Coming to terms with fear

    PubMed Central

    LeDoux, Joseph E.

    2014-01-01

    The brain mechanisms of fear have been studied extensively using Pavlovian fear conditioning, a procedure that allows exploration of how the brain learns about and later detects and responds to threats. However, mechanisms that detect and respond to threats are not the same as those that give rise to conscious fear. This is an important distinction because symptoms based on conscious and nonconscious processes may be vulnerable to different predisposing factors and may also be treatable with different approaches in people who suffer from uncontrolled fear or anxiety. A conception of so-called fear conditioning in terms of circuits that operate nonconsciously, but that indirectly contribute to conscious fear, is proposed as way forward. PMID:24501122

  18. Early life programming of innate fear and fear learning in adult female rats.

    PubMed

    Stevenson, Carl W; Meredith, John P; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-03-02

    The early rearing environment can impact on emotional reactivity and learning later in life. In this study the effects of neonatal maternal separation (MS) on innate fear and fear learning were assessed in the adult female rat. Pups were subjected to MS (360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. In the first experiment, innate fear was tested in the open field. No differences between the early rearing groups were observed in unconditioned fear. In the second experiment, separate cohorts were used in a 3-day fear learning paradigm which tested the acquisition (Day 1), expression and extinction (both Day 2) of conditioning to an auditory cue; extinction recall was determined as well (Day 3). Contextual fear conditioning was also assessed prior to cue presentations on Days 2 and 3. Whereas MS attenuated the acquisition and expression of fear conditioning to the cue, H potentiated extinction learning. Cue-induced fear was reduced on Day 3, compared to Day 2, indicating that the recall of extinction learning was evident; however, no early rearing group differences in extinction recall were observed. Similarly, while contextual fear was decreased on Day 3, compared to Day 2, there were no differences between the early rearing groups on either day tested. The present findings of altered cue-conditioned fear learning, in the absence of innate fear changes, lend further support for the important role of the early rearing environment in mediating cognition in adulthood.

  19. Contingency learning in human fear conditioning involves the ventral striatum.

    PubMed

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  20. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    PubMed

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Probing the influence of unconscious fear-conditioned visual stimuli on eye movements.

    PubMed

    Madipakkam, Apoorva Rajiv; Rothkirch, Marcus; Wilbertz, Gregor; Sterzer, Philipp

    2016-11-01

    Efficient threat detection from the environment is critical for survival. Accordingly, fear-conditioned stimuli receive prioritized processing and capture overt and covert attention. However, it is unknown whether eye movements are influenced by unconscious fear-conditioned stimuli. We performed a classical fear-conditioning procedure and subsequently recorded participants' eye movements while they were exposed to fear-conditioned stimuli that were rendered invisible using interocular suppression. Chance-level performance in a forced-choice-task demonstrated unawareness of the stimuli. Differential skin conductance responses and a change in participants' fearfulness ratings of the stimuli indicated the effectiveness of conditioning. However, eye movements were not biased towards the fear-conditioned stimulus. Preliminary evidence suggests a relation between the strength of conditioning and the saccadic bias to the fear-conditioned stimulus. Our findings provide no strong evidence for a saccadic bias towards unconscious fear-conditioned stimuli but tentative evidence suggests that such an effect may depend on the strength of the conditioned response. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker.

    PubMed

    Kindt, Merel; Soeter, Marieke; Sevenster, Dieuwke

    2014-12-18

    The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.

  3. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    PubMed

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term social interaction memory.

  4. Maladaptive behavioral consequences of conditioned fear-generalization: a pronounced, yet sparsely studied, feature of anxiety pathology.

    PubMed

    van Meurs, Brian; Wiggert, Nicole; Wicker, Isaac; Lissek, Shmuel

    2014-06-01

    Fear-conditioning experiments in the anxiety disorders focus almost exclusively on passive-emotional, Pavlovian conditioning, rather than active-behavioral, instrumental conditioning. Paradigms eliciting both types of conditioning are needed to study maladaptive, instrumental behaviors resulting from Pavlovian abnormalities found in clinical anxiety. One such Pavlovian abnormality is generalization of fear from a conditioned danger-cue (CS+) to resembling stimuli. Though lab-based findings repeatedly link overgeneralized Pavlovian-fear to clinical anxiety, no study assesses the degree to which Pavlovian overgeneralization corresponds with maladaptive, overgeneralized instrumental-avoidance. The current effort fills this gap by validating a novel fear-potentiated startle paradigm including Pavlovian and instrumental components. The paradigm is embedded in a computer game during which shapes appear on the screen. One shape paired with electric-shock serves as CS+, and other resembling shapes, presented in the absence of shock, serve as generalization stimuli (GSs). During the game, participants choose whether to behaviorally avoid shock at the cost of poorer performance. Avoidance during CS+ is considered adaptive because shock is a real possibility. By contrast, avoidance during GSs is considered maladaptive because shock is not a realistic prospect and thus unnecessarily compromises performance. Results indicate significant Pavlovian-instrumental relations, with greater generalization of Pavlovian fear associated with overgeneralization of maladaptive instrumental-avoidance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A role of nucleus accumbens dopamine receptors in the nucleus accumbens core, but not shell, in fear prediction error.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-08-01

    Two experiments used an associative blocking design to study the role of dopamine receptors in the nucleus accumbens shell (AcbSh) and core (AcbC) in fear prediction error. Rats in the experimental groups were trained to a visual fear-conditioned stimulus (conditional stimulus [CS]) A in Stage I, whereas rats in the control groups were not. In Stage II, all rats received compound fear conditioning of the visual CSA and an auditory CSB. Rats were later tested for their fear responses to CSB. All rats received microinjections of saline or the D1-D2 receptor antagonist cis-(z)-flupenthixol prior to Stage II. These microinjections targeted either the AcbSh (Experiment 1) or the AcbC (Experiment 2). In each experiment, Stage I fear conditioning of CSA blocked fear learning to CSB. Microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbSh (Experiment 1) had no effect on fear learning or associative blocking. In contrast, microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbC (Experiment 2) attenuated blocking and so enabled fear learning to CSB. These results identify the AcbC as the critical locus for dopamine receptor contributions to fear prediction error and the associative blocking of fear learning. (c) 2015 APA, all rights reserved).

  6. Low-Cost Avoidance Behaviors are Resistant to Fear Extinction in Humans

    PubMed Central

    Vervliet, Bram; Indekeu, Ellen

    2015-01-01

    Elevated levels of fear and avoidance are core symptoms across the anxiety disorders. It has long been known that fear serves to motivate avoidance. Consequently, fear extinction has been the primary focus in pre-clinical anxiety research for decades, under the implicit assumption that removing the motivator of avoidance (fear) would automatically mitigate the avoidance behaviors as well. Although this assumption has intuitive appeal, it has received little scientific scrutiny. The scarce evidence from animal studies is mixed, while the assumption remains untested in humans. The current study applied an avoidance conditioning protocol in humans to investigate the effects of fear extinction on the persistence of low-cost avoidance. Online danger-safety ratings and skin conductance responses documented the dynamics of conditioned fear across avoidance and extinction phases. Anxiety- and avoidance-related questionnaires explored individual differences in rates of avoidance. Participants first learned to click a button during a predictive danger signal, in order to cancel an upcoming aversive electrical shock (avoidance conditioning). Next, fear extinction was induced by presenting the signal in the absence of shocks while button-clicks were prevented (by removing the button in Experiment 1, or by instructing not to click the button in Experiment 2). Most importantly, post-extinction availability of the button caused a significant return of avoidant button-clicks. In addition, trait-anxiety levels correlated positively with rates of avoidance during a predictive safety signal, and with the rate of pre- to post-extinction decrease during this signal. Fear measures gradually decreased during avoidance conditioning, as participants learned that button-clicks effectively canceled the shock. Preventing button-clicks elicited a sharp increase in fear, which subsequently extinguished. Fear remained low during avoidance testing, but danger-safety ratings increased again when button-clicks were subsequently prevented. Together, these results show that low-cost avoidance behaviors can persist following fear extinction and induce increased threat appraisal. On the other hand, fear extinction did reduce augmented rates of unnecessary avoidance during safety in trait-anxious individuals, and instruction-based response prevention was more effective than removal of response cues. More research is needed to characterize the conditions under which fear extinction might mitigate avoidance. PMID:26733837

  7. Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats.

    PubMed

    Pedraza, Lizeth K; Sierra, Rodrigo O; Lotz, Fernanda N; Alvares, Lucas de Oliveira

    2018-05-08

    In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world's most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.

  8. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    PubMed

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  9. Fear inhibition in high trait anxiety.

    PubMed

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  10. An automatic recording system for the study of escape from fear in rats.

    PubMed

    Li, Ming; He, Wei

    2013-11-01

    Escape from fear (EFF) is an active response to a conditioned stimulus (CS) previously paired with an unconditioned fearful stimulus (US), which typically leads to the termination of the CS. In this paradigm, animals acquire two distinct associations: S-S [CS-US] and R-O [response-outcome] through Pavlovian and instrumental conditioning, respectively. The present study describes a computer controlled automatic recording system that captures the development of EFF and allows the determination of the respective roles of S-S and R-O associations in this process. We validated this system by showing that only rats subjected to a simultaneous CS-US conditioning (i.e., CS and US occur together at the beginning of each trial) acquired EFF, not those subjected to an unpaired CS-US conditioning. Paired rats had a progressively increased number of EFF and significantly shorter escape latencies than unpaired rats across the 5-trial blocks on the test day. However, during the conditioning phase, the unpaired rats emitted more 22kHz ultrasonic vocalizations, a validated measure of conditioned reactive fear responses. Our results demonstrate that the acquisition of EFF is contingent upon pairing of the CS with the US, not simply the consequence of a high level of generalized fear. Because this commercially available system is capable of examining both conditioned active and reactive fear responses in a single setup, it could be used to determine the relative roles of S-S and R-O associations in EFF, the neurobiology of conditioned active fear response and neuropharmacology of psychotherapeutic drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Psychophysiology of Delayed Extinction and Reconsideration in Humans

    DTIC Science & Technology

    2012-02-01

    modify or block it. The aim of this project is to create an experimental assay in the form of an optimal Pavlovian differential fear conditioning ...The aim of this project is to create an experimental assay in the form of an optimal Pavlovian differential fear conditioning paradigm. Animal...open label study examining the relative efficacies of pharmacological and non- drug interventions within a fear conditioning paradigm. At the time of

  12. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    PubMed

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted <10 d). Together, these data suggest that intrinsic plasticity within mPFC-BLA projection neurons occurs in a subregion- and cell-type-specific manner during acquisition, consolidation, and extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change during behavior. This is the first study to demonstrate that trace fear conditioning significantly alters the intrinsic excitability of mPFC-to-amygdala projection neurons in a subregion- and cell-type-specific manner, which is also transient and reversed by extinction. These data are of broad interest to the neuroscientific community, and the results will inspire additional studies investigating the cellular mechanisms underlying circuit-specific changes within the brain as a result of associative learning and memory. Copyright © 2015 the authors 0270-6474/15/3513511-14$15.00/0.

  13. Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats

    PubMed Central

    McHugh, Stephen B; Marques-Smith, Andre; Li, Jennifer; Rawlins, J N P; Lowry, John; Conway, Michael; Gilmour, Gary; Tricklebank, Mark; Bannerman, David M

    2013-01-01

    Lesion and electrophysiological studies in rodents have identified the amygdala and hippocampus (HPC) as key structures for Pavlovian fear conditioning, but human functional neuroimaging studies have not consistently found activation of these structures. This could be because hemodynamic responses cannot detect the sparse neuronal activity proposed to underlie conditioned fear. Alternatively, differences in experimental design or fear levels could account for the discrepant findings between rodents and humans. To help distinguish between these alternatives, we used tissue oxygen amperometry to record hemodynamic responses from the basolateral amygdala (BLA), dorsal HPC (dHPC) and ventral HPC (vHPC) in freely-moving rats during the acquisition and extinction of conditioned fear. To enable specific comparison with human studies we used a discriminative paradigm, with one auditory cue [conditioned stimulus (CS)+] that was always followed by footshock, and another auditory cue (CS−) that was never followed by footshock. BLA tissue oxygen signals were significantly higher during CS+ than CS− trials during training and early extinction. In contrast, they were lower during CS+ than CS− trials by the end of extinction. dHPC and vHPC tissue oxygen signals were significantly lower during CS+ than CS− trials throughout extinction. Thus, hemodynamic signals in the amygdala and HPC can detect the different patterns of neuronal activity evoked by threatening vs. neutral stimuli during fear conditioning. Discrepant neuroimaging findings may be due to differences in experimental design and/or fear levels evoked in participants. Our methodology offers a way to improve translation between rodent models and human neuroimaging. PMID:23173719

  14. Posterior insular cortex is necessary for conditioned inhibition of fear

    PubMed Central

    Foilb, Allison R.; Flyer-Adams, Johanna G.; Maier, Steven F.; Christianson, John P.

    2016-01-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS− fear discrimination conditioning over 5 days in rats leads the CS− to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscmiol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. PMID:27523750

  15. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia.

    PubMed

    Gill, Kathryn M; Miller, Sarah A; Grace, Anthony A

    2018-05-01

    The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin A Levels in Mice.

    PubMed

    Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Mendoza, Cristhian; Perez-Urrutia, Nelson; Echeverria, Florencia; Iarkov, Alexandre; Barreto, George E; Echeverria, Valentina

    2018-02-27

    Failure in fear extinction is one of the more troublesome characteristics of posttraumatic stress disorder (PTSD). Cotinine facilitates fear memory extinction and reduces depressive-like behavior when administered 24 h after fear conditioning in mice. In this study, it was investigated the behavioral and molecular effects of cotinine, and other antidepressant preparations infused intranasally. Intranasal (IN) cotinine, IN krill oil, IN cotinine plus krill oil, and oral sertraline were evaluated on depressive-like behavior and fear retention and extinction after fear conditioning in C57BL/6 mice. Since calcineurin A has been involved in facilitating fear extinction in rodents, we also investigated changes of calcineurin in the hippocampus, a region key on contextual fear extinction. Short-term treatment with cotinine formulations was superior to krill oil and oral sertraline in reducing depressive-like behavior and fear consolidation and enhancing contextual fear memory extinction in mice. IN krill oil slowed the extinction of fear. IN cotinine preparations increased the levels of calcineurin A in the hippocampus of conditioned mice. In the light of the results, the future investigation of the use of IN cotinine preparations for the extinction of contextual fear memory and treatment of treatment-resistant depression (TRD) in PTSD is discussed.

  17. Hypobaric hypoxia impairs cued and contextual fear memory in rats.

    PubMed

    Kumari, Punita; Kauser, Hina; Wadhwa, Meetu; Roy, Koustav; Alam, Shahnawaz; Sahu, Surajit; Kishore, Krishna; Ray, Koushik; Panjwani, Usha

    2018-04-26

    Fear memory is essential for survival, and its dysregulation leads to disorders. High altitude hypobaric hypoxia (HH) is known to induce cognitive decline. However, its effect on fear memory is still an enigma. We aimed to investigate the temporal effect of HH on fear conditioning and the underlying mechanism. Adult male Sprague-Dawley rats were trained for fear conditioning and exposed to simulated HH equivalent to 25,000 ft for different durations (1, 3, 7, 14 and 21 days). Subsequently, rats were tested for cued and contextual fear conditioning. Neuronal morphology, apoptosis and DNA fragmentation were studied in the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). We observed significant deficit in cued and contextual fear acquisition (at 1, 3 and 7 days) and consolidation (cued at 1 and 3 days and contextual fear at 1, 3 and 7 days) under HH. HH exposure with retraining showed the earlier restoration of contextual fear memory. Further, we found a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in mPFC, hippocampus, and BLA up to 7 days of HH exposure. The present study concludes that HH exposure equivalent to 25000 ft induced cued and contextual fear memory deficit (acquisition and consolidation) which is found to be correlated with the neurodegenerative changes in the limbic brain regions. Copyright © 2018. Published by Elsevier B.V.

  18. Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking.

    PubMed

    Crabbe, John C; Schlumbohm, Jason P; Hack, Wyatt; Barkley-Levenson, Amanda M; Metten, Pamela; Lattal, K Matthew

    2016-05-01

    The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding. Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking. Published by Elsevier Inc.

  19. Role of dopamine receptors in the ventral tegmental area in conditioned fear.

    PubMed

    de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira

    2009-05-16

    The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.

  20. Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking

    PubMed Central

    Crabbe, John C.; Schlumbohm, Jason P.; Hack, Wyatt; Barkley-Levenson, Amanda M.; Metten, Pamela; Lattal, K. Matthew

    2016-01-01

    The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking. PMID:27139234

  1. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    PubMed

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Extinction training during the reconsolidation window prevents recovery of fear.

    PubMed

    Schiller, Daniela; Raio, Candace M; Phelps, Elizabeth A

    2012-08-24

    Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone. Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference. This window of opportunity appears to open shortly after reactivation and close approximately 6 hrs later, although this may vary depending on the strength and age of the memory. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies. Our protocol addresses these challenges by offering an effective, yet non-invasive, behavioral manipulation that is safe for humans. By prompting fear memory retrieval prior to extinction, we essentially trigger the reconsolidation process, allowing new safety information (i.e., extinction) to be incorporated while the fear memory is still susceptible to interference. A recent study employing this behavioral manipulation in rats has successfully blocked fear memory using these temporal parameters. Additional studies in humans have demonstrated that introducing new information after the retrieval of previously consolidated motor, episodic, or declarative memories leads to interference with the original memory trace. We outline below a novel protocol used to block fear recovery in humans.

  3. Exposure to Novelty Weakens Conditioned Fear in Long-Evans Rats

    ERIC Educational Resources Information Center

    Anderson, Matthew J.; Burpee, Tara E.; Wall, Matthew J.; McGraw, Justin J.

    2013-01-01

    The present study sought to determine whether post-training exposure to a novel or familiar object, encountered in either the location of the original fear conditioning (black compartment of a passive avoidance {PA} chamber) or in a neutral setting (open field where initial object training had occurred) would prove capable of reducing fear at…

  4. The Medial Amygdala-Medullary PrRP-Synthesizing Neuron Pathway Mediates Neuroendocrine Responses to Contextual Conditioned Fear in Male Rodents

    PubMed Central

    Yoshida, Masahide; Takayanagi, Yuki

    2014-01-01

    Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear. PMID:24877622

  5. The medial amygdala-medullary PrRP-synthesizing neuron pathway mediates neuroendocrine responses to contextual conditioned fear in male rodents.

    PubMed

    Yoshida, Masahide; Takayanagi, Yuki; Onaka, Tatsushi

    2014-08-01

    Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear.

  6. Midazolam treatment before re-exposure to contextual fear reduces freezing behavior and amygdala activity differentially in high- and low-anxiety rats.

    PubMed

    Skórzewska, Anna; Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Turzyńska, Danuta; Sobolewska, Alicja; Krząścik, Paweł; Płaźnik, Adam

    2015-02-01

    The aim of this study was to examine the effects of benzodiazepine (midazolam) administration on rat conditioned fear responses and on local brain activity (c-Fos and CRF expressions) of low- (LR) and high- (HR)anxiety rats after the first and second contextual fear test sessions. The animals were divided into LR and HR groups based on the duration of their conditioned freezing response in the first contextual fear test. The fear-re-conditioned LR and HR animals (28 days later) had increased freezing durations compared with those durations during the first conditioned fear test. These behavioral effects were accompanied by increased c-Fos expression in the medial amygdala (MeA), the basolateral amygdala (BLA), and the paraventricular hypothalamic nuclei and elevated CRF expression in the MeA. All these behavioral and immunochemical effects of fear re-conditioning were stronger in the LR group compared with the effects in the HR group. Moreover, in the LR rats, the re-conditioning led to decreased CRF expression in the primary motor cortex (M1) and to increased CRF expression in the BLA. The pretreatment of rats with midazolam before the second exposure to the aversive context significantly attenuated the conditioned fear response, lowered the serum corticosterone concentration, decreased c-Fos and CRF expressions in the MeA and in the BLA, and increased CRF complex density in M1 area only in the LR group. These studies have demonstrated that LR rats are more sensitive to re-exposure to fear stimuli and that midazolam pretreatment was associated with modified brain activity in the amygdala and in the prefrontal cortex in this group of animals. The current data may facilitate a better understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes accompanying some anxiety disorders characterized by stronger reactivity to re-exposure to stressful challenges, e.g., posttraumatic stress disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Intra-amygdala microinfusion of IL-6 impairs the auditory fear conditioning of rats via JAK/STAT activation.

    PubMed

    Hao, Yongxin; Jing, He; Bi, Qiang; Zhang, Jiaozhen; Qin, Ling; Yang, Pingting

    2014-12-15

    Though accumulating literature implicates that cytokines are involved in the pathophysiology of mental disorders, the role of interleukin-6 (IL-6) in learning and memory functions remains unresolved. The present study was undertaken to investigate the effect of IL-6 on amygdala-dependent fear learning. Adult Wistar rats were used along with the auditory fear conditioning test and pharmacological techniques. The data showed that infusions of IL-6, aimed at the amygdala, dose-dependently impaired the acquisition and extinction of conditioned fear. In addition, the results in the Western blot analysis confirmed that JAK/STAT was temporally activated-phosphorylated by the IL-6 treatment. Moreover, the rats were treated with JSI-124, a JAK/STAT3 inhibitor, prior to the IL-6 treatment showed a significant decrease in the IL-6 induced impairments of fear conditioning. Taken together, our results demonstrate that the learning behavior of rats in the auditory fear conditioning could be modulated by IL-6 via the amygdala. Furthermore, the JAK/STAT3 activation in the amygdala seemed to play a role in the IL-6 mediated behavioral alterations of rats in auditory fear learning. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia.

    PubMed

    Lueken, U; Straube, B; Reinhardt, I; Maslowski, N I; Wittchen, H-U; Ströhle, A; Wittmann, A; Pfleiderer, B; Konrad, C; Ewert, A; Uhlmann, C; Arolt, V; Jansen, A; Kircher, T

    2014-01-01

    Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients. The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls. Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation. The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder.

  9. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2009-09-01

    startle amplitude. They then received Pavlovian fear conditioning of five pairings of a 3 s light co-terminating with a 500 ms, 0.6mA footshock. Four...Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats PRINCIPAL INVESTIGATOR: Jeffrey B. Rosen, Ph.D...NUMBER Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats 5b. GRANT

  10. Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning.

    PubMed

    Pang, Min-Hee; Kim, Nam-Soo; Kim, Il-Hwan; Kim, Hyun; Kim, Hyun-Taek; Choi, June-Seek

    2010-09-01

    Although cholinergic mechanisms have been widely implicated in learning and memory processes, few studies have investigated the specific contribution of hippocampal cholinergic transmission during trace fear conditioning, a form of associative learning involving a temporal gap between two stimuli. Microinfusions of scopolamine, a muscarinic receptor antagonist, into the dorsal hippocampus (DH) produced dose-dependent impairment in the acquisition and expression of a conditioned response (CR) following trace fear conditioning with a tone conditioned stimulus (CS) and a footshock unconditioned stimulus (US) in rats. The same infusions, however, had no effect on delay conditioning, general activity, pain sensitivity or attentional modulation. Moreover, scopolamine infusions attenuated phosphorylation of extracellular signal-regulated kinase (ERK) in the amygdala, indicating that cholinergic signals in the DH are important for trace fear conditioning. Taken together, the current study provides evidence that cholinergic neurotransmission in the DH is essential for the cellular processing of CS-US association in the amygdala when the two stimuli are temporally disconnected. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats

    PubMed Central

    Kim, Eun Joo; Horovitz, Omer; Pellman, Blake A.; Tan, Lancy Mimi; Li, Qiuling; Richter-Levin, Gal; Kim, Jeansok J.

    2013-01-01

    The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum–BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context. PMID:23959880

  12. Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli.

    PubMed

    Thompson, Alina; Lipp, Ottmar V

    2017-05-01

    Extant literature suggests that extinction training delivered during the memory reconsolidation period is superior to traditional extinction training in the reduction of fear recovery, as it targets the original fear memory trace. At present it is debated whether different types of fear memories are differentially sensitive to behavioral manipulations of reconsolidation. Here, we examined post-reconsolidation recovery of fear as a function of conditioned stimulus (CS) fear-relevance, using the unconditioned stimulus (US) to reactivate and destabilize conditioned fear memories. Participants (N = 56; 25 male; M = 24.39 years, SD = 7.71) in the US-reactivation and control group underwent differential fear conditioning to fear-relevant (spiders/snakes) and fear-irrelevant (geometric shapes) CSs on Day 1. On Day 2, participants received either reminded (US-reactivation) or non-reminded extinction training. Tests of fear recovery, conducted 24 h later, revealed recovery of differential electrodermal responding to both classes of CSs in the control group, but not in the US-reactivation group. These findings indicate that the US reactivation-extinction procedure eliminated recovery of extinguished responding not only to fear-irrelevant, but also to fear-relevant CSs. Contrasting previous reports, our findings show that post-reconsolidation recovery of conditioned responding is not a function of CS fear-relevance and that persistent reduction of fear, conditioned to fear-relevant CSs, can be achieved through behavioral manipulations of reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The central amygdala circuits in fear regulation

    NASA Astrophysics Data System (ADS)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  14. Posterior insular cortex is necessary for conditioned inhibition of fear.

    PubMed

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Psychosocial job conditions, fear avoidance beliefs and expected return to work following acute coronary syndrome: a cross-sectional study of fear-avoidance as a potential mediator.

    PubMed

    Söderberg, Mia; Rosengren, Annika; Gustavsson, Sara; Schiöler, Linus; Härenstam, Annika; Torén, Kjell

    2015-12-21

    Despite improvements in treatment, acute coronary syndrome remains a substantial cause for prolonged sick absences and premature retirement. Knowledge regarding what benefits return to work is limited, especially the effect of psychological processes and psychosocial work factors. The purposes of this cross-sectional study were two-fold: to examine associations between adverse psychosocial job conditions and fear-avoidance beliefs towards work, and to determine whether such beliefs mediated the relationship between work conditions and expected return to work in acute coronary syndrome survivors. Study inclusion criteria: acute myocardial infarction or unstable angina diagnosis, below 65 years of age, being a resident in the West county of Sweden and currently working. In all, 509 individuals (21.8 % women) accepted study participation and for whom all data of study interest were available for analysis. Psychosocial work variables; job demand-control and effort-reward imbalance, were assessed with standard questionnaire batteries. Linear regression models were used to investigate relationships between psychosocial factors and fear-avoidance, and to evaluate mediator effects for fear-avoidance. Both total sample and gender stratified analyses were calculated. Fear-avoidance beliefs about work were associated to psychosocial job environments characterized by high strain (β 1.4; CI 1.2-1.6), active and passive work and high effort-reward imbalance (β 0.6; CI 0.5-0.7). Further, such beliefs also mediated the relationship between adverse work conditions and expected time for return to work. However, these results were only observed in total sample analyses or among or male participants. For women only high strain was linked to fear-avoidance, and these relationships became non-significant when entering chosen confounders. This cross-sectional study showed that acute coronary syndrome survivors, who laboured under adverse psychosocial work conditions, held fear-avoidance beliefs towards their workplace. Furthermore, these beliefs mediated the relationships between - high strained or high effort-reward imbalanced work - and expected return to work. However, mentioned results were primarily found among men, which could results from few female study participants or gender differences in return to work mechanisms. Still, an earlier return to work might be promoted by interventions focusing on improved psychosocial work conditions and cognitive behavioural therapy targeting fear-avoidance beliefs.

  16. Monetary effects on fear conditioning.

    PubMed

    Qu, Chen; Zhang, Aiyi; Chen, Qishan

    2013-04-01

    Previous research has found that the loss of money as a negative secondary reinforcer was as effective as a primary reinforcer during fear conditioning. The purpose of the present study was to explore the effect of monetary gain as a positive secondary reinforcer in fear conditioning. Participants were assigned to a high-reward group or low-reward group. Three kinds of squares prompting non-compensation shock, compensation shock, and no shock were presented. Skin conductance responses (SCRs) and self-ratings were recorded. The results revealed that (a) both SCRs and self-ratings in the compensation shock condition were lower than in the non-compensation shock condition, suggesting that money might block the learning stage of fear conditioning; and (b) a higher ratio of fear reduction was present in self-rating when compared to SCRs, suggesting that people might overstate the utility of money, subjectively. Monetary effects, the effects of different amounts of money, and the differences between subjective and physiological levels are discussed.

  17. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory.

    PubMed

    Staib, Jennifer M; Della Valle, Rebecca; Knox, Dayan K

    2018-07-01

    In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    PubMed

    Burghardt, N S; Bauer, E P

    2013-09-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Post-conditioning experience with acute or chronic inflammatory pain reduces contextual fear conditioning in the rat

    PubMed Central

    Johnston, Ian N.; Maier, Steven F.; Rudy, Jerry W.; Watkins, Linda R.

    2017-01-01

    There is evidence that pain can impact cognitive function in people. The present study evaluated whether Pavlovian fear conditioning in rats would be reduced if conditioning were followed by persistent inflammatory pain induced by a subcutaneous injection of dilute formalin or complete Freund's adjuvant (CFA) on the dorsal lumbar surface of the back. Formalin-induced pain specifically impaired contextual fear conditioning but not auditory cue conditioning (Experiment 1A). Moreover, formalin pain only impaired contextual fear conditioning if it was initiated within 1 h of conditioning and did not have a significant effect if initiated 2, 8 or 32 h after (Experiments 1A and 1B). Experiment 2 showed that formalin pain initiated after a session of context pre-exposure reduced the ability of that pre-exposure to facilitate contextual fear when the rat was limited to a brief exposure to the context during conditioning. Similar impairments in context- but not CS-fear conditioning were also observed if the rats received an immediate post-conditioning injection with CFA (Experiment 3). Finally, we confirmed that formalin and CFA injected s.c. on the back induced pain-indicative behaviours, hyperalgesia and allodynia with a similar timecourse to intraplantar injections (Experiment 4). These results suggest that persistent pain impairs learning in a hippocampus-dependent task, and may disrupt processes that encode experiences into long-term memory. PMID:21920390

  20. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    PubMed

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of sleep on memory for conditioned fear and fear extinction

    PubMed Central

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  2. Effects of sleep on memory for conditioned fear and fear extinction.

    PubMed

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. Genetic Correlation between Alcohol Preference and Conditioned Fear: Exploring a Functional Relationship

    PubMed Central

    Chester, Julia A.; Weera, Marcus M.

    2016-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorders have a high rate of co-occurrence, possibly because they are regulated by common genes. In support of this idea, mice selectively bred for high (HAP) alcohol preference show greater fear potentiated startle (FPS), a model for fear-related disorders such as PTSD, compared to mice selectively bred for low (LAP) alcohol preference. This positive genetic correlation between alcohol preference and FPS behavior suggests that the two traits may be functionally related. This study examined the effects of fear conditioning on alcohol consumption and the effects of alcohol consumption on the expression of FPS in male and female HAP2 and LAP2 mice. In experiment 1, alcohol consumption (g/kg) under continuous-access conditions was monitored daily for 4 weeks following a single fear-conditioning or control treatment (foot shock and no shock). FPS was assessed three times (once at the end of the 4-week alcohol access period, once at 24 h after removal of alcohol, and once at 6–8 days after removal of alcohol), followed by two more weeks of alcohol access. Results showed no change in alcohol consumption, but alcohol-consuming, fear-conditioned, HAP2 males showed increased FPS at 24 h during the alcohol abstinence period compared to control groups. In experiment 2, alcohol consumption under limited-access conditions was monitored daily for 4 weeks. Fear-conditioning or control treatments occurred four times during the first 12 days and FPS testing occurred four times during the second 12 days of the 4-week alcohol consumption period. Results showed that fear conditioning increased alcohol intake in both HAP2 and LAP2 mice immediately following the first conditioning session. Fear-conditioned HAP2 but not LAP2 mice showed greater alcohol intake compared to control groups on drinking days that occurred between fear conditioning and FPS test sessions. FPS did not change as a function of alcohol consumption in either line. These results in mice help shed light on how a genetic propensity toward high alcohol consumption may be related to the risk for developing PTSD and co-morbid alcohol-use disorders in humans. PMID:27908524

  4. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  5. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  6. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The effect of ketamine on the consolidation and extinction of contextual fear memory

    PubMed Central

    Thomas, Kerrie L; Hall, Jeremy

    2018-01-01

    Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia. PMID:29338491

  8. Individual Differences in the Flexibility of Peripersonal Space.

    PubMed

    Hunley, Samuel B; Marker, Arwen M; Lourenco, Stella F

    2017-01-01

    The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one's peripersonal space, or a stick (Stick condition), which produces expansion of one's peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.

  9. Disruption of human fear reconsolidation using imaginal and in vivo extinction.

    PubMed

    Agren, Thomas; Björkstrand, Johannes; Fredrikson, Mats

    2017-02-15

    Memories are not set forever, but can be altered following reactivation, which renders memories malleable, before they are again stabilized through reconsolidation. Fear memories can be attenuated by using extinction during the malleable period. The present study adopts a novel form of extinction, using verbal instructions, in order to examine whether fear memory reconsolidation can be affected by an imaginal exposure. The extinction using verbal instructions, called imaginal extinction, consists of a recorded voice encouraging participants to imagine the scene in which fear was acquired, and to envision the stimuli before their inner eye. The voice signals stimuli appearance, and identical to standard (in vivo) extinction, participants discover that the conditioned stimulus no longer is followed by unconditioned stimulus (UCS). In this way, imaginal extinction translates clinically used imaginal exposure into the standard experimental fear conditioning paradigm. Fear was acquired by pairing pictorial stimuli with an electric shock UCS. Then, both standard and imaginal extinction were given following fear memory reactivation, either after 10min, within the reconsolidation interval, or after 6h, outside of the reconsolidation interval. In vivo and imaginal extinction produced comparable reductions in conditioned responses during extinction and importantly, both disrupted reconsolidation of conditioned fear and abolished stimulus discrimination between reinforced and non-reinforced cues. Thus, disrupted reconsolidation of fear conditioning can be achieved without in vivo stimulus presentation, through purely cognitive means, suggesting possible therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Extinction of Contextual Fear with Timed Exposure to Enriched Environment: A Differential Effect

    PubMed Central

    Hegde, Preethi; O'Mara, Shane; Laxmi, Thenkanidiyoor Rao

    2017-01-01

    Background Extinction of fear memory depends on the environmental and emotional cues. Furthermore, consolidation of extinction is also dependent on the environmental exposure. But, the relationship of the time of the exposure to a variety of environmental cues is not well known. The important region involved in facilitation of extinction of fear memory is through diversion of the flow of information leaving the lateral nucleus of amygdala. Purpose The study aimed to address a question to explain how these brain regions react to environmental stimulation during the retention and extinction of fear memory. Methods An enriched environment (EE) is assumed to mediate extinction of fear memory, we examined the apparent discrepancy between the effects of defensive response, the freezing behavior induced by Pavlovian classical fear conditioning by subjecting them to variance in the timing to EE. The different timing of EE exposure was 10 days of EE either before fear conditioning and/or after extinction training to the rats. The local field potentials was recorded from CA1 hippocampus, lateral nucleus of amygdala and infralimbic region of medial prefrontal cortex (mPFC) during the fear learning and extinction from the control rats and rats exposed to EE before and after fear conditioning. Results Exposure to EE before the fear conditioning and after extinction training was more effective in the extinction fear memory. In addition, we also found switching from exploratory locomotion to freezing during retention of contextual fear memory which was associated with decreased theta power and reduced synchronized theta oscillations in CA1-hippocampus, lateral nucleus of amygdala, and infralimbic region of mPFC. Conclusion Thus, we propose that the timing of exposure to EE play a key role in the extinction of fear memory. PMID:28588364

  11. Fear Conditioning Selectively Disrupts Noradrenergic Facilitation of GABAergic Inhibition in the Basolateral Amygdala

    PubMed Central

    Skelly, M. J.; Ariwodola, O. J.; Weiner, J. L.

    2016-01-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1- and β3-AR agonists (1μM A61603 and 10μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. PMID:27720769

  12. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala.

    PubMed

    Skelly, M J; Ariwodola, O J; Weiner, J L

    2017-02-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sex Differences in Response to an Observational Fear Conditioning Procedure

    ERIC Educational Resources Information Center

    Kelly, Megan M.; Forsyth, John P.

    2007-01-01

    The present study evaluated sex differences in observational fear conditioning using modeled ''mock'' panic attacks as an unconditioned stimulus (UCS). Fifty-nine carefully prescreened healthy undergraduate participants (30 women) underwent 3 consecutive differential conditioning phases: habituation, acquisition, and extinction. It was expected…

  14. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2011-05-01

    uring fear extinction in PTSD : an fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3...alleviate one or more physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also...benefits for patients with PTSD . fear; anxiety; PTSD ; startle; social isolation 60 jrosen@udel.edu Table of Contents

  15. Oxytocin Reduces Background Anxiety in a Fear-Potentiated Startle Paradigm: Peripheral vs Central Administration

    PubMed Central

    Ayers, Luke W; Missig, Galen; Schulkin, Jay; Rosen, Jeffrey B

    2011-01-01

    Oxytocin is known to have anti-anxiety and anti-stress effects. Using a fear-potentiated startle paradigm in rats, we previously demonstrated that subcutaneously administered oxytocin suppressed acoustic startle following fear conditioning compared with startle before fear conditioning (termed background anxiety), but did not have an effect on cue-specific fear-potentiated startle. The findings suggest oxytocin reduces background anxiety, an anxious state not directly related to cue-specific fear, but sustained beyond the immediate threat. The goal of the present study was to compare the effects of centrally and peripherally administered oxytocin on background anxiety and cue-specific fear. Male rats were given oxytocin either subcutaneously (SC) or intracerebroventricularly (ICV) into the lateral ventricles before fear-potentiated startle testing. Oxytocin doses of 0.01 and 0.1 μg/kg SC reduced background anxiety. ICV administration of oxytocin at doses from 0.002 to 20 μg oxytocin had no effect on background anxiety or cue-specific fear-potentiated startle. The 20 μg ICV dose of oxytocin did reduce acoustic startle in non-fear conditioned rats. These studies indicate that oxytocin is potent and effective in reducing background anxiety when delivered peripherally, but not when delivered into the cerebroventricular system. Oxytocin given systemically may have anti-anxiety properties that are particularly germane to the hypervigilance and exaggerated startle typically seen in many anxiety and mental health disorder patients. PMID:21796104

  16. The effects of verbal information and approach-avoidance training on children's fear-related responses

    PubMed Central

    Lester, Kathryn J.; Lisk, Stephen C.; Mikita, Nina; Mitchell, Sophie; Huijding, Jorg; Rinck, Mike; Field, Andy P.

    2015-01-01

    Background and objectives This study examined the effects of verbal information and approach-avoidance training on fear-related cognitive and behavioural responses about novel animals. Methods One hundred and sixty children (7–11 years) were randomly allocated to receive: a) positive verbal information about one novel animal and threat information about a second novel animal (verbal information condition); b) approach-avoidance training in which they repeatedly pushed away (avoid) or pulled closer (approach) pictures of the animals (approach-avoidance training), c) a combined condition in which verbal information was given prior to approach-avoidance training (verbal information + approach-avoidance training) and d) a combined condition in which approach-avoidance training was given prior to verbal information (approach-avoidance training + verbal information). Results Threat and positive information significantly increased and decreased fear beliefs and avoidance behaviour respectively. Approach-avoidance training was successful in training the desired behavioural responses but had limited effects on fear-related responses. Verbal information and both combined conditions resulted in significantly larger effects than approach-avoidance training. We found no evidence for an additive effect of these pathways. Limitations This study used a non-clinical sample and focused on novel animals rather than animals about which children already had experience or established fears. The study also compared positive information/approach with threat information/avoid training, limiting specific conclusions regarding the independent effects of these conditions. Conclusions The present study finds little evidence in support of a possible causal role for behavioural response training in the aetiology of childhood fear. However, the provision of verbal information appears to be an important pathway involved in the aetiology of childhood fear. PMID:25698069

  17. The effects of verbal information and approach-avoidance training on children's fear-related responses.

    PubMed

    Lester, Kathryn J; Lisk, Stephen C; Mikita, Nina; Mitchell, Sophie; Huijding, Jorg; Rinck, Mike; Field, Andy P

    2015-09-01

    This study examined the effects of verbal information and approach-avoidance training on fear-related cognitive and behavioural responses about novel animals. One hundred and sixty children (7-11 years) were randomly allocated to receive: a) positive verbal information about one novel animal and threat information about a second novel animal (verbal information condition); b) approach-avoidance training in which they repeatedly pushed away (avoid) or pulled closer (approach) pictures of the animals (approach-avoidance training), c) a combined condition in which verbal information was given prior to approach-avoidance training (verbal information + approach-avoidance training) and d) a combined condition in which approach-avoidance training was given prior to verbal information (approach-avoidance training + verbal information). Threat and positive information significantly increased and decreased fear beliefs and avoidance behaviour respectively. Approach-avoidance training was successful in training the desired behavioural responses but had limited effects on fear-related responses. Verbal information and both combined conditions resulted in significantly larger effects than approach-avoidance training. We found no evidence for an additive effect of these pathways. This study used a non-clinical sample and focused on novel animals rather than animals about which children already had experience or established fears. The study also compared positive information/approach with threat information/avoid training, limiting specific conclusions regarding the independent effects of these conditions. The present study finds little evidence in support of a possible causal role for behavioural response training in the aetiology of childhood fear. However, the provision of verbal information appears to be an important pathway involved in the aetiology of childhood fear. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Extended fear conditioning reveals a role for both N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in the amygdala in the acquisition of conditioned fear.

    PubMed

    Pistell, P J; Falls, W A

    2008-09-09

    Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized.

  19. A face versus non-face context influences amygdala responses to masked fearful eye whites.

    PubMed

    Kim, M Justin; Solomon, Kimberly M; Neta, Maital; Davis, F Caroline; Oler, Jonathan A; Mazzulla, Emily C; Whalen, Paul J

    2016-12-01

    The structure of the mask stimulus is crucial in backward masking studies and we recently demonstrated such an effect when masking faces. Specifically, we showed that activity of the amygdala is increased to fearful facial expressions masked with neutral faces and decreased to fearful expressions masked with a pattern mask-but critically both masked conditions discriminated fearful expressions from happy expressions. Given this finding, we sought to test whether masked fearful eye whites would produce a similar profile of amygdala response in a face vs non-face context. During functional magnetic resonance imaging scanning sessions, 30 participants viewed fearful or happy eye whites masked with either neutral faces or pattern images. Results indicated amygdala activity was increased to fearful vs happy eye whites in the face mask condition, but decreased to fearful vs happy eye whites in the pattern mask condition-effectively replicating and expanding our previous report. Our data support the idea that the amygdala is responsive to fearful eye whites, but that the nature of this activity observed in a backward masking design depends on the mask stimulus. © The Author (2016). Published by Oxford University Press.

  20. Treatment of Storm Fears Using Virtual Reality and Progressive Muscle Relaxation.

    PubMed

    Lima, Jessica; McCabe-Bennett, Hanna; Antony, Martin M

    2018-03-01

    The present study examined the efficacy of virtual reality (VR) exposure therapy for treating individuals with storm fears by comparing a one-session VR exposure treatment with a one-session progressive muscle relaxation (PMR) and psychoeducation session. It was predicted that there would be a reduction in storm-related fear post-treatment for individuals in both conditions, but that this reduction would be greater for those in the VR exposure condition. It was predicted that improvements would be maintained at 30-day follow-up only for those in the VR exposure condition. Thirty-six participants each received one of the two treatment conditions. Those in the PMR treatment group received approximately 30 minutes of PMR and approximately 15 minutes of psychoeducation regarding storms. Those in the VR treatment group received approximately 1 hour of VR exposure. Additionally, participants were asked to complete a pre-treatment and post-treatment 5-minute behavioural approach test to assess changes in storm fears. They were also asked to complete a measure assessing storm phobia. There was a significant interaction between treatment group and self-reported fear at post-treatment, such that fear decreased for both groups, although the reduction was stronger in the VR group. Results also showed that reductions in storm fear were maintained at 30-day follow-up for both groups. Although this study used a small non-clinical sample, these results offer preliminary support for the use of VR exposure therapy in the treatment of storm-related fear.

  1. The role of nucleus accumbens shell in learning about neutral versus excitatory stimuli during Pavlovian fear conditioning.

    PubMed

    Bradfield, Laura A; McNally, Gavan P

    2010-07-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning about the neutral conditioned stimulus (CS) in Stage II. These results add to a growing body of evidence indicating an important role for the ventral striatum in fear-learning. They suggest that the ventral striatum and AcbSh, in particular, directs learning toward or away from a CS as a consequence of how well that CS predicts the shock unconditioned stimulus (US). AcbSh is required to reduce the processing of established predictors, thereby permitting neutral or less predictive stimuli to be learned about.

  2. Relationship between Fear Conditionability and Aversive Memories: Evidence from a Novel Conditioned-Intrusion Paradigm

    PubMed Central

    Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.

    2013-01-01

    Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407

  3. Prefrontal neuronal circuits of contextual fear conditioning.

    PubMed

    Rozeske, R R; Valerio, S; Chaudun, F; Herry, C

    2015-01-01

    Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. NPY controls fear conditioning and fear extinction by combined action on Y₁ and Y₂ receptors.

    PubMed

    Verma, D; Tasan, R O; Herzog, H; Sperk, G

    2012-06-01

    Neuropeptide Y (NPY) and its receptors have been implicated in the control of emotional-affective processing, but the mechanism is unclear. While it is increasingly evident that stimulation of Y₁ and inhibition of Y₂ receptors produce prominent anxiolytic and antidepressant effects, the contribution of the individual NPY receptor subtypes in the acquisition and extinction of learned fear are unknown. Here we performed Pavlovian fear conditioning and extinction in NPY knockout (KO) and in NPY receptor KO mice. NPY KO mice display a dramatically accelerated acquisition of conditioned fear. Deletion of Y₁ receptors revealed only a moderately accelerated acquisition of conditioned fear, while lack of Y₂ receptors was without any effect on fear learning. However, the strong phenotype seen in NPY KO mice was reproduced in mice lacking both Y₁ and Y₂ receptors. In addition, NPY KO mice showed excessive recall of conditioned fear and impaired fear extinction. This behaviour was replicated only after deletion of both Y₁ and Y₂ receptors. In Y₁ receptor single KO mice, fear extinction was delayed and was unchanged in Y₂ receptor KO mice. Deletion of NPY and particularly Y₂ receptors resulted in a generalization of conditioned fear. Our data demonstrate that NPY delays the acquisition, reduces the expression of conditioned fear while promoting fear extinction. Although these effects appear to be primarily mediated by Y₁ receptors, the pronounced phenotype of Y₁Y₂ receptor double KO mice suggests a synergistic role of Y₂ receptors in fear acquisition and in fear extinction. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  5. Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear

    PubMed Central

    Pape, Hans-Christian; Pare, Denis

    2009-01-01

    The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190

  6. Immediate extinction promotes the return of fear.

    PubMed

    Merz, Christian J; Hamacher-Dang, Tanja C; Wolf, Oliver T

    2016-05-01

    Accumulating evidence indicates that immediate extinction is less effective than delayed extinction in attenuating the return of fear. This line of fear conditioning research impacts the proposed onset of psychological interventions after threatening situations. In the present study, forty healthy men were investigated in a differential fear conditioning paradigm with fear acquisition in context A, extinction in context B, followed by retrieval testing in both contexts 24h later to test fear renewal. Differently coloured lights served as conditioned stimuli (CS): two CS (CS+) were paired with an electrical stimulation that served as unconditioned stimulus, the third CS was never paired (CS-). Extinction took place immediately after fear acquisition or 24h later. One CS+ was extinguished whereas the second CS+ remained unextinguished to control for different time intervals between fear acquisition and retrieval testing. Immediate extinction led to larger skin conductance responses during fear retrieval to both the extinguished and unextinguished CS relative to the CS-, indicating a stronger return of fear compared to delayed extinction. Taken together, immediate extinction is less potent than delayed extinction and is associated with a stronger renewal effect. Thus, the time-point of psychological interventions relative to the offset of threatening situations needs to be carefully considered to prevent relapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning.

    PubMed

    Zeitlin, Ross; Patel, Sagar; Solomon, Rosalynn; Tran, John; Weeber, Edwin J; Echeverria, Valentina

    2012-03-17

    Posttraumatic stress disorder (PTSD) is an anxiety disorder triggered by traumatic events. Symptoms include anxiety, depression and deficits in fear memory extinction (FE). PTSD patients show a higher prevalence of cigarette smoking than the general population. The present study investigated the effects of cotinine, a tobacco-derived compound, over anxiety and contextual fear memory after fear conditioning (FC) in mice, a model for inducing PTSD-like symptoms. Two-month-old C57BL/6J mice were separated into three experimental groups. These groups were used to investigate the effect of pretreatment with cotinine on contextual fear memory and posttreatment on extinction and stability or retrievability of the fear memory. Also, changes induced by cotinine on the expression of extracellular signal-regulated kinase (ERK)1/2 were assessed after extinction in the hippocampus. An increase in anxiety and corticosterone levels were found after fear conditioning. Cotinine did not affect corticosterone levels but enhanced the extinction of contextual fear, decreased anxiety and the stability and/or retrievability of contextual fear memory. Cotinine-treated mice showed higher levels of the active forms of ERK1/2 than vehicle-treated mice after FC. This evidence suggests that cotinine is a potential new pharmacological treatment to reduce symptoms in individuals with PTSD. Published by Elsevier B.V.

  8. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    PubMed

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies. SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  9. Fear conditioning to subliminal fear relevant and non fear relevant stimuli.

    PubMed

    Lipp, Ottmar V; Kempnich, Clare; Jee, Sang Hoon; Arnold, Derek H

    2014-01-01

    A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.

  10. Individual Differences in Discriminatory Fear Learning under Conditions of Ambiguity: A Vulnerability Factor for Anxiety Disorders?

    PubMed Central

    Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Boddez, Yannick; Kindt, Merel; Beckers, Tom

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learning. We hypothesized that heightened trait anxiety would be related to a deficit in discriminatory fear learning. Participants gave US-expectancy ratings as an index for the threat value of individual CSs following blocking and protection-from-overshadowing training. The difference in threat value at test between the protected-from-overshadowing conditioned stimulus (CS) and the blocked CS was negatively correlated with scores on a self-report tension-stress scale that approximates facets of generalized anxiety disorder (GAD), the Depression Anxiety Stress Scale-Stress (DASS-S), but not with other individual difference variables. In addition, a behavioral test showed that only participants scoring high on the DASS-S avoided the protected-from-overshadowing CS. This observed deficit in discriminatory fear learning for participants with high levels of tension-stress might be an underlying mechanism for fear overgeneralization in diffuse anxiety disorders such as GAD. PMID:23755030

  11. D-Cycloserine Does Not Facilitate Fear Extinction by Reducing Conditioned Stimulus Processing or Promoting Conditioned Inhibition to Contextual Cues

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2012-01-01

    The NMDA receptor partial agonist d-cycloserine (DCS) enhances the extinction of learned fear in rats and exposure therapy in humans with anxiety disorders. Despite these benefits, little is known about the mechanisms by which DCS promotes the loss of fear. The present study examined whether DCS augments extinction retention (1) through reductions…

  12. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  13. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    PubMed

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  14. Effects of 7-nitroindazole, a selective neural nitric oxide synthase inhibitor, on context-shock associative learning in a two-process contextual fear conditioning paradigm.

    PubMed

    Chen, Weihai; Yan, Minmin; Wang, Yan; Wang, Xiaqing; Yuan, Jiajin; Li, Ming

    2016-10-01

    Nitric oxide (NO) is an important retrograde neuronal intracellular messenger which plays an important role in synaptic plasticity and is involved in learning and memory. However, evidence that NO is particularly important for the acquisition of contextual fear conditioning is mixed. Also, little is known about at which stages of the contextual fear conditioning does NO make its contribution. In the present study, we used 7-nitroindazole to temporarily inhibit neural nitric oxide synthase at either the pre-exposure stage or conditioning stage in a two-process paradigm and examined the potential contribution that NO makes to the contextually conditioned fear. Results showed that the expression of contextual fear memory was significantly impaired in rats treated with 7-nitroindazole (30mg/kg, i.p.) prior to the pairing of context-shock (p=0.034, n=8), but not after the conditioning phase (p=0.846, n=8). In addition, the expression of contextual fear memory and reconsolidation was not significantly impaired by 7-nitroindazole administered prior to the context pre-exposure stage or prior to another context-shock learning. These findings suggest that NO is specifically involved in the acquisition but not the consolidation, retrieval or reconsolidation of contextual fear memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fear acquisition and liking of out-group and in-group members: Learning bias or attention?

    PubMed

    Koenig, Stephan; Nauroth, Peter; Lucke, Sara; Lachnit, Harald; Gollwitzer, Mario; Uengoer, Metin

    2017-10-01

    The present study explores the notion of an out-group fear learning bias that is characterized by facilitated fear acquisition toward harm-doing out-group members. Participants were conditioned with two in-group and two out-group faces as conditioned stimuli. During acquisition, one in-group and one out-group face was paired with an aversive shock whereas the other in-group and out-group face was presented without shock. Psychophysiological measures of fear conditioning (skin conductance and pupil size) and explicit and implicit liking exhibited increased differential responding to out-group faces compared to in-group faces. However, the results did not clearly indicate that harm-doing out-group members were more readily associated with fear than harm-doing in-group members. In contrast, the out-group face not paired with shock decreased conditioned fear and disliking at least to the same extent that the shock-associated out-group face increased these measures. Based on these results, we suggest an account of the out-group fear learning bias that relates to an attentional bias to process in-group information. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Conditioned fear in low- and high-anxious rats is differentially regulated by cortical subcortical and midbrain 5-HT(1A) receptors.

    PubMed

    Ferreira, R; Nobre, M J

    2014-05-30

    Interactions between the prelimbic cortex and the basolateral amygdala underlie fear memory processing, mostly through acquiring and consolidating the learning of a conditioned fear. More recently, studies highlighted the role of the dorsal periaqueductal gray (DPAG) in the modulation of learning fear responses. In addition, extensive data in the literature have signaled the importance of serotonin (5-HT) on fear and anxiety. In the present study, the role of 5-HT neurotransmission of the prelimbic cortex, basolateral amygdala or the DPAG on the unconditioned and conditioned fear responses in rats previously selected as low- (LA) or high-anxious (HA) were assessed through local infusions of 5-HT itself (10nmol/0.2μl) or the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT - 0.3μg/0.2μl). Behavioral analysis was conducted using the fear-potentiated startle (FPS) procedure. Dependent variables recorded were the latency and amplitude of the unconditioned startle response and FPS. Our findings suggest that, on the prelimbic cortex, 5-HT modulates the expression of conditioned fear response in HA rats and this modulation is dependent on 5-HT1A receptors. This is not true, however, for the basolateral amygdala or the DPAG. In these regions LA but not HA rats were susceptible to the anxiolytic-like effect of 5-HT1A receptor activation. It is thought that the expression of conditioned fear in HA subjects may be dependent on other 5-HT receptors, as the 5-HT1B subtype, and/or changes in other systems such as the GABA and glutamate neurotransmitters. These results increase our understanding of the rostrocaudal influence of 5-HT on the unconditioned and conditioned fear responses in LA and HA subjects and, to some extent, are in disagreement with the theoretical current that emphasizes the role of 5-HT on anxiety, mainly at the subcortical and midbrain levels. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Behavioral mechanisms of context fear generalization in mice

    PubMed Central

    Huckleberry, Kylie A.; Ferguson, Laura B.

    2016-01-01

    There is growing interest in generalization of learned contextual fear, driven in part by the hypothesis that mood and anxiety disorders stem from impaired hippocampal mechanisms of fear generalization and discrimination. However, there has been relatively little investigation of the behavioral and procedural mechanisms that might control generalization of contextual fear. We assessed the relative contribution of different contextual features to context fear generalization and characterized how two common conditioning protocols—foreground (uncued) and background (cued) contextual fear conditioning—affected context fear generalization. In one experiment, mice were fear conditioned in context A, and then tested for contextual fear both in A and in an alternate context created by changing a subset of A's elements. The results suggest that floor configuration and odor are more salient features than chamber shape. A second experiment compared context fear generalization in background and foreground context conditioning. Although foreground conditioning produced more context fear than background conditioning, the two procedures produced equal amounts of generalized fear. Finally, results indicated that the order of context tests (original first versus alternate first) significantly modulates context fear generalization, perhaps because the original and alternate contexts are differentially sensitive to extinction. Overall, results demonstrate that context fear generalization is sensitive to procedural variations and likely reflects the operation of multiple interacting psychological and neural mechanisms. PMID:27918275

  18. Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects.

    PubMed

    Spoormaker, V I; Gvozdanovic, G A; Sämann, P G; Czisch, M

    2014-05-01

    In humans, activity patterns in the ventromedial prefrontal cortex (vmPFC) have been found to be predictive of subsequent fear memory consolidation. Pioneering work in rodents has further shown that vmPFC-amygdala theta synchronization is correlated with fear memory consolidation. We aimed to evaluate whether vmPFC activity during fear conditioning is (1) correlated with fear expression the subsequent day and whether (2) this relationship is mediated by rapid eye movement (REM) sleep. We analyzed data from 17 young healthy subjects undergoing a fear conditioning task, followed by a fear extinction task 24 h later, both recorded with simultaneous skin conductance response (SCR) and functional magnetic resonance imaging measurements, with a polysomnographically recorded night sleep in between. Our results showed a correlation between vmPFC activity during fear conditioning and subsequent REM sleep amount, as well as between REM sleep amount and SCR to the conditioned stimulus 24 h later. Moreover, we observed a significant correlation between vmPFC activity during fear conditioning and SCR responses during extinction, which was no longer significant after controlling for REM sleep amount. vmPFC activity during fear conditioning was further correlated with sleep latency. Interestingly, hippocampus activity during fear conditioning was correlated with stage 2 and stage 4 sleep amount. Our results provide preliminary evidence that the relationship between REM sleep and fear conditioning and extinction observed in rodents can be modeled in healthy human subjects, highlighting an interrelated set of potentially relevant trait markers.

  19. Specific fears and phobias in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS).

    PubMed

    Depla, Marja F I A; ten Have, Margreet L; van Balkom, Anton J L M; de Graaf, Ron

    2008-03-01

    To examine the prevalence rate, impairment, comorbidity, course of illness and determinants of eight specific phobia variants: animals (animal subtype); heights, water, storms (natural environment subtype); flying, enclosed spaces, being alone (situational subtype); and blood/injury (blood/injury subtype). Data were obtained from the Netherlands Mental Health Survey and Incidence Study, a prospective study in the Dutch general population aged 18-65 (N = 7,076). The most prevalent condition was specific phobia with a fear of heights (4.9%). On all parameters except duration, specific phobia with a fear of being alone emerged as the most severe condition. Phobias with fear of enclosed spaces and phobias with fear of blood showed a slightly greater likelihood of impairment, comorbidity and personality problems than phobias with fear of animals, heights, water or storms. The situational and blood/injury phobia subtypes appear to be a more significant index for impairments and for comorbid psychiatric disorders than the animal and natural environment phobia subtypes.

  20. Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone.

    PubMed

    Cordero, M Isabel; Venero, Cesar; Kruyt, Nyika D; Sandi, Carmen

    2003-11-01

    Previous studies showed that exposure of rats to chronic restraint stress for 21 days enhances subsequent contextual fear conditioning. Since recent evidence suggest that this effect is not dependent on stress-induced neurodegenerative processes, but to elevated training-elicited glucocorticoid release in chronically stressed animals, we aimed to explore here whether a single exposure to restraint stress, which is not expected to induce neuronal damage, would also affect contextual fear conditioning. We also questioned whether post-training corticosterone levels might be associated with any potential effect of stress on fear conditioning. Adult male Wistar rats were exposed to acute restraint stress for 2 h and, two days later, trained in the contextual fear conditioning task, under training conditions involving either moderate (0.4 mA shock) or high (1 mA shock) stress levels. The results showed that acute stress enhanced conditioned freezing at both training conditions, although data from the 1 mA shock intensity experiment only approached significance. Stressed animals were shown to display higher post-training corticosterone levels. Furthermore, the facilitating effect of prior stress was not evident when animals were trained in the hippocampal-independent auditory-cued conditioning task. Therefore, these findings support the idea that stress experiences preceding exposure to new types of stressors facilitate the development of contextual fear conditioning. They also indicate that not only repeated, but also a single exposure to aversive stimulation is sufficient to facilitate context-dependent fear conditioning, and suggest that increased glucocorticoid release at training might be implicated in the mechanisms mediating the memory facilitating effects induced by prior stress experiences.

  1. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    PubMed

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enduring abolishment of remote but not recent expression of conditioned fear by the blockade of calcium-permeable AMPA receptors before extinction training.

    PubMed

    Zelena, Dóra; Mikics, Éva; Balázsfi, Diána; Varga, János; Klausz, Barbara; Urbán, Eszter; Sipos, Eszter; Biró, László; Miskolczi, Christina; Kovács, Krisztina; Ferenczi, Szilamér; Haller, József

    2016-06-01

    Calcium-permeable (GluA2 subunit-free) AMPA receptors (CP-AMPAR) play prominent roles in fear extinction; however, no blockers of these receptors were studied in tests relevant to extinction learning so far. The CP-AMPAR antagonist IEM-1460 was administered once before extinction trainings, which were started either 1 or 28 days after fear conditioning (FC). We used a mild extinction protocol that durably decreased but did not abolish conditioned fear. The messenger RNA (mRNA) expression of GluA1 and GluA2 subunits were investigated at both time points in the ventromedial prefrontal cortex (vmPFC) and amygdala. IEM-1460 transiently facilitated extinction 1 day after conditioning, but learned fear spontaneously recovered 4 weeks later. When the extinction protocol was applied 28 days after training, IEM-1460 enhanced extinction memory, moreover abolished conditioned fear for at least a month. The expression of GluA1 and GluA2 mRNAs was increased at both time points in the vmPFC. In the basolateral and central amygdala, the GluA1/GluA2 mRNA ratio increased, suggesting a shift towards the preponderance of GluA1 over GluA2 expression. AMPAR blockade lastingly enhanced the extinction of remote but not recent fear memories. Time-dependent changes in AMPA receptor subunit mRNA expression may explain the differential effects of CP-AMPAR blockade on recent and remote conditioned fear, further supporting the notion that the mechanisms maintaining learned fear change over time. Our findings suggest clinical implications for CP-AMPAR blockers, particularly for acquired anxieties (e.g., post-traumatic stress disorder) which have a slow onset and are durable.

  3. Anxiety symptoms and children's eye gaze during fear learning.

    PubMed

    Michalska, Kalina J; Machlin, Laura; Moroney, Elizabeth; Lowet, Daniel S; Hettema, John M; Roberson-Nay, Roxann; Averbeck, Bruno B; Brotman, Melissa A; Nelson, Eric E; Leibenluft, Ellen; Pine, Daniel S

    2017-11-01

    The eye region of the face is particularly relevant for decoding threat-related signals, such as fear. However, it is unclear if gaze patterns to the eyes can be influenced by fear learning. Previous studies examining gaze patterns in adults find an association between anxiety and eye gaze avoidance, although no studies to date examine how associations between anxiety symptoms and eye-viewing patterns manifest in children. The current study examined the effects of learning and trait anxiety on eye gaze using a face-based fear conditioning task developed for use in children. Participants were 82 youth from a general population sample of twins (aged 9-13 years), exhibiting a range of anxiety symptoms. Participants underwent a fear conditioning paradigm where the conditioned stimuli (CS+) were two neutral faces, one of which was randomly selected to be paired with an aversive scream. Eye tracking, physiological, and subjective data were acquired. Children and parents reported their child's anxiety using the Screen for Child Anxiety Related Emotional Disorders. Conditioning influenced eye gaze patterns in that children looked longer and more frequently to the eye region of the CS+ than CS- face; this effect was present only during fear acquisition, not at baseline or extinction. Furthermore, consistent with past work in adults, anxiety symptoms were associated with eye gaze avoidance. Finally, gaze duration to the eye region mediated the effect of anxious traits on self-reported fear during acquisition. Anxiety symptoms in children relate to face-viewing strategies deployed in the context of a fear learning experiment. This relationship may inform attempts to understand the relationship between pediatric anxiety symptoms and learning. © 2017 Association for Child and Adolescent Mental Health.

  4. Hormonal Regulation of Extinction: Implications for Gender Differences in the Mechanisms of PTSD

    DTIC Science & Technology

    2010-03-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project investigates the role of gonadal hormones in the regulation of Pavlovian fear conditioning ...and its extinction. Pavlovian fear conditioning and its extinction serve as an animal model for the development of pathological fear in humans that...gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve as an animal

  5. Positive thinking elevates tolerance: Experimental effects of happiness on adolescents' attitudes toward asylum seekers.

    PubMed

    Tenenbaum, Harriet R; Capelos, Tereza; Lorimer, Jessica; Stocks, Thomas

    2018-04-01

    Inducing emotional reactions toward social groups can influence individuals' political tolerance. This study examines the influence of incidental fear and happiness on adolescents' tolerant attitudes and feelings toward young Muslim asylum seekers. In our experiment, 219 16- to 21-year-olds completed measures of prejudicial attitudes. After being induced to feel happiness, fear, or no emotion (control), participants reported their tolerant attitudes and feelings toward asylum-seeking young people. Participants assigned to the happiness condition demonstrated more tolerant attitudes toward asylum-seeking young people than did those assigned to the fear or control conditions. Participants in the control condition did not differ from participants in the fear condition. The participants in the happiness condition also had more positive feelings toward asylum-seeking young people than did participants in the control condition. The findings suggest that one way to increase positive attitudes toward asylum-seeking young people is to improve general emotional state.

  6. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    ERIC Educational Resources Information Center

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems, little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6,…

  7. Combined effects of complex magnetic fields and agmatine for contextual fear learning deficits in rats.

    PubMed

    McKay, B E; Persinger, M A

    2003-04-18

    Acute post-training exposures to weak intensity theta-burst stimulation (TBS) patterned complex magnetic fields attenuated the magnitude of conditioned fear learning for contextual stimuli. A similar learning impairment was evoked in a linear and dose-dependent manner by pre-conditioning injections of the polyamine agmatine. The present study examined the hypothesis that whole-body applications of the TBS complex magnetic field pattern when co-administered with systemic agmatine treatment may combine to evoke impairments in contextual fear learning. Within minutes of 4 mg/kg agmatine injections, male Wistar rats were fear conditioned to contextual stimuli and immediately exposed for 30 min to the TBS patterned complex magnetic field or to sham conditions. TBS patterned complex magnetic field treatment was found to linearly summate with the contextual fear learning impairment evoked by agmatine treatment alone. Furthermore, we report for sham-treated rats, but not rats exposed to the synthetic magnetic field pattern, that the magnitude of learned fear decreased and the amount of variability in learning increased, as the K-index (a measure of change in intensity of the time-varying ambient geomagnetic field) increased during the 3-hr intervals over which conditioning and testing sessions were conducted.

  8. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats.

    PubMed

    Schipper, Pieter; Henckens, Marloes J A G; Borghans, Bart; Hiemstra, Marlies; Kozicz, Tamas; Homberg, Judith R

    2017-05-30

    Stressors can be actively or passively coped with, and adequate adaption of the coping response to environmental conditions can reduce their potential deleterious effects. One major factor influencing stress coping behaviour is serotonin transporter (5-HTT) availability. Abolishment of 5-HTT is known to impair fear extinction but facilitates acquisition of signalled active avoidance (AA), a behavioural task in which an animal learns to avoid an aversive stimulus that is predicted by a cue. Flexibility in adapting coping behaviour to the nature of the stressor shapes resilience to stress-related disorders. Therefore, we investigated the relation between 5-HTT expression and ability to adapt a learned coping response to changing environmental conditions. To this end, we first established and consolidated a cue-conditioned passive fear response in 5-HTT -/- and wildtype rats. Next, we used the conditioned stimulus (CS) to signal oncoming shocks during signalled AA training in 5-HTT -/- and wildtype rats to study their capability to acquire an active coping response to the CS following fear conditioning. Finally, we investigated the behavioural response to the CS in a novel environment and measured freezing, exploration and self-grooming, behaviours reflective of stress coping strategy. We found that fear conditioned and sham conditioned 5-HTT -/- animals acquired the signalled AA response faster than wildtypes, while prior conditioning briefly delayed AA learning similarly in both genotypes. Subsequent exposure to the CS in the novel context reduced freezing and increased locomotion in 5-HTT -/- compared to wildtype rats. This indicates that improved AA performance in 5-HTT -/- rats resulted in a weaker residual passive fear response to the CS in a novel context. Fear conditioning prior to AA training did not affect freezing upon re-encountering the CS, although it did reduce locomotion in 5-HTT -/- rats. We conclude that independent of 5-HTT signalling, prior fear conditioning does not greatly impair the acquisition of subsequent active coping behaviour when the situation allows for it. Abolishment of 5-HTT results in a more active coping style in case of novelty-induced fear and upon CS encounter in a novel context after AA learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The L-type voltage-gated calcium channel CaV1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala.

    PubMed

    Temme, Stephanie J; Murphy, Geoffrey G

    2017-11-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca V 1.2 and Ca V 1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the Ca V 1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of Ca V 1.2 in all neuronal populations, we generated Ca V 1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of Ca V 1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of Ca V 1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically Ca V 1.2, in extinction learning. Further exploration on the effects of deletion of Ca V 1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of Ca V 1.2 in fear extinction and the synaptic regulation of activity within the amygdala. © 2017 Temme and Murphy; Published by Cold Spring Harbor Laboratory Press.

  10. Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning.

    PubMed

    Johnson, Philip L; Molosh, Andrei; Fitz, Stephanie D; Arendt, Dave; Deehan, Gerald A; Federici, Lauren M; Bernabe, Cristian; Engleman, Eric A; Rodd, Zachary A; Lowry, Christopher A; Shekhar, Anantha

    2015-11-01

    The basolateral and lateral amygdala nuclei complex (BLC) is implicated in a number of emotional responses including conditioned fear and social anxiety. Based on previous studies demonstrating that enhanced serotonin release in the BLC leads to increased anxiety and fear responses, we hypothesized that pharmacologically depleting serotonin in the BLC using 5,7-dihydroxytryptamine (5,7-DHT) injections would lead to diminished anxiety and disrupted fear conditioning. To test this hypothesis, 5,7-DHT(a serotonin-depleting agent) was bilaterally injected into the BLC. Desipramine (a norepinephrine reuptake inhibitor) was systemically administered to prevent non-selective effects on norepinephrine. After 5days, 5-7-DHT-treated rats showed increases in the duration of social interaction (SI) time, suggestive of reduced anxiety-like behavior. We then used a cue-induced fear conditioning protocol with shock as the unconditioned stimulus and tone as the conditioned stimulus for rats pretreated with bilateral 5,7-DHT, or vehicle, injections into the BLC. Compared to vehicle-treated rats, 5,7-DHT rats had reduced acquisition of fear during conditioning (measured by freezing time during tone), also had reduced fear retrieval/recall on subsequent testing days. Ex vivo analyses revealed that 5,7-DHT reduced local 5-HT concentrations in the BLC by ~40% without altering local norepinephrine or dopamine concentrations. These data provide additional support for 5-HT playing a critical role in modulating anxiety-like behavior and fear-associated memories through its actions within the BLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fear conditioning induced by interpersonal conflicts in healthy individuals.

    PubMed

    Tada, Mitsuhiro; Uchida, Hiroyuki; Maeda, Takaki; Konishi, Mika; Umeda, Satoshi; Terasawa, Yuri; Nakajima, Shinichiro; Mimura, Masaru; Miyazaki, Tomoyuki; Takahashi, Takuya

    2015-01-01

    Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors' face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder.

  12. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    PubMed

    Liu, Jun; Wei, Wei; Kuang, Hui; Zhao, Fang; Tsien, Joe Z

    2013-01-01

    Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I) and a more variable phase (stage-II). We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  13. The Central Nucleus of the Amygdala and Corticotropin-Releasing Factor: Insights into Contextual Fear Memory

    PubMed Central

    Pitts, Matthew W.; Todorovic, Cedomir; Blank, Thomas; Takahashi, Lorey K.

    2009-01-01

    The central nucleus of the amygdala (CeA) has been traditionally viewed in fear conditioning to serve as an output neural center that transfers conditioned information formed in the basolateral amygdala to brain structures that generate emotional responses. Recent studies suggest that the CeA may also be involved in fear memory consolidation. In addition, corticotropin-releasing factor systems were shown to facilitate memory consolidation in the amygdala, which contains a high density of CRF immunoreactive cell bodies and fibers in the lateral part of the CeA (CeAl). However, the involvement of CeA CRF in contextual fear conditioning remains poorly understood. Therefore, we first conducted a series of studies using fiber-sparing lesion and reversible inactivation methods to assess the general role of the CeA in contextual fear. We then used identical training and testing procedures to compare and evaluate the specific function of CeA CRF using CRF antisense oligonucleotides (CRF ASO). Rats microinjected with ibotenic acid, muscimol, or a CRF ASO into the CeA prior to contextual fear conditioning showed typical levels of freezing during acquisition training but exhibited significant reductions in contextual freezing in a retention test 48 h later. Furthermore, CeA inactivation induced by either muscimol or CRF ASO administration immediately prior to retention testing did not impair freezing, suggesting that the previously observed retention deficits were due to inhibition of consolidation rather than fear expression. Collectively, our results suggest CeA involvement in the consolidation of contextual fear memory and specifically implicate CeA CRF as an important mediator. PMID:19494159

  14. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    PubMed

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  15. Fear conditioning, persistence of disruptive behavior and psychopathic traits: an fMRI study.

    PubMed

    Cohn, M D; Popma, A; van den Brink, W; Pape, L E; Kindt, M; van Domburgh, L; Doreleijers, T A H; Veltman, D J

    2013-10-29

    Children diagnosed with Disruptive Behavior Disorders (DBD), especially those with psychopathic traits, are at risk of developing persistent and severe antisocial behavior. Deficient fear conditioning may be a key mechanism underlying persistence, and has been associated with altered regional brain function in adult antisocial populations. In this study, we investigated the associations between the neural correlates of fear conditioning, persistence of childhood-onset DBD during adolescence and psychopathic traits. From a cohort of children arrested before the age of 12 years, participants who were diagnosed with Oppositional Defiant Disorder or Conduct Disorder in previous waves (mean age of onset 6.5 years, s.d. 3.2) were reassessed at mean age 17.6 years (s.d. 1.4) and categorized as persistent (n=25) or desistent (n=25) DBD. Using the Youth Psychopathic Traits Inventory and functional magnetic resonance imaging during a fear conditioning task, these subgroups were compared with 26 matched healthy controls from the same cohort. Both persistent and desistent DBD subgroups were found to show higher activation in fear processing-related brain areas during fear conditioning compared with healthy controls. In addition, regression analyses revealed that impulsive-irresponsible and grandiose-manipulative psychopathic traits were associated with higher activation, whereas callous-unemotional psychopathic traits were related to lower activation in fear-related areas. Finally, the association between neural activation and DBD subgroup membership was mediated by impulsive-irresponsible psychopathic traits. These results provide evidence for heterogeneity in the neurobiological mechanisms underlying psychopathic traits and antisocial behavior and, as such, underscore the need to develop personalized interventions.

  16. Erasing fear memories with extinction training

    PubMed Central

    Quirk, Gregory J.; Paré, Denis; Richardson, Rick; Herry, Cyril; Monfils, Marie H.; Schiller, Daniela; Vicentic, Aleksandra

    2012-01-01

    Decades of behavioral studies have confirmed that extinction does not erase classically-conditioned fear memories. For this reason, research efforts have focused on the mechanisms underlying the development of extinction-induced inhibition within fear circuits. However, recent studies in rodents have uncovered mechanisms that stabilize and destabilize fear memories, opening the possibility that extinction might be used to erase fear memories. This symposium focuses on several of these new developments, which involve the timing of extinction training. Extinction-induced erasure of fear occurs in very young rats, but is lost with the development of perineuronal nets in the amygdala that render fear memories impervious to extinction. Moreover, extinction administered during the reconsolidation phase, when fear memory is destabilized, updates the fear association as safe, thereby preventing the return of fear, in both rats and humans. The use of modified extinction protocols to eliminate fear memories complements existing pharmacological strategies for strengthening extinction. PMID:21068303

  17. Endogenous cortisol reactivity moderates the relationship between fear inhibition to safety signals and posttraumatic stress disorder symptoms.

    PubMed

    Zuj, Daniel V; Palmer, Matthew A; Malhi, Gin S; Bryant, Richard A; Felmingham, Kim L

    2017-04-01

    Posttraumatic stress symptoms (PTSS) are commonly associated with impairments in extinguishing fear to signals previously associated with danger, and also with inhibiting fear to safety signals. Previous studies indicate that PTSS are associated with low cortisol activity, and cortisol is shown to facilitate fear extinction. Few studies have examined the influence of cortisol reactivity on fear extinction in PTSS. We used a standardized fear conditioning and extinction paradigm to investigate the relationship between fear extinction and endogenous salivary cortisol activity in participants with high PTSS (n=18), trauma-exposed controls (n=33), and non-trauma-exposed controls (n=27). Skin conductance response (SCR) was used as an index of conditioned responding. Saliva samples were collected at baseline, and 20min post-fear acquisition for basal and reactive cortisol levels, respectively. PTSS participants demonstrated a slower rate of extinction learning during the early extinction phase. A moderation analysis revealed that cortisol reactivity was a significant moderator between fear inhibition to the safety signal (CS-) during early extinction and PTSS, but not to the threat signal (CS+). Specifically, this interaction was significant in two ways: (1) participants with elevated cortisol reactivity showed lower PTSS as fear inhibition improved; and (2) participants with low cortisol reactivity showed higher PTSS as fear inhibition improved. The findings of the present study show that the relationship between fear inhibition and cortisol reactivity is complex, and suggest that cortisol reactivity shapes safety signal learning in PTSS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal.

    PubMed

    Garfinkel, Sarah N; Abelson, James L; King, Anthony P; Sripada, Rebecca K; Wang, Xin; Gaines, Laura M; Liberzon, Israel

    2014-10-01

    Post-traumatic stress disorder (PTSD) patients display pervasive fear memories, expressed indiscriminately. Proposed mechanisms include enhanced fear learning and impaired extinction or extinction recall. Documented extinction recall deficits and failure to use safety signals could result from general failure to use contextual information, a hippocampus-dependent process. This can be probed by adding a renewal phase to standard conditioning and extinction paradigms. Human subjects with PTSD and combat controls were conditioned (skin conductance response), extinguished, and tested for extinction retention and renewal in a scanner (fMRI). Fear conditioning (light paired with shock) occurred in one context, followed by extinction in another, to create danger and safety contexts. The next day, the extinguished conditioned stimulus (CS+E) was re-presented to assess extinction recall (safety context) and fear renewal (danger context). PTSD patients showed impaired extinction recall, with increased skin conductance and heightened amygdala activity to the extinguished CS+ in the safety context. However, they also showed impaired fear renewal; in the danger context, they had less skin conductance response to CS+E and lower activity in amygdala and ventral-medial prefrontal cortex compared with combat controls. Control subjects displayed appropriate contextual modulation of memory recall, with extinction (safety) memory prevailing in the safety context, and fear memory prevailing in the danger context. PTSD patients could not use safety context to sustain suppression of extinguished fear memory, but they also less effectively used danger context to enhance fear. They did not display globally enhanced fear expression, but rather showed a globally diminished capacity to use contextual information to modulate fear expression. Copyright © 2014 the authors 0270-6474/14/3413435-09$15.00/0.

  19. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  20. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    PubMed

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effects of Recent Exposure to a Conditioned Stimulus on Extinction of Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Chan, Wan Yee Macy; Leung, Hiu T.; Westbrook, R. Frederick; McNally, Gavan P.

    2010-01-01

    In six experiments we studied the effects of a single re-exposure to a conditioned stimulus (CS; "retrieval trial") prior to extinction training (extinction-reconsolidation boundary) on the development of and recovery from fear extinction. A single retrieval trial prior to extinction training significantly augmented the renewal and reinstatement…

  2. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    PubMed

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  3. Effect of Conditioned Stimulus Exposure during Slow Wave Sleep on Fear Memory Extinction in Humans

    PubMed Central

    He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin

    2015-01-01

    Study Objectives: Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. Design: The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Participants: Ninety-six healthy volunteers (44 males) aged 18–28 y. Measurements and Results: Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conclusions: Conditioned stimulus re-exposure during slow wave sleep promoted fear memory extinction without altering sleep profiles. Citation: He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, Li Y, Li XJ, Tang XD, Lu L. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. SLEEP 2015;38(3):423–431. PMID:25348121

  4. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    PubMed

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  5. Calcineurin inhibition blocks within-, but not between-session fear extinction in mice

    PubMed Central

    Moulin, Thiago C.; Carneiro, Clarissa F. D.; Gonçalves, Marina M. C.; Junqueira, Lara S.; Amaral, Olavo B.

    2015-01-01

    Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in the initial consolidation of fear learning. With this in mind, we set to study whether CaN could have different roles in distinct components of extinction. Systemic treatment with the CaN inhibitors cyclosporin A (CsA) or FK-506, as well as i.c.v. administration of CsA, blocked within-session, but not between-session extinction or initial learning of contextual fear conditioning. Similar effects were found in multiple-session extinction of contextual fear conditioning and in auditory fear conditioning, indicating that CaN is involved in different types of short-term extinction. Meanwhile, inhibition of protein synthesis by cycloheximide (CHX) treatment did not affect within-session extinction, but disrupted fear acquisition and slightly impaired between-session extinction. Our results point to a dissociation of within- and between-session extinction of fear conditioning, with the former being more dependent on CaN activity and the latter on protein synthesis. Moreover, the modulation of within-session extinction did not affect between-session extinction, suggesting that these components are at least partially independent. PMID:25691516

  6. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.

    PubMed

    Ji, Jinzhao; Maren, Stephen

    2008-12-12

    Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.

  7. Early life programming of fear conditioning and extinction in adult male rats.

    PubMed

    Stevenson, Carl W; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-12-28

    The early rearing environment programs corticolimbic function and neuroendocrine stress reactivity in adulthood. Although early environmental programming of innate fear has been previously examined, its impact on fear learning and memory later in life remains poorly understood. Here we examined the role of the early rearing environment in programming fear conditioning and extinction in adult male rats. Pups were subjected to maternal separation (MS; 360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. As adults, animals were tested in a 3-day fear learning and memory paradigm which assessed the acquisition, expression and extinction of fear conditioning to an auditory cue; the recall of extinction was also assessed. In addition, contextual fear was assessed prior to cued extinction and its recall. We found that the acquisition of fear conditioning to the cue was modestly impaired by MS. However, no early rearing group differences were observed in cue-induced fear expression. In contrast, both the rate of extinction and extinction recall were attenuated by H. Finally, although contextual fear was reduced after extinction to the cue, no differences in context-induced fear were observed between the early rearing groups. These results add to a growing body of evidence supporting an important role for early environmental programming of fear conditioning and extinction. They also indicate that different early rearing conditions can program varying effects on distinct fear learning and memory processes in adulthood.

  8. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1.

    PubMed

    Heitland, I; Klumpers, F; Oosting, R S; Evers, D J J; Leon Kenemans, J; Baas, J M P

    2012-09-25

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importantly through the cannabinoid receptor 1. However, no human studies have reported a translation of this preclinical evidence yet. Healthy medication-free human subjects (N=150) underwent a fear conditioning and extinction procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex was measured to assess fear-conditioned responding, and subjective fear ratings were collected. Participants were genotyped for two polymorphisms located within the promoter region (rs2180619) and the coding region (rs1049353) of cannabinoid receptor 1. As predicted from the preclinical literature, acquisition and expression of conditioned fear did not differ between genotypes. Crucially, whereas both homozygote (G/G, N=23) and heterozygote (A/G, N=68) G-allele carriers of rs2180619 displayed robust extinction of fear, extinction of fear-potentiated startle was absent in A/A homozygotes (N=51). Additionally, this resistance to extinguish fear left A/A carriers of rs2180619 with significantly higher levels of fear-potentiated startle at the end of the extinction training. No effects of rs1049353 genotype were observed regarding fear acquisition and extinction. These results suggest for the first time involvement of the human endocannabinoid system in fear extinction. Implications are that genetic variability in this system may underlie individual differences in anxiety, rendering cannabinoid receptor 1 a potential target for novel pharmacological treatments of anxiety disorders.

  9. Conditioned Fear Inhibits c-fos mRNA Expression in the Central Extended Amygdala

    PubMed Central

    Day, Heidi E.W.; Kryskow, Elisa M.; Nyhuis, Tara J.; Herlihy, Lauren; Campeau, Serge

    2008-01-01

    We have shown previously that unconditioned stressors inhibit neurons of the lateral/capsular division of the central nucleus of the amygdala (CEAl/c) and oval division of the bed nucleus of the stria terminalis (BSTov), which form part of the central extended amygdala. The current study investigated whether conditioned fear inhibits c-fos mRNA expression in these regions. Male rats were trained either to associate a visual stimulus (light) with footshock or were exposed to the light alone. After training, animals were replaced in the apparatus, and 2 hours later injected remotely, via a catheter, with amphetamine (2 mg/kg i.p.), to induce c-fos mRNA and allow inhibition of expression to be measured. The rats were then presented with 15 visual stimuli over a 30 minute period. As expected, fear conditioned animals that were not injected with amphetamine, had extremely low levels of c-fos mRNA in the central extended amygdala. In contrast, animals that were trained with the light alone (no fear conditioning) and were injected with amphetamine had high levels of c-fos mRNA in the CEAl/c and BSTov. Animals that underwent fear-conditioning, and were re-exposed to the conditioned stimulus after amphetamine injection had significantly reduced levels of c-fos mRNA in both the BSTov and CEAl/c, compared to the non-conditioned animals. These data suggest that conditioned fear can inhibit neurons of the central extended amygdala. Because these neurons are GABAergic, and project to the medial CEA (an amygdaloid output region), this may be a novel mechanism whereby conditioned fear potentiates amygdaloid output. PMID:18634767

  10. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  11. Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum.

    PubMed

    Zoicas, Iulia; Slattery, David A; Neumann, Inga D

    2014-12-01

    Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.

  12. Brief fear preexposure facilitates subsequent fear conditioning.

    PubMed

    Iwasaki, Satoshi; Sakaguchi, Tetsuya; Ikegaya, Yuji

    2015-06-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that occurs following an unexpected exposure to a severe psychological event. A history of a brief trauma is reported to affect a risk for future PTSD development; however, little is known about the mechanisms by which a previous trauma exposure drives the sensitivity to a late-coming trauma. Using a mouse PTSD model, we found that a prior foot shock enhances contextual fear conditioning. This shock-induced facilitation of fear conditioning (i.e., priming effect) persisted for 7 days and was prevented by MK801, an N-methyl-D-aspartate receptor antagonist. Other types of trauma, such as forced swimming or tail pinch, did not induce a priming effect on fear conditioning. Thus, a trauma is unlikely generalized to modify the sensitivity to other traumatic experiences. The behavioral procedure employed in this study may be a useful tool to elucidate the etiology of PTSD. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats.

    PubMed

    Jones, Carolyn E; Riha, Penny D; Gore, Andrea C; Monfils, Marie-H

    2014-05-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate's response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80-84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

  14. "Incidental fear cues increase monetary loss aversion": Correction to Schulreich, Gerhardt, and Heekeren (2016).

    PubMed

    2016-12-01

    Reports an error in "Incidental fear cues increase monetary loss aversion" by Stefan Schulreich, Holger Gerhardt and Hauke R. Heekeren ( Emotion , 2016[Apr], Vol 16[3], 402-412). In the current article, there was an error in the Study 2 portion of the article. The fourth paragraph of the Results section should read as follows: Performing the same analyses as in Study 1, we found an effect of incidental fear cues on decision behavior. Participants accepted fewer gambles in the fearful-face condition (32.77%) than in the neutral-face condition (33.96%), with Z = -2.187, p = .027, d = -0.998 in the Wilcoxon signed-ranks test and β = 0.012, SE = 0.0053, F(1, 21) = 4.434, p = .047, partial η² = .174 in the linear regression. This suggests increased risk aversion in the fearful-face condition. Concerning personality, however, there were no significant between-subjects effects or between-within interaction effects (all ps = .349). (The following abstract of the original article appeared in record 2015-52358-001.) In many everyday decisions, people exhibit loss aversion-a greater sensitivity to losses relative to gains of equal size. Loss aversion is thought to be (at least partly) mediated by emotional-in particular, fear-related-processes. Decision research has shown that even incidental emotions, which are unrelated to the decision at hand, can influence decision making. The effect of incidental fear on loss aversion, however, is thus far unclear. In two studies, we experimentally investigated how incidental fear cues, presented during (Study 1) or before (Study 2) choices to accept or reject mixed gambles over real monetary stakes, influence monetary loss aversion. We find that the presentation of fearful faces, relative to the presentation of neutral faces, increased risk aversion-an effect that could be attributed to increased loss aversion. The size of this effect was moderated by psychopathic personality: Fearless dominance, in particular its interpersonal facet, but not self-centered impulsivity, attenuated the effect of incidental fear cues on loss aversion, consistent with reduced fear reactivity. Together, these results highlight the sensitivity of loss aversion to the affective context. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Postural control is associated with cognition and fear of falling in patients with multiple sclerosis.

    PubMed

    Perrochon, A; Holtzer, R; Laidet, M; Armand, S; Assal, F; Lalive, P H; Allali, G

    2017-04-01

    Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting various neurological domains, such as postural control, cognition, fear of falling, depression-anxiety, and fatigue. This study examined the associations of cognitive functions, fear of falling, depression-anxiety, and fatigue with postural control in patients with MS. Postural control (sway velocity) of 63 patients with MS (age 39.0 ± 8.9 years; %female 57%; Expanded Disability Status Scale score median (interquartile range) 2.0 (1.5)) was recorded on two platforms at stable and unstable conditions. Cognition, fear of falling, depression-anxiety, and fatigue were evaluated by a comprehensive neuropsychological assessment. The associations between these domains and postural control have been measured by multivariable linear regression (adjusted for age, gender, disability, and education). In stable condition, only working memory was associated with postural control (p < 0.05). In unstable condition, working memory, executive functions, attention/processing speed, and fear of falling were associated with postural control (p < 0.05). Specific cognitive domains and fear of falling were associated with postural control in MS patients, particularly in unstable condition. These findings highlight the association of cognitive functions and fear of falling with postural control in MS.

  16. Leptin: a potential anxiolytic by facilitation of fear extinction.

    PubMed

    Wang, Wei; Liu, Song-Lin; Li, Kuan; Chen, Yu; Jiang, Bo; Li, Yan-Kun; Xiao, Jun-Li; Yang, Si; Chen, Tao; Chen, Jian-Guo; Li, Jia-Geng; Wang, Fang

    2015-05-01

    Anxiety disorders are characterized by a deficient extinction of fear memory. Evidence is growing that leptin influences numerous neuronal functions. The aims of this study were to investigate the effects and the mechanism of leptin on fear extinction. Leptin (1 mg/kg, i.p) was applied to evaluate the anxiolytic effect in rat behavioral tests. Field potentials recording were used to investigate the changes in synaptic transmission in the thalamic-lateral amygadala (LA) pathway of rat. We found that leptin produced strong anxiolytic effects under basal condition and after acute stress. Systemic administration and intra-LA infusions of leptin facilitated extinction of conditioned fear responses. The antagonist of NMDA receptor, MK-801, blocked the effect of leptin on fear extinction completely. Furthermore, these effects of leptin on fear extinction were accompanied by a reversal of conditioning-induced synaptic potentiation in the LA. Leptin facilitated NMDA receptor-mediated synaptic transmission, and reversed amygdala long-term potentiation (LTP) in a dose-dependent manner in vitro, and this LTP depotentiation effect was mediated by NMDA receptor and MAPK signaling pathway. These results identify a key role of leptin in dampening fear conditioning-induced synaptic potentiation in the LA through NMDA receptor and indicate a new strategy for treating anxiety disorders. © 2015 John Wiley & Sons Ltd.

  17. Social conditioning and extinction paradigm: a translational study in virtual reality.

    PubMed

    Shiban, Youssef; Reichenberger, Jonas; Neumann, Inga D; Mühlberger, Andreas

    2015-01-01

    In human beings, experiments investigating fear conditioning with social stimuli are rare. The current study aims at translating an animal model for social fear conditioning (SFC) to a human sample using an operant SFC paradigm in virtual reality. Forty participants actively (using a joystick) approached virtual male agents that served as conditioned stimuli (CS). During the acquisition phase, unconditioned stimuli (US), a combination of an air blast (5 bar, 10 ms) and a female scream (95 dB, 40 ms), were presented when participants reached a defined proximity to the agent with a contingency of 75% for CS+ agents and never for CS- agents. During the extinction and the test phases, no US was delivered. Outcome variables were pleasantness ratings and physiological reactions in heart rate (HR) and fear-potentiated startle. Additionally, the influence of social anxiety, which was measured with the Social Phobia Inventory scale, was evaluated. As expected after the acquisition phase the CS+ was rated clearly less pleasant than the CS-. This difference vanished during extinction. Furthermore, the HR remained high for the CS+, while the HR for the CS- was clearly lower after than before the acquisition. Furthermore, a clear difference between CS+ and CS- after the acquisition indicated successful conditioning on this translational measure. Contrariwise no CS+/CS- differences were observed in the physiological variables during extinction. Importantly, at the generalization test, higher socially fearful participants rated pleasantness of all agents as low whereas the lower socially fearful participants rated pleasantness as low only for the CS+. SFC was successfully induced and extinguished confirming operant conditioning in this SFC paradigm. These findings suggest that the paradigm is suitable to expand the knowledge about the learning and unlearning of social fears. Further studies should investigate the operant mechanisms of development and treatment of social anxiety disorder.

  18. Inhibition of Vicariously Learned Fear in Children Using Positive Modeling and Prior Exposure

    PubMed Central

    2015-01-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions—psychoeducation, factual information, or no information (control)—prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions—positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)—before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. PMID:26653136

  19. Influence of perceptual cues and conceptual information on the activation and reduction of claustrophobic fear.

    PubMed

    Shiban, Youssef; Peperkorn, Henrik; Alpers, Georg W; Pauli, Paul; Mühlberger, Andreas

    2016-06-01

    Fear reactions in phobic patients can be activated by specific perceptual cues (C) or by conceptual fear-related information (I). An earlier study with spider phobic participants documented that perceptual stimuli are particularly potent to trigger fear responses. Because fear of spiders is activated by very circumscribed stimuli, we set out to investigate whether another phobia with more contextual fear-elicitation (i.e., a situational phobia) would yield similar patterns. Thus, we investigate the two paths of fear activation (cues vs. information) and fear reduction during exposure in claustrophobic patients. Forty-eight claustrophobic patients and 48 healthy control participants were randomly assigned to one of three virtual reality exposure conditions: C, I, or a combination of both (CI). Exposure lasted 5 min and was repeated 4 times. Self-report and physiological reactions were assessed. Claustrophobic patients experienced more initial self-reported fear when confronted with fear-relevant perceptual cues than conceptual information, when the perceptual cues were combined with conceptual information there was no significant enhancement. Furthermore, fear habituated more in the perceptual condition. For the physiological parameters, groups differed and in claustrophobic patients heart rate decreased differently in the conditions. Longer exposure duration and long-term effects of the manipulation were not investigated. We found similar patterns in a situational phobia as compared to a specific-cue related phobia (animal type). Thus, once more this highlights the central role of visual cues in phobic fear and the potential of virtual reality for conducting exposure therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation

    PubMed Central

    Hoffman, Ann N.; Parga, Alejandro; Paode, Pooja; Watterson, Lucas R.; Nikulina, Ella M.; Hammer, Ronald P.; Conrad, Cheryl D.

    2015-01-01

    The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6h/d/21d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype. PMID:25732249

  1. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    PubMed

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  2. Generalization of Fear Inhibition by Disrupting Hippocampal Protein Synthesis-Dependent Reconsolidation Process

    PubMed Central

    Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2011-01-01

    Repetitive replay of fear memories may precipitate the occurrence of post-traumatic stress disorder and other anxiety disorders. Hence, the suppression of fear memory retrieval may help prevent and treat these disorders. The formation of fear memories is often linked to multiple environmental cues and these interconnected cues may act as reminders for the recall of traumatic experiences. However, as a convenience, a simple paradigm of one cue pairing with the aversive stimulus is usually used in studies of fear conditioning in animals. Here, we built a more complex fear conditioning model by presenting several environmental stimuli during fear conditioning and characterize the effectiveness of extinction training and the disruption of reconsolidation process on the expression of learned fear responses. We demonstrate that extinction training with a single-paired cue resulted in cue-specific attenuation of fear responses but responses to other cures were unchanged. The cue-specific nature of the extinction persisted despite training sessions combined with -cycloserine treatment reveals a significant weakness in extinction-based treatment. In contrast, the inhibition of the dorsal hippocampus (DH) but not the basolateral amygdala (BLA)-dependent memory reconsolidation process using either protein synthesis inhibitors or genetic disruption of cAMP-response-element-binding protein-mediated transcription comprehensively disrupted the learned connections between fear responses and all paired environmental cues. These findings emphasize the distinct role of the DH and the BLA in the reconsolidation process of fear memories and further indicate that the disruption of memory reconsolidation process in the DH may result in generalization of fear inhibition. PMID:21593730

  3. Generalization of fear inhibition by disrupting hippocampal protein synthesis-dependent reconsolidation process.

    PubMed

    Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2011-09-01

    Repetitive replay of fear memories may precipitate the occurrence of post-traumatic stress disorder and other anxiety disorders. Hence, the suppression of fear memory retrieval may help prevent and treat these disorders. The formation of fear memories is often linked to multiple environmental cues and these interconnected cues may act as reminders for the recall of traumatic experiences. However, as a convenience, a simple paradigm of one cue pairing with the aversive stimulus is usually used in studies of fear conditioning in animals. Here, we built a more complex fear conditioning model by presenting several environmental stimuli during fear conditioning and characterize the effectiveness of extinction training and the disruption of reconsolidation process on the expression of learned fear responses. We demonstrate that extinction training with a single-paired cue resulted in cue-specific attenuation of fear responses but responses to other cures were unchanged. The cue-specific nature of the extinction persisted despite training sessions combined with D-cycloserine treatment reveals a significant weakness in extinction-based treatment. In contrast, the inhibition of the dorsal hippocampus (DH) but not the basolateral amygdala (BLA)-dependent memory reconsolidation process using either protein synthesis inhibitors or genetic disruption of cAMP-response-element-binding protein-mediated transcription comprehensively disrupted the learned connections between fear responses and all paired environmental cues. These findings emphasize the distinct role of the DH and the BLA in the reconsolidation process of fear memories and further indicate that the disruption of memory reconsolidation process in the DH may result in generalization of fear inhibition.

  4. Fear recognition impairment in early-stage Alzheimer's disease: when focusing on the eyes region improves performance.

    PubMed

    Hot, Pascal; Klein-Koerkamp, Yanica; Borg, Céline; Richard-Mornas, Aurélie; Zsoldos, Isabella; Paignon Adeline, Adeline; Thomas Antérion, Catherine; Baciu, Monica

    2013-06-01

    A decline in the ability to identify fearful expression has been frequently reported in patients with Alzheimer's disease (AD). In patients with severe destruction of the bilateral amygdala, similar difficulties have been reduced by using an explicit visual exploration strategy focusing on gaze. The current study assessed the possibility of applying a similar strategy in AD patients to improve fear recognition. It also assessed the possibility of improving fear recognition when a visual exploration strategy induced AD patients to process the eyes region. Seventeen patients with mild AD and 34 healthy subjects (17 young adults and 17 older adults) performed a classical task of emotional identification of faces expressing happiness, anger, and fear in two conditions: The face appeared progressively from the eyes region to the periphery (eyes region condition) or it appeared as a whole (global condition). Specific impairment in identifying a fearful expression was shown in AD patients compared with older adult controls during the global condition. Fear expression recognition was significantly improved in AD patients during the eyes region condition, in which they performed similarly to older adult controls. Our results suggest that using a different strategy of face exploration, starting first with processing of the eyes region, may compensate for a fear recognition deficit in AD patients. Findings suggest that a part of this deficit could be related to visuo-perceptual impairments. Additionally, these findings suggest that the decline of fearful face recognition reported in both normal aging and in AD may result from impairment of non-amygdalar processing in both groups and impairment of amygdalar-dependent processing in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Hippocampal damage causes retrograde but not anterograde memory loss for context fear discrimination in rats.

    PubMed

    Lee, Justin Q; Sutherland, Robert J; McDonald, Robert J

    2017-09-01

    There is a substantial body of evidence that the hippocampus (HPC) plays and essential role in context discrimination in rodents. Studies reporting anterograde amnesia (AA) used repeated, alternating, distributed conditioning and extinction sessions to measure context fear discrimination. In addition, there is uncertainty about the extent of damage to the HPC. Here, we induced conditioned fear prior to discrimination tests and rats sustained extensive, quantified pre- or post-training HPC damage. Unlike previous work, we found that extensive HPC damage spares context discrimination, we observed no AA. There must be a non-HPC system that can acquire long-term memories that support context fear discrimination. Post-training HPC damage caused retrograde amnesia (RA) for context discrimination, even when rats are fear conditioned for multiple sessions. We discuss the implications of these findings for understanding the role of HPC in long-term memory. © 2017 Wiley Periodicals, Inc.

  6. Fear Conditioning, Synaptic Plasticity, and the Amygdala: Implications for Posttraumatic Stress Disorder

    PubMed Central

    Mahan, Amy L.; Ressler, Kerry J.

    2011-01-01

    Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop after a traumatic experience such as domestic violence, natural disasters or combat-related trauma. The cost of such disorders on society and the individual can be tremendous. In this article we will review how the neural circuitry implicated in PTSD in humans is related to the neural circuitry of fear. We then discuss how fear conditioning is a suitable model for studying the molecular mechanisms of the fear components which underlie PTSD, and the biology of fear conditioning with a particular focus on the brain derived neurotropic factor (BDNF)-TrkB, GABAergic and glutamatergic ligand-receptor systems. We then summarize how such approaches may help to inform our understanding of PTSD and other stress-related disorders and provide insight to new pharmacological avenues of treatment of PTSD. PMID:21798604

  7. Hormonal Regulation of Extinction: Implication for Mechanisms of Gender Difference in PTSD

    DTIC Science & Technology

    2009-09-01

    role of gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve...learning in Pavlovian fear conditioning involves training with the presentation of an innocuous stimulus (the conditioned stimulus – CS) that is associated...GD, Schlinger BA, Fanselow MS (1998) Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant- path long-term

  8. GABAergic interneurons: The orchestra or the conductor in fear learning and memory?

    PubMed

    Lucas, Elizabeth K; Clem, Roger L

    2017-12-02

    Fear conditioning is a form of associative learning that is fundamental to survival and involves potentiation of activity in excitatory projection neurons (PNs). Current models stipulate that the mechanisms underlying this process involve plasticity of PN synapses, which exhibit strengthening in response to fear conditioning. However, excitatory PNs are extensively modulated by a diverse array of GABAergic interneurons whose contributions to acquisition, storage, and expression of fear memory remain poorly understood. Here we review emerging evidence that genetically-defined interneurons play important subtype-specific roles in processing of fear-related stimuli and that these dynamics shape PN firing through both inhibition and disinhibition. Furthermore, interneurons exhibit structural, molecular, and electrophysiological evidence of fear learning-induced synaptic plasticity. These studies warrant discarding the notion of interneurons as passive bystanders in long-term memory. Copyright © 2017. Published by Elsevier Inc.

  9. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction

    PubMed Central

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J.

    2015-01-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine’s enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2–4 mins prior to each extinction session. Our results showed that the that mice lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. PMID:26688111

  11. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Early Extinction after Fear Conditioning Yields a Context-Independent and Short-Term Suppression of Conditional Freezing in Rats

    ERIC Educational Resources Information Center

    Chang, Chun-hui; Maren, Stephen

    2009-01-01

    Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…

  13. Fear of falling is associated with prolonged anticipatory postural adjustment during gait initiation under dual-task conditions in older adults.

    PubMed

    Uemura, Kazuki; Yamada, Minoru; Nagai, Koutatsu; Tanaka, Buichi; Mori, Shuhei; Ichihashi, Noriaki

    2012-02-01

    Little is known about dynamic balance control under dual-task conditions in older adults with fear of falling (FoF). The purpose of this study was to examine the effect of FoF on anticipatory postural adjustment (APA) during gait initiation under dual-task conditions in older adults. Fifty-seven elderly volunteers (age, 79.2 [6.8] years) from the community participated in this study. Each participant was categorised into either the Fear (n=24) or No-fear (n=33) group on the basis of the presence or absence of FoF. Under single- and dual-task conditions, centre of pressure (COP) data were collected while the participants performed gait initiation trials from a starting position on a force platform. We also performed a 10-m walking test (WT), a timed up & go test (TUG), and a functional reach test (FR). The reaction and APA phases were measured from the COP data. The results showed that under the dual-task condition, the Fear group had significantly longer APA phases than the No-fear group, although no significant differences were observed between the 2 groups in the reaction and APA phases under the single-task condition and in any clinical measurements (WT, TUG, and FR). Our findings suggest that specific deficits in balance control occur in subjects with FoF during gait initiation while dual tasking, even if their physical functions are comparable to subjects without FoF. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fear Conditioning Induced by Interpersonal Conflicts in Healthy Individuals

    PubMed Central

    Tada, Mitsuhiro; Uchida, Hiroyuki; Maeda, Takaki; Konishi, Mika; Umeda, Satoshi; Terasawa, Yuri; Nakajima, Shinichiro; Mimura, Masaru; Miyazaki, Tomoyuki; Takahashi, Takuya

    2015-01-01

    Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors’ face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder. PMID:25978817

  15. Extensive Extinction in Multiple Contexts Eliminates the Renewal of Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Thomas, Brian L.; Vurbic, Drina; Novak, Cheryl

    2009-01-01

    Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single…

  16. The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle.

    PubMed

    Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique

    2015-03-13

    Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist.

  17. Chronic treatment with fluoxetine prevents the return of extinguished auditory-cued conditioned fear.

    PubMed

    Deschaux, Olivier; Spennato, Guillaume; Moreau, Jean-Luc; Garcia, René

    2011-05-01

    We have recently shown that post-extinction exposure of rats to a sub-threshold reminder shock can reactivate extinguished context-related freezing and found that chronic treatment with fluoxetine before fear extinction prevents this phenomenon. In the present study, we examined whether these findings would be confirmed with auditory fear conditioning. Rats were initially submitted to a session of five tone-shock pairings with either a 0.7- or 0.1-mA shock and underwent, 3 days later, a session of 20 tone-alone trials. At the beginning of this latter session, we observed cue-conditioned freezing in rats that received the strong, but not the weak, shock. At the end, both groups (strong and weak shocks) displayed similar low levels of freezing, indicating fear extinction in rats exposed to the strong shock. These rats exhibited again high levels of cue-evoked freezing when exposed to three tone-shock pairings with 0.1-mA shock. This reemergence of cue-conditioned fear was completely abolished by chronic (over a 21-day period) fluoxetine treatment which spared, when administered before the initial fear conditioning, the original tone-shock association. These data extend our previous findings and suggest that chronic fluoxetine treatment favor extinction memory by dampening the reactivation of the original tone-shock association.

  18. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    PubMed

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  19. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram.

    PubMed

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-05

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

  20. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram

    PubMed Central

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-01

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory. PMID:24298144

  1. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment

    PubMed Central

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans by examining the context specificity of short-delay extinction in an ABA renewal procedure using virtual reality environments. A second objective was to examine whether renewal, if any, would be influenced by context conditioning. Subjects underwent differential aversive conditioning in virtual context A, which was immediately followed by extinction in virtual context B. Extinction was followed by tests of renewal in context A and B, with the order counterbalanced across subjects. Results showed that extinction was context dependent. Evidence for renewal was established using fear-potentiated startle as well as skin conductance and fear ratings. In addition, although contextual anxiety was greater in the acquisition context than in the extinction context during renewal, as assessed with startle, context conditioning did not influence the renewal effect. These data do not support the view that extinction conducted shortly after acquisition is context independent. Hence, they do not provide evidence that extinction can lead to erasure of a fear memory established via Pavlovian conditioning. PMID:17412963

  2. Social Modulation of Associative Fear Learning by Pheromone Communication

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  3. Differentiating the influence of incidental anger and fear on risk decision-making.

    PubMed

    Yang, Qiwei; Zhao, Ding; Wu, Yan; Tang, Ping; Gu, Ruolei; Luo, Yue-Jia

    2018-02-01

    Previous research has revealed that incidental emotions of different valence (positive/negative/neutral) produce distinct impacts on risk decision-making. This study went on to compare the effects of different emotions of which the valence are identical. We focused on anger and fear, both of which are negative emotions but differ in motivational and appraisal dimensions. Participants finished a forced-choice gambling task, during which incidental emotions (anger/fear/happy) were elicited by facial stimuli selected from the Chinese Facial Affective Picture System. Behavioral and event-related potential (ERP) data were recorded in the experiment, which showed that anger and fear were different in their influence on behavioral risk preference and the relationship between outcome processing and subsequent risk decisions. Regarding the behavioral results, risk preference in the anger condition was higher than the fear condition, but lower than the happy condition. Regarding the ERP results elicited by outcome feedback (gain/loss), in the fear condition, the feedback-related negativity (FRN) was positively correlated with risk preference; in the anger condition, the gain-related P3 component was positively correlated with risk preference; in the happy condition, both the FRN and the loss-related P3 was negatively correlated with risk preference. The current findings provide novel insight into distinguishing the effect of different incidental emotions on risk preference. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The role of the medial prefrontal cortex in trace fear extinction

    PubMed Central

    Kwapis, Janine L.; Jarome, Timothy J.

    2015-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576

  5. Fear extinction, persistent disruptive behavior and psychopathic traits: fMRI in late adolescence.

    PubMed

    Cohn, Moran D; van Lith, Koen; Kindt, Merel; Pape, Louise E; Doreleijers, Theo A H; van den Brink, Wim; Veltman, Dick J; Popma, Arne

    2016-07-01

    Children diagnosed with a Disruptive Behavior Disorder (DBD, i.e. Oppositional Defiant Disorder or Conduct Disorder), especially those with psychopathic traits, are at risk of developing persistent and severe antisocial behavior. Reduced fear conditioning has been proposed to underlie persistent antisocial development. However, we have recently shown that both DBD persisters and desisters are characterized by increased fear conditioning compared with healthy controls (HCs). In this study, we investigated whether brain function during fear extinction is associated with DBD subgroup-membership and psychopathic traits. Adolescents from a childhood arrestee cohort (mean age 17.6 years, s.d. 1.4) who met criteria for a DBD diagnosis during previous assessments were re-assessed and categorized as persistent DBD (n = 25) or desistent DBD (n = 25). Functional MRI during the extinction phase of a classical fear-conditioning task was used to compare regional brain function between these subgroups and 25 matched controls. Both DBD persisters and desisters showed hyperreactivity during fear extinction, when compared with HCs. Impulsive-irresponsible psychopathic traits were positively associated with responses in the fear neurocircuitry and mediated the association between neural activation and group membership. These results suggest that fear acquisition and fear extinction deficits may provide an endophenotype for an emotionally hyperreactive subtype of antisocial development. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta.

    PubMed

    Chang, Yao-Ju; Yang, Chih-Hao; Liang, Ying-Ching; Yeh, Che-Ming; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2009-11-01

    Females and males are different in brain and behavior. These sex differences occur early during development due to a combination of genetic and hormonal factors and continue throughout the lifespan. Previous studies revealed that male rats exhibited significantly higher levels of contextual fear memory than female rats. However, it remains unknown whether a sex difference exists in the contextual fear extinction. To address this issue, male, normally cycling female, and ovariectomized (OVX) female Sprague-Dawley rats were subjected to contextual fear conditioning and extinction trials. Here we report that although male rats exhibited higher levels of freezing than cycling female rats after contextual fear conditioning, female rats subjected to conditioning in the proestrus and estrus stage exhibited an enhancement of fear extinction than male rats. An estrogen receptor (ER) beta agonist diarylpropionitrile but not an ERalpha agonist propyl-pyrazole-triol administration also enhanced extinction of contextual fear in OVX female rats, suggesting that estrogen-mediated facilitation of extinction involves the activation of ERbeta. Intrahippocampal injection of estradiol or diarylpropionitrile before extinction training in OVX female rats remarkably reduced the levels of freezing response during extinction trials. In addition, the locomotion or anxiety state of female rats does not vary across the ovarian cycle. These results reveal a crucial role for estrogen in mediating sexually dimorphic contextual fear extinction, and that estrogen-mediated enhancement of fear extinction involves the activation of ERbeta.

  7. Oxytocin signaling in basolateral and central amygdala nuclei differentially regulates the acquisition, expression, and extinction of context-conditioned fear in rats

    PubMed Central

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the CeA (Experiment 1) or BLA (Experiment 2). In the second set of experiments, expression of context fear was enhanced by a pre- or post-extinction CeA infusion of synthetic OT (Experiments 3–6) or a selective OT receptor agonist, TGOT (Experiment 4). This enhancement of fear was blocked by coadministration of an OT receptor antagonist, OTA (Experiment 5) and context fear was suppressed by administration of the antagonist alone (Experiment 6). In the third set of experiments, expression of context fear was suppressed, not enhanced, by a preextinction BLA infusion of synthetic OT or a selective OT receptor agonist, TGOT (Experiments 7 and 8). This suppression of fear was blocked by coadministration of the OT receptor antagonist, OTA (Experiment 8). Taken together, these findings show that the involvement of the CeA and BLA in expression and extinction of context-conditioned fear is dissociable, and imply a critical role for oxytocin signaling in amygdala-based regulation of aversive learning. PMID:25878137

  8. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults

    PubMed Central

    Schiele, Miriam A.; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen

    2016-01-01

    ABSTRACT Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc. Dev Psychobiol 58: 471–481, 2016. PMID:26798984

  9. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    PubMed

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    PubMed Central

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  11. Fear memory for cue and context: opposite and time-dependent effects of a physiological dose of corticosterone in male BALB/c and C57BL/6J mice.

    PubMed

    Diamantopoulou, Anastasia; Oitzl, Melly S; Grauer, Ettie

    2012-07-23

    Highly emotional, stress reactive BALB/c mice secrete more corticosterone in response to fear conditioning than the low stress reactive C57BL/6J mice. Fear memory to cue and context differs between the strains. We injected corticosterone at physiological concentrations (250 μg/kg i.p.) 30 min before fear conditioning. Fear memory was tested 48 and 72 h later. Although corticosterone had little effect on acquisition, it differentially affected fear memories in strain dependent manner: while BALB/c mice decreased freezing during cue and context episodes, C57BL/6J mice showed an overall increase in freezing. BALB/c mice showed extinction over days while no such extinction was seen in C57BL/6J mice. Evaluation of these data in the perspective of previous studies using the same fear conditioning paradigm with corticosterone injections 5 min before or immediately after acquisition, revealed the impact of corticosterone during conditioning on the strength of fear memories. In C57BL/6J mice the overall increase in fear memories was higher if corticosterone was injected 30 min pre acquisition than if injected 5 min pre. In contrast, BALB/c mice showed reduced fear memories when injected 30 min pre compared to that seen 5 min pre acquisition. Both strains showed decreased fear memories compared to vehicle if corticosterone was administered immediately after acquisition. We conclude that the timing of physiologically relevant, stress levels increase in corticosterone is essential for the processing of aversive events and the formation of fear memories. However, the quality of the effect depends on the genetic background. These findings contribute to the understanding of the etiology of stress-related disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Generalization of Fear to Respiratory Sensations.

    PubMed

    Schroijen, Mathias; Pappens, Meike; Schruers, Koen; Van den Bergh, Omer; Vervliet, Bram; Van Diest, Ilse

    2015-09-01

    Interoceptive fear conditioning (IFC), fear generalization and a lack of safety learning have all been hypothesized to play a role in the pathogenesis of panic disorder, but have never been examined in a single paradigm. The present study aims to investigate whether healthy participants (N=43) can learn both fear and safety to an interoceptive sensation, and whether such learning generalizes to other, similar sensations. Two intensities of inspiratory breathing impairment (induced by two pressure threshold loads of 6 and 25 cm H2O) served as interoceptive conditional stimuli (CSs) in a differential conditioning paradigm. An inspiratory occlusion was used as the unconditioned stimulus (US). Generalization was tested 24h after conditioning, using four generalization stimuli with intensities in-between CS+ and CS- (GSs: 8-10.5-14-18.5 cm H2O). Measures included US-expectancy, startle blink EMG responses, electrodermal activity and respiration. Perceptual discrimination of interoceptive CSs and GSs was explored with a discrimination task prior to acquisition and after generalization. Results indicate that differential fear learning was established for US-expectancy ratings. The group with a low intensity CS+ and a high intensity CS- showed the typical pattern of differential fear responding and a similarity-based generalization gradient. In contrast, the high intensity CS+ and low intensity CS- group showed impaired differential learning and complete generalization of fear. Our findings suggest that interoceptive fear learning and generalization are modulated by stimulus intensity and that the occurrence of discriminatory learning is closely related to fear generalization. Copyright © 2015. Published by Elsevier Ltd.

  13. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  14. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval.

    PubMed

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  15. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    PubMed Central

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations) as well as psychophysiological measures (skin conductance responses, SCRs) were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR. PMID:28659851

  16. Fear Conditioning in an Abdominal Pain Model: Neural Responses during Associative Learning and Extinction in Healthy Subjects

    PubMed Central

    Kattoor, Joswin; Gizewski, Elke R.; Kotsis, Vassilios; Benson, Sven; Gramsch, Carolin; Theysohn, Nina; Maderwald, Stefan; Forsting, Michael; Schedlowski, Manfred; Elsenbruch, Sigrid

    2013-01-01

    Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement. In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS−) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness. Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS− was observed. In the reinstatement phase, a tendency for parahippocampal activation was found. Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain. PMID:23468832

  17. Brain structural connectivity and context-dependent extinction memory.

    PubMed

    Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J

    2017-08-01

    Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.

  18. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism.

    PubMed

    Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone; Herrmann, Martin J

    2016-06-01

    Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  19. Social buffering enhances extinction of conditioned fear responses in male rats.

    PubMed

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. In the Blink of an Eye: Investigating the Role of Awareness in Fear Responding by Measuring the Latency of Startle Potentiation

    PubMed Central

    Åsli, Ole; Flaten, Magne A.

    2012-01-01

    The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed. PMID:24962686

  1. Impact and characteristics of positive and fearful emotional messages during infant social referencing.

    PubMed

    Kim, Geunyoung; Walden, Tedra A; Knieps, Linda J

    2010-04-01

    Studies of infant social referencing have indicated that infants might be more influenced by vocal information contained in emotional messages than by facial expression, especially during fearful message conditions. The present study investigated the characteristics of emotional channels that parents used during social referencing, and corresponding infants' behavioral changes. Results of Study 1 indicated that parents used more vocal information during positive message conditions. Unlike previous findings, infants' behavioral change was related to the frequency of vocal information during positive condition. For fearful messages, infants were more influenced by the number of multi-modal channels used and the frequency of visual information. Study 2 further showed that the intensity of vocal tone was related to infant regulation only during positive message conditions. The results imply that understanding of social context is important to make sense of parent-infant's emotional interaction. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  3. Does Fear Reactivity during Exposure Predict Panic Symptom Reduction?

    ERIC Educational Resources Information Center

    Meuret, Alicia E.; Seidel, Anke; Rosenfield, Benjamin; Hofmann, Stefan G.; Rosenfield, David

    2012-01-01

    Objective: Fear reactivity during exposure is a commonly used indicator of learning and overall therapy outcome. The objective of this study was to assess the predictive value of fear reactivity during exposure using multimodal indicators and an advanced analytical design. We also investigated the degree to which treatment condition (cognitive…

  4. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2010-09-01

    physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also reminiscent of the findings... fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3. interscience.wiley.com/journal...specific fear, but are sustained beyond the immediate threat. Oxytocin might be promising as a drug with novel benefits for patients with PTSD . 15

  5. Pharmacological enhancement of calcium-activated potassium channel function reduces the effects of repeated stress on fear memory

    PubMed Central

    Atchley, Derek; Hankosky, Emily R.; Gasparotto, Kaylyn; Rosenkranz, J. Amiel

    2012-01-01

    Repeated stress impacts emotion, and can induce mood and anxiety disorders. These disorders are characterized by imbalance of emotional responses. The amygdala is fundamental in expression of emotion, and is hyperactive in many patients with mood or anxiety disorders. Stress also leads to hyperactivity of the amygdala in humans. In rodent studies, repeated stress causes hyperactivity of the amygdala, and increases fear conditioning behavior that is mediated by the basolateral amygdala (BLA). Calcium-activated potassium (KCa) channels regulate BLA neuronal activity, and evidence suggests reduced small conductance KCa (SK) channel function in male rats exposed to repeated stress. Pharmacological enhancement of SK channels reverses the BLA neuronal hyperexcitability caused by repeated stress. However, it is not known if pharmacological targeting of SK channels can repair the effects of repeated stress on amygdala-dependent behaviors. The purpose of this study was to test whether enhancement of SK channel function reverses the effects of repeated restraint on BLA-dependent auditory fear conditioning. We found that repeated restraint stress increased the expression of cued conditioned fear in male rats. However, 1-EBIO (1 or 10 mg/kg) or CyPPA (5 mg/kg) administered 30 minutes prior to testing of fear expression brought conditioned freezing to control levels, with little impact on fear expression in control handled rats. These results demonstrate that enhancement of SK channel function can reduce the abnormalities of BLA-dependent fear memory caused by repeated stress. Furthermore, this indicates that pharmacological targeting of SK channels may provide a novel target for alleviation of psychiatric symptoms associated with amygdala hyperactivity. PMID:22487247

  6. A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice.

    PubMed

    Young, Matthew B; Howell, Leonard L; Hopkins, Lauren; Moshfegh, Cassandra; Yu, Zhe; Clubb, Lauren; Seidenberg, Jessica; Park, Jeanie; Swiercz, Adam P; Marvar, Paul J

    2018-05-17

    Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Chronic stress and sex differences on the recall of fear conditioning and extinction.

    PubMed

    Baran, Sarah E; Armstrong, Charles E; Niren, Danielle C; Hanna, Jeffery J; Conrad, Cheryl D

    2009-03-01

    Chronic stress effects and sex differences were examined on conditioned fear extinction. Male and female Sprague-Dawley rats were chronically stressed by restraint (6 h/d/21 d), conditioned to tone and footshock, followed by extinction after 1 h and 24 h delays. Chronic stress impaired the recall of fear extinction in males, as evidenced by high freezing to tone after the 24 h delay despite exposure to the previous 1 h delay extinction trials, and this effect was not due to ceiling effects from overtraining during conditioning. In contrast, chronic stress attenuated the recall of fear conditioning acquisition in females, regardless of exposure to the 1 h extinction exposure. Since freezing to tone was reinstated following unsignalled footshocks, the deficit in the stressed rats reflected impaired recall rather than impaired consolidation. Sex differences in fear conditioning and extinction were observed in nonstressed controls as well, with control females resisting extinction to tone. Analysis of contextual freezing showed that all groups (control, stress, male, female) increased freezing immediately after the first tone extinction trial, demonstrating contextual discrimination. These findings show that chronic stress and sex interact to influence fear conditioning, with chronic stress impairing the recall of delayed fear extinction in males to implicate the medial prefrontal cortex, disrupting the recall of the fear conditioning acquisition in females to implicate the amygdala, and nonstressed controls exhibiting sex differences in fear conditioning and extinction, which may involve the amygdala and/or corticosterone levels.

  8. Repeated Recall and PKM? Maintain Fear Memories in Juvenile Rats

    ERIC Educational Resources Information Center

    Oliver, Chicora F.; Kabitzke, Patricia; Serrano, Peter; Egan, Laura J.; Barr, Gordon A.; Shair, Harry N.; Wiedenmayer, Christoph

    2016-01-01

    We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in…

  9. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    ERIC Educational Resources Information Center

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  10. Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits

    PubMed Central

    Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew

    2013-01-01

    An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This extinction process results in the suppression of fear responses, but is generally thought to leave the original fearful memory intact. Here, we investigate the effects of extinction during periods of memory lability on behavioral responses and on expression of the immediate–early gene c-Fos within fear conditioning and extinction circuits. Our results show that long-term extinction is impaired when it occurs during time periods during which the memory should be most vulnerable to disruption (soon after conditioning or retrieval). These behavioral effects are correlated with hyperactivation of medial prefrontal cortex and amygdala subregions associated with fear expression rather than fear extinction. These findings demonstrate that behavioral experiences during periods of heightened fear prevent extinction and prolong the conditioned fear response. PMID:23422280

  11. Nucleus accumbens carbachol disrupts olfactory and contextual fear-potentiated startle and attenuates baseline startle reactivity.

    PubMed

    Cousens, Graham A; Skrobacz, Cheryl G; Blumenthal, Anna

    2011-01-20

    Although the nucleus accumbens (NAc) typically is not considered a primary component of the circuitry underlying either the acquisition or retrieval of conditioned fear, evidence suggests that this region may play some role in modulating fear-related behaviors. The goal of the present study was to explore a potential role for NAc cholinergic receptors in the expression of fear-potentiated startle (FPS) and baseline startle reactivity. Intra-NAc infusion of the broad-acting cholinergic receptor agonist, carbachol, suppressed FPS elicited by re-exposure to both a discrete odor previously paired with footshock and the conditioning context. Although carbachol elevated spontaneous motor activity, activity bouts did not account for startle suppression in carbachol-treated Ss. In addition, intra-NAc carbachol suppressed baseline startle over a range of acoustic pulse intensities in the absence of explicit fear conditioning. Collectively, these findings suggest that NAc cholinergic receptors play a role in the modulation of baseline startle reactivity, rather than in the retrieval of learned fear, and that this role is independent of overt motor activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Selective synaptic remodeling of amygdalocortical connections associated with fear memory.

    PubMed

    Yang, Yang; Liu, Dan-Qian; Huang, Wei; Deng, Juan; Sun, Yangang; Zuo, Yi; Poo, Mu-Ming

    2016-10-01

    Neural circuits underlying auditory fear conditioning have been extensively studied. Here we identified a previously unexplored pathway from the lateral amygdala (LA) to the auditory cortex (ACx) and found that selective silencing of this pathway using chemo- and optogenetic approaches impaired fear memory retrieval. Dual-color in vivo two-photon imaging of mouse ACx showed pathway-specific increases in the formation of LA axon boutons, dendritic spines of ACx layer 5 pyramidal cells, and putative LA-ACx synaptic pairs after auditory fear conditioning. Furthermore, joint imaging of pre- and postsynaptic structures showed that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. Together, these findings identify an amygdalocortical projection that is important to fear memory expression and is selectively modified by associative fear learning, and unravel a distinct architectural rule for synapse formation in the adult brain.

  13. An overview of translationally informed treatments for PTSD: animal models of Pavlovian fear conditioning to human clinical trials

    PubMed Central

    Bowers, Mallory E.; Ressler, Kerry J.

    2015-01-01

    Posttraumatic stress disorder (PTSD) manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Pre-clinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory, which have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for PTSD that have been developed via a bench to bedside translational model. PMID:26238379

  14. High Current Anxiety Symptoms, But Not a Past Anxiety Disorder Diagnosis, are Associated with Impaired Fear Extinction

    PubMed Central

    Duits, Puck; Cath, Danielle C.; Heitland, Ivo; Baas, Johanna M. P.

    2016-01-01

    Although impaired fear extinction has repeatedly been demonstrated in patients with anxiety disorders, little is known about whether these impairments persist after treatment. The current comparative exploratory study investigated fear extinction in 26 patients treated for their anxiety disorder in the years preceding the study as compared to 17 healthy control subjects. Fear-potentiated startle and subjective fear were measured in a cue and context fear conditioning paradigm within a virtual reality environment. Results indicated no differences in fear extinction between treated anxiety patients and control subjects. However, scores on the Beck Anxiety Inventory across all participants revealed impaired extinction of fear potentiated startle in subjects with high compared to low anxiety symptoms over the past week. Taken together, this exploratory study found no support for impaired fear extinction in treated anxiety patients, and implies that current anxiety symptoms rather than previous patient status determine the success of extinction. PMID:26955364

  15. Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    PubMed Central

    Portugal, George S.; Wilkinson, Derek S.; Kenney, Justin W.; Sullivan, Colleen

    2013-01-01

    The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute nicotine and nicotine withdrawal on contextual fear conditioning, somatic signs, and the elevated plus maze were observed, but no association between the effects of acute nicotine and nicotine withdrawal on contextual fear conditioning were observed, suggesting that different genetic substrates may mediate these effects. The identification of genetic factors that may alter the effects of nicotine on cognition may lead to more efficacious treatments for nicotine addiction. PMID:21822688

  16. Dual Functions of Perirhinal Cortex in Fear Conditioning

    PubMed Central

    Kent, Brianne A.; Brown, Thomas H.

    2012-01-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning. PMID:22903623

  17. The effects of repeated exposure to graphic fear appeals on cigarette packages: A field experiment.

    PubMed

    Dijkstra, Arie; Bos, Colin

    2015-03-01

    Experimental studies on the effects of graphic fear appeals on cigarette packages typically expose smokers in a single session to a fear appeal, although in practice the exposure is always repeated. The present study applied an improved study design with repeated exposure to fear appeals on cigarette packages. In this field-experiment, 118 smokers were assigned to 1 of 2 conditions with either graphic fear appeals or textual warnings on their cigarette packages. During 3 weeks, fear and disgust were assessed 6 times. The intention to quit smoking after 3 weeks and quitting activity during the 3 weeks were the dependent measures. The effects of 3 pretest individual difference moderators were tested: disengagement beliefs, number of cigarettes smoked a day, and readiness to quit. Three weeks of exposure to the graphic fear appeals led to a stronger intention to quit, but only when smokers scored low on disengagement beliefs, or were heavier smokers. In addition, smokers low in disengagement more often reported to have cut down on smoking in the graphic condition. There were no indications of habituation of fear and disgust over the 3 weeks. The effects of graphic fear appeals depended on smokers' characteristics: The moderators may explain the mixed findings in the literature. The lack of habituation may be caused by the renewal of the graphics every few days. The used field-experimental design with natural repeated exposure to graphics is promising. (c) 2015 APA, all rights reserved).

  18. Immersive 3D exposure-based treatment for spider fear: A randomized controlled trial.

    PubMed

    Minns, Sean; Levihn-Coon, Andrew; Carl, Emily; Smits, Jasper A J; Miller, Wayne; Howard, Don; Papini, Santiago; Quiroz, Simon; Lee-Furman, Eunjung; Telch, Michael; Carlbring, Per; Xanthopoulos, Drew; Powers, Mark B

    2018-06-04

    Stereoscopic 3D gives the viewer the same shape, size, perspective and depth they would experience viewing the real world and could mimic the perceptual threat cues present in real life. This is the first study to investigate whether an immersive stereoscopic 3D video exposure-based treatment would be effective in reducing fear of spiders. Participants with a fear of spiders (N = 77) watched two psychoeducational videos with facts about spiders and phobias. They were then randomized to a treatment condition that watched a single session of a stereoscopic 3D immersive video exposure-based treatment (six 5-min exposures) delivered through a virtual reality headset or a psychoeducation only control condition that watched a 30-min neutral video (2D documentary) presented on a computer monitor. Assessments of spider fear (Fear of Spiders Questionnaire [FSQ], Behavioral Approach Task [BAT], & subjective ratings of fear) were completed pre- and post-treatment. Consistent with prediction, the stereoscopic 3D video condition outperformed the control condition in reducing fear of spiders showing a large between-group effect size on the FSQ (Cohen's d = 0.85) and a medium between-group effect size on the BAT (Cohen's d = 0.47). This provides initial support for stereoscopic 3D video in treating phobias. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Acute Hydrocortisone Treatment Increases Anxiety but Not Fear in Healthy Volunteers: A Fear-Potentiated Startle Study

    PubMed Central

    Grillon, Christian; Heller, Randi; Hirschhorn, Elizabeth; Kling, Mitchel A.; Pine, Daniel S.; Schulkin, Jay; Vythilingam, Meena

    2011-01-01

    Background The debilitating effects of chronic glucocorticoids excess are well-known, but comparatively little is understood about the role of acute cortisol. Indirect evidence in rodents suggests that acute cortisone could selectively increase some forms of long-duration aversive states, such as “anxiety,” but not relatively similar, briefer aversive states, such as “fear.” However, no prior experimental studies in humans consider the unique effects of cortisol on anxiety and fear, using well-validated methods for eliciting these two similar but dissociable aversive states. The current study examines these effects, as instantiated with short- and long-duration threats. Methods Healthy volunteers (n = 18) received placebo or a low (20 mg) or a high (60 mg) dose of hydrocortisone in a double-blind crossover design. Subjects were exposed repeatedly to three 150-sec duration conditions: no shock; predictable shocks, in which shocks were signaled by a short-duration threat cue; and unpredictable shocks. Aversive states were indexed by acoustic startle. Fear was operationally defined as the increase in startle reactivity during the threat cue in the predictable condition (fear-potentiated startle). Anxiety was operationally defined as the increase in baseline startle from the no shock to the two threat conditions (anxiety-potentiated startle). Results Hydrocortisone affected neither baseline nor short-duration, fear-potentiated startle but increased long-duration anxiety-potentiated startle. Conclusions These results suggest that hydrocortisone administration in humans selectively increases anxiety but not fear. Possible mechanisms implicated are discussed in light of prior data in rodents. Specifically, hydrocortisone might increase anxiety via sensitization of corticotrophin-releasing hormones in the bed nucleus of the stria terminalis. PMID:21277566

  20. Experience-dependent modification of a central amygdala fear circuit

    PubMed Central

    Li, Haohong; Penzo, Mario A.; Taniguchi, Hiroki; Kopec, Charles D.; Huang, Z. Josh; Li, Bo

    2013-01-01

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how CeA contributes to the learning and expression of fear is unclear. Here we show in mice that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). This experience-dependent plasticity is cell-specific, bidirectional, and expressed presynaptically by inputs from the lateral amygdala. In particular, preventing synaptic potentiation onto somatostatin-positive neurons impairs fear memory formation. Furthermore, activation of these neurons is necessary for fear memory recall and sufficient to drive fear responses. Our findings support a model in which the fear conditioning-induced synaptic modifications in CeL favor the activation of somatostatin-positive neurons, which inhibit CeL output thereby disinhibiting the medial subdivision of CeA and releasing fear expression. PMID:23354330

  1. The effects of FG7142 on overexpectation of Pavlovian fear conditioning.

    PubMed

    Garfield, Joshua B B; McNally, Gavan P

    2009-02-01

    Six experiments studied the role of GABA-sub(A) receptor activation in expression of overexpectation of Pavlovian fear conditioning. After separate pairings of CSA and CSB with shock in Stage I, rats received pairings of the compound AB with shock in Stage II, producing overexpectation of fear. The expression of overexpectation was attenuated, in a dose-dependent manner, by the benzodiazepine partial inverse agonist FG7142. FG7142 had no effect on responding to a CS paired with a low magnitude US or a CS subjected to associative blocking. These results suggest that the negative prediction error generated during overexpectation training may impose a mask on fear rather than erasing the original fear learning. They support claims that overexpectation shares features with extinction. (c) 2009 APA, all rights reserved.

  2. The L-Type Voltage-Gated Calcium Channel Ca [subscript V] 1.2 Mediates Fear Extinction and Modulates Synaptic Tone in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Temme, Stephanie J.; Murphy, Geoffrey G.

    2017-01-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca[subscript V]1.2 and Ca[subscript V] 1.3, using transgenic mice have…

  3. Facing the Beast Apart Together: Fear in Boys and Girls after Processing Information about Novel Animals Individually or in a Duo

    ERIC Educational Resources Information Center

    Muris, Peter; Rijkee, Sanne

    2011-01-01

    In this experimental study, we made an attempt to examine gender-related peer influences on childhood fear. Nine- to 12-year-old boys and girls were provided with ambiguous and positive information about novel animals and then asked to provide a subjective fear rating of the animals under two conditions: fear of one animal was assessed…

  4. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

    PubMed

    Rauch, Scott L; Shin, Lisa M; Phelps, Elizabeth A

    2006-08-15

    The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.

  5. Medial prefrontal cortex serotonergic and GABAergic mechanisms modulate the expression of contextual fear: intratelencephalic pathways and differential involvement of cortical subregions.

    PubMed

    Almada, R C; Coimbra, N C; Brandão, M L

    2015-01-22

    Several lines of evidence indicate that the dorsal hippocampus (dH) and medial prefrontal cortex (mPFC) regulate contextual fear conditioning. The prelimbic (PrL), infralimbic (IL) and the anterior cingulate cortex (ACC) subregions of the mPFC likely play distinct roles in the expression of fear. Moreover, studies have highlighted the role of serotonin (5-hydroxytryptamine, 5-HT)- and γ-aminobutyric acid (GABA)-mediated mechanisms in the modulation of innate fear in the mPFC. The present study characterized dH-mPFC pathways and investigated the role of serotonergic and GABAergic mechanisms of the PrL, IL and ACC-area 1 (Cg1) in the elaboration of contextual fear conditioning using fear-potentiated startle (FPS) and freezing behavior in Rattus norvegicus. The results of neurotracing with microinjections of biotinylated dextran amine into the dH revealed a neural link of the dH with the PrL and ACC. Intra-PrL injections of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and the GABAA receptor-selective agonist muscimol reduced contextual FPS and freezing responses. Intra-Cg1 injections of muscimol but not 8-OH-DPAT decreased FPS and freezing responses. However, neither intra-IL injections of a 5-HT1A agonist nor of a GABAA agonist affected these defensive responses. Labeled neuronal fibers from the dH reached the superficial layers of the PrL cortex and spread to the inner layers of PrL and Cg1 cortices, supporting the pharmacological findings. The present results confirmed the involvement of PrL and Cg1 in the expression of FPS and freezing responses to aversive conditions. In addition, PrL serotoninergic mechanisms play a key role in contextual fear conditioning. This study suggests that PrL, IL and Cg1 distinctively contribute to the modulation of contextual fear conditioning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Social Fear Conditioning Paradigm in Virtual Reality: Social vs. Electrical Aversive Conditioning

    PubMed Central

    Reichenberger, Jonas; Porsch, Sonja; Wittmann, Jasmin; Zimmermann, Verena; Shiban, Youssef

    2017-01-01

    In a previous study we could show that social fear can be induced and extinguished using virtual reality (VR). In the present study, we aimed to investigate the belongingness effect in an operant social fear conditioning (SFC) paradigm which consisted of an acquisition and an extinction phase. Forty-three participants used a joystick to approach different virtual male agents that served as conditioned stimuli. Participants were randomly allocated to one of two experimental conditions. In the electroshock condition, the unconditioned stimulus (US) used during acquisition was an electric stimulation. In the social threat condition, the US consisted of an offense: a spit in the face, mimicked by a sound and a weak air blast to the participant’s neck combined with an insult. In both groups the US was presented when participants were close to the agent (75% contingency for CS+). Outcome variables included subjective, psychophysiological and behavioral data. As expected, fear and contingency ratings increased significantly during acquisition and the differentiation between CS+ and CS- vanished during extinction. Furthermore, a clear difference in skin conductance between CS+ and CS- at the beginning of the acquisition indicated that SFC had been successful. However, a fast habituation to the US was found toward the end of the acquisition phase for the physiological response. Furthermore, participants showed avoidance behavior toward CS+ in both conditions. The results show that social fear can successfully be induced and extinguished in VR in a human sample. Thus, our paradigm can help to gain insight into learning and unlearning of social fear. Regarding the belongingness effect, the social threat condition benefits from a better differentiation between the aversive and the non-aversive stimuli. As next step we suggest comparing social-phobic patients to healthy controls in order to investigate possible differences in discrimination learning and to foster the development of more efficient treatments for social phobia. PMID:29250000

  7. Social Fear Conditioning Paradigm in Virtual Reality: Social vs. Electrical Aversive Conditioning.

    PubMed

    Reichenberger, Jonas; Porsch, Sonja; Wittmann, Jasmin; Zimmermann, Verena; Shiban, Youssef

    2017-01-01

    In a previous study we could show that social fear can be induced and extinguished using virtual reality (VR). In the present study, we aimed to investigate the belongingness effect in an operant social fear conditioning (SFC) paradigm which consisted of an acquisition and an extinction phase. Forty-three participants used a joystick to approach different virtual male agents that served as conditioned stimuli. Participants were randomly allocated to one of two experimental conditions. In the electroshock condition, the unconditioned stimulus (US) used during acquisition was an electric stimulation. In the social threat condition, the US consisted of an offense: a spit in the face, mimicked by a sound and a weak air blast to the participant's neck combined with an insult. In both groups the US was presented when participants were close to the agent (75% contingency for CS+). Outcome variables included subjective, psychophysiological and behavioral data. As expected, fear and contingency ratings increased significantly during acquisition and the differentiation between CS+ and CS- vanished during extinction. Furthermore, a clear difference in skin conductance between CS+ and CS- at the beginning of the acquisition indicated that SFC had been successful. However, a fast habituation to the US was found toward the end of the acquisition phase for the physiological response. Furthermore, participants showed avoidance behavior toward CS+ in both conditions. The results show that social fear can successfully be induced and extinguished in VR in a human sample. Thus, our paradigm can help to gain insight into learning and unlearning of social fear. Regarding the belongingness effect, the social threat condition benefits from a better differentiation between the aversive and the non-aversive stimuli. As next step we suggest comparing social-phobic patients to healthy controls in order to investigate possible differences in discrimination learning and to foster the development of more efficient treatments for social phobia.

  8. Modeling startle eyeblink electromyogram to assess fear learning.

    PubMed

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  9. Acquisition of CS-US contingencies during Pavlovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder.

    PubMed

    Rabinak, Christine A; Mori, Shoko; Lyons, Maryssa; Milad, Mohammed R; Phan, K Luan

    2017-01-01

    Fear-based disorders, like social anxiety disorder (SAD) and posttraumatic stress disorder (PTSD), are characterized by an exaggerated fear response and avoidance to trigger cues, suggesting a transdiagnostic mechanism of psychopathology. Current theories suggest that abnormalities in conditioned fear is a primary contributor to the pathophysiology of these disorders. The primary goal of this study was to compare acquisition of conditioned stimulus (CS) and aversive unconditioned stimulus (US) contingencies during fear learning and extinction in individuals with SAD and PTSD. In a standard Pavlovian fear conditioning-extinction paradigm we measured subjective US expectancy ratings to different CSs in patients with SAD (n=16) compared to patients with PTSD (n=13) and healthy controls (n=15) RESULTS: Both patient groups (SAD, PTSD) acquired differential conditioning between a CS that predicted US (CS+) and a CS that never predicted the US (CS-), however, both groups reported an increased expectancy that the US would occur following the CS-. Additionally, the PTSD group overestimated that the US would occur in general. Neither patient group showed evidence of successful extinction of the CS+-US contingency nor differentiated their expectation of US occurrence between the CS+ and CS- during extinction learning. Group sample sizes were small and we did not include a trauma-exposed group without PTSD CONCLUSIONS: Both SAD and PTSD generalize expectations of an aversive outcome across CSs, even when a CS never signals an aversive outcome and PTSD may tend to over-expect threat. Fear learning and extinction abnormalities may be a core feature underlying shared symptoms across fear-based disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats.

    PubMed

    Coelho, Laura Segismundo; Correa-Netto, Nelson Francisco; Masukawa, Marcia Yuriko; Lima, Ariadiny Caetano; Maluf, Samia; Linardi, Alessandra; Santos-Junior, Jair Guilherme

    2018-04-06

    Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    PubMed Central

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also reduced the amount of freezing and the fear-potentiated startle. Freezing is a prominent response of contextual fear conditioning, but does not seem to be crucial for the enhancement of the startle reflex by explicit aversive cues. As fear-potentiated startle may be produced in posttraining lesioned rats that are unable to freeze to fear contextual stimuli, dissociable systems seem to be recruited in each condition. Thus, contextual fear and fear-potentiated startle are conveyed by distinct 5-HT-mediated circuits of the MRN. PMID:12959153

  13. Executive functions deficits impair extinction of generalization of fear of movement-related pain.

    PubMed

    Niederstrasser, N G; Meulders, A; Meulders, M; Struyf, D; Vlaeyen, J W

    2017-05-01

    Generalization of fear of movement-related pain across novel but similar movements can lead to fear responses to movements that are actually not associated with pain. The peak-shift effect describes a phenomenon whereby particular novel movements elicit even greater fear responses than the original pain-provoking movement (CS+), because they represent a more extreme version of the CS+. There is great variance in the propensity to generalize as well as the speed of extinction learning when these novel movements are not followed by pain. It can be argued that this variance may be associated with executive function capacity, as individuals may be unable to intentionally inhibit fear responses. This study examined whether executive function capacity contributes to generalization and extinction of generalization as well as peak-shift of conditioned fear of movement-related pain and expectancy. Healthy participants performed a proprioceptive fear conditioning task. Executive function tests assessing updating, switching, and inhibition were used to predict changes in (extinction of) fear of movement-related pain and pain expectancy generalization. Low inhibitory capacity was associated with slower extinction of generalized fear of movement-related pain and pain expectancy. Evidence was found in favor of an area-shift, rather than a peak-shift effect, which implies that the peak conditioned fear response extended to, but did not shift to a novel stimulus. Participants with low inhibitory capacity may have difficulties withholding fear responses, leading to a slower decrease of generalized fear over time. The findings may be relevant to inform treatments. Low inhibitory capacity is not associated with slower generalization, but extinction of fear generalization. Fear elicited by a novel safe movement, situated outside the CS+/- continuum on the CS+ side, can be as strong as to the original stimulus predicting the pain-onset. © 2017 European Pain Federation - EFIC®.

  14. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  15. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  16. Activation of the Infralimbic Cortex in a Fear Context Enhances Extinction Learning

    ERIC Educational Resources Information Center

    Thompson, Brittany M.; Baratta, Michael V.; Biedenkapp, Joseph C.; Rudy, Jerry W.; Watkins, Linda R.; Maier, Steven F.

    2010-01-01

    Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist…

  17. Systemic or Intra-Amygdala Injection of a Benzodiazepine (Midazolam) Impairs Extinction but Spares Re-Extinction of Conditioned Fear Responses

    ERIC Educational Resources Information Center

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of fear conditioning and extinction, injected with a benzodiazepine, midazolam, before the first or second extinction, and tested for long-term inhibition of fear responses (freezing). In Experiment 1, inhibition of context-conditioned fear was spared when midazolam was injected before the second…

  18. Sound tuning of amygdala plasticity in auditory fear conditioning

    PubMed Central

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  19. Fear Conditioning Increases NREM Sleep

    PubMed Central

    Hellman, Kevin; Abel, Ted

    2010-01-01

    To understand the role that sleep may play in memory storage, the authors investigated how fear conditioning affects sleep–wake states by performing electroencephalographic (EEG) and electromyographic recordings of C57BL/6J mice receiving fear conditioning, exposure to conditioning stimuli, or immediate shock treatment. This experimental design allowed us to examine the effects of associative learning, presentation of the conditioning stimuli, and presentation of the unconditioned stimuli on sleep–wake states. During the 24 hr after training, fear-conditioned mice had approximately 1 hr more of nonrapid-eye-movement (NREM) sleep and less wakefulness than mice receiving exposure to conditioning stimuli or immediate shock treatment. Mice receiving conditioning stimuli had more delta power during NREM sleep, whereas mice receiving fear conditioning had less theta power during rapid-eye-movement sleep. These results demonstrate that a single trial of fear conditioning alters sleep–wake states and EEG oscillations over a 24-hr period, supporting the idea that sleep is modified by experience and that such changes in sleep–wake states and EEG oscillations may play a role in memory consolidation. PMID:17469920

  20. The CRH1 Antagonist GSK561679 Increases Human Fear But Not Anxiety as Assessed by Startle

    PubMed Central

    Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique

    2015-01-01

    Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist. PMID:25430779

  1. Neurobiology of anxiety disorders and implications for treatment.

    PubMed

    Garakani, Amir; Mathew, Sanjay J; Charney, Dennis S

    2006-11-01

    The neurobiology of the anxiety disorders, which include panic disorder, post-traumatic stress disorder (PTSD), and specific phobias, among others, has been clarified by advances in the field of classical or Pavlovian conditioning, and in our understanding of basic mechanisms of memory and learning. Fear conditioning occurs when a neutral conditioned stimulus (such as a tone) is paired with an aversive, or unconditioned stimulus (such as a footshock), and then in the absence of the unconditioned stimulus, causes a conditioned fear response. Preclinical studies have shown that the amygdala plays a key role in fear circuitry, and that abnormalities in amygdala pathways can affect the acquisition and expression of fear conditioning. Drugs such as glutamate N-methyl-D-aspartate (NMDA) antagonists, and blockers of voltage-gated calcium channels, in the amygdala, may block these effects. There is also preliminary evidence for the use of centrally acting beta-adrenergic antagonists, like propranolol, to inhibit consolidation of traumatic memories in PTSD. Finally, fear extinction, which entails new learning of fear inhibition, is central to the mechanism of effective anti-anxiety treatments. Several pharmacological manipulations, such as D-cycloserine, a partial NMDA agonist, have been found to facilitate extinction. Combining these medication approaches with psychotherapies that promote extinction, such as cognitive behavioral therapy (CBT), may offer patients with anxiety disorders a rapid and robust treatment with good durability of effect.

  2. Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study

    ERIC Educational Resources Information Center

    Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.

    2011-01-01

    Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…

  3. The interaction between state and dispositional emotions in decision making: An ERP study.

    PubMed

    Wang, Yingying; Gu, Ruolei; Luo, Yue-Jia; Zhou, Chenglin

    2017-02-01

    In this study, to investigate the influence of incidental emotions on decision making in high-anxious individuals, participants were required to perform a monetary gambling task. Behavioral and electroencephalography responses were recorded to explore the stages of option assessment and outcome evaluation during decision making, respectively. Incidental emotions were elicited by facial expression pictures presented on the background, which included four conditions (control, neutral, fearful, and happy). Results showed smaller feedback-related negativity (FRN) amplitudes in high-anxious participants than low-anxious participants in the control, neutral, and fearful conditions, but not in the happy condition, for small outcomes. The P3 amplitudes were larger in high-anxious participants compared to their counterparts in the fearful and happy conditions, but not in the other conditions. In short, the interaction effects between trait anxiety and facial emotions manifested on the outcome evaluation stage of decision making. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. IMPAIRED FEAR EXTINCTION ASSOCIATED WITH PTSD INCREASES WITH HOURS-SINCE-WAKING.

    PubMed

    Zuj, Daniel V; Palmer, Matthew A; Hsu, Chia-Ming K; Nicholson, Emma L; Cushing, Pippa J; Gray, Kate E; Felmingham, Kim L

    2016-03-01

    Prior research has demonstrated that time-of-day may play an important role in the extinction of conditioned fear, with extinction better learned earlier in the day rather than later. Impaired fear extinction memory is widely considered a key mechanism of posttraumatic stress disorder (PTSD). The relationship between fear extinction and PTSD symptoms may be moderated by hours-since-waking. In the present experiment, we examined whether hours-since-waking would moderate fear extinction learning ability in a clinical PTSD sample (n = 15), compared to trauma-exposed (n = 33) and nonexposed controls (n = 22). Participants completed a standardized differential fear conditioning and extinction paradigm, providing skin conductance response measures to quantify conditioned responding. Mixed-model analysis of variance revealed a PTSD-specific impairment in extinction learning ability in the late extinction phase. A moderation analysis showed that hours-since-waking was a significant moderator of the relationship between impaired late extinction and PTSD symptoms. Specifically, we found that participants with higher PTSD symptoms demonstrated poorer fear extinction learning ability as they were awake for longer. The results of the current study add to a growing literature indicating deficits in fear extinction learning in PTSD samples, compared to trauma-exposed and nonexposed controls. These results support previous findings that fear extinction is impaired later in the day, and extends this to a clinical sample, suggesting that exposure-therapy may be optimized by scheduling sessions in the morning. © 2016 Wiley Periodicals, Inc.

  5. Is there an association between fear avoidance beliefs, and pain and disability in patients with orofacial pain?

    PubMed

    Edmond, S L; Enriquez, C S; Millner, M H; Nasri-Heir, C; Heir, G M

    2017-06-01

    Numerous psychosocial factors have been shown to contribute to the development and perpetuation of orofacial pain. One well-recognized model for explaining the link between psychosocial factors and chronic pain is the fear avoidance model. To date, this proposed link has not been studied in subjects with orofacial pain. During the initial evaluation of subjects with orofacial pain, we collected data on fear avoidance beliefs using the Fear Avoidance Beliefs Questionnaire, and disability and pain. At between 6 and 8 weeks follow-up, we re-collected these data, as well as data addressing subjects' perceived change in their condition. Data were analyzed using correlation coefficients and linear regression. Fear avoidance beliefs at intake were inversely correlated with intake disability, There were no significant associations between fear avoidance beliefs at initial evaluation or in changes in fear avoidance beliefs during the 6-8 weeks follow-up period; and changes in disability, pain or perceived change in condition at 6-8 weeks follow-up. Of note, fear avoidance beliefs increased over the follow-up period, despite improvements in all outcome measures. There was insufficient evidence to suggest that high levels of fear avoidance beliefs at initial evaluation are associated with higher levels of disability or pain at intake, or with change in disability, pain or perceived change in condition at 6-8 weeks follow-up. Similarly, there was insufficient evidence to suggest that changes in fear avoidance beliefs during treatment are associated with any of these outcome measures. © 2017 John Wiley & Sons Ltd.

  6. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    PubMed

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  7. Temporal properties of fear extinction--does time matter?

    PubMed

    Golkar, Armita; Bellander, Martin; Öhman, Arne

    2013-02-01

    Fear extinction can be defined as the weakening of the expression of a conditioned response (CR) by extended experience of nonreinforcement. Conceptually, two distinct models have been invoked to account for extinction. R. A. Rescorla and A. R. Wagner (1972, A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, in A. H. B. W. F. Prokasy (Ed.), Classical conditioning: II. Current research and theory, pp. 64-99, New York, NY, Appleton-Century-Crofts) postulated that the number of exposure trials is the primary determinant of CR decrement, whereas C. R. Gallistel and J. Gibbon (2000, Time, rate, and conditioning, Psychological Review, Vol. 107, pp. 289-344) proposed that the decisive event is the cumulated exposure time to the nonreinforced conditioned stimulus (CS) elapsed after the last CS reinforcement. We evaluated these two accounts in a human differential fear conditioning study in which CR was measured with the fear-potentiated startle response. Cumulated duration of nonreinforcement fails to explain our findings, whereas the number of trials appeared critical. In fact, many CS trials with a duration shorter than the acquisition CS duration facilitated within-session extinction, but this effect did not predict the recovery of fear. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  8. Biologically based neural circuit modelling for the study of fear learning and extinction

    NASA Astrophysics Data System (ADS)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  9. The conditioning and extinction of fear in youths: What’s sex got to do with it?

    PubMed Central

    Chauret, Mélissa; La Buissonnière-Ariza, Valérie; Tremblay, Vickie Lamoureux; Suffren, Sabrina; Servonnet, Alice; Pine, Daniel S.; Maheu, Françoise S.

    2015-01-01

    Adult work shows differences in emotional processing influenced by sexes of both the viewer and expresser of facial expressions. We investigated this in 120 healthy youths (57 boys; 10–17 years old) randomly assigned to fear conditioning and extinction tasks using either neutral male or female faces as the conditioned threat and safety cues, and a fearful face paired with a shrieking scream as the unconditioned stimulus. Fear ratings and skin conductance responses (SCRs) were assessed. Male faces triggered increased fear ratings in all participants during conditioning and extinction. Greater differential SCRs were observed in boys viewing male faces and in girls viewing female faces during conditioning. During extinction, differential SCR findings remained significant in boys viewing male faces. Our findings demonstrate how sex of participant and sex of target interact to shape fear responses in youths, and how the type of measure may lead to distinct profiles of fear responses. PMID:24929048

  10. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    PubMed

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  11. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans.

    PubMed

    He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin

    2015-03-01

    Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Ninety-six healthy volunteers (44 males) aged 18-28 y. Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conditioned stimulus re-exposure during SWS promoted fear memory extinction without altering sleep profiles. © 2015 Associated Professional Sleep Societies, LLC.

  12. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat.

    PubMed

    Vianna, Daniel M L; Carrive, Pascal

    2005-05-01

    Infrared thermography was used to image changes in cutaneous temperature during a conditioned fear response to context. Changes in heart rate, arterial pressure, activity and body (i.p.) temperature were recorded at the same time by radio-telemetry, in addition to freezing immobility. A marked drop in tail and paws temperature (-5.3 and -7.5 degrees C, respectively, down to room temperature), which lasted for the entire duration of the response (30 min), was observed in fear-conditioned rats. In sham-conditioned rats, the drop was on average half the magnitude and duration. In contrast, temperature of the eye, head and back increased (between + 0.8 and + 1.5 degrees C), with no difference between the two groups of rats. There was a similar increase in body temperature although it was slightly higher and delayed in the fear-conditioned animals. Finally, ending of the fear response was associated with a gradual decrease in body temperature and a rebound increase in the temperature of the tail (+ 3.3 degrees C above baseline). This study shows that fear, and to some extent arousal, evokes a strong cutaneous vasoconstriction that is restricted to the tail and paws. This regionally specific reduction in blood flow may be part of a preparatory response to a possible fight and flight to reduce blood loss in the most exposed parts of the rat's body in case of injury. The data also show that the tail is the main part of the body used for dissipating internal heat accumulated during fear once the animal has returned to a safe environment.

  13. Contextual fear conditioning in zebrafish.

    PubMed

    Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W

    2017-10-01

    Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Dopamine D2-like receptors modulate freezing response, but not the activation of HPA axis, during the expression of conditioned fear.

    PubMed

    de Oliveira, Amanda R; Reimer, Adriano E; Reis, Fernando M C V; Brandão, Marcus L

    2017-02-01

    Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D 2 -like agonist quinpirole (VTA) and D 2 -like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.

  15. The usefulness of olfactory fear conditioning for the study of early emotional and cognitive impairment in reserpine model.

    PubMed

    Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N

    2013-11-01

    Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Social conditioning and extinction paradigm: a translational study in virtual reality

    PubMed Central

    Shiban, Youssef; Reichenberger, Jonas; Neumann, Inga D.; Mühlberger, Andreas

    2015-01-01

    In human beings, experiments investigating fear conditioning with social stimuli are rare. The current study aims at translating an animal model for social fear conditioning (SFC) to a human sample using an operant SFC paradigm in virtual reality. Forty participants actively (using a joystick) approached virtual male agents that served as conditioned stimuli (CS). During the acquisition phase, unconditioned stimuli (US), a combination of an air blast (5 bar, 10 ms) and a female scream (95 dB, 40 ms), were presented when participants reached a defined proximity to the agent with a contingency of 75% for CS+ agents and never for CS– agents. During the extinction and the test phases, no US was delivered. Outcome variables were pleasantness ratings and physiological reactions in heart rate (HR) and fear-potentiated startle. Additionally, the influence of social anxiety, which was measured with the Social Phobia Inventory scale, was evaluated. As expected after the acquisition phase the CS+ was rated clearly less pleasant than the CS–. This difference vanished during extinction. Furthermore, the HR remained high for the CS+, while the HR for the CS– was clearly lower after than before the acquisition. Furthermore, a clear difference between CS+ and CS– after the acquisition indicated successful conditioning on this translational measure. Contrariwise no CS+/CS– differences were observed in the physiological variables during extinction. Importantly, at the generalization test, higher socially fearful participants rated pleasantness of all agents as low whereas the lower socially fearful participants rated pleasantness as low only for the CS+. SFC was successfully induced and extinguished confirming operant conditioning in this SFC paradigm. These findings suggest that the paradigm is suitable to expand the knowledge about the learning and unlearning of social fears. Further studies should investigate the operant mechanisms of development and treatment of social anxiety disorder. PMID:25904889

  17. Effects of oxytocin on background anxiety in rats with high or low baseline startle

    PubMed Central

    Ayers, Luke; Agostini, Andrew; Schulkin, Jay; Rosen, Jeffrey B.

    2016-01-01

    Rationale Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. Objectives To reduce variability and strengthen to the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. Methods Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5 or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. Results Ten shock-pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to 1 and 5 light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. Conclusions Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety. PMID:27004789

  18. Altered Pain Perception and Fear-Learning Deficits in Subjects With Posttraumatic Stress Disorder.

    PubMed

    Jenewein, Josef; Erni, Jeannine; Moergeli, Hanspeter; Grillon, Christian; Schumacher, Sonja; Mueller-Pfeiffer, Christoph; Hassanpour, Katayun; Seiler, Annina; Wittmann, Lutz; Schnyder, Ulrich; Hasler, Gregor

    2016-12-01

    There is growing evidence that fear-learning abnormalities are involved in the development of posttraumatic stress disorder (PTSD) and chronic pain. More than 50% of PTSD patients suffer from chronic pain. This study aimed to examine the role of fear-learning deficits in the link between pain perception and PTSD. We included 19 subjects with PTSD and 21 age- and sex-matched healthy control subjects in a fear-conditioning experiment. The conditioned stimulus (CS) consisted of visual signs flashed upon a screen in front of each subject. The unconditioned stimulus was either a low or high temperature impulse delivered through a thermal contact thermode on the subjects' hand. A designation of 'CS-' was assigned to CS always followed by nonpainful low-temperature stimuli; a designation of 'CS+' was given to CS that were randomly followed by either a low or a more painful high temperature. Skin conductance was used as a physiological marker of fear. In healthy control subjects, CS+ induced more fear than CS-, and a low-temperature stimulus induced less subjective pain after CS- than after CS+. PTSD subjects failed to demonstrate such adaptive conditioning. Fear ratings after CS presentation were significantly higher in the PTSD group than in the control group. There were significant interaction effects between group and the type of CS on fear and pain ratings. Fear-learning deficits are a potentially promising, specific psychopathological factor in altered pain perception associated with PTSD. Deficits in safety learning may increase fear and, consequently, pain sensations. These findings may contribute to elucidating the pathogenesis behind the highly prevalent comorbidity that exists between PTSD and pain disorders, and to developing new treatments. This study provides new insights into the pathogenesis of chronic pain in patients with PTSD. The findings may help to develop new treatment strategies for this highly prevalent comorbidity in PTSD. Copyright © 2016 American Pain Society. All rights reserved.

  19. An appetitive conditioned stimulus enhances fear acquisition and impairs fear extinction

    PubMed Central

    Leung, Hiu T.; Holmes, Nathan M.

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive–aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus previously paired with sucrose) underwent greater fear conditioning than a CS shocked in a compound with a neutral stimulus. Conversely, in Experiment 2, a CS extinguished in a compound with an appetitive excitor underwent less extinction than a CS extinguished in a compound with a neutral stimulus. Experiments 3 and 4 compared the amount of fear conditioning to an appetitive excitor and a familiar but neutral target CS when the compound of these stimuli was paired with shock. In each experiment, more fear accrued to the appetitive excitor than to the neutral CS. These results show that an appetitive excitor influences acquisition and extinction of conditioned fear to a neutral CS and itself undergoes a greater associative change than the neutral CS across compound conditioning. They are discussed with respect to the role of motivational information in regulating an associative change in appetitive–aversive interactions. PMID:26884229

  20. Fear Memory Recall Potentiates Opiate Reward Sensitivity through Dissociable Dopamine D1 versus D4 Receptor-Dependent Memory Mechanisms in the Prefrontal Cortex.

    PubMed

    Jing Li, Jing; Szkudlarek, Hanna; Renard, Justine; Hudson, Roger; Rushlow, Walter; Laviolette, Steven R

    2018-05-09

    Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability. SIGNIFICANCE STATEMENT Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially control acquisition or recall of fear memories and how these mechanisms might regulate sensitivity to the rewarding effects of opioids. We demonstrate that PFC D4 activation not only controls the salience of fear memory acquisition, but potentiates the rewarding effects of opioids. In contrast, PFC D1 receptor activation blocks recall of fear memories and prevents potentiation of opioid reward effects. Together, these findings demonstrate novel PFC mechanisms that may account for how emotional memory disturbances might increase the addictive liability of opioid-class drugs. Copyright © 2018 the authors 0270-6474/18/384543-13$15.00/0.

  1. Fear Conditioning is Disrupted by Damage to the Postsubiculum

    PubMed Central

    Robinson, Siobhan; Bucci, David J.

    2011-01-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into the conditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. PMID:22076971

  2. When scientific paradigms lead to tunnel vision: lessons from the study of fear

    NASA Astrophysics Data System (ADS)

    Paré, Denis; Quirk, Gregory J.

    2017-03-01

    For the past 30 years, research on the amygdala has largely focused on the genesis of defensive behaviors as its main function. This focus originated from early lesion studies and was supported by extensive anatomical, physiological, and pharmacological data. Here we argue that while much data is consistent with the fear model of amygdala function, it has never been directly tested, in part due to overreliance on the fear conditioning task. In support of the fear model, amygdala neurons appear to signal threats and/or stimuli predictive of threats. However, recent studies in a natural threat setting show that amygdala activity does not correlate with threats, but simply with the movement of the rat, independent of valence. This was true for both natural threats as well as conditioned stimuli; indeed there was no evidence of threat signaling in amygdala neurons. Similar findings are emerging for prefrontal neurons that modulate the amygdala. These recent developments lead us to propose a new conceptualization of amygdala function whereby the amygdala inhibits behavioral engagement. Moreover, we propose that the goal of understanding the amygdala will be best served by shifting away from fear conditioning toward naturalistic approach and avoidance paradigms that involve decision-making and a larger repertoire of spontaneous and learned behaviors, all the while keeping an open mind.

  3. Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to novelty.

    PubMed

    Cordero, M Isabel; Kruyt, Nyika D; Sandi, Carmen

    2003-04-25

    We investigated whether contextual fear conditioning could be related to the behavioral trait of locomotor reactivity to novelty in undisturbed and chronically stressed rats. Fear conditioning was found to be specifically enhanced in low reactive-stressed animals, as compared to low reactive-undisturbed rats. The results suggest that individuals that display low reactivity to novelty are more susceptible to be influenced by stress exposure to subsequently exhibit potentiated contextual fear conditioning.

  4. Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry.

    PubMed

    Lerner, Itamar; Lupkin, Shira M; Sinha, Neha; Tsai, Alan; Gluck, Mark A

    2017-11-15

    Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear conditioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these studies have been restricted to analyzing the effects of a single night of sleep-thus assuming a state-like relationship between the two. In the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like variations in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as biomarkers for resilience, or lack thereof, to trauma. SIGNIFICANCE STATEMENT Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on the acquisition itself. The current study provides the first evidence in humans of such an effect. Specifically, the results of this study suggest that baseline rapid eye movement (REM) sleep may serve a protective function against enhanced fear encoding through the modulation of connectivity between the hippocampus, amygdala, and the ventromedial PFC. Building on this finding, baseline REM measurements may serve as a noninvasive biomarker for resilience to trauma or, conversely, to the potential development of posttraumatic stress disorder following trauma. Copyright © 2017 the authors 0270-6474/17/3711233-12$15.00/0.

  5. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    PubMed Central

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  6. A Comparison of Behavioral and Pharmacological Interventions to Attenuate Reactivated Fear Memories

    ERIC Educational Resources Information Center

    Monti, Roque I. Ferrer; Alfei, Joaquin M.; Mugnaini, Matias; Bueno, Adrian M.; Beckers, Tom; Urcelay, Gonzalo P.; Molina, Victor A.

    2017-01-01

    Two experiments using rats in a contextual fear memory preparation compared two approaches to reduce conditioned fear: (1) pharmacological reconsolidation blockade and (2) reactivation-plus-extinction training. In Experiment 1, we explored different combinations of reactivation-plus-extinction parameters to reduce conditioned fear and attenuate…

  7. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle

    PubMed Central

    Spannuth, Benjamin M.; Hale, Matthew W.; Evans, Andrew K.; Lukkes, Jodi L.; Campeau, Serge; Lowry, Christopher A.

    2011-01-01

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 sec) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: 1) placement in the training context without exposure to either the CS or acoustic startle (AS), 2) exposure to 10 trials of the 2 s CS, 3) exposure to 40 110 dB AS trials, or 4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. PMID:21277950

  8. Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans

    PubMed Central

    Steinfurth, Elisa C.K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.

    2014-01-01

    Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition. Participants who underwent extinction during reconsolidation showed no evidence of fear recovery, whereas fear responses returned in participants who underwent standard extinction. We observed this effect in young and old fear memories. Extending the beneficial use of reconsolidation to older fear memories in humans is promising for therapeutic applications. PMID:24934333

  9. The role of fear in predicting sexually transmitted infection screening.

    PubMed

    Shepherd, Lee; Smith, Michael A

    2017-07-01

    This study assessed the extent to which social-cognitive factors (attitude, subjective norm and perceived control) and the fear of a positive test result predict sexually transmitted infection (STI) screening intentions and subsequent behaviour. Study 1 (N = 85) used a longitudinal design to assess the factors that predict STI screening intention and future screening behaviour measured one month later at Time 2. Study 2 (N = 102) used an experimental design to determine whether the relationship between fear and screening varied depending on whether STI or HIV screening was being assessed both before and after controlling for social-cognitive factors. Across the studies the outcome measures were sexual health screening. In both studies, the fear of having an STI positively predicted STI screening intention. In Study 1, fear, but not the social-cognitive factors, also predicted subsequent STI screening behaviour. In Study 2, the fear of having HIV did not predict HIV screening intention, but attitude negatively and response efficacy positively predicted screening intention. This study highlights the importance of considering the nature of the health condition when assessing the role of fear on health promotion.

  10. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    PubMed

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  11. Social Defeat: Impact on Fear Extinction and Amygdala-Prefrontal Cortical Theta Synchrony in 5-HTT Deficient Mice

    PubMed Central

    Narayanan, Venu; Heiming, Rebecca S.; Jansen, Friederike; Lesting, Jörg; Sachser, Norbert; Pape, Hans-Christian; Seidenbecher, Thomas

    2011-01-01

    Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (−/−) and heterozygous (+/−) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/− mice, 5-HTT−/− mice showed impaired recall of extinction. In addition, 5-HTT−/− and +/− experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/− and +/− losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT−/− naive and in 5-HTT−/− and +/− loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network. PMID:21818344

  12. Cholinergic signaling controls conditioned-fear behaviors and enhances plasticity of cortical-amygdala circuits

    PubMed Central

    Jiang, Li; Kundu, Srikanya; Lederman, James D.; López-Hernández, Gretchen Y.; Ballinger, Elizabeth C.; Wang, Shaohua; Talmage, David A.; Role, Lorna W.

    2016-01-01

    Summary We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photo-stimulation of endogenous cholinergic input: (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs); (2) enhances glutamatergic synaptic transmission in the BLA and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  13. Trauma exposure and aggression toward partners and children: Contextual influences of fear and anger.

    PubMed

    Marshall, Amy D; Roettger, Michael E; Mattern, Alexandra C; Feinberg, Mark E; Jones, Damon E

    2018-05-07

    Trauma exposure is a consistent correlate of intimate partner aggression (IPA) and parent-to-child aggression (PCA) perpetration, and difficulties with emotions (particularly fear and anger) are hypothesized to underlie these relations. However, the absence of knowledge of the immediate, contextual influence of emotions on aggression renders existing conclusions tenuous. This study illustrates a new method for studying contextual influences on aggressive behavior. Quarterly for 1 year, 94 men and 109 women with children age 2.5 years at study commencement were interviewed to measure the sequence of behaviors during aggressive incidents as well as the intensity of their emotions immediately prior to initiation of aggression. Within aggressive incidents, the number of acts of men's PCA was predicted by men's greater fear, anger, and trauma exposure, and the positive association between men's trauma exposure and PCA perpetration was especially strong under conditions of high fear and anger. In contrast, men's IPA was predicted by greater fear and anger, but not trauma exposure. Men with low trauma exposure engaged in more IPA under conditions of high fear; among men with high trauma exposure, fear inhibited their IPA persistence. Trauma exposure and fear interacted in the same manner to predict women's IPA, but many other findings among men did not generalize to women's aggression. This study illuminates the utility of simultaneously examining aggression across genders and family dyads, and serves as a foundation for refining theories of trauma and family aggression to account for emotion as a factor that can both motivate and inhibit aggression. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Estrogen Levels Are Associated with Extinction Deficits in Women with Posttraumatic Stress Disorder

    PubMed Central

    Glover, Ebony M.; Jovanovic, Tanja; Mercer, Kristina B.; Kerley, Kimberly; Bradley, Bekh; Ressler, Kerry J.; Norrholm, Seth D.

    2013-01-01

    Background Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD. Methods We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E2) groups. Seventeen of 41 women (41.5%) in the low E2 group and 15 of 40 women (37.5%) met criteria for PTSD in the high E2 group. Results The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E2 groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E2 group. Conclusion This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD. PMID:22502987

  15. Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice.

    PubMed

    Siegmund, Anja; Dahlhoff, Maik; Habersetzer, Ursula; Mederer, Anna; Wolf, Eckhard; Holsboer, Florian; Wotjak, Carsten T

    2009-09-01

    In laboratory rats and mice, differences in maternal care during the first week of life have been shown to exert long-lasting consequences on cognitive functioning and stress processing of the offspring. Such epigenetic programming is also assumed to play an important role in the transgenerational transmission of PTSD in humans. Here we studied whether even subtle within-subject differences in maternal care - caused by increasing mothering experience from the first to the second litter - can determine subsequent vulnerability for PTSD-like behaviour. To assess the influence of maternal experience on different components of fear, we analysed the adult male offspring of two subsequent litters (offspring 1, 2) from the same parental C57BL/6NCrl (B6N) and C57BL/6JOla (B6JOla) mice for (i) their innate anxiety behaviour on a modified hole board and (ii) their vulnerability to develop long-lasting PTSD-like fear symptoms ("hyperarousal", contextually conditioned fear) following perception of an inescapable foot shock. Increasing maternal experience reduced the animals' innate fear on the modified hole board (more exploration, less inhibition), the acute stress reaction to the shock and - one month after trauma - the levels of hyperarousal-like behaviour in the PTSD-prone B6N strain. In contrast, both acquisition and extinction of contextually conditioned fear were increased in the second offspring, representing cognitive flexibility. A factor analysis showed that innate fear, "hyperarousal" and conditioned fear represent independent behavioural dimensions. In conclusion, the present study identifies maternal inexperience as a risk factor for the development of PTSD-like symptoms. This effect - occurring in inbred mice on an almost identical genetic background - emphasizes the impact of epigenetic factors in PTSD-like behaviour.

  16. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder.

    PubMed

    Glover, Ebony M; Jovanovic, Tanja; Mercer, Kristina B; Kerley, Kimberly; Bradley, Bekh; Ressler, Kerry J; Norrholm, Seth D

    2012-07-01

    Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD. We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E(2)) groups. Seventeen of 41 women (41.5%) in the low E(2) group and 15 of 40 women (37.5%) met criteria for PTSD in the high E(2) group. The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E(2) groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E(2) group. This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Long-Lasting Increase of Corticosterone After Fear Memory Reactivation: Anxiolytic Effects and Network Activity Modulation in the Ventral Hippocampus

    PubMed Central

    Albrecht, Anne; Çalışkan, Gürsel; Oitzl, Melly S; Heinemann, Uwe; Stork, Oliver

    2013-01-01

    Pathological fear and anxiety can be studied, in rodents, with fear conditioning and exposure to reminder cues. These paradigms are thought to critically involve the ventral hippocampus, which also serves as key site of glucocorticoid action in the brain. Here, we demonstrate a long-lasting reduction of kainate-induced gamma oscillations in slice preparations of the ventral hippocampal area CA3, 30 days after a single fear conditioning training. Reduction of gamma power was sensitive to corticosterone application and associated with a decrease in glucocorticoid and mineralocorticoid receptor mRNA expression across strata of the ventral hippocampal CA3. A fear reactivation session 24 h after the initial conditioning normalized receptor expression levels and attenuated the corticosterone-mediated recovery of gamma oscillations. It moreover increased both baseline and stimulus-induced corticosterone plasma levels and evoked a generalization of fear memory to the background context. Reduced ventral hippocampal gamma oscillation in both fear reactivated and non-reactivated mice were associated with a decrease of anxiety-like behavior in an elevated plus maze. Taking advantage of the circadian fluctuation in corticosterone, we demonstrated the association of high endogenous basal corticosterone plasma concentrations during morning hours with reduced anxiety-like behavior in fear reactivated mice. The anxiolytic effect of the hormone was verified with local applications to the ventral hippocampus. Our data suggest that corticosterone acting on ventral hippocampal network activity has anxiolytic-like effects following fear exposure, highlighting its potential therapeutic value for anxiety disorders. PMID:22968818

  18. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear.

    PubMed

    Handford, Charlotte E; Tan, Shawn; Lawrence, Andrew J; Kim, Jee Hyun

    2014-09-01

    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.

  19. Aversive Startle Potentiation and Fear Pathology: Mediating Role of Threat Sensitivity and Moderating Impact of Depression

    PubMed Central

    Yancey, James R.; Vaidyanathan, Uma; Patrick, Christopher J.

    2015-01-01

    Enhanced startle during exposure to unpleasant cues (aversive startle potentiation; ASP) appears in the RDoC matrix as a physiological index of acute threat response. Increased ASP has been linked to focal fear disorders and to scale measures of dispositional fearfulness (i.e., threat sensitivity; THT+). However, some studies have reported reduced ASP for fear pathology accompanied by major depressive disorder (MDD) or pervasive distress. The current study evaluated whether (a) THT+ as indexed by reported dispositional fearfulness mediates the relationship between fear disorders (when unaccompanied by depression) and ASP, and (b) depression moderates relations of THT+ and fear disorders with ASP. Fear disorder participants without MDD showed enhanced ASP whereas those with MDD (or other distress conditions) showed evidence of reduced ASP. Continuous THT+ scores also predicted ASP, and this association: (a) was likewise moderated by depression/distress, and (b) accounted for the relationship between ASP and fear pathology without MDD. These findings point to a role for the RDoC construct of acute threat, operationalized dispositionally, in enhanced ASP shown by individuals with fear pathology unaccompanied by distress pathology. PMID:25448265

  20. The Role Of Basal Forebrain Cholinergic Neurons In Fear and Extinction Memory

    PubMed Central

    Knox, Dayan

    2016-01-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  1. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  2. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    PubMed

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  3. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    PubMed Central

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  4. Intracellular signalling and plasma hormone profiles associated with the expression of unconditioned and conditioned fear and anxiety in female rats.

    PubMed

    Simone, Jonathan J; McCormick, Cheryl M

    2017-02-01

    There is considerable overlap in the neural regions and intracellular signalling pathways implicated in anxiety and fear, although less is known in females. Here, we investigated whether unconditioned and conditioned fear are associated with distinct patterns of expression of extracellular signal-regulated kinase-1 and -2 (ERK1/2), protein kinase B (Akt), and calcineurin (CaN) (proteins that are key regulators of the expression of and/or memory processes of fear and anxiety) in the dorsal and ventral hippocampus, medial prefrontal cortex, and amygdala (important regions in neural fear circuitry) of adult female rats, and used a multivariate approach to find patterns of signalling that might discriminate between the different states of fear. To isolate fear to the conditioned cue from generalized fear to the test context, rats were conditioned to an auditory tone (i.e. tone paired with footshock) and twenty-four hours later exposed to a novel context in the presence or absence of the conditioned cue. A third group that was exposed to the conditioning context without undergoing fear conditioning was included to control for unconditioned responses to the testing procedures, which are anxiogenic. A discriminate function analysis and MANOVA determined that hippocampal signalling best discriminated the three groups from each other. The addition of values for plasma concentrations of corticosterone and progesterone (as indices of activation of the hypothalamic-pituitary-adrenal stress axis) to statistical analyses increased the separation of the three groups. There was high degree of association among the three signalling molecules in the four brain regions within each group. There was an absence of the associations between the medial prefrontal cortex and the amygdala in the cued fear recall group that were strong for the non-conditioned group. These results demonstrated unique neuronal and hormonal signalling profiles associated with unconditioned, generalized, and conditioned fear expression in females and highlight the importance of including appropriate comparisons to best discriminate between these different emotional states. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. An experimental demonstration that fear, but not disgust, is associated with return of fear in phobias.

    PubMed

    Edwards, Sarah; Salkovskis, Paul M

    2006-01-01

    It has been suggested that disgust, rather than anxiety, may be important in some phobias. Correlational studies have been ambiguous, indicating either that disgust increases phobic anxiety or that phobic anxiety potentiates disgust. In the experimental study reported here, disgust and phobic anxiety were manipulated in the context of habituation to phobic stimuli. Spider fearful participants were randomly allocated to conditions in which neutral, disgusting, and phobic anxiety provoking stimuli were introduced into a video-based spider phobic habituation sequence. Exposure to the phobic stimulus resulted in a return of self-reported fear and disgust levels. However, exposure to disgusting stimulus increased disgust levels, but not anxiety levels. Results are most consistent with the hypothesis that fear enhances the disgust response in phobias, but that disgust alone does not enhance the fear response. Previously observed links between disgust and spider phobia may be a consequence of fear enhancing disgust.

  6. Chronic Vortioxetine Treatment Reduces Exaggerated Expression of Conditioned Fear Memory and Restores Active Coping Behavior in Chronically Stressed Rats.

    PubMed

    Hatherall, Lauren; Sánchez, Connie; Morilak, David A

    2017-04-01

    Stress is a risk factor for depression and anxiety disorders, disrupting neuronal processes leading to exaggerated fear and compromised coping behaviors. Current antidepressants are only partially effective. Vortioxetine, a novel multimodal antidepressant, is a serotonin transporter inhibitor; 5-HT3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B partial agonist; and 5-HT1A agonist. We have shown that chronic dietary vortioxetine administration reversed stress-induced deficits in cognitive flexibility. In the present studies, we investigated the generality of vortioxetine's effects on other stress-related behavioral changes after different types of chronic stress. In experiment 1, rats were fear-conditioned by pairing a tone with footshock, then exposed to chronic plus acute prolonged stress. In experiment 2, rats were exposed to chronic unpredictable stress. In both experiments, beginning on day 4 of chronic stress, vortioxetine was given in the diet (24 mg/kg/d). In experiment 1, effects of vortioxetine were tested on stress-induced changes in retention and extinction of cue-conditioned fear, and in experiment 2, on coping behavior on the shock probe defensive burying test after chronic stress. Chronic stress exaggerated the expression of conditioned fear memory. Vortioxetine restored fear memory to control levels and rendered extinction in stressed rats comparable with that in controls. In experiment 2, chronic unpredictable stress caused a shift from active to passive coping behavior, and vortioxetine restored active coping. Vortioxetine reduced exaggerated expression of conditioned fear and restored adaptive coping behavior following 2 different types of chronic stress, adding to the evidence of its therapeutic potential in the management of depression and anxiety disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  7. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders.

    PubMed

    Marin, Marie-France; Zsido, Rachel G; Song, Huijin; Lasko, Natasha B; Killgore, William D S; Rauch, Scott L; Simon, Naomi M; Milad, Mohammed R

    2017-06-01

    The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Two-day fear conditioning and extinction paradigm. Skin conductance responses, blood oxygenation level-dependent responses, trait anxiety scores from the State Trait Anxiety Inventory-Trait Form, and functional connectivity. This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation was associated with anxiety symptom severity (r = -0.420, P = .01 for conditioning and r = -0.464, P = .004 for extinction recall) and the number of co-occuring anxiety disorders diagnosed (ηp2 = 0.137, P = .009 for conditioning and ηp2 = 0.227, P = .004 for extinction recall). Psychophysiological interaction analyses revealed that the fear network connectivity differed between healthy controls and the anxiety group during fear learning (ηp2 range between 0.088 and 0.176 and P range between 0.02 and 0.003) and extinction recall (ηp2 range between 0.111 and 0.235 and P range between 0.02 and 0.002). Despite no skin conductance response group differences during extinction recall, brain activation patterns between anxious and healthy individuals differed. These findings encourage future studies to examine the conditions longitudinally and in the context of treatment trials to improve and guide therapeutics via advanced neurobiological understanding of each disorder.

  8. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders

    PubMed Central

    Marin, Marie-France; Zsido, Rachel G.; Song, Huijin; Lasko, Natasha B.; Killgore, William D. S.; Rauch, Scott L.; Simon, Naomi M.

    2017-01-01

    Importance The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. Objectives To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. Design, Setting, and Participants This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Exposures Two-day fear conditioning and extinction paradigm. Main Outcomes and Measures Skin conductance responses, blood oxygenation level–dependent responses, trait anxiety scores from the State Trait Anxiety Inventory–Trait Form, and functional connectivity. Results This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation was associated with anxiety symptom severity (r = −0.420, P = .01 for conditioning and r = −0.464, P = .004 for extinction recall) and the number of co-occuring anxiety disorders diagnosed (ηp2 = 0.137, P = .009 for conditioning and ηp2 = 0.227, P = .004 for extinction recall). Psychophysiological interaction analyses revealed that the fear network connectivity differed between healthy controls and the anxiety group during fear learning (ηp2 range between 0.088 and 0.176 and P range between 0.02 and 0.003) and extinction recall (ηp2 range between 0.111 and 0.235 and P range between 0.02 and 0.002). Conclusions and Relevance Despite no skin conductance response group differences during extinction recall, brain activation patterns between anxious and healthy individuals differed. These findings encourage future studies to examine the conditions longitudinally and in the context of treatment trials to improve and guide therapeutics via advanced neurobiological understanding of each disorder. PMID:28403387

  9. The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone

    PubMed Central

    Olango, WM; Roche, M; Ford, GK; Harhen, B; Finn, DP

    2012-01-01

    BACKGROUND AND PURPOSE Endocannabinoids in the midbrain periaqueductal grey (PAG) modulate nociception and unconditioned stress-induced analgesia; however, their role in fear-conditioned analgesia (FCA) has not been examined. The present study examined the role of the endocannabinoid system in the dorsolateral (dl) PAG in formalin-evoked nociceptive behaviour, conditioned fear and FCA in rats. EXPERIMENTAL APPROACH Rats received intra-dlPAG administration of the CB1 receptor antagonist/inverse agonist rimonabant, or vehicle, before re-exposure to a context paired 24 h previously with foot shock. Formalin-evoked nociceptive behaviour and fear-related behaviours (freezing and 22 kHz ultrasonic vocalization) were assessed. In a separate cohort, levels of endocannabinoids [2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamide (anandamide; AEA)] and the related N-acylethanolamines (NAEs) [N-palmitoyl ethanolamide (PEA) and N-oleoyl ethanolamide (OEA)] were measured in dlPAG tissue following re-exposure to conditioned context in the presence or absence of formalin-evoked nociceptive tone. KEY RESULTS Re-exposure of rats to the context previously associated with foot shock resulted in FCA. Intra-dlPAG administration of rimonabant significantly attenuated FCA and fear-related behaviours expressed in the presence of nociceptive tone. Conditioned fear without formalin-evoked nociceptive tone was associated with increased levels of 2-AG, AEA, PEA and OEA in the dlPAG. FCA was specifically associated with an increase in AEA levels in the dlPAG. CONCLUSIONS AND IMPLICATIONS Conditioned fear to context mobilises endocannabinoids and NAEs in the dlPAG. These data support a role for endocannabinoids in the dlPAG in mediating the potent suppression of pain responding which occurs during exposure to conditioned aversive contexts. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21564082

  10. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala

    PubMed Central

    Maren, Stephen

    2014-01-01

    Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. PMID:25312830

  11. Effects of bright light exposure on human fear conditioning, extinction, and associated prefrontal activation.

    PubMed

    Yoshiike, Takuya; Honma, Motoyasu; Yamada, Naoto; Kim, Yoshiharu; Kuriyama, Kenichi

    2018-06-18

    Bright light (BL) not only regulates human emotion and circadian physiology but can also directly modulate emotional memories. Impaired fear extinction and enhanced fear acquisition and consolidation are hallmarks of fear-circuitry disorders; thus, we tested whether BL facilitates fear extinction and inhibits fear acquisition. We randomly exposed 29 healthy humans to high- (9000 lx) or low-intensity light (<500 lx) for 15 min, near the nadir of the phase response to light, in a single-blind manner. Simultaneously with the light exposure, subjects performed fear extinction training and second fear acquisition, where a visual conditioned stimulus (CS), previously paired with an electric shock unconditioned stimulus (US), was presented without the US, while another CS was newly paired with the US. Conditioned responses (CRs) and changes in prefrontal cortex (PFC) activity were determined during encoding and delayed recall sessions. BL-exposed subjects exhibited lower extinction-related PFC activity and marginally higher acquisition-related PFC activity during light exposure than subjects exposed to control light. Twenty-four hours later, BL reduced CRs to both the extinguished and non-extinguished CSs with marginally lower extinction-related PFC activation, suggesting that BL enhanced fear extinction, while suppressing fear acquisition. Further, BL sustained tolerance to fear re-conditioning. Our results demonstrate that a single and brief BL exposure, synchronized with fear extinction and acquisition, instantaneously influences prefrontal hemodynamic responses and alleviates fear expression after 24 h. Although the specificity of BL effects deems further investigation, our findings indicate the clinical relevance of adjunctive BL intervention in exposure-based cognitive-behavioral therapy for fear-circuitry disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions

    PubMed Central

    Alvarez, Ruben P.; Biggs, Arter; Chen, Gang; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Functional imaging studies of cued fear conditioning in humans have largely confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using fMRI and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semi-random order, with contexts counterbalanced across participants. An un-signaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared to CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. PMID:18550763

  13. The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces

    PubMed Central

    Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia

    2016-01-01

    Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273

  14. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    PubMed

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

  15. Differential Transcriptional Response to Nonassociative and Associative Components of Classical Fear Conditioning in the Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Isiegas, Carolina; Stein, Joel; Hellman, Kevin; Hannenhalli, Sridhar; Abel, Ted; Keeley, Michael B.; Wood, Marcelo A.

    2006-01-01

    Classical fear conditioning requires the recognition of conditioned stimuli (CS) and the association of the CS with an aversive stimulus. We used Affymetrix oligonucleotide microarrays to characterize changes in gene expression compared to naive mice in both the amygdala and the hippocampus 30 min after classical fear conditioning and 30 min after…

  16. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    PubMed Central

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  17. Chronic fluoxetine dissociates contextual from auditory fear memory.

    PubMed

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Involvement of the Lateral Septal Area in the Expression of Fear Conditioning to Context

    ERIC Educational Resources Information Center

    Reis, Daniel G.; Scopinho, America A.; Guimaraes, Francisco S.; Correa, Fernando M. A.; Resstel, Leonardo B. M.

    2010-01-01

    Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl[subscript 2], 1 mM) 10 min…

  19. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  20. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  1. Young and Old Pavlovian Fear Memories Can Be Modified with Extinction Training during Reconsolidation in Humans

    ERIC Educational Resources Information Center

    Steinfurth, Elisa C. K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.

    2014-01-01

    Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition.…

  2. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    PubMed

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats.

    PubMed

    Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M

    2011-01-01

    Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    PubMed

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear return and connections between PL and vCA1 may be involved in the modulation of this process. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Intact renewal after extinction of conditioned suppression with lesions of either the retrosplenial cortex or dorsal hippocampus.

    PubMed

    Todd, Travis P; Jiang, Matthew Y; DeAngeli, Nicole E; Bucci, David J

    2017-03-01

    Extinction of fear to a Pavlovian conditioned stimulus (CS) is known to be context-specific. When the CS is tested outside the context of extinction, fear returns, or renews. Several studies have demonstrated that renewal depends upon the hippocampus, although there are also studies where renewal was not impacted by hippocampal damage, suggesting that under some conditions context encoding and/or retrieval of extinction depends upon other regions. One candidate region is the retrosplenial cortex (RSC), which is known to contribute to contextual and spatial learning and memory. Using a conditioned-suppression paradigm, Experiment 1 tested the impact of pre-training RSC lesions on renewal of extinguished fear. Consistent with previous studies, lesions of the RSC did not impact acquisition or extinction of conditioned fear to the CS. Further, there was no evidence that RSC lesions impaired renewal, indicating that contextual encoding and/or retrieval of extinction does not depend upon the RSC. In Experiment 2, post-extinction lesions of either the RSC or dorsal hippocampus (DH) also had no impact on renewal. However, in Experiment 3, both RSC and DH lesions did impair performance in an object-in-place procedure, an index of place memory. RSC and DH contributions to extinction and renewal are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  7. Limited Efficacy of Propranolol on the Reconsolidation of Fear Memories

    ERIC Educational Resources Information Center

    Muravieva, Elizaveta V.; Alberini, Cristina M.

    2010-01-01

    Previous studies suggested that the beta-adrenergic receptor antagonist propranolol might be a novel, potential treatment for post-traumatic stress disorder (PTSD). This hypothesis stemmed mainly from rodent studies showing that propranolol interferes with the reconsolidation of Pavlovian fear conditioning (FC). However, subsequent investigations…

  8. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.

    PubMed

    Arico, Carolyn; Bagley, Elena E; Carrive, Pascal; Assareh, Neda; McNally, Gavan P

    2017-10-01

    The midbrain periaqueductal gray (PAG) has been implicated in the generation and transmission of a prediction error signal that instructs amygdala-based fear and extinction learning. However, the PAG also plays a key role in the expression of conditioned fear responses. The evidence for a role of the PAG in fear learning and extinction learning has been obtained almost exclusively using PAG-dependent fear responses. It is less clear whether the PAG regulates fear learning when other measures of learned fear are used. Here we combined a chemogenetic approach, permitting excitation or inhibition of neurons in the ventrolateral PAG (VLPAG), with conditioned suppression as the measure of learned fear to assess the role of VLPAG in the acquisition and extinction of fear learning. We show that chemogenetic excitation of VLPAG (with some encroachment on lateral PAG [LPAG]) impairs acquisition of fear and, conversely, chemogenetic inhibition impairs extinction of fear. These effects on fear and extinction learning were specific to the combination of DREADD expression and injection of CNO because they were observed relative to both eYFP controls injected with CNO as well as DREADD expressing controls injected with vehicle. Taken together, these results show that activity of L/VLPAG neurons regulates both the acquisition and extinction of Pavlovian fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    ERIC Educational Resources Information Center

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  10. [The Manifestation of the Anxiety during Fear Conditioning in Wistar Rats].

    PubMed

    Pavlova, I V; Rysakova, M P

    2015-01-01

    In order to identify the correlation between anxiety and conditioned fear, the behavior of the same male Wistar rats was compared in three anxiety tests (open field, light-dark box and elevated plus-maze) and in Pavlovian auditory fear conditioning paradigm using correlation, factor and variance analyses. The correlation between anxiety/bravery and locomotion indexes in different tests was not revealed. Positive correlations between grooming, urinations and defecations, rearing in three tests were revealed. These data suggest that animals reacted to various tests differently, resulting, apparently in the emergence of different anxiety levels, specific for each test. Vegetative reactions, inclination to exploration and substituting behavior were more stable characteristics of rats. Anxiety behavior in elevated plus-maze correlated to freezing response to context after fear conditioning, while high-anxiety rats had higher level of freezing to context than low-anxiety rats. The higher freezing response to sound after fear conditioning was found in rats with middle locomotor activity in open field. Conditioned fear to the context and to the sound was associated with different forms of rat anxiety during different tests.

  11. Cholinergic blockade frees fear extinction from its contextual dependency

    PubMed Central

    Zelikowsky, Moriel; Hast, Timothy A.; Bennett, Rebecca Z.; Merjanian, Michael; Nocera, Nathaniel A.; Ponnusamy, Ravikumar; Fanselow, Michael S.

    2012-01-01

    Background Fears that are maladaptive or inappropriate can be reduced through extinction training. However, extinction is highly context-sensitive, resulting in the renewal of fear following shifts in context, and limiting the clinical efficacy of extinction training. Lesion and inactivation studies have shown that the contextualization of extinction depends on the hippocampus. Parallel studies have found that intrahippocampal scopolamine blocks contextual fear conditioning. Importantly, this effect was replicated using a non-invasive technique in which a low dose of scopolamine was administered systemically. We aimed to transfer the effects of this non-invasive approach to block the contextualization of fear extinction. Methods Rats were tone fear conditioned and extinguished under various systemic doses of scopolamine or the saline vehicle. They were subsequently tested (off drug) for tone fear in a context that was the same (controls) or shifted (renewal group) with respect to the extinction context. Results The lowest dose of scopolamine produced a significant attenuation of fear renewal when renewal was tested either in the original training context or a novel context. The drug also slowed the rate of long-term extinction memory formation, which was readily overcome by extending extinction training. Scopolamine only gave this effect when it was administered during, but not after extinction training. Higher doses of scopolamine severely disrupted extinction learning. Conclusions We discovered that disrupting contextual processing during extinction with the cholinergic antagonist scopolamine blocked subsequent fear renewal. Low doses of scopolamine may be a clinically promising adjunct to exposure therapy by making extinction more relapse-resistant. PMID:22981655

  12. Negative appraisals and fear extinction are independently related to PTSD symptoms.

    PubMed

    Zuj, Daniel V; Palmer, Matthew A; Gray, Kate E; Hsu, Chia-Ming K; Nicholson, Emma L; Malhi, Gin S; Bryant, Richard A; Felmingham, Kim L

    2017-08-01

    Considerable research has revealed impaired fear extinction to be a significant predictor of PTSD. Fear extinction is also considered the primary mechanism of exposure therapy, and a critical factor in PTSD recovery. The cognitive theory of PTSD proposes that symptoms persist due to excessive negative appraisals about the trauma and its sequelae. Research has not yet examined the relationship between fear extinction and negative appraisals in PTSD. A cross-sectional sample of participants with PTSD (n =21), and trauma-exposed controls (n =33) underwent a standardized differential fear conditioning and extinction paradigm, with skin conductance response (SCR) amplitude serving as the index of conditioned responses. The Posttraumatic Cognitions Inventory (PTCI) was used to index catastrophic negative appraisals. Participants with PTSD demonstrated a slower decrease in overall SCR responses during extinction and greater negative appraisals compared to the group. A moderation analysis revealed that both negative trauma-relevant appraisals and fear extinction learning were independently associated with PTSD symptoms, but there was no moderation interaction. The current study was limited by a modest sample size, leading to the inclusion of participants with subclinical PTSD symptoms. Further, the current study only assessed fear extinction learning; including a second day extinction recall task may show alternative effects. These findings indicate that negative appraisals and fear extinction did not interact, but had independent relationships with PTSD symptoms. Here we show for the first time in an experimental framework that negative appraisals and fear extinction play separate roles in PTSD symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats.

    PubMed

    Sampath, Dayalan; Sabitha, K R; Hegde, Preethi; Jayakrishnan, H R; Kutty, Bindu M; Chattarji, Sumantra; Rangarajan, Govindan; Laxmi, T R

    2014-10-15

    As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6h daily/3d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus-amygdala-cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The role of basal forebrain cholinergic neurons in fear and extinction memory.

    PubMed

    Knox, Dayan

    2016-09-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Depth of processing and recall of threat material in fearful and nonfearful individuals.

    PubMed

    Wenzel, Amy; Zetocha, Kimberlee; Ferraro, F Richard

    2007-09-01

    Although many studies have examined the nature of memory distortions in anxious individuals, few have considered biases in specific memory processes, such as encoding or retrieval. To investigate whether the presentation of threat material facilitates encoding biases, spider fearful (n=63), blood fearful (n=73), and nonfearful (n=75) participants encoded spider related, blood related, and neutral words as a function of three levels of processing (i.e., structural, semantic, and self referent). Participants subsequently completed either a free recall or a recognition task. All participants demonstrated a partial depth of processing effect, such that they recalled more words encoded in the self referent condition than in the other two conditions, but groups did not differ in their recall of stimuli as a function of word type. Relative to participants in the other groups, spider fearful participants had fewer spider related intrusions in the recall condition, and they made fewer errors in responding to structural and semantic encoding questions when spider related words were presented. These results contribute to an increasingly large body of literature suggesting that anxious individuals are not characterized by a memory bias toward threat, and they raise the possibility that individuals with spider fears process threat-relevant information differently than individuals with blood fears.

  16. On the Road to Translation for PTSD Treatment: Theoretical and Practical Considerations of the Use of Human Models of Conditioned Fear for Drug Development.

    PubMed

    Risbrough, Victoria B; Glenn, Daniel E; Baker, Dewleen G

    The use of quantitative, laboratory-based measures of threat in humans for proof-of-concept studies and target development for novel drug discovery has grown tremendously in the last 2 decades. In particular, in the field of posttraumatic stress disorder (PTSD), human models of fear conditioning have been critical in shaping our theoretical understanding of fear processes and importantly, validating findings from animal models of the neural substrates and signaling pathways required for these complex processes. Here, we will review the use of laboratory-based measures of fear processes in humans including cued and contextual conditioning, generalization, extinction, reconsolidation, and reinstatement to develop novel drug treatments for PTSD. We will primarily focus on recent advances in using behavioral and physiological measures of fear, discussing their sensitivity as biobehavioral markers of PTSD symptoms, their response to known and novel PTSD treatments, and in the case of d-cycloserine, how well these findings have translated to outcomes in clinical trials. We will highlight some gaps in the literature and needs for future research, discuss benefits and limitations of these outcome measures in designing proof-of-concept trials, and offer practical guidelines on design and interpretation when using these fear models for drug discovery.

  17. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    PubMed

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  18. Effect of Acute Swim Stress on Plasma Corticosterone and Brain Monoamine Levels in Bidirectionally Selected DxH Recombinant Inbred Mouse Strains Differing in Fear Recall and Extinction

    PubMed Central

    Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz

    2015-01-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886

  19. Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2009-11-01

    Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.

  20. Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory.

    PubMed

    Yoshii, Takahiro; Hosokawa, Hiroshi; Matsuo, Naoki

    2017-02-01

    Fear memory extinction has several characteristic behavioral features, such as spontaneous recovery, renewal, and reinstatement, suggesting that extinction training does not erase the original association between the conditioned stimulus (CS) and the unconditioned stimulus (US). However, it is unclear whether reactivation of the original physical record of memory (i.e., memory trace) is sufficient to produce conditioned fear response after extinction. Here, we performed pharmacogenetic neuronal activation using transgenic mice expressing hM3Dq DREADD (designer receptor exclusively activated by designer drug) under the control of the activity-dependent c-fos gene promoter. Neuronal ensembles activated during fear-conditioned learning were tagged with hM3Dq and subsequently reactivated after extinction training. The mice exhibited significant freezing, even when the fear memory was no longer triggered by external CS, indicating that the artificial reactivation of a specific neuronal ensemble was sufficient to evoke the extinguished fear response. This freezing was not observed in non-fear-conditioned mice expressing hM3dq in the same brain areas. These results directly demonstrated that at least part of the original fear memory trace remains after extinction, and such residual plasticity might reflect the persistent memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Neuroimaging of Fear-Associated Learning

    PubMed Central

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  2. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning.

    PubMed

    Chang, Shih-Dar; Liang, K C

    2017-02-01

    Contextual fear conditioning involves forming a representation for the context and associating it with a shock, which were attributed by the prevailing view to functions of the hippocampus and amygdala, respectively. Yet our recent evidence suggested that both processes require integrity of the dorsal hippocampus (DH). In view of the DH involvement in uniting multiple stimuli into a configuration, this study examined whether the DH would integrate context and shock into a shocked-context representation. Male Wistar rats were trained on a two-phase training paradigm of contextual fear conditioning. They explored a novel context on the first day to acquire a contextual representation, and received a shock in that context on the second day to form the context-shock memory. Tests of conditioned freezing given on the following days revealed two properties of configural memory-direct and mediated pattern completion: First, the contextual fear memory was retrieved in a novel context by a cue embedded in the configural set-a shock that did not elicit significant freezing on its own. Second, freezing was also elicited in a novel context by a transportation chamber that was not directly paired with the shock but could activate the fear memory inferentially. The effects were specific to the cue and not due to context generalization. Infusion of lidocaine into the DH, but not the amygdala, immediately after context-shock training impaired conditioned freezing elicited through either type of pattern completion. Our data suggest that the DH in contextual fear conditioning associates context and shock in parallel with the amygdala by incorporating the shock into an otherwise neutral context representation and turning it into a shocked-context representation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Age differences in fear retention and extinction in male Sprague-Dawley rats: Effects of ethanol challenge during conditioning

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 minutes prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24 hours thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally-related. PMID:23810415

  4. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction

    PubMed Central

    Krasne, Franklin B.

    2017-01-01

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes. PMID:28546308

  5. Post-Retrieval Late Process Contributes to Persistence of Reactivated Fear Memory

    ERIC Educational Resources Information Center

    Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi

    2013-01-01

    Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated…

  6. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex

    PubMed Central

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning. PMID:20504949

  7. Gradients of Fear Potentiated Startle During Generalization, Extinction, and Extinction Recall--and Their Relations With Worry.

    PubMed

    Dunning, Jonathan P; Hajcak, Greg

    2015-09-01

    It is well established that fear conditioning plays a role in the development and maintenance of anxiety disorders. Moreover, abnormalities in fear generalization, extinction, and extinction recall have also been associated with anxiety. The present study used a generalization paradigm to examine fear processing during phases of generalization, extinction, and extinction recall. Specifically, participants were shocked following a CS+ and were also presented with stimuli that ranged in perceptual similarity to the CS+ (i.e., 20%, 40%, or 60% smaller or larger than the CS+) during a fear generalization phase. Participants were also presented with the same stimuli during an extinction phase and an extinction recall phase 1week later; no shocks were presented during extinction or recall. Lastly, participants completed self-report measures of worry and trait anxiety. Results indicated that fear potentiated startle (FPS) to the CS+ and GS±20% shapes was present in generalization and extinction, suggesting that fear generalization persisted into extinction. FPS to the CS+ was also evident 1 week later during extinction recall. Higher levels of worry were associated with greater FPS to the CS+ during generalization and extinction phases. Moreover, individuals high in worry had fear response gradients that were steeper during both generalization and extinction. This suggests that high levels of worry are associated with greater discriminative fear conditioning to threatening compared to safe stimuli and less fear generalization to perceptually similar stimuli. Copyright © 2015. Published by Elsevier Ltd.

  8. Arp2/3 and VASP Are Essential for Fear Memory Formation in Lateral Amygdala.

    PubMed

    Basu, Sreetama; Kustanovich, Irina; Lamprecht, Raphael

    2016-01-01

    The actin cytoskeleton is involved in key neuronal functions such as synaptic transmission and morphogenesis. However, the roles and regulation of actin cytoskeleton in memory formation remain to be clarified. In this study, we unveil the mechanism whereby actin cytoskeleton is regulated to form memory by exploring the roles of the major actin-regulatory proteins Arp2/3, VASP, and formins in long-term memory formation. Inhibition of Arp2/3, involved in actin filament branching and neuronal morphogenesis, in lateral amygdala (LA) with the specific inhibitor CK-666 during fear conditioning impaired long-term, but not short-term, fear memory. The inactive isomer CK-689 had no effect on memory formation. We observed that Arp2/3 is colocalized with the actin-regulatory protein profilin in LA neurons of fear-conditioned rats. VASP binding to profilin is needed for profilin-mediated stabilization of actin cytoskeleton and dendritic spine morphology. Microinjection of poly-proline peptide [G(GP 5 ) 3 ] into LA, to interfere with VASP binding to profilin, impaired long-term but not short-term fear memory formation. Control peptide [G(GA 5 ) 3 ] had no effect. Inhibiting formins, which regulate linear actin elongation, in LA during fear conditioning by microinjecting the formin-specific inhibitor SMIFH2 into LA had no effect on long-term fear memory formation. We conclude that Arp2/3 and VASP, through the profilin binding site, are essential for the formation of long-term fear memory in LA and propose a model whereby these proteins subserve cellular events, leading to memory consolidation.

  9. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  10. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes

    PubMed Central

    Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B.

    2016-01-01

    Abstract Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. PMID:26746182

  11. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    ERIC Educational Resources Information Center

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  12. An Appetitive Conditioned Stimulus Enhances Fear Acquisition and Impairs Fear Extinction

    ERIC Educational Resources Information Center

    Leung, Hiu T.; Holmes, Nathan M.; Westbrook, R. Frederick

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive-aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus…

  13. Learned together, extinguished apart: reducing fear to complex stimuli

    PubMed Central

    Jones, Carolyn E.; Ringuet, Stephanie; Monfils, Marie-H.

    2013-01-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window attenuates fear responding and prevents the return of fear in pure tone Pavlovian fear conditioning. Here we sought to examine whether this effect also applies to a more complex fear memory. First, we show that after fear conditioning to the simultaneous presentation of a tone and a light (T+L) coterminating with a shock, the compound memory that ensues is more resistant to fear extinction than simple tone-shock pairings. Next, we demonstrate that the compound memory can be disrupted by interrupting the reconsolidation of the two individual components using a sequential retrieval+extinction paradigm, provided the stronger compound component is retrieved first. These findings provide insight into how compound memories are encoded, and could have important implications for PTSD treatment. PMID:24241750

  14. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder.

    PubMed

    Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K

    2012-01-18

    Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance-like behavior continued to be observed. In summary, our animal model provides novel information on the effects of different intensities of footshock stress, auditory-predator odor fear conditioning, and their interactions on facilitating either extinction-resistant or habituation-resistant fear-related behavior. These results lay the foundation for exciting new investigations of the hallmarks of PTSD that include the stress-induced formation and persistence of traumatic memories and sensitized fear. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex

    PubMed Central

    Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen

    2012-01-01

    Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453

  16. Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    PubMed Central

    Maiya, Rajani; Kharazia, Viktor; Lasek, Amy W.; Heberlein, Ulrike

    2012-01-01

    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear. PMID:22509321

  17. Understanding the contributions of visual stimuli to contextual fear conditioning: A proof-of-concept study using LCD screens.

    PubMed

    Murawski, Nathen J; Asok, Arun

    2017-01-10

    The precise contribution of visual information to contextual fear learning and discrimination has remained elusive. To better understand this contribution, we coupled the context pre-exposure facilitation effect (CPFE) fear conditioning paradigm with presentations of distinct visual scenes displayed on 4 LCD screens surrounding a conditioning chamber. Adult male Long-Evans rats received non-reinforced context pre-exposure on Day 1, an immediate 1.5mA foot shock on Day 2, and a non-reinforced context test on Day 3. Rats were pre-exposed to either digital Context (dCtx) A, dCtx B, a distinct Ctx C, or no context on Day 1. Digital context A and B were identical except for the visual image displayed on the LCD screens. Immediate shock and retention testing occurred in dCtx A. Rats pre-exposed dCtx A showed the CPFE with significantly higher levels of freezing compared to controls. Rats pre-exposed to Context B failed to show the CPFE, with freezing that did not highly differ from controls. These results suggest that visual information contributes to contextual fear learning and that visual components of the context can be manipulated via LCD screens. Our approach offers a simple modification to contextual fear conditioning paradigms whereby the visual features of a context can be manipulated to better understand the factors that contribute to contextual fear discrimination and generalization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Change of Rin1 and Stathmin in the Animal Model of Traumatic Stresses

    PubMed Central

    Han, Fang; Jiang, Jingzhi; Ding, Jinlan; Liu, Hong; Xiao, Bing; Shi, Yuxiu

    2017-01-01

    The molecular mechanism of fear memory is poorly understood. Therefore, the pathogenesis of post-traumatic stress disorder (PTSD), whose symptom presentation can enhance fear memory, remains largely unclear. Recent studies with knockout animals have reported that Rin1 and stathmin regulate fear memory. Rin1 inhibits acquisition and promotes memory extinction, whereas stathmin regulates innate and basal fear. The aim of our study was to examine changes in the expression of Rin1 and stathmin in different animal models of stress, particluarly traumatic stress. We used three animal traumatic stresses: single prolonged stress (SPS, which is a rodent model of PTSD), an immobilization-stress (IM) and a Loud sound stress (LSS), to examine the change and uniqueness in Rin1/stathmin expression. Behavioral tests of SPS rats demonstrated increased anxiety and contextual fear-conditioning. They showed decreased long-term potentiation (LTP), as well as decreased stathmin and increased Rin1 expression in the hippocampus and the amygdala. Expression of the stathmin effector, tubulin, and downstream molecules Rin1, Rab5, and Abl, appeared to increase. Rin1 and EphA4 were endogenously coexpressed in primary neurons after SPS stimulation. IM rats exhibited increased anxiety behavior and enhanced fear-conditioning to contextual and auditory stimuli. Similar changes in expression of Rin1/stathmin were observed in IM rats whereas no changes were observed in rats exposed to a loud sound. These data suggest that changes in expression of the Rin1 and stathmin genes may be involved in rodents with SPS and IM stresses, which provide valuable insight into fear memories under abnormal conditions, particularly in PTSD. PMID:28491025

  19. Post-retrieval late process contributes to persistence of reactivated fear memory.

    PubMed

    Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi

    2013-05-16

    Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated fear memory after 7 d, but not after 2 d. In contrast, infusion of anisomycin 5- or 24-h post-retrieval was ineffective. These findings indicate that anisomycin attenuates the persistence of reactivated fear memory in a time-dependent manner. We propose that late protein synthesis is required for memory persistence after retrieval.

  20. Fear expression and return of fear following threat instruction with or without direct contingency experience.

    PubMed

    Mertens, Gaëtan; Kuhn, Manuel; Raes, An K; Kalisch, Raffael; De Houwer, Jan; Lonsdorf, Tina B

    2016-08-01

    Prior research showed that mere instructions about the contingency between a conditioned stimulus (CS) and an unconditioned stimulus (US) can generate fear reactions to the CS. Little is known, however, about the extent to which actual CS-US contingency experience adds anything beyond the effect of contingency instructions. Our results extend previous studies on this topic in that it included fear potentiated startle as an additional dependent variable and examined return of fear (ROF) following reinstatement. We observed that CS-US pairings can enhance fear reactions beyond the effect of contingency instructions. Moreover, for all measures of fear, instructions elicited immediate fear reactions that could not be completely overridden by subsequent situational safety information. Finally, ROF following reinstatement for instructed CS+s was unaffected by actual experience. In summary, our results demonstrate the power of contingency instructions and reveal the additional impact of actual experience of CS-US pairings.

  1. Preventing the spread of genital warts: using fear appeals to promote self-protective behaviors.

    PubMed

    Witte, K; Berkowitz, J M; Cameron, K A; McKeon, J K

    1998-10-01

    A fear appeal campaign to decrease the spread of genital warts was conducted and evaluated. Theoretically guided by the Extended Parallel Process Model, this field study illustrated why fear appeal campaigns often appear to fail in public health arenas. Five hypotheses, which predicted when and under what conditions fear appeal campaigns would fail or succeed, were tested and supported. The results demonstrated that fear appeals can be powerful persuasive devices if they induce strong perceptions of threat and fear (which motivate action) and if they induce strong perceptions of efficacy with regard to a recommended response (which channels the action in a health protective direction). Recommendations to researchers and public health practitioners are offered.

  2. A NMDA Receptor Antagonist, MK-801 Impairs Consolidating Extinction of Auditory Conditioned Fear Responses in a Pavlovian Model

    PubMed Central

    Wang, Zheng-Hong; Rao, Zhi-Ren; Wu, Sheng-Xi; Li, Yun-Qing; Wang, Wen

    2009-01-01

    Background In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR) is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. Methods/Main Findings The effects of immediate (beginning at 10 min after the conditioning) and delayed (beginning at 24 h after conditioning) extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20th day after extinction) depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p.) injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM) task. Conclusions/Significance Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is very important for memory, our data added experimental evidence to the concept that the extinction of conditioned fear responses is a procedure of initiating and consolidating new memory other than simply “erasing” the fear memory. PMID:19855841

  3. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    PubMed

    Liu, Jun-Li; Li, Min; Dang, Xiao-Rong; Wang, Zheng-Hong; Rao, Zhi-Ren; Wu, Sheng-Xi; Li, Yun-Qing; Wang, Wen

    2009-10-26

    In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR) is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. The effects of immediate (beginning at 10 min after the conditioning) and delayed (beginning at 24 h after conditioning) extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th) day after extinction) depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p.) injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM) task. Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is very important for memory, our data added experimental evidence to the concept that the extinction of conditioned fear responses is a procedure of initiating and consolidating new memory other than simply "erasing" the fear memory.

  4. Trait Anxiety and Perceptual Load as Determinants of Emotion Processing in a Fear Conditioning Paradigm

    PubMed Central

    Fox, Elaine; Yates, Alan; Ashwin, Chris

    2012-01-01

    The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS−), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. PMID:21875186

  5. Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress

    PubMed Central

    Milad, Mohammed R.; Quirk, Gregory J.

    2016-01-01

    The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by an unusual degree of coordination between rodent and human researchers examining fear extinction. This successful research program could serve as a model for translational research in other areas of behavioral neuroscience. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. PMID:22129456

  6. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    PubMed

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  7. Phobias and Preparedness - Republished Article.

    PubMed

    Seligman, Martin E P

    2016-09-01

    Some inadequacies of the classical conditioning analysis of phobias are discussed: phobias are highly resistant to extinction, whereas laboratory fear conditioning, unlike avoidance conditioning, extinguishes rapidly; phobias comprise a nonarbitrary and limited set of objects, whereas fear conditioning is thought to occur to an unlimited range of conditioned stimuli. Furthermore, phobias, unlike laboratory fear conditioning, are often acquired in one trial and seem quite resistant to change by "cognitive" means. An analysis of phobias using a more contemporary model of fear conditioning is proposed. In this view, phobias are seen as instances of highly "prepared" learning (Seligman, 1970). Such prepared learning is selective, highly resistant to extinction, probably noncognitive and can be acquired in one trial. A reconstruction of the notion of symbolism is suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modification of Fear Memory by Pharmacological and Behavioural Interventions during Reconsolidation.

    PubMed

    Thome, Janine; Koppe, Georgia; Hauschild, Sophie; Liebke, Lisa; Schmahl, Christian; Lis, Stefanie; Bohus, Martin

    2016-01-01

    Dysfunctional fear responses play a central role in many mental disorders. New insights in learning and memory suggest that pharmacological and behavioural interventions during the reconsolidation of reactivated fear memories may increase the efficacy of therapeutic interventions. It has been proposed that interventions applied during reconsolidation may modify the original fear memory, and thus prevent the spontaneous recovery and reinstatement of the fear response. We investigated whether pharmacological (propranolol) and behavioural (reappraisal, multisensory stimulation) interventions reduce fear memory, and prevent reinstatement of fear in comparison to a placebo control group. Eighty healthy female subjects underwent a differential fear conditioning procedure with three stimuli (CS). Two of these (CS+) were paired with an electric shock on day 1. On day 2, 20 subjects were pseudo-randomly assigned to either the propranolol or placebo condition, or underwent one of the two behavioural interventions after one of the two CS+ was reactivated. On day 3, all subjects underwent an extinction phase, followed by a reinstatement test. Dependent variables were US expectancy ratings, fear-potentiated startle, and skin conductance response. Differential fear responses to the reactivated and non-reactivated CS+ were observed only in the propranolol condition. Here, the non-reactivated CS+ evoked stronger fear-potentiated startle-responses compared to the placebo group. None of the interventions prevented the return of the extinguished fear response after re-exposure to the unconditioned stimulus. Our data are in line with an increasing body of research stating that the occurrence of reconsolidation may be constrained by boundary conditions such as subtle differences in experimental manipulations and instructions. In conclusion, our findings do not support a beneficial effect in using reconsolidation processes to enhance effects of psychotherapeutic interventions. This implies that more research is required before therapeutic interventions may benefit from a combination with reconsolidation processes.

  9. Acute Ethanol Has Biphasic Effects on Short- and Long-Term Memory in Both Foreground and Background Contextual Fear Conditioning in C57BL/6 Mice

    PubMed Central

    Gulick, Danielle; Gould, Thomas J.

    2009-01-01

    Background Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/ or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. Methods This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)–foot shock (US; 2 seconds, 0.57 mA) pairings. Results For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). Conclusions These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context. PMID:17760787

  10. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle.

    PubMed

    Spannuth, B M; Hale, M W; Evans, A K; Lukkes, J L; Campeau, S; Lowry, C A

    2011-04-14

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-Fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 s) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: (1) placement in the training context without exposure to either the CS or acoustic startle (AS), (2) exposure to 10 trials of the 2 s CS, (3) exposure to 40 110 dB AS trials, or (4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2015-01-01

    Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.

  12. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    PubMed

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  13. Fear and decision-making in narcissistic personality disorder-a link between psychoanalysis and neuroscience.

    PubMed

    Ronningstam, Elsa; Baskin-Sommers, Arielle R

    2013-06-01

    Linking psychoanalytic studies with neuroscience has proven increasingly productive for identifying and understanding personality functioning. This article focuses on pathological narcissism and narcissistic personality disorder (NPD), with the aim of exploring two clinically relevant aspects of narcissistic functioning also recognized in psychoanalysis: fear and decision-making. Evidence from neuroscientific studies of related conditions, such as psychopathy, suggests links between affective and cognitive functioning that can influence the sense of self-agency and narcissistic self-regulation. Attention can play a crucial role in moderating fear and self-regulatory deficits, and the interaction between experience and emotion can be central for decision-making. In this review we will explore fear as a motivating factor in narcissistic personality functioning, and the impact fear may have on decision-making in people with pathological narcissism and NPD. Understanding the processes and neurological underpinnings of fear and decision-making can potentially influence both the diagnosis and treatment of NPD.

  14. Aging and fear of crime: an experimental approach to an apparent paradox.

    PubMed

    Ziegler, Raphael; Mitchell, David B

    2003-01-01

    Many fear of crime studies have revealed an interesting paradox: Although older adults are less likely to be victims, they report a higher fear of crime than younger adults. In this study, we experimentally manipulated vicarious exposure to crime. Younger (ages 18-29) and older adults (ages 61-78) were randomly assigned to view either a vivid video reenactment of a violent crime or a crime report newscast. Subjects in the violent video condition demonstrated significantly higher fear than did control group participants, but this effect was reliable only for younger adults. The older adults appeared to be unfazed by the violent video, and reported significantly less fear than the younger group. This could not be explained away on the basis of age group differences in neighborhood crime rates, victimization experience, or media exposure. Thus, when greater fear of crime is found in older adults, "old age" per se is not the cause.

  15. How Administration of the Beta-Blocker Propranolol Before Extinction can Prevent the Return of Fear

    PubMed Central

    Kroes, Marijn C W; Tona, Klodiana-Daphne; den Ouden, Hanneke E M; Vogel, Susanne; van Wingen, Guido A; Fernández, Guillén

    2016-01-01

    Combining beta-blockers with exposure therapy has been advocated to reduce fear, yet experimental studies combining beta-blockers with memory reactivation have had contradictory results. We explored how beta-blockade might affect the course of safety learning and the subsequent return of fear in a double-blind placebo-controlled functional magnetic resonance imaging study in humans (N=46). A single dose of propranolol before extinction learning caused a loss of conditioned fear responses, and prevented the subsequent return of fear and decreased explicit memory for the fearful events in the absence of drug. Fear-related neural responses were persistently attenuated in the dorsal medial prefrontal cortex (dmPFC), increased in the hippocampus 24 h later, and correlated with individual behavioral indices of fear. Prediction error-related responses in the ventral striatum persisted during beta-blockade. We suggest that this pattern of results is most consistent with a model where beta-blockade can prevent the return of fear by (i) reducing retrieval of fear memory, via the dmPFC and (ii) increasing contextual safety learning, via the hippocampus. Our findings suggest that retrieval of fear memory and contextual safety learning form potential mnemonic target mechanisms to optimize exposure-based therapy with beta-blockers. PMID:26462618

  16. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  17. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning.

    PubMed

    Guarda, Angela S; Schreyer, Colleen C; Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H

    2015-12-01

    The high comorbidity between anorexia nervosa (AN) and anxiety disorders is well recognized. AN is a motivated behavioral disorder in which habit formation is likely to contribute to the persistence of abnormal eating and exercise behaviors. Secondary alterations in brain circuitry underlying the reward value of food and exercise, along with disturbances in neuroendocrine hunger and satiety signaling arising from starvation and excessive exercise, are likely contributors to the maintenance of anorectic behaviors in genetically vulnerable individuals. The potential role of fear conditioning in facilitating onset of AN, or of impaired fear extinction in contributing to the high relapse rates observed following weight restoration, is of interest. Evidence from animal models of anxiety and human laboratory studies indicate that low estrogen impairs fear extinction. Low estradiol levels in AN may therefore play a role in perpetuating fear of food and fat in recently weight restored patients. Translational models including the activity based anorexia (ABA) rodent model of AN, and neuroimaging studies of fear extinction and conditioning, could help clarify the underlying molecular mechanisms and neurocircuitry involved in food avoidance behaviors in AN. Moreover, the adaptation of novel treatment interventions with efficacy in anxiety disorders may contribute to the development of new treatments for this impairing disorder. Copyright © 2015. Published by Elsevier Inc.

  18. A Naturally-Occurring Histone Acetyltransferase Inhibitor Derived from Garcinia indica Impairs Newly Acquired and Reactivated Fear Memories

    PubMed Central

    Maddox, Stephanie A.; Watts, Casey S.; Doyère, Valérie; Schafe, Glenn E.

    2013-01-01

    The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories. PMID:23349897

  19. Hippocampal and extrahippocampal systems compete for control of contextual fear: Role of ventral subiculum and amygdala

    PubMed Central

    Biedenkapp, Joseph C.; Rudy, Jerry W.

    2009-01-01

    Two neural systems, a hippocampal system and an extrahippocampal system compete for control over contextual fear, and the hippocampal system normally dominates. Our experiments reveal that output provided by the ventral subiculum is critical for the hippocampal system to win this competition. Bilateral electrolytic lesions of the ventral subiculum after conditioning, but not before conditioning, impaired contextual fear conditioning. Reversibly inactivating this region by bilateral injections of muscimol produced the same results—no impairment when the injection occurred prior to conditioning but a significant impairment when this region was inactivated after conditioning. Thus, the extrahippocampal system can support contextual fear conditioning if the ventral subiculum is disabled before conditioning but not if it is disabled after conditioning. Our experiments also reveal that the basolateral region of the amygdala (BLA) is where the two systems compete for associative control of the fear system. To test this hypothesis we reasoned that the extrahippocampal system would also acquire associative control over the fear system, even if the hippocampal system were functional, if the basal level of plasticity potential in the BLA could be increased. We did this by injecting the D1 dopamine agonist, SKF82958, into the BLA just prior to conditioning. This treatment resulted in a significant increase in freezing when the ventral subiculum was disabled prior to the test. These results are discussed in relationship to the idea that D1 agonists increase plasticity potential by increasing the pool of available extrasynaptic GluR1 receptors in the population of neurons supporting acquired fear. PMID:19117915

  20. Prefrontal oscillations during recall of conditioned and extinguished fear in humans.

    PubMed

    Mueller, Erik M; Panitz, Christian; Hermann, Christiane; Pizzagalli, Diego A

    2014-05-21

    Human neuroimaging studies indicate that the anterior midcingulate cortex (AMC) and the ventromedial prefrontal cortex (vmPFC) play important roles in the expression and extinction of fear, respectively. Electrophysiological rodent studies further indicate that oscillatory neuronal activity in homolog regions (i.e., prelimbic and infralimbic cortices) changes during fear expression and fear extinction recall. Whether similar processes occur in humans remains largely unexplored. By assessing scalp surface EEG in conjunction with LORETA source estimation of CS-related theta and gamma activity, we tested whether a priori defined ROIs in the human AMC and vmPFC similarly modulate their oscillatory activity during fear expression and extinction recall, respectively. To this end, 42 healthy individuals underwent a differential conditioning/differential extinction protocol with a Recall Test on the next day. In the Recall Test, nonextinguished versus extinguished stimuli evoked an increased differential (CS(+) vs CS(-)) response with regard to skin conductance and AMC-localized theta power. Conversely, extinguished versus nonextinguished stimuli evoked an increased differential response with regard to vmPFC-localized gamma power. Finally, individuals who failed to show a suppressed skin conductance response to the extinguished versus nonextinguished CS(+) also failed to show the otherwise observed alterations in vmPFC gamma power to extinguished CS(+). These results indicate that fear expression is associated with AMC theta activity, whereas successful fear extinction recall relates to changes in vmPFC gamma activity. The present work thereby bridges findings from prior rodent electrophysiological research and human neuroimaging studies and indicates that EEG is a valuable tool for future fear extinction research. Copyright © 2014 the authors 0270-6474/14/347059-08$15.00/0.

  1. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  2. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.

    PubMed

    Mikics, Eva; Toth, Mate; Biro, Laszlo; Bruzsik, Biborka; Nagy, Boglarka; Haller, Jozsef

    2017-08-01

    N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Increased heart rate after exercise facilitates the processing of fearful but not disgusted faces.

    PubMed

    Pezzulo, G; Iodice, P; Barca, L; Chausse, P; Monceau, S; Mermillod, M

    2018-01-10

    Embodied theories of emotion assume that emotional processing is grounded in bodily and affective processes. Accordingly, the perception of an emotion re-enacts congruent sensory and affective states; and conversely, bodily states congruent with a specific emotion facilitate emotional processing. This study tests whether the ability to process facial expressions (faces having a neutral expression, expressing fear, or disgust) can be influenced by making the participants' body state congruent with the expressed emotion (e.g., high heart rate in the case of faces expressing fear). We designed a task requiring participants to categorize pictures of male and female faces that either had a neutral expression (neutral), or expressed emotions whose linkage with high heart rate is strong (fear) or significantly weaker or absent (disgust). Critically, participants were tested in two conditions: with experimentally induced high heart rate (Exercise) and with normal heart rate (Normal). Participants processed fearful faces (but not disgusted or neutral faces) faster when they were in the Exercise condition than in the Normal condition. These results support the idea that an emotionally congruent body state facilitates the automatic processing of emotionally-charged stimuli and this effect is emotion-specific rather than due to generic factors such as arousal.

  4. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning.

    PubMed

    Butler, Christopher W; Wilson, Yvette M; Gunnersen, Jenny M; Murphy, Mark

    2015-08-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. © 2015 Butler et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Passive avoidance is linked to impaired fear extinction in humans

    PubMed Central

    Cornwell, Brian R.; Overstreet, Cassie; Krimsky, Marissa; Grillon, Christian

    2013-01-01

    Conventional wisdom dictates we must face our fears to conquer them. This idea is embodied in exposure-based treatments for anxiety disorders, where the intent of exposure is to reverse a history of avoidant behavior that is thought to fuel a patient’s irrational fears. We tested in humans the relationship between fear and avoidance by combining Pavlovian differential fear conditioning with a novel task for quantifying spontaneous passive avoidant behavior. During self-guided navigation in virtual reality following de novo fear conditioning, we observed participants keeping their distance from the feared object. At the individual level, passive avoidant behavior was highly associated with maladaptive fear expression (fear-potentiated startle) during late extinction training, indicating that extinction learning was impaired following a brief episode of avoidance. Avoidant behavior, however, was not related to initial acquired fear, raising doubt about a straightforward link between physiological fear and behavioral avoidance. We conclude that a deeper understanding of what motivates avoidance may offer a target for early intervention, before fears transition from the rational to the irrational. PMID:23427168

  6. The etiology of fear of heights and its relationship to severity and individual response patterns.

    PubMed

    Menzies, R G; Clarke, J C

    1993-05-01

    The acquisition of fear of heights in an undergraduate student sample was investigated. Height-fearful (n = 50) and non-fearful (n = 50) groups were formed on the basis of extreme scores to the heights item on the FSS-III (Wolpe & Lang, Behaviour Research and Therapy, 2, 27-30, 1964). Subjects were then assessed with a battery of measures including the Acrophobia Questionnaire (Cohen, Behaviour Therapy, 18, 17-23, 1977), self-rating of severity (Marks & Mathews, Behaviour Research and Therapy, 17, 263-267, 1979), global rating of severity (Michelson, Behaviour Research and Therapy, 24, 263-275, 1986), and a new comprehensive origins questionnaire constructed by the authors. Results obtained question the significance of simple associative-learning events in the acquisition of fear of heights. Only 18% of fearful Ss were classified as directly conditioned cases. Furthermore, no differences between groups were found in the proportion of Ss who knew other height-fearfuls, had experienced relevant associative-learning events, or the ages at which these events had occurred. Finally, no relationships between mode of acquisition and severity or individual response patterns were obtained. In general, the data were consistent with the non-associative, Darwinian accounts of fear acquisition that continue to attract theorists from a variety of backgrounds (e.g. Bowlby, Attachment and loss. London: Penguin, 1975; Clarke & Jackson, Hypnosis and behaviour therapy: The treatment of anxiety and phobias. New York: Springer, 1983; Marks, Fears, phobias and rituals: Panic anxiety and their disorders. New York, Oxford Univ. Press, 1987). Differences with previous studies in which classical conditioning has accounted for the majority of cases are discussed in terms of the methodological differences across studies.

  7. Developing Memory Reconsolidation Blockers as Novel PTSD Treatments

    DTIC Science & Technology

    2012-06-01

    freezing in a Pavlovian cue- conditioned fear task in rats. In Stage II, we will evaluate the ability of candidate drugs to reverse fear conditioning ...disorder (PTSD). The underlying theory is that candidate drugs , when given following the reactivation of a conditioned fear response in animals, or a...traumatic memory in humans, will reduce the strength of the conditioned response or traumatic memory. We plan to test such drugs , either alone or in

  8. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning

    PubMed Central

    Auchter, Allison M.; Shumake, Jason; Gonzalez-Lima, Francisco; Monfils, Marie H.

    2017-01-01

    Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction. PMID:28397861

  9. Dissociating response systems: erasing fear from memory.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2010-07-01

    In addition to the extensive evidence in animals, we previously showed that disrupting reconsolidation by noradrenergic blockade produced amnesia for the original fear response in humans. Interestingly, the declarative memory for the fear association remained intact. These results asked for a solid replication. Moreover, given the constructive nature of memories, the intact recollection of the fear association could eventually 'rebuild' the fear memory, resulting in the spontaneous recovery of the fear response. Yet, perseverance of the amnesic effects would have substantial clinical implications, as even the most effective treatments for psychiatric disorders display high percentages of relapse. Using a differential fear conditioning procedure in humans, we replicated our previous findings by showing that administering propranolol (40mg) prior to memory reactivation eliminated the startle fear response 24h later. But most importantly, this effect persisted at one month follow-up. Notably, the propranolol manipulation not only left the declarative memory for the acquired contingency untouched, but also skin conductance discrimination. In addition, a close association between declarative knowledge and skin conductance responses was found. These findings are in line with the supposed double dissociation of fear conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. They support the view that skin conductance conditioning primarily reflects contingency learning, whereas the startle response is a rather specific measure of fear. Furthermore, the results indicate the absence of a causal link between the actual knowledge of a fear association and its fear response, even though they often operate in parallel. Interventions targeting the amygdalar fear memory may be essential in specifically and persistently dampening the emotional impact of fear. From a clinical and ethical perspective, disrupting reconsolidation points to promising interventions persistently erasing fear responses from trauma memory without affecting the actual recollection.

  10. Flavones from Erythrina falcata are modulators of fear memory.

    PubMed

    de Oliveira, Daniela Rodrigues; Zamberlam, Cláudia R; Gaiardo, Renan Barreta; Rêgo, Gizelda Maia; Cerutti, Janete M; Cavalheiro, Alberto J; Cerutti, Suzete M

    2014-08-05

    Flavonoids, which have been identified in a variety of plants, have been demonstrated to elicit beneficial effects on memory. Some studies have reported that flavonoids derived from Erythrina plants can provide such beneficial effects on memory. The aim of this study was to identify the flavonoids present in the stem bark crude extract of Erythrina falcata (CE) and to perform a bioactivity-guided study on conditioned fear memory. The secondary metabolites of CE were identified by high performance liquid chromatography combined with a diode array detector, electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI/MSn) and nuclear magnetic resonance (NMR). The buthanolic fraction (BuF) was obtained by partitioning. Subfractions from BuF (BuF1 - BuF6) and fraction flavonoidic (FfA and FfB) were obtained by flash chromatography. The BuF3 and BuF4 fractions were used for the isolation of flavonoids, which was performed using HPLC-PAD. The isolated substances were quantified by HPLC-DAD and their structures were confirmed by nuclear magnetic resonance (NMR). The activities of CE and the subfractions were monitored using a one-trial, step-down inhibitory avoidance (IA) task to identify the effects of these substances on the acquisition and extinction of conditioned fear in rats. Six subclasses of flavonoids were identified for the first time in CE. According to our behavioral data, CE, BuF, BuF3 and BuF4, the flavonoidic fractions, vitexin, isovitexin and 6-C-glycoside-diosmetin improved the acquisition of fear memory. Rats treated with BuF, BuF3 and BuF4 were particularly resistant to extinction. Nevertheless, rats treated with FfA and FfB, vitexin, isovitexin and 6-C-glycoside-diosmetin exhibited gradual reduction in conditioned fear response during the extinction retest session, which was measured at 48 to 480 h after conditioning. Our results demonstrate that vitexin, isovitexin and diosmetin-6-C-glucoside and flavonoidic fractions resulted in a significant retention of fear memory but did not prevent the extinction of fear memory. These results further substantiate that the treatment with pure flavonoids or flavanoid-rich fractions might represent potential therapeutic approaches for the treatment of neurocognitive disorders, improvement of memory acquisition and spontaneous recovery of fear.

  11. DCS facilitation of fear extinction and exposure-based therapy may rely on lower-level, automatic mechanisms

    PubMed Central

    Grillon, Christian

    2009-01-01

    Exposure-based therapy (EBT), a leading technique in the treatment of a range of anxiety disorders, is facilitated by D-cycloserine (DCS), a partial N-methyl-D-aspartate (NMDA) receptor agonist. This review discusses the potential mechanisms involved in this facilitation, and its implications for developing theories of fear conditioning in humans. Basic research in rodents suggests that DCS acts by speeding up extinction. However, several lab-based investigations found that DCS had no effect on extinction in humans. This paper proposes that these observations can be accounted for by a dual-model theory of fear conditioning in humans that engages two complementary defensive systems: a reflexive lower-order system independent of conscious awareness and a higher-order cognitive system associated with conscious awareness of danger and expectation. DCS studies in animals appear to have explored lower-order conditioning mechanisms, whereas human studies have explored higher-order cognitive processes. These observations suggest that DCS may act preferentially on lower- rather than higher-order learning. This paper presents evidence suggesting that, in humans, DCS may similarly affect lower-order learning during EBT and, consequently, may be less effective during cognitive therapy (e.g., cognitive restructuring). Finally, it is recommended that extinction studies using DCS in humans be conducted using fear-relevant stimuli (e.g., snakes), short conditional stimulus-unconditioned stimulus (CS-US) intervals, and intense US in order to promote lower-order conditioning processes. PMID:19520359

  12. Impaired extinction of fear and maintained amygdala-hippocampal theta synchrony in a mouse model of temporal lobe epilepsy.

    PubMed

    Lesting, Jörg; Geiger, Matthias; Narayanan, Rajeevan T; Pape, Hans-Christian; Seidenbecher, Thomas

    2011-02-01

    The relationship between epilepsy and fear has received much attention. However, seizure-modulated fear and physiologic or structural correlates have not been examined systematically, and the underlying basics of network levels remain unclear to date. Therefore, this project was set up to characterize the neurophysiologic basis of seizure-related fear and the contribution of the amygdala-hippocampus system. The experimental strategy was composed of the following steps: (1) use of the mouse pilocarpine model of temporal lobe epilepsy (TLE); (2) behavioral analyses of anxiety states in the elevated plus maze test, light-dark avoidance test, and Pavlovian fear conditioning; and (3) probing neurophysiologic activity patterns in amygdala-hippocampal circuits in freely behaving mice. Our results displayed no significant differences in basic anxiety levels comparing mice that developed spontaneous recurrent seizures (SRS) and controls. Furthermore, conditioned fear memory retrieval was not influenced in SRS mice. However, during fear memory extinction, SRS mice showed an extended freezing behavior and a maintained amygdala-hippocampal theta frequency synchronization compared to controls. These results indicate specific alterations in conditioned fear behavior and related neurophysiologic activities in the amygdala-hippocampal network contributing to impaired fear memory extinction in mice with TLE. Clinically, the nonextinguished fear memories may well contribute to the experience of fear in patients with TLE. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  13. Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear.

    PubMed

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P

    2010-11-01

    Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.

  14. Screening for elevated levels of fear-avoidance beliefs regarding work or physical activities in people receiving outpatient therapy.

    PubMed

    Hart, Dennis L; Werneke, Mark W; George, Steven Z; Matheson, James W; Wang, Ying-Chih; Cook, Karon F; Mioduski, Jerome E; Choi, Seung W

    2009-08-01

    Screening people for elevated levels of fear-avoidance beliefs is uncommon, but elevated levels of fear could worsen outcomes. Developing short screening tools might reduce the data collection burden and facilitate screening, which could prompt further testing or management strategy modifications to improve outcomes. The purpose of this study was to develop efficient yet accurate screening methods for identifying elevated levels of fear-avoidance beliefs regarding work or physical activities in people receiving outpatient rehabilitation. A secondary analysis of data collected prospectively from people with a variety of common neuromusculoskeletal diagnoses was conducted. Intake Fear-Avoidance Beliefs Questionnaire (FABQ) data were collected from 17,804 people who had common neuromusculoskeletal conditions and were receiving outpatient rehabilitation in 121 clinics in 26 states (in the United States). Item response theory (IRT) methods were used to analyze the FABQ data, with particular emphasis on differential item functioning among clinically logical groups of subjects, and to identify screening items. The accuracy of screening items for identifying subjects with elevated levels of fear was assessed with receiver operating characteristic analyses. Three items for fear of physical activities and 10 items for fear of work activities represented unidimensional scales with adequate IRT model fit. Differential item functioning was negligible for variables known to affect functional status outcomes: sex, age, symptom acuity, surgical history, pain intensity, condition severity, and impairment. Items that provided maximum information at the median for the FABQ scales were selected as screening items to dichotomize subjects by high versus low levels of fear. The accuracy of the screening items was supported for both scales. This study represents a retrospective analysis, which should be replicated using prospective designs. Future prospective studies should assess the reliability and validity of using one FABQ item to screen people for high levels of fear-avoidance beliefs. The lack of differential item functioning in the FABQ scales in the sample tested in this study suggested that FABQ screening could be useful in routine clinical practice and allowed the development of single-item screening for fear-avoidance beliefs that accurately identified subjects with elevated levels of fear. Because screening was accurate and efficient, single IRT-based FABQ screening items are recommended to facilitate improved evaluation and care of heterogeneous populations of people receiving outpatient rehabilitation.

  15. ApoE isoform-dependent deficits in extinction of contextual fear conditioning.

    PubMed

    Olsen, R H J; Agam, M; Davis, M J; Raber, J

    2012-10-01

    The three major human apoE isoforms (apoE2, apoE3 and apoE4) are encoded by distinct alleles (ϵ2, ϵ3 and ϵ4). Compared with ϵ3, ϵ4 is associated with increased risk to develop Alzheimer's disease (AD), cognitive impairments in Parkinson's disease (PD), and other conditions. In contrast, a recent study indicated an increased susceptibility to the recurring and re-experiencing symptom cluster of Post-Traumatic Stress Disorder (PTSD), as well as related memory impairments, in patients carrying at least one ϵ2 allele. Contextual fear conditioning and extinction are used in human and animal models to study this symptom cluster. In this study, acquisition (day 1, training), consolidation (day 2, first day of re-exposure) and extinction (days 2-5) of conditioned contextual fear in human apoE2, apoE3 and apoE4 targeted replacement and C57BL/6J wild-type (WT) mice was investigated. Male and female apoE2 showed acquisition and retrieval of conditioned fear, but failed to exhibit extinction. In contrast, WT, apoE3 and apoE4 mice showed extinction. While apoE2 mice exhibited lower freezing in response to the context on day 2 than apoE3 and apoE4 mice, this cannot explain their extinction deficit as WT mice exhibited similar freezing levels as apoE2 mice on day 2 but still exhibited extinction. Elevating freezing through extended training preserved extinction in controls, but failed to ameliorate extinction deficits in apoE2 animals. These data along with clinical data showing an association of apoE2 with susceptibility to specific symptom clusters in PTSD supports an important role for apoE isoform in the extinction of conditioned fear. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  16. A dissociation between renewal and contextual fear conditioning in juvenile rats.

    PubMed

    Park, Chun Hui J; Ganella, Despina E; Kim, Jee Hyun

    2017-05-01

    We investigated whether juvenile rats do not express renewal following extinction of conditioned fear due to their inability to form a long-term contextual fear memory. In experiment 1, postnatal day (P) 18 and 25 rats received 3 white-noise and footshock pairings, followed by 60 white-noise alone presentations the next day. When tested in a different context to extinction, P25 rats displayed renewal whereas P18 rats did not. Experiments 2A and 2B surprisingly showed that P18 and P25 rats do not show differences in contextual and cued fear, regardless of the conditioning-test intervals and the number of white-noise-footshock pairings received. Finally, we observed age differences in contextual fear when P25 rats were weaned at P21 in experiment 3. These results indicate that the developmental dissociation observed in renewal of extinguished fear is not related to the widely believed late emergence of contextual fear learning. © 2017 Wiley Periodicals, Inc.

  17. Attraction under Aversive Conditions: Misattributions or Fear-Reduction?

    ERIC Educational Resources Information Center

    Miller, Rowland S.

    Interpersonal attraction appears to increase under aversive conditions. Two distinct theories suggest that attraction results from either misattribution or fear reduction. To investigate the effects of misattribution and fear reduction on attraction, 36 male college students were ostensibly exposed to an electromagnetic field while an attractive…

  18. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm.

    PubMed

    LeDoux, J E; Moscarello, J; Sears, R; Campese, V

    2017-01-01

    Research on avoidance conditioning began in the late 1930s as a way to use laboratory experiments to better understand uncontrollable fear and anxiety. Avoidance was initially conceived of as a two-factor learning process in which fear is first acquired through Pavlovian aversive conditioning (so-called fear conditioning), and then behaviors that reduce the fear aroused by the Pavlovian conditioned stimulus are reinforced through instrumental conditioning. Over the years, criticisms of both the avoidance paradigm and the two-factor fear theory arose. By the mid-1980s, avoidance had fallen out of favor as an experimental model relevant to fear and anxiety. However, recent progress in understanding the neural basis of Pavlovian conditioning has stimulated a new wave of research on avoidance. This new work has fostered new insights into contributions of not only Pavlovian and instrumental learning but also habit learning, to avoidance, and has suggested that the reinforcing event underlying the instrumental phase should be conceived in terms of cellular and molecular events in specific circuits rather than in terms of vague notions of fear reduction. In our approach, defensive reactions (freezing), actions (avoidance) and habits (habitual avoidance) are viewed as being controlled by unique circuits that operate nonconsciously in the control of behavior, and that are distinct from the circuits that give rise to conscious feelings of fear and anxiety. These refinements, we suggest, overcome older criticisms, justifying the value of the new wave of research on avoidance, and offering a fresh perspective on the clinical implications of this work.

  19. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm

    PubMed Central

    LeDoux, J E; Moscarello, J; Sears, R; Campese, V

    2017-01-01

    Research on avoidance conditioning began in the late 1930s as a way to use laboratory experiments to better understand uncontrollable fear and anxiety. Avoidance was initially conceived of as a two-factor learning process in which fear is first acquired through Pavlovian aversive conditioning (so-called fear conditioning), and then behaviors that reduce the fear aroused by the Pavlovian conditioned stimulus are reinforced through instrumental conditioning. Over the years, criticisms of both the avoidance paradigm and the two-factor fear theory arose. By the mid-1980s, avoidance had fallen out of favor as an experimental model relevant to fear and anxiety. However, recent progress in understanding the neural basis of Pavlovian conditioning has stimulated a new wave of research on avoidance. This new work has fostered new insights into contributions of not only Pavlovian and instrumental learning but also habit learning, to avoidance, and has suggested that the reinforcing event underlying the instrumental phase should be conceived in terms of cellular and molecular events in specific circuits rather than in terms of vague notions of fear reduction. In our approach, defensive reactions (freezing), actions (avoidance) and habits (habitual avoidance) are viewed as being controlled by unique circuits that operate nonconsciously in the control of behavior, and that are distinct from the circuits that give rise to conscious feelings of fear and anxiety. These refinements, we suggest, overcome older criticisms, justifying the value of the new wave of research on avoidance, and offering a fresh perspective on the clinical implications of this work. PMID:27752080

  20. Impaired fear inhibition learning predicts the persistence of symptoms of posttraumatic stress disorder (PTSD).

    PubMed

    Sijbrandij, Marit; Engelhard, Iris M; Lommen, Miriam J J; Leer, Arne; Baas, Johanna M P

    2013-12-01

    Recent cross-sectional studies have shown that the inability to suppress fear under safe conditions is a key problem in people with posttraumatic stress disorder (PTSD). The current longitudinal study examined whether individual differences in fear inhibition predict the persistence of PTSD symptoms. Approximately 2 months after deployment to Afghanistan, 144 trauma-exposed Dutch soldiers were administered a conditional discrimination task (AX+/BX-). In this paradigm, A, B, and X are neutral stimuli. X combined with A is paired with a shock (AX+ trials); X combined with B is not (BX- trials). Fear inhibition was measured (AB trials). Startle electromyogram responses and shock expectancy ratings were recorded. PTSD symptoms were measured at 2 months and at 9 months after deployment. Results showed that greater startle responses during AB trials in individuals who discriminated between danger (AX+) and safety (BX-) during conditioning, predicted higher PTSD symptoms at 2 months and 9 months post-deployment. The predictive effect at 9 months remained significant after controlling for critical incidents during previous deployments and PTSD symptoms at 2 months. Responses to AX+ or BX- trials, or discrimination learning (AX+ minus BX-) did not predict PTSD symptoms. It is concluded that impaired fear inhibition learning seems to be involved in the persistence of PTSD symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A proteomic analysis of contextual fear conditioned rats reveals dynamic modifications in neuron and oligodendrocyte protein expression in the dentate gyrus.

    PubMed

    Houyoux, Nicolas; Wattiez, Ruddy; Ris, Laurence

    2017-09-01

    Contextual memory is an intricate process involving synaptic plasticity and network rearrangement. Both are governed by many molecular processes including phosphorylation and modulation of protein expression. However, little is known about the molecules involved in it. Here, we exploited the advantages of a quantitative proteomic approach to identify a great number of molecules in the rat dentate gyrus after a contextual fear conditioning session. Our results allowed us to highlight protein expression patterns, not only related to neuroplasticity, but also to myelin structure, such as myelin basic protein and myelin proteolipid protein showing a decrease in expression. Validation of the modification in protein expression reveals a dynamic profile during the 48 h following the fear conditioning session. The expression of proteins involved in neurite outgrowth, such as BASP-1 and calcineurin B1, and in synaptic structure and function, VAMP2 and RAB3C, was increased in the dentate gyrus of rats submitted to fear conditioning compared to controls. We showed that the increase in BASP-1 protein was specific to fear conditioning learning as it was not present in immediate-shock rats, neither in rats exposed to a novel environment without being shocked. As myelin is known to stabilise synaptic network, the decrease in myelin proteins suggests a neuroglia interactive process taking place in the dentate gyrus in the 24 h following contextual fear learning, which has never been demonstrated before. These results therefore open the way to the study of new plasticity mechanisms underlying learning and memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Pharmacological interference with metabotropic glutamate receptor subtype 7 but not subtype 5 differentially affects within- and between-session extinction of Pavlovian conditioned fear.

    PubMed

    Toth, Iulia; Dietz, Monika; Peterlik, Daniel; Huber, Sabine E; Fendt, Markus; Neumann, Inga D; Flor, Peter J; Slattery, David A

    2012-03-01

    Fear extinction is defined as the attenuation of a conditioned-fear memory by re-exposing animals to the conditioned stimulus without the aversive stimulus. This process is known to be effectively enhanced via administration of D-cycloserine (DCS), a partial NMDA-receptor agonist. However, other glutamatergic mechanisms, such as interference with metabotropic glutamate receptor (mGluR) subtypes 5 and 7 in the extinction of aversive memories are insufficiently understood. Using the allosteric mGluR5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082), and DCS for comparison, we aimed to study how pharmacological blockade of mGluR5 and activation of mGluR7 influenced within- and between-session conditioned-fear extinction training and extinction retention in rats. We show that when injected before extinction training, mGluR7 activation with AMN082 enhanced freezing and thereby attenuated within-session fear extinction, whereas both DCS and the mGluR5 receptor antagonist MPEP had no effect on this process. However, these differential drug effects were not long lasting, as no difference in extinction retention were observed 24 h later. Therefore, we assessed whether the compounds affect 24 h consolidation of extinction training following incomplete extinction training (between-session extinction). Similar to DCS, AMN082- but not MPEP-treated rats showed facilitated extinction retention, as exhibited by decreased freezing. Finally, using fluoxetine, we provide evidence that the effect of AMN082 on between-session extinction retention is most likely not via increasing 5-HT transmission. These findings demonstrate that mGluR7 activation differentially modulates conditioned-fear extinction, in dependence on the protocol employed, and suggests drugs with AMN082-like mechanisms as potential add-on drugs following exposure-based psychotherapy for fear-related human disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Long-term stabilization of place cell remapping produced by a fearful experience

    PubMed Central

    Wang, Melissa E.; Wann, Ellen G.; Yuan, Robin K.; Ramos Álvarez, Manuel M.; Stead, Squire M.; Muzzio, Isabel A.

    2012-01-01

    Fear is an emotional response to danger that is highly conserved throughout evolution because it is critical for survival. Accordingly, episodic memory for fearful locations is widely studied using contextual fear conditioning, a hippocampus-dependent task (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The hippocampus has been implicated in episodic emotional memory and is thought to integrate emotional stimuli within a spatial framework. Physiological evidence supporting the role of the hippocampus in contextual fear indicates that pyramidal cells in this region, which fire in specific locations as an animal moves through an environment, shift their preferred firing locations shortly after the presentation of an aversive stimulus (Moita et al., 2004). However, the long-term physiological mechanisms through which emotional memories are encoded by the hippocampus are unknown. Here we show that during and directly after a fearful experience, new hippocampal representations are established and persist in the long term. We recorded from the same place cells in mouse hippocampal area CA1 over several days during predator odor contextual fear conditioning and found that a subset of cells changed their preferred firing locations in response to the fearful stimulus. Furthermore, the newly formed representations of the fearful context stabilized in the long term. Our results demonstrate that place cells respond to the presence of an aversive stimulus, modify their firing patterns during emotional learning, and stabilize a long-term spatial representation in response to a fearful encounter. The persistent nature of these representations may contribute to the enduring quality of emotional memories. PMID:23136419

  4. Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.

    PubMed

    Bernardi, Rick E; Spanagel, Rainer

    2014-08-01

    Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.

  5. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  6. Effects of unconditioned stimulus intensity and fear extinction on subsequent sleep architecture in an afternoon nap.

    PubMed

    Sturm, Anna; Czisch, Michael; Spoormaker, Victor I

    2013-12-01

    Impaired fear extinction and disturbed sleep coincide in post-traumatic stress disorder (PTSD), but the nature of this relationship is unclear. Rapid eye movement (REM) sleep deprivation impairs fear extinction recall in rodents and young healthy subjects, and animal models have demonstrated both disrupted sleep after fear conditioning and normalized sleep after extinction learning. As a correlation between unconditioned stimulus (US) responding and subsequent sleep architecture has been observed in healthy subjects, the goal of this study was to test whether US intensity would causally affect subsequent sleep. Twenty-four young healthy subjects underwent a fear conditioning session with skin conductance response measurements before an afternoon session of polysomnographically recorded sleep (up to 120 min) in the sleep laboratory. Two factors were manipulated experimentally in a 2 × 2 design: US (electrical shock) was set at high or low intensity, and subjects did or did not receive an extinction session after fear conditioning. We observed that neither factor affected REM sleep amount, that high US intensity nominally increased sleep fragmentation (more Stage 1 sleep, stage shifts and wake after sleep onset), and that extinction increased Stage 4 amount. Moreover, reduced Stage 1 and increased Stage 4 and REM sleep were associated with subjective sleep quality of the afternoon nap. These results provide evidence for the notion that US intensity and extinction affect subsequent sleep architecture in young healthy subjects, which may provide a translational bridge from findings in animal studies to correlations observed in PTSD patients. © 2013 European Sleep Research Society.

  7. Psychophysiology of Delayed Extinction and Reconsolidation in Humans

    DTIC Science & Technology

    2013-02-01

    to modify or block it. The aim of this project is to create an experimental assay in the form of an optimal Pavlovian differential fear- conditioning ...group. Data from the pharmacological group demonstrate that participants show differential conditioning learning on Day 1, supporting the validity of...our modified fear- conditioning paradigm. Results suggest that propranolol administration at the time of memory reactivation does not decrease the fear

  8. Context Preexposure Prevents Forgetting of a Contextual Fear Memory: Implication for Regional Changes in Brain Activation Patterns Associated with Recent and Remote Memory Tests

    ERIC Educational Resources Information Center

    Biedenkapp, Joseph C.; Rudy, Jerry W.

    2007-01-01

    Contextual fear conditioning was maintained over a 15-day retention interval suggesting no forgetting of the conditioning experience. However, a more subtle generalization test revealed that, as the retention interval increased, rats showed enhanced generalized fear to an altered context. Preexposure to the training context prior to conditioning,…

  9. 33 CFR 165.530 - Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Northeast Cape Fear Rivers, NC. 165.530 Section 165.530 Navigation and Navigable Waters COAST GUARD... § 165.530 Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC. (a) Location. The following area is a moving safety zone during the specified conditions: The waters of the Cape Fear and Northeast Cape...

  10. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    PubMed

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  11. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction.

    PubMed

    Hwang, Moon Jung; Zsido, Rachel G; Song, Huijin; Pace-Schott, Edward F; Miller, Karen Klahr; Lebron-Milad, Kelimer; Marin, Marie-France; Milad, Mohammed R

    2015-11-18

    Findings about sex differences in the field of fear conditioning and fear extinction have been mixed. At the psychophysiological level, sex differences emerge only when taking estradiol levels of women into consideration. This suggests that this hormone may also influence sex differences with regards to activations of brain regions involved in fear conditioning and its extinction. Importantly, the neurobiological correlates associated with the use of hormonal oral contraceptives in women have not been fully contrasted against men and against naturally cycling women with different levels of estradiol. In this study, we begin to fill these scientific gaps. We recruited 37 healthy men and 48 healthy women. Of these women, 16 were using oral contraceptives (OC) and 32 were naturally cycling. For these naturally cycling women, a median split was performed on their serum estradiol levels to create a high estradiol (HE) group (n = 16) and a low estradiol (LE) group (n = 16). All participants underwent a 2-day fear conditioning and extinction paradigm in a 3 T MR scanner. Using the 4 groups (men, HE women, LE women, and OC users) and controlling for age and coil type, one-way ANCOVAs were performed to look at significant activations within the nodes of the fear circuit. Using post-hoc analyses, beta-weights were extracted in brain regions showing significant effects in order to unveil the differences based on hormonal status (men, HE, LE, OC). Significant main effect of hormonal status group was found across the different phases of the experiment and in different sub-regions of the insular and cingulate cortices, amygdala, hippocampus, and hypothalamus. During conditioning, extinction and recall, most of the observed differences suggested higher activations among HE women relative to men. During the unconditioned response, however, a different pattern was observed with men showing significantly higher brain activations. Our data further support the important contribution of estradiol levels in the activation of brain regions underlying fear learning and extinction. The results highlight the need to document gonadal hormonal levels, menstrual cycle phase as well as oral contraceptive use in women in order to avoid overlooking sex differences when investigating the neurobiology of emotional regulation.

  12. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction.

    PubMed

    Zhang, Bo; Li, Chuan-Yu; Wang, Xiu-Song

    2017-08-14

    Extinction of conditioned fear has been suggested to be a new form of learning instead of erasure of what was originally learned, and the process is NMDA (N-methyl d-aspartate) receptor (NMDAR) dependent. Most of studies have so far revealed the important roles of NMDARs in the amygdala and medial prefrontal cortex (mPFC) in cued fear extinction. Although the ventral hippocampus has intimately reciprocal connections with the amygdala and mPFC, the role of its NMDARs in cued fear extinction remains unclear. The present experiment explored the issue by bilateral pre-extinction microinjection of the noncompetitive NMDAR antagonist MK-801 into the ventral hippocampus. Four groups of rats were given habituation, tone cued fear conditioning, fear extinction training and extinction test. Prior to extinction training, rats received bilateral infusions of either MK-801 (1.5, 3, or 6μg/0.5μl) or saline. Our results showed that MK-801 reduced freezing on the first trial of extinction training with no impact on within-session acquisition of extinction, and that the lower doses of MK-801 resulted in increased freezing on the extinction retrieval test. These findings suggest that ventral hippocampal NMDARs are necessary for the consolidation of tone cued fear extinction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Heat exposure in female rats elicits abnormal fear expression and cellular changes in prefrontal cortex and hippocampus.

    PubMed

    Gruene, Tina M; Lipps, Jennifer; Rey, Colin D; Bouck, Anna; Shansky, Rebecca M

    2014-11-01

    Despite a twofold higher prevalence of fear-related disorders in women, the neurobiological factors that modulate and drive fear expression are rarely studied in female animals. Fear conditioning and extinction are useful tools for dissecting these mechanisms, and here we tested the effects of environmental manipulations - four days of exposure to 31°C temperatures in the animal housing facility - on fear learning and memory exclusively in female rats. We found that heat exposure disrupted freezing to tone during fear conditioning, and elicited enhanced freezing during extinction and extinction retrieval. We also performed immunohistochemistry for c-fos expression in the infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex during extinction retrieval, and found that heat exposure induced a switch from IL-dominated activity to PL-dominated activity. Finally, morphological analysis of spines in hippocampal CA3 neurons revealed an increase in spine head diameter in heat-exposed animals, which may partly underlie the persistent freezing observed in these animals. Together, our data show that heat exposure can induce changes at behavioral, physiological, and structural levels, and add to a woefully lacking body of literature on fear processes in female animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

    PubMed

    Bernier, Brian E; Lacagnina, Anthony F; Ayoub, Adam; Shue, Francis; Zemelman, Boris V; Krasne, Franklin B; Drew, Michael R

    2017-06-28

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes. Copyright © 2017 the authors 0270-6474/17/376359-13$15.00/0.

  15. Trait anxiety and perceptual load as determinants of emotion processing in a fear conditioning paradigm.

    PubMed

    Fox, Elaine; Yates, Alan; Ashwin, Chris

    2012-04-01

    The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS-), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  16. Effects of inferior olive lesion on fear-conditioned bradycardia

    PubMed Central

    Kotajima, Hiroko; Sakai, Kazuhisa; Hashikawa, Tsutomu

    2014-01-01

    The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia. PMID:24784584

  17. Regulatory Mechanisms of Fear Extinction and Depression-Like Behavior

    PubMed Central

    Tronson, Natalie C; Schrick, Christina; Fischer, Andre; Sananbenesi, Farahnaz; Pagès, Gilles; Pouysségur, Jacques; Radulovic, Jelena

    2008-01-01

    Human anxiety is frequently accompanied by depression, and when they co-occur both conditions exhibit greater severity and resistance to treatment. Little is known, however, about the molecular processes linking these emotional and mood disorders. Based on previously reported phosphorylation patterns of extracellular signal-regulated kinase (ERK) in the brain, we hypothesized that ERK’s upstream activators intertwine fear and mood regulation through their hippocampal actions. We tested this hypothesis by studying the upstream regulation of ERK signaling in behavioral models of fear and depression. Wild-type and ERK1-deficient mice were used to study the dorsohippocampal actions of the putative ERK activators: mitogen-activated and extracellular signal-regulated kinase (MEK), protein kinase C (PKC), and cAMP-dependent protein kinase (PKA). Mice lacking ERK1 exhibited enhanced fear extinction and reduced depression caused by overactivation of ERK2. Both behaviors were reversed by inhibition of MEK, however the extinction phenotype depended on hippocampal, whereas the depression phenotype predominantly involved extrahippocampal MEK. Unexpectedly, inhibition of PKC accelerated extinction and decreased depression by ERK-independent mechanisms, whereas inhibition of PKA did not produce detectable molecular or behavioral effects in the employed paradigm. These results indicate that, contrary to fear conditioning but similar to mood stabilization, extinction of fear required upregulation of MEK/ERK and downregulation of ERK-independent PKC signaling. The dissociation of these pathways may thus represent a common mechanism for fear and mood regulation, and a potential therapeutic option for comorbid anxiety and depression. PMID:17712345

  18. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    PubMed Central

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  19. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  20. Expectancy bias in a selective conditioning procedure: trait anxiety increases the threat value of a blocked stimulus.

    PubMed

    Boddez, Yannick; Vervliet, Bram; Baeyens, Frank; Lauwers, Stephanie; Hermans, Dirk; Beckers, Tom

    2012-06-01

    In a blocking procedure, a single conditioned stimulus (CS) is paired with an unconditioned stimulus (US), such as electric shock, in the first stage. During the subsequent stage, the CS is presented together with a second CS and this compound is followed by the same US. Fear conditioning studies in non-human animals have demonstrated that fear responding to the added second CS typically remains low, despite its being paired with the US. Accordingly, the blocking procedure is well suited as a laboratory model for studying (deficits in) selective threat appraisal. The present study tested the relation between trait anxiety and blocking in human aversive conditioning. Healthy participants filled in a trait anxiety questionnaire and underwent blocking treatment in the human aversive conditioning paradigm. Threat appraisal was measured through shock expectancy ratings and skin conductance. As hypothesized, trait anxiety was positively associated with shock expectancy ratings to the blocked stimulus. In skin conductance responding, no significant effects of stimulus type could be detected during blocking training or testing. The current study does not allow strong claims to be made regarding the theoretical process underlying the expectancy bias we observed. The observed shock expectancy bias might be one of the mechanisms leading to non-specific fear in individuals at risk for developing anxiety disorders. A deficit in blocking, or a deficit in selective threat appraisal at the more general level, indeed results in fear becoming non-specific and disconnected from the most likely causes or predictors of danger. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Medial Prefrontal Cortex Activation Facilitates Re-Extinction of Fear in Rats

    ERIC Educational Resources Information Center

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training.…

  2. Differential Involvement of the Medial Prefrontal Cortex across Variants of Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.

    2017-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…

  3. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence.

    PubMed

    Merlo, Emiliano; Milton, Amy L; Goozée, Zara Y; Theobald, David E; Everitt, Barry J

    2014-02-12

    Memory persistence is critically influenced by retrieval. In rats, a single presentation of a conditioned fear stimulus induces memory reconsolidation and fear memory persistence, while repeated fear cue presentations result in loss of fear through extinction. These two opposite behavioral outcomes are operationally linked by the number of cue presentations at memory retrieval. However, the behavioral properties and mechanistic determinants of the transition have not yet been explored; in particular, whether reconsolidation and extinction processes coexist or are mutually exclusive, depending on the exposure to non-reinforced retrieval events. We characterized both behaviorally and molecularly the transition from reconsolidation to extinction of conditioned fear and showed that an increase in calcineurin (CaN) in the basolateral amygdala (BLA) supports the shift from fear maintenance to fear inhibition. Gradually increasing the extent of retrieval induces a gradual decrease in freezing responses to the conditioned stimulus and a gradual increase in amygdala CaN level. This newly synthesized CaN is required for the extinction, but not the reconsolidation, of conditioned fear. During the transition from reconsolidation to extinction, we have revealed an insensitive state of the fear memory where NMDA-type glutamate receptor agonist and antagonist drugs are unable either to modulate CaN levels in the BLA or alter the reconsolidation or extinction processes. Together, our data indicate both that reconsolidation and extinction are mutually exclusive processes and also reveal the presence of a transitional, or "limbo," state of the original memory between these two alternative outcomes of fear memory retrieval, when neither process is engaged.

  4. Testing the effects of Δ9-THC and D-cycloserine on extinction of conditioned fear in humans

    PubMed Central

    Klumpers, Floris; Denys, Damiaan; Kenemans, J Leon; Grillon, Christian; van der Aart, Jasper; Baas, Johanna MP

    2012-01-01

    Preclinical evidence implicates several neurotransmitter systems in the extinction of conditioned fear. These results are of great interest, because the reduction of acquired fear associations is critical in therapies for anxiety disorders. We tested whether findings with respect to the N-methyl-D-aspartate (NMDA) and cannabinoid receptor (CB) systems in animals carry over to healthy human subjects. To that end, we administered selected doses of D-cycloserine (partial NMDA receptor agonist, 250 mg), delta-9-tetrahydrocannabinol (THC, CB1 receptor agonist, 10 mg), or placebo prior to the extinction session of a 3-day conditioning protocol. D-cycloserine did not affect within-session extinction, or the retention of extinction in healthy human participants, in contrast with patient data but in line with previous reports in healthy volunteers. During extinction training, Δ9-THC reduced conditioned skin conductance responses, but not fear-potentiated startle. This effect was not retained at the retention test 2 days later, suggesting it was dependent on acute effects of the drug. Our findings implicate that facilitation of the CB1 or NMDA system with the substances used in this study does not affect conditioned fear extinction lastingly in healthy humans. The apparent discrepancy between these findings and the results from (pre-) clinical trials is discussed in terms of room for improvement in these systems in healthy volunteers, and the lack of specificity of THC as a CB1 agonist. PMID:22351380

  5. Intolerance of uncertainty and startle potentiation in relation to different threat reinforcement rates.

    PubMed

    Chin, Brian; Nelson, Brady D; Jackson, Felicia; Hajcak, Greg

    2016-01-01

    Fear conditioning research on threat predictability has primarily examined the impact of temporal (i.e., timing) predictability on the startle reflex. However, there are other key features of threat that can vary in predictability. For example, the reinforcement rate (i.e., frequency) of threat is a crucial factor underlying fear learning. The present study examined the impact of threat reinforcement rate on the startle reflex and self-reported anxiety during a fear conditioning paradigm. Forty-five participants completed a fear learning task in which the conditioned stimulus was reinforced with an electric shock to the forearm on 50% of trials in one block and 75% of trials in a second block, in counter-balanced order. The present study also examined whether intolerance of uncertainty (IU), the tendency to perceive or experience uncertainty as stressful or unpleasant, was associated with the startle reflex during conditions of low (50%) vs. high (75%) reinforcement. Results indicated that, across all participants, startle was greater during the 75% relative to the 50% reinforcement condition. IU was positively correlated with startle potentiation (i.e., increased startle response to the CS+ relative to the CS-) during the 50%, but not the 75%, reinforcement condition. Thus, despite receiving fewer electric shocks during the 50% reinforcement condition, individuals with high IU uniquely demonstrated greater defense system activation when impending threat was more uncertain. The association between IU and startle was independent of state anxiety. The present study adds to a growing literature on threat predictability and aversive responding, and suggests IU is associated with abnormal responding in the context of uncertain threat. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.

    PubMed

    Kuhn, Manuel; Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B

    2016-05-01

    Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Increased perceived self-efficacy facilitates the extinction of fear in healthy participants

    PubMed Central

    Zlomuzica, Armin; Preusser, Friederike; Schneider, Silvia; Margraf, Jürgen

    2015-01-01

    Self-efficacy has been proposed as an important element of a successful cognitive behavioral treatment (CBT). Positive changes in perceived self-efficacy have been linked to an improved adaptive emotional and behavioral responding in the context of anxiety-provoking situations. Furthermore, a positive influence of increased self-efficacy on cognitive functions has been confirmed. The present study examined the effect of verbal persuasion on perceived self-efficacy and fear extinction. Healthy participants were subjected to a standardized differential fear conditioning paradigm. After fear acquisition, half of the participants received a verbal persuasion aimed at increasing perceived self-efficacy. The extinction of fear was assessed immediately thereafter on both the implicit and explicit level. Our results suggest that an increased perceived self-efficacy was associated with enhanced extinction, evidenced on the psychophysiological level and accompanied by more pronounced decrements in conditioned negative valence. Changes in extinction were not due to a decrease in overall emotional reactivity to conditioned stimuli (CS). In addition, debriefing participants about the false positive feedback did not affect the processing of already extinguished conditioned responses during a subsequent continued extinction phase. Our results suggest that positive changes in perceived self-efficacy can be beneficial for emotional learning. Findings are discussed with respect to strategies aimed at increasing extinction learning in the course of exposure-based treatments. PMID:26528152

  8. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall.

    PubMed

    Lonsdorf, Tina B; Golkar, Armita; Lindström, Kara M; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-05-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition 'and' extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS- comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Inactivation of ventral hippocampus interfered with cued-fear acquisition but did not influence later recall or discrimination.

    PubMed

    Chen, Veronica M; Foilb, Allison R; Christianson, John P

    2016-01-01

    The ventral hippocampus (VH) is involved in the both the acquisition and recall of conditioned fear. Here, we tested the role of VH in acquisition and recall of a conditioned fear discrimination. Intra-VH vehicle or muscimol injections were made 1h prior to a CS+/CS- conditioning or prior to later recall. Vehicle treated rats exhibited discrimination with significantly greater freezing to the CS+ than to the CS- whereas muscimol treated rats did not freeze. Injections made before recall had no effect as both treatment groups displayed equal freezing in response to the CS+, and discrimination. While these results are consistent with several reports, the failure to influence fear discrimination upon recall appears to contrast with the hypothesized role of VH in recall of extinguished conditioned fear cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Roles of testosterone and amygdaloid LTP induction in determining sex differences in fear memory magnitude.

    PubMed

    Chen, Li-Shen; Tzeng, Wen-Yu; Chuang, Jia-Ying; Cherng, Chianfang G; Gean, Po-Wu; Yu, Lung

    2014-08-01

    Women are thought to form fear memory more robust than men do and testosterone is suspected to play a role in determining such a sex difference. Mouse cued fear freezing was used to study the sex-related susceptibility and the role of testosterone in fear memory in humans. A 75-dB tone was found to provoke weak freezing, while 0.15-mA and 0.20-mA footshock caused strong freezing responses. No sex differences were noticed in the tone- or footshock-induced (naïve fear) freezing. Following the conditionings, female mice exhibited greater tone (cued fear)-induced freezing than did male mice. Nonetheless, female mice demonstrated indistinctive cued fear freezing across the estrous phases and ovariectomy did not affect such freezing in female mice. Orchidectomy enhanced the cued fear freezing in male mice. Systemic testosterone administrations and an intra-lateral nucleus of amygdala (LA) testosterone infusion diminished the cued fear freezing in orchidectomized male mice, while pretreatment with flutamide (Flu) eradicated these effects. Long-term potentiation (LTP) magnitude in LA has been known to correlate with the strength of the cued fear conditioning. We found that LA LTP magnitude was indeed greater in female than male mice. Orchidectomy enhanced LTP magnitude in males' LA, while ovariectomy decreased LTP magnitude in females' LA. Testosterone decreased LTP magnitude in orchidectomized males' LA and estradiol enhanced LTP magnitude in ovariectomized females' LA. Finally, male mice had lower LA GluR1 expression than female mice and orchidectomy enhanced the GluR1 expression in male mice. These findings, taken together, suggest that testosterone plays a critical role in rendering the sex differences in the cued fear freezing and LA LTP. Testosterone is negatively associated with LA LTP and the cued fear memory in male mice. However, ovarian hormones and LA LTP are loosely associated with the cued fear memory in female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Biased Intensity Judgements of Visceral Sensations After Learning to Fear Visceral Stimuli: A Drift Diffusion Approach.

    PubMed

    Zaman, Jonas; Madden, Victoria J; Iven, Julie; Wiech, Katja; Weltens, Nathalie; Ly, Huynh Giao; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse

    2017-10-01

    A growing body of research has identified fear of visceral sensations as a potential mechanism in the development and maintenance of visceral pain disorders. However, the extent to which such learned fear affects visceroception remains unclear. To address this question, we used a differential fear conditioning paradigm with nonpainful esophageal balloon distensions of 2 different intensities as conditioning stimuli (CSs). The experiment comprised of preacquisition, acquisition, and postacquisition phases during which participants categorized the CSs with respect to their intensity. The CS+ was always followed by a painful electrical stimulus (unconditioned stimulus) during the acquisition phase and in 60% of the trials during postacquisition. The second stimulus (CS-) was never associated with pain. Analyses of galvanic skin and startle eyeblink responses as physiological markers of successful conditioning showed increased fear responses to the CS+ compared with the CS-, but only in the group with the low-intensity stimulus as CS+. Computational modeling of response times and response accuracies revealed that differential fear learning affected perceptual decision-making about the intensities of visceral sensations such that sensations were more likely to be categorized as more intense. These results suggest that associative learning might indeed contribute to visceral hypersensitivity in functional gastrointestinal disorders. This study shows that associative fear learning biases intensity judgements of visceral sensations toward perceiving such sensations as more intense. Learning-induced alterations in visceroception might therefore contribute to the development or maintenance of visceral pain. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Adaptation of a paradigm for examining the development of fear beliefs through the verbal information pathway in preschool-age children.

    PubMed

    Rifkin, Lara S; Schofield, Casey A; Beard, Courtney; Armstrong, Thomas

    2016-12-01

    Verbal threat information has been shown to induce fear beliefs in school-age children (i.e. 6-12 years; for a review see Muris & Field, 2010). The current study adapted an existing paradigm (Field & Lawson, 2003) to examine the impact of verbal threat information on self-report and behavioral measures of fear in preschool-age children. Thirty children (aged 3-5) were provided with threat, positive, or no information about three novel Australian marsupials. There was a significant increase in fear belief for the animal associated with threat information compared to the animal associated with positive or no information. Verbal threat information did not impact behavioral avoidance in the complete sample; however, findings from an exploratory subgroup analysis excluding three-year-olds indicated that children demonstrated significant behavioral avoidance for the threat condition compared to the positive condition. These findings provide additional support for Rachman's theory of fear acquisition (1977, 1991) and suggest this paradigm may be used to examine the age at which verbal threat information becomes a relevant mode of fear acquisition for young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electrolytic Lesions of the Medial Prefrontal Cortex Do Not Interfere with Long-Term Memory of Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Garcia, Rene; Chang, Chun-hui; Maren, Stephen

    2006-01-01

    Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…

  14. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    ERIC Educational Resources Information Center

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  15. Impact of Predatory Threat on Fear Extinction in Lewis Rats

    ERIC Educational Resources Information Center

    Goswami, Sonal; Cascardi, Michele; Rodriguez-Sierra, Olga E.; Duvarci, Sevil; Pare, Denis

    2010-01-01

    Humans with post-traumatic stress disorder (PTSD) are deficient at extinguishing conditioned fear responses. A study of identical twins concluded that this extinction deficit does not predate trauma but develops as a result of trauma. The present study tested whether the Lewis rat model of PTSD reproduces these features of the human syndrome.…

  16. Death and Dying Attitudes, Anxieties, and Fears of Certified Nursing Assistants: A Descriptive Study

    ERIC Educational Resources Information Center

    Hamilton, Josephine A.

    2010-01-01

    The critical role of Certified Nursing Assistants (CNAs) to help elderly nursing home residents' move through declining conditions or diseases to death is salient. It is important for CNAs and nursing home leaders to understand CNAs' attitudes, fears, and anxieties toward death and dying. The quantitative study investigated CNA's…

  17. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  18. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    PubMed

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P < 0.05). Training to tone was more resistant to the effects of isoflurane than training to context (P < 0.05), and the three-trial learning procedure was more was more resistant than the one-trial procedure (P < 0.05). Isoflurane provided intense dose-dependent anterograde but not retrograde amnesia for classic fear conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  19. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    PubMed

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  20. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

Top