Science.gov

Sample records for feature detection systems

  1. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  2. Feature Detection Systems Enhance Satellite Imagery

    NASA Technical Reports Server (NTRS)

    2009-01-01

    -resolution satellites, which provide the benefit of images detailed enough to reveal large features like highways while still broad enough for global coverage, continue to scan the entirety of the Earth s surface. In 2012, NASA plans to launch the Landsat Data Continuity Mission (LDCM), or Landsat 8, to extend the Landsat program s contributions to cartography, water management, natural disaster relief planning, and more.

  3. Hybrid feature selection for supporting lightweight intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  4. Wavelet features for failure detection and identification in vibration systems

    NASA Astrophysics Data System (ADS)

    Deckert, James C.; Rhenals, Alonso E.; Tenney, Robert R.; Willsky, Alan S.

    1992-12-01

    The result of this effort is an extremely flexible and powerful methodology for failure detection and identification (FDI) in vibrating systems. The essential elements of this methodology are: (1) an off-line set of techniques to identify high-energy, statistically significant features in the continuous wavelet transform (CWT); (2) a CWT-based preprocessor to extract the most useful features from the sensor signal; and (3) simple artificial neural networks (incorporating a mechanism to defer any decision if the current feature sample is determined to be ambiguous) for the subsequent classification task. For the helicopter intermediate gearbox test-stand data and centrifugal and fire pump shipboard (mild operating condition) data used, the algorithms designed using this method achieved perfect detection performance (1.000 probability of detection, and 0.000 false alarm probability), with a probability less than 0.04 that a decision would be deferred-based on only 500 milliseconds of data from each sample case. While this effort shows the exceptional promise of our wavelet-based method for FDI in vibrating systems, more demanding applications, which also have other sources of high-energy vibration, raise additional technical issues that could provide the focus for a Phase 2 effort.

  5. Wavelets and power system transients: feature detection and classification

    NASA Astrophysics Data System (ADS)

    Robertson, David C.; Camps, Octavia I.; Mayer, Jeff

    1994-03-01

    This paper presents a methodology for the development of software for classifying power system disturbances by type from the transient waveform signature. The implementation of classification capability in future transient recorders will enable such features as selective storage of transient data (to better utilize limited storage media) and automated reporting of disturbances to central control facilities. The wavelet transform provides an effective and efficient means of decomposing voltage and current signals of power system transients to detectable and discriminant features. Similarities of power system transients to wide-band signals in other domains, the simultaneous presence of a resonant frequency, its harmonics, and impulse (high-frequency, time-localized) components, make this technique extendible to other classification systems. The classification algorithm uses statistical pattern recognition on features derived from the extreme representation of the transient waveform after processing the transient waveform by a non-orthogonal, quadratic spline wavelet. Training and classification testing use simulated waveforms of a 200 mile, three-phase transmission line produced by the Electromagnetic Transients Program (EMTP). A simple Bayesian classifier identifies an unknown transient waveform as a capacitor switching or fault transient, and locates the point of disturbance from one of two possible locations on the transmission line. Due to the effectiveness of the wavelet transform preprocessing, the classification system currently performs at 100 percent accuracy on four transient classes.

  6. Autonomous rendezvous and feature detection system using TV imagery

    NASA Technical Reports Server (NTRS)

    Rice, R. B., Jr.

    1977-01-01

    Algorithms and equations are used for conversion of standard television imaging system information into directly usable spatial and dimensional information. System allows utilization of spacecraft imagery system as sensor in application to operations such as deriving spacecraft steering signal, tracking, autonomous rendezvous and docking and ranging.

  7. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Treesearch

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  8. Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Dong Seong; Park, Jong Sou

    Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.

  9. Exploration of available feature detection and identification systems and their performance on radiographs

    NASA Astrophysics Data System (ADS)

    Wantuch, Andrew C.; Vita, Joshua A.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    Despite object detection, recognition, and identification being very active areas of computer vision research, many of the available tools to aid in these processes are designed with only photographs in mind. Although some algorithms used specifically for feature detection and identification may not take explicit advantage of the colors available in the image, they still under-perform on radiographs, which are grayscale images. We are especially interested in the robustness of these algorithms, specifically their performance on a preexisting database of X-ray radiographs in compressed JPEG form, with multiple ways of describing pixel information. We will review various aspects of the performance of available feature detection and identification systems, including MATLABs Computer Vision toolbox, VLFeat, and OpenCV on our non-ideal database. In the process, we will explore possible reasons for the algorithms' lessened ability to detect and identify features from the X-ray radiographs.

  10. Feature discrimination and detection probability in synthetic aperture radar imaging system

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Butman, S. A.

    1977-01-01

    Images obtained using synthetic aperture radar (SAR) systems can only represent the intensities of resolution cells in the scene of interest probabilistically since radar receiver noise and Rayleigh scattering of the transmitted radiation are always present. Consequently, when features to be identified differ only by their contribution to the mean power of the radar return, discrimination can be treated by detection theory. In this paper, we develop a 'sufficient statistic' for discriminating between competing features and compare it with some suboptimal methods frequently used. Discrimination is measured by probability of detection error and depends on number of samples or 'looks', signal-to-noise ratio (SNR), and ratio of mean power returns from the competing features. Our results show discrimination and image quality rapidly saturate with SNR (very small improvement for SNR not less than 10 dB) but continue to improve with increasing number of looks.

  11. Feature discrimination and detection probability in synthetic aperture radar imaging system

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Butman, S. A.

    1977-01-01

    Images obtained using synthetic aperture radar (SAR) systems can only represent the intensities of resolution cells in the scene of interest probabilistically since radar receiver noise and Rayleigh scattering of the transmitted radiation are always present. Consequently, when features to be identified differ only by their contribution to the mean power of the radar return, discrimination can be treated by detection theory. In this paper, we develop a 'sufficient statistic' for discriminating between competing features and compare it with some suboptimal methods frequently used. Discrimination is measured by probability of detection error and depends on number of samples or 'looks', signal-to-noise ratio (SNR), and ratio of mean power returns from the competing features. Our results show discrimination and image quality rapidly saturate with SNR (very small improvement for SNR not less than 10 dB) but continue to improve with increasing number of looks.

  12. Modeling and Detecting Feature Interactions among Integrated Services of Home Network Systems

    NASA Astrophysics Data System (ADS)

    Igaki, Hiroshi; Nakamura, Masahide

    This paper presents a framework for formalizing and detecting feature interactions (FIs) in the emerging smart home domain. We first establish a model of home network system (HNS), where every networked appliance (or the HNS environment) is characterized as an object consisting of properties and methods. Then, every HNS service is defined as a sequence of method invocations of the appliances. Within the model, we next formalize two kinds of FIs: (a) appliance interactions and (b) environment interactions. An appliance interaction occurs when two method invocations conflict on the same appliance, whereas an environment interaction arises when two method invocations conflict indirectly via the environment. Finally, we propose offline and online methods that detect FIs before service deployment and during execution, respectively. Through a case study with seven practical services, it is shown that the proposed framework is generic enough to capture feature interactions in HNS integrated services. We also discuss several FI resolution schemes within the proposed framework.

  13. A two-view ultrasound CAD system for spina bifida detection using Zernike features

    NASA Astrophysics Data System (ADS)

    Konur, Umut; Gürgen, Fikret; Varol, Füsun

    2011-03-01

    In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.

  14. Application of rich feature descriptors to small target detection in wide-area persistent ISR systems

    NASA Astrophysics Data System (ADS)

    Miller, Christopher W.; Edelberg, Jason A.; Wilson, Michael L.; Novak, Kyle

    2014-06-01

    One of the desired capabilities for wide-area persistent ISR systems is to reliably locate and subsequently track the movement of targets within the field of view. Current wide-area persistent ISR systems are characterized by large pixel overall counts and very large fields of view. This leads to a large ground sample distance with few pixels-on-target. Locating targets under these constraints is extremely difficult due to the fact that the targets present very little detailed structure. In this paper we will present the application of rich image feature descriptors combined with advanced statistical target detection methodologies to the airborne ISR problem. We will demonstrate that these algorithms can reliably locate targets in the scene without relying on the target's motion to form a detection. This is useful in ISR application where it is desirable to be able to continuously track a target through stops and maneuvers.

  15. Airborne multisensor remote sensing systems for subsurface feature detection in littoral zones

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.

    2012-09-01

    This paper describes low altitude mobile imaging of near coastal waters in the Northern Gulf of Mexico. A suite of mobile multispectral and hyperspectral sensors were flown between ~1,000m to ~3000m altitudes in order detect subsurface features in nearby wetlands and littoral zone areas following the Deepwater Horizon oil spill. In this paper techniques used to develop, integrate and calibrate the airborne sensors are described. The sensors include a multispectral digital frame camera system, a traditional photogrammetric camera, and a small custom hyperspectral imaging system with custom software. Ancillary sensors include include multiple differential GPS and inertial motion unit (IMU) sensing systems and twin high definition video cameras for parallax related estimations. The correction of hyperspectral pushbroom imagery that utilizes Kalman filtering and smoothing is described and examples of georeferenced imagery is presented. The ability to image subsurface features is described and demonstrates not only the hyperspectral imaging system, but the value of utilizing simultaneous multisensor mobile sensing systems for environmental monitoring and surveillance of shorelines, water and nearby vegetation environments in littoral zones.

  16. Non-invasive health status detection system using Gabor filters based on facial block texture features.

    PubMed

    Shu, Ting; Zhang, Bob

    2015-04-01

    Blood tests allow doctors to check for certain diseases and conditions. However, using a syringe to extract the blood can be deemed invasive, slightly painful, and its analysis time consuming. In this paper, we propose a new non-invasive system to detect the health status (Healthy or Diseased) of an individual based on facial block texture features extracted using the Gabor filter. Our system first uses a non-invasive capture device to collect facial images. Next, four facial blocks are located on these images to represent them. Afterwards, each facial block is convolved with a Gabor filter bank to calculate its texture value. Classification is finally performed using K-Nearest Neighbor and Support Vector Machines via a Library for Support Vector Machines (with four kernel functions). The system was tested on a dataset consisting of 100 Healthy and 100 Diseased (with 13 forms of illnesses) samples. Experimental results show that the proposed system can detect the health status with an accuracy of 93 %, a sensitivity of 94 %, a specificity of 92 %, using a combination of the Gabor filters and facial blocks.

  17. Combined optimization of image-gathering and image-processing systems for scene feature detection

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Arduini, Robert F.; Samms, Richard W.

    1987-01-01

    The relationship between the image gathering and image processing systems for minimum mean squared error estimation of scene characteristics is investigated. A stochastic optimization problem is formulated where the objective is to determine a spatial characteristic of the scene rather than a feature of the already blurred, sampled and noisy image data. An analytical solution for the optimal characteristic image processor is developed. The Wiener filter for the sampled image case is obtained as a special case, where the desired characteristic is scene restoration. Optimal edge detection is investigated using the Laplacian operator x G as the desired characteristic, where G is a two dimensional Gaussian distribution function. It is shown that the optimal edge detector compensates for the blurring introduced by the image gathering optics, and notably, that it is not circularly symmetric. The lack of circular symmetry is largely due to the geometric effects of the sampling lattice used in image acquisition. The optimal image gathering optical transfer function is also investigated and the results of a sensitivity analysis are shown.

  18. Consistent performance measurement of a system to detect masses in mammograms based on blind feature extraction

    PubMed Central

    2013-01-01

    Background Breast cancer continues to be a leading cause of cancer deaths among women, especially in Western countries. In the last two decades, many methods have been proposed to achieve a robust mammography‐based computer aided detection (CAD) system. A CAD system should provide high performance over time and in different clinical situations. I.e., the system should be adaptable to different clinical situations and should provide consistent performance. Methods We tested our system seeking a measure of the guarantee of its consistent performance. The method is based on blind feature extraction by independent component analysis (ICA) and classification by neural networks (NN) or SVM classifiers. The test mammograms were from the Digital Database for Screening Mammography (DDSM). This database was constructed collaboratively by four institutions over more than 10 years. We took advantage of this to train our system using the mammograms from each institution separately, and then testing it on the remaining mammograms. We performed another experiment to compare the results and thus obtain the measure sought. This experiment consists in to form the learning sets with all available prototypes regardless of the institution in which them were generated, obtaining in that way the overall results. Results The smallest variation from comparing the results of the testing set in each experiment (performed by training the system using the mammograms from one institution and testing with the remaining) with those of the overall result, considering the success rate for an intermediate decision maker threshold, was roughly 5%, and the largest variation was roughly 17%. But, if we considere the area under ROC curve, the smallest variation was close to 4%, and the largest variation was about a 6%. Conclusions Considering the heterogeneity in the datasets used to train and test our system in each case, we think that the variation of performance obtained when the results are

  19. An ultra low power feature extraction and classification system for wearable seizure detection.

    PubMed

    Page, Adam; Pramod Tim Oates, Siddharth; Mohsenin, Tinoosh

    2015-01-01

    In this paper we explore the use of a variety of machine learning algorithms for designing a reliable and low-power, multi-channel EEG feature extractor and classifier for predicting seizures from electroencephalographic data (scalp EEG). Different machine learning classifiers including k-nearest neighbor, support vector machines, naïve Bayes, logistic regression, and neural networks are explored with the goal of maximizing detection accuracy while minimizing power, area, and latency. The input to each machine learning classifier is a 198 feature vector containing 9 features for each of the 22 EEG channels obtained over 1-second windows. All classifiers were able to obtain F1 scores over 80% and onset sensitivity of 100% when tested on 10 patients. Among five different classifiers that were explored, logistic regression (LR) proved to have minimum hardware complexity while providing average F-1 score of 91%. Both ASIC and FPGA implementations of logistic regression are presented and show the smallest area, power consumption, and the lowest latency when compared to the previous work.

  20. Development of an automated detection system for microcalcifications on mammograms by using the higher-order autocorrelation features

    NASA Astrophysics Data System (ADS)

    Ohe, Yoshitaka; Shinohara, Norimitsu; Hara, Takeshi; Fujita, Hiroshi; Endo, Tokiko; Iwase, Takuji

    2004-05-01

    The purpose of this work is to develop a new pattern recognition method using the higher-order autocorrelation features (HOAFs), and to apply this to our microcalcification detection system on mammographic images. Microcalcification is a typical sign of breast cancer and tends to show up as very subtle shadows. We developed a triple-ring filter for detecting microcalcifications, and the prototype detection system is nearly complete. However, our prototype system does not allow for the detection of three types of microcalcifications, two of which are amorphous and linear microcalcifications and the third is obscured microcalcifications which is often confused with the background or circumference that have almost the same density. We targeted the amorphous type of microcalcification, which has a low contrast and easily goes undetected. The various features of microcalcifications and false-positive (FP) shadows were extracted and trained using the multi-regression analysis, and unknown images were recognized as a result of this training. As a result, amorphous microcalcifications were successfully detected with no increase in the number of FPs compared with our existing detection method.

  1. Feature Extraction Without Edge Detection

    DTIC Science & Technology

    1993-09-01

    feature? A.I. Memo 1356, MIT Artificial Intellegence Lab, April 1992. [65] W. A. Richards, B. Dawson, and D. Whittington. Encoding contour shape by...AD-A279 842 . " Technical Report 1434 --Feature Extraction Without Edge Detection Ronald D. Chane MIT Artificial .Intelligencc Laboratory ",, 𔃾•d...Chaney 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Massachusetts Institute of Technology Artificial

  2. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features

    PubMed Central

    Waheed, Sajjad; Rahman, Mohammad Motiur

    2017-01-01

    Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%. PMID:28894460

  3. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features.

    PubMed

    Billah, Mustain; Waheed, Sajjad; Rahman, Mohammad Motiur

    2017-01-01

    Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%.

  4. Detection of linear features in aerial images

    NASA Astrophysics Data System (ADS)

    Gao, Rui

    Over the past decades, considerable progress had been made to develop automatic image interpretation tools in remote sensing. However, there is still a gap between the results and the requirements for accuracy and robustness. Noisy aerial image interpretation, especially for low resolution images, is still difficult. In this thesis, we propose a fully automatic system for linear feature detection in aerial images. We present how the system works on the application of extraction and reconstruction of road and pipeline networks. The work in this thesis is divided by three parts: line detection, feature interpretation, and feature tracking. An improved Hough transform based on orientation information is introduced for the line detection. We explore the Markov random field model and Bayesian filtering for feature interpretation and tracking. Experimental results show that our proposed system is robust and effective to deal with low resolution aerial images.

  5. Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.

    2016-04-01

    The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition [1]-[3]. The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the γ-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, LaBr3, LYSO, NaI(Tl), whose basic parameters are well known [4]-[7].

  6. Monocular precrash vehicle detection: features and classifiers.

    PubMed

    Sun, Zehang; Bebis, George; Miller, Ronald

    2006-07-01

    Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.

  7. Sensor feature fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.; Hernandez, J.E.; Buhl, M.R.; Schaich, P.C.; Kane, R.J.; Barth, M.J.; DelGrande, N.K.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.

  8. Detection of Novel Features and Collection of Opportunistic Science Data with an Onboard Autonomous Rover Science System

    NASA Astrophysics Data System (ADS)

    Castano, R.; Estlin, T.; Gaines, D.; Bornstein, B.; Anderson, R. C.; Bue, B.; Judd, M.

    2007-12-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates science data gathered by a planetary rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify science opportunities. A planning and scheduling component of the system enables the rover to take advantage of identified science opportunities. We present new system capabilities with an emphasis on the identification of novel geologic features during a traverse. The ability to detect novel features enables the rover to identify rocks that exhibit distinct properties from those in the vicinity, e.g. unusual albedo or orientation. This capability has been integrated into the full system and validated in field testing. In addition, the system has been integrated with the Visual Target Tracking (VTT) capability recently uploaded to the Mars Exploration Rovers. VTT enables the system to robustly track a specified target, typically a rock. By integrating this with the autonomous science system, the rover can approach targets identified onboard, and then acquire targeted measurements both from additional viewing angles as well as from positions in close proximity to the target.

  9. Detection of the 2175 Å Dust Feature in Mg II Absorption Systems

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    1997-10-01

    The broad absorption bump at 2175 Å due to dust, which is ubiquitous in the Galaxy and is seen in the Magellanic clouds, is also seen in a composite spectrum of Mg II absorbers. The composite absorber spectrum is obtained by taking the geometric mean of 92 quasar spectra after aligning them in the rest frame of 96 absorbers. By aligning the spectra according to absorber redshifts, we reinforce the spectral features of the absorbers and smooth over possible bumps and wiggles in the emission spectra as well as small features in the flat-fielding of the spectra. The width of the observed absorption feature is 200-300 Å (FWHM), or 0.4-0.6 μm-1, and the central wavelength is 2240 Å. These are somewhat different from the central wavelength of 2176 Å and FWHM = 0.8-1.25 μm-1 found in the Galaxy. Simulations show that this discrepancy between the properties of the 2175 Å feature in Mg II absorbers and the Galactic interstellar medium can be mostly explained by the different methods used to measure them.

  10. Fast Feature Pyramids for Object Detection.

    PubMed

    Dollár, Piotr; Appel, Ron; Belongie, Serge; Perona, Pietro

    2014-08-01

    Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).

  11. A multi-feature classification approach to detect sleep apnea in an ultrasonic upper airway occlusion detector system.

    PubMed

    Shafiee, Soheil; Kamangar, Farhad; Ghandehari, Laleh S H; Behbehani, Khosrow

    2014-01-01

    Obstructive Sleep Apnea (OSA) is the most common form of sleep disorder breathing. It is estimated that this insidious disease affects 15% of the US adult population. Current procedure of diagnosing OSA requires polysomnography (NPSG) conducted in accredited sleep laboratories and the data getting scored by certified sleep technicians, a costly process that is not readily available in all areas. Ultrasonic techniques are increasingly used in the area of medical diagnosis and treatments due to their safety and economic costs. This paper investigates a feasibility study of a multi-channel ultrasonic OSA detection system. The approach utilizes wavelet-based as well as temporal and spectral features extracted from multiple ultrasound waves transmitted through patient's neck during sleep. Using NPSG data as gold standard, the proposed classifier makes a preliminary decision on the data sequence by labeling epochs as normal or apneic. A Finite State Machine (FSM) is employed to update the classified labels for a more robust detection. Experimental results on three sleep disordered patients suggest that it may be feasible to consider the proposed approach for an ultrasound based detection system.

  12. Feature detection and letter identification.

    PubMed

    Pelli, Denis G; Burns, Catherine W; Farell, Bart; Moore-Page, Deborah C

    2006-12-01

    Seeking to understand how people recognize objects, we have examined how they identify letters. We expected this 26-way classification of familiar forms to challenge the popular notion of independent feature detection ("probability summation"), but find instead that this theory parsimoniously accounts for our results. We measured the contrast required for identification of a letter briefly presented in visual noise. We tested a wide range of alphabets and scripts (English, Arabic, Armenian, Chinese, Devanagari, Hebrew, and several artificial ones), three- and five-letter words, and various type styles, sizes, contrasts, durations, and eccentricities, with observers ranging widely in age (3 to 68) and experience (none to fluent). Foreign alphabets are learned quickly. In just three thousand trials, new observers attain the same proficiency in letter identification as fluent readers. Surprisingly, despite this training, the observers-like clinical letter-by-letter readers-have the same meager memory span for random strings of these characters as observers seeing them for the first time. We compare performance across tasks and stimuli that vary in difficulty by pitting the human against the ideal observer, and expressing the results as efficiency. We find that efficiency for letter identification is independent of duration, overall contrast, and eccentricity, and only weakly dependent on size, suggesting that letters are identified by a similar computation across this wide range of viewing conditions. Efficiency is also independent of age and years of reading. However, efficiency does vary across alphabets and type styles, with more complex forms yielding lower efficiencies, as one might expect from Gestalt theories of perception. In fact, we find that efficiency is inversely proportional to perimetric complexity (perimeter squared over "ink" area) and nearly independent of everything else. This, and the surprisingly fixed ratio of detection and identification

  13. Ischemic Stroke Detection System with a Computer-Aided Diagnostic Ability Using an Unsupervised Feature Perception Enhancement Method

    PubMed Central

    Tyan, Yeu-Sheng; Wu, Ming-Chi; Chin, Chiun-Li; Kuo, Yu-Liang; Lee, Ming-Sian; Chang, Hao-Yan

    2014-01-01

    We propose an ischemic stroke detection system with a computer-aided diagnostic ability using a four-step unsupervised feature perception enhancement method. In the first step, known as preprocessing, we use a cubic curve contrast enhancement method to enhance image contrast. In the second step, we use a series of methods to extract the brain tissue image area identified during preprocessing. To detect abnormal regions in the brain images, we propose using an unsupervised region growing algorithm to segment the brain tissue area. The brain is centered on a horizontal line and the white matter of the brain's inner ring is split into eight regions. In the third step, we use a coinciding regional location method to find the hybrid area of locations where a stroke may have occurred in each cerebral hemisphere. Finally, we make corrections and mark the stroke area with red color. In the experiment, we tested the system on 90 computed tomography (CT) images from 26 patients, and, with the assistance of two radiologists, we proved that our proposed system has computer-aided diagnostic capabilities. Our results show an increased stroke diagnosis sensitivity of 83% in comparison to 31% when radiologists use conventional diagnostic images. PMID:25610453

  14. Ischemic stroke detection system with a computer-aided diagnostic ability using an unsupervised feature perception enhancement method.

    PubMed

    Tyan, Yeu-Sheng; Wu, Ming-Chi; Chin, Chiun-Li; Kuo, Yu-Liang; Lee, Ming-Sian; Chang, Hao-Yan

    2014-01-01

    We propose an ischemic stroke detection system with a computer-aided diagnostic ability using a four-step unsupervised feature perception enhancement method. In the first step, known as preprocessing, we use a cubic curve contrast enhancement method to enhance image contrast. In the second step, we use a series of methods to extract the brain tissue image area identified during preprocessing. To detect abnormal regions in the brain images, we propose using an unsupervised region growing algorithm to segment the brain tissue area. The brain is centered on a horizontal line and the white matter of the brain's inner ring is split into eight regions. In the third step, we use a coinciding regional location method to find the hybrid area of locations where a stroke may have occurred in each cerebral hemisphere. Finally, we make corrections and mark the stroke area with red color. In the experiment, we tested the system on 90 computed tomography (CT) images from 26 patients, and, with the assistance of two radiologists, we proved that our proposed system has computer-aided diagnostic capabilities. Our results show an increased stroke diagnosis sensitivity of 83% in comparison to 31% when radiologists use conventional diagnostic images.

  15. Testing of Haar-Like Feature in Region of Interest Detection for Automated Target Recognition (ATR) System

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhan; Lu, Dr. Thomas

    2010-01-01

    The objectives of this project were to develop a ROI (Region of Interest) detector using Haar-like feature similar to the face detection in Intel's OpenCV library, implement it in Matlab code, and test the performance of the new ROI detector against the existing ROI detector that uses Optimal Trade-off Maximum Average Correlation Height filter (OTMACH). The ROI detector included 3 parts: 1, Automated Haar-like feature selection in finding a small set of the most relevant Haar-like features for detecting ROIs that contained a target. 2, Having the small set of Haar-like features from the last step, a neural network needed to be trained to recognize ROIs with targets by taking the Haar-like features as inputs. 3, using the trained neural network from the last step, a filtering method needed to be developed to process the neural network responses into a small set of regions of interests. This needed to be coded in Matlab. All the 3 parts needed to be coded in Matlab. The parameters in the detector needed to be trained by machine learning and tested with specific datasets. Since OpenCV library and Haar-like feature were not available in Matlab, the Haar-like feature calculation needed to be implemented in Matlab. The codes for Adaptive Boosting and max/min filters in Matlab could to be found from the Internet but needed to be integrated to serve the purpose of this project. The performance of the new detector was tested by comparing the accuracy and the speed of the new detector against the existing OTMACH detector. The speed was referred as the average speed to find the regions of interests in an image. The accuracy was measured by the number of false positives (false alarms) at the same detection rate between the two detectors.

  16. Testing of Haar-Like Feature in Region of Interest Detection for Automated Target Recognition (ATR) System

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhan; Lu, Dr. Thomas

    2010-01-01

    The objectives of this project were to develop a ROI (Region of Interest) detector using Haar-like feature similar to the face detection in Intel's OpenCV library, implement it in Matlab code, and test the performance of the new ROI detector against the existing ROI detector that uses Optimal Trade-off Maximum Average Correlation Height filter (OTMACH). The ROI detector included 3 parts: 1, Automated Haar-like feature selection in finding a small set of the most relevant Haar-like features for detecting ROIs that contained a target. 2, Having the small set of Haar-like features from the last step, a neural network needed to be trained to recognize ROIs with targets by taking the Haar-like features as inputs. 3, using the trained neural network from the last step, a filtering method needed to be developed to process the neural network responses into a small set of regions of interests. This needed to be coded in Matlab. All the 3 parts needed to be coded in Matlab. The parameters in the detector needed to be trained by machine learning and tested with specific datasets. Since OpenCV library and Haar-like feature were not available in Matlab, the Haar-like feature calculation needed to be implemented in Matlab. The codes for Adaptive Boosting and max/min filters in Matlab could to be found from the Internet but needed to be integrated to serve the purpose of this project. The performance of the new detector was tested by comparing the accuracy and the speed of the new detector against the existing OTMACH detector. The speed was referred as the average speed to find the regions of interests in an image. The accuracy was measured by the number of false positives (false alarms) at the same detection rate between the two detectors.

  17. Feature Sets for Screenshot Detection

    DTIC Science & Technology

    2013-06-01

    contain large sections of pixels with identical intensities as well as a less “natural” pixel distribution overall. 2.2.1 Edge Detection Two basic and...Machine Perception of Three-Dimensional Solids” in which he proposed what would become one of the first edge detection algorithms [16]. His algorithm...presented by Sobel , involves 3x3 masks that calculate both the magnitude and direction of the egdes [15]. A number of additional edge detectors have

  18. Covariance based outlier detection with feature selection.

    PubMed

    Zwilling, Chris E; Wang, Michelle Y

    2016-08-01

    The present covariance based outlier detection algorithm selects from a candidate set of feature vectors that are best at identifying outliers. Features extracted from biomedical and health informatics data can be more informative in disease assessment and there are no restrictions on the nature and number of features that can be tested. But an important challenge for an algorithm operating on a set of features is for it to winnow the effective features from the ineffective ones. The powerful algorithm described in this paper leverages covariance information from the time series data to identify features with the highest sensitivity for outlier identification. Empirical results demonstrate the efficacy of the method.

  19. Inverting and Visualizing Features for Object Detection

    DTIC Science & Technology

    2012-12-23

    Inverting and Visualizing Features for Object Detection ∗ Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba Massachusetts Institute...been substantially demonstrated by the community in object detection [3, 10, 19, 25, 32] as well as scene classification [22, 30] and motion tracking [2...2012 4. TITLE AND SUBTITLE Inverting and Visualizing Features for Object Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  20. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    PubMed

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  1. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    PubMed Central

    Wang, Guohua; Liu, Qiong

    2015-01-01

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only. PMID:26703611

  2. Contribution of Haar wavelets and MPEG-7 textural features for false positive reduction in a CAD system for the detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Eltonsy, Nevine H.; Tourassi, Georgia D.; Elmaghraby, Adel S.

    2007-03-01

    The study investigates the significance of wavelet-based and MPEG-7 homogeneous textural features in an attempt to improve the specificity of an in-house CAD system for the detection of masses in screening mammograms. The detection scheme has been presented before and it relies on the concept of morphologic concentric layer (MCL) analysis to identify suspicious locations in a mammogram. The locations were deemed suspicious due to their morphology; especially an increased activity of iso-intensity layers around these locations. On a set of 270 mammographic images, the MCL detection scheme achieved 93% (131/141) mass detection rate with 4.8 FPs/image (1,296/270). In the present study, the textural signature of the detected location is analyzed for possible false positive reduction. For texture analysis, HAAR wavelet and MPEG-7 HTD textural features were extracted. In addition, the contribution of directional neighborhood (DN) features was studied as well. The extracted features were combined with a back-propagation artificial neural network (BPANN) to discriminate true masses from false positives. Using a database of 1,427 suspicious seeds (131 true masses and 1,296 FPs) and a 5-fold cross-validation sampling scheme, the ROC area index of the BPNN using the different sets of features were as follows: A z(HAAR)=0.87+/-0.01, A z(HTD)=0.91+/-0.02, A z(DN)=0.84+/-0.01. Averaging the scores of the three BPANNs resulted in statistically significantly better performance A z(ALL)=0.94+/-0.01. At 95% sensitivity, the FP rate was reduced by 77.5%. The overall performance of the system after incorporation of textural and directional features was 87.9% sensitivity for malignant masses at 1.1 FPs/image.

  3. Feature Detection in Linked Derived Spaces

    NASA Technical Reports Server (NTRS)

    Henze, Chris; Gearld-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    This paper describes by example a strategy for plotting and interacting with data in multiple metric spaces. The example system was designed for use with time-varying computational fluid dynamics (CFD) datasets, but the methodology is directly applicable to other types of field data. The central objects embodied by the tool are {\\em portraits}, which show the data in various coordinate systems, while preserving their spatial connectivity and temporal variability. The coordinates are derived in various ways from the field data, and an important feature is that new and derived portraits can be created interactively. The primary operations supported by the tool are brushing and linking: the user can select a subset of a given portrait, and this subset is highlighted in all portraits. The user can combine highlighted subsets from an arbitrary number of portraits with the usual logical operators, thereby indicating where an arbitrarily complex set of conditions holds. The system is useful for exploratory visualization and feature detection in multivariate data.

  4. Elderly fall detection using SIFT hybrid features

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiao; Gao, Chao; Guo, Yongcai

    2015-10-01

    With the tendency of aging society, countries all over the world are dealing with the demographic change. Fall had been proven to be of the highest fatality rate among the elderly. To realize the elderly fall detection, the proposed algorithm used the hybrid feature. Based on the rate of centroid change, the algorithm adopted VEI to offer the posture feature, this combined motion feature with posture feature. The algorithm also took advantage of SIFT descriptor of VEI(V-SIFT) to show more details of behaviors with occlusion. An improved motion detection method was proposed to improve the accuracy of front-view motion detection. The experimental results on CASIA database and self-built database showed that the proposed approach has high efficiency and strong robustness which effectively improved the accuracy of fall detection.

  5. Toward Automated Feature Detection in UAVSAR Images

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Glasscoe, M. T.

    2014-12-01

    Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification is not robust at present: it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Identification and mitigation of nongaussian background image noise is essential to creating a robust, automated system to search for such features. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features.Empirical examination of detrended noise based on 20 km east-west profiles through desert terrain with little tectonic deformation for a suite of flight interferograms shows nongaussian characteristics. Statistical measurement of curvature with varying length scale (Allan variance) shows nearly white behavior (Allan variance slope with spatial distance from roughly -1.76 to -2) from 25 to 400 meters, deviations from -2 suggesting short-range differences (such as used in detecting edges) are often freer of noise than longer-range differences. At distances longer than 400 m the Allan variance flattens out without consistency from one interferogram to another. We attribute this additional noise afflicting difference estimates at longer distances to atmospheric water vapor and uncompensated aircraft motion.Paradoxically, California interferograms made with increasing time intervals before and after the El Mayor Cucapah earthquake (2008, M7.2, Mexico) show visually stronger and more interesting edges, but edge detection methods developed for the first year do not produce reliable results over the first two years, because longer time spans suffer reduced coherence in the interferogram. The changes over time are reflecting fault slip and block

  6. Fourier descriptor features for acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Keller, James M.; Cheng, Zhanqi; Gader, Paul D.; Hocaoglu, Ali K.

    2002-08-01

    Signatures of buried landmines are often difficult to separate from those of clutter objects. Often, shape information is not directly obtainable from the sensors used for landmine detection. The Acoustic Sensing Technology (AST), which uses a Laser Doppler Vibrometer (LDV) that measures the spatial pattern of particle velocity amplitude of the ground surface in a variety of frequency bands, offers a unique look at subsurface phenomena. It directly records shape related information. Generally, after preprocessing the frequency band images in a downward looking LDV system, landmines have fairly regular shapes (roughly circular) over a range of frequencies while clutter tends to exhibit irregular shapes different from those of landmines. Therefore, shape description has the potential to be used in discriminating mines from clutter. Normalized Fourier Descriptors (NFD) are shape parameters independent of size, angular orientation, position, and contour starting conditions. In this paper, the stack of 2D frequency images from the LDV system are preprocessed by a linear combination of order statistics (LOS) filter, thresholding, and 2D and 3D connected labeling. Contours are extracted form the connected components and aggregated to produce evenly spaced boundary points. Two types of Normalized Fourier Descriptors are computed from the outlines. Using images obtained from a standard data collection site, these features are analyzed for their ability to discriminate landmines from background and clutter such as wood and stones. From a standard feature selection procedure, it was found that a very small number of features are required to effectively separate landmines from background and clutter using simple pattern recognition algorithms. Details of the experiments are included.

  7. Automatic Feature Extraction System.

    DTIC Science & Technology

    1982-12-01

    forward-looking infrared imagery, LANDSAT imagery, and several other types of two-dimensional array * data. The addition of OLPARS structure analysis and...landscape characteristics as required for production of Digital Feature Analysis DD , ,蟓 1473 EDITION O .ov6 IS OBSOLETE UNCLASSIFTED SECURITY...Nearest 4i Neighbor (cnds nn) ... 4-8 4.3.3 Mahalanobian (mahal). . . 4-8 𔃾 iv 4I , i"-i 4.3.4 Multivariate Categorical Analysis (mca). . . . . . 4-9

  8. Robust TV commercial detection based on audiovisual features

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Hung; Yeh, Chia-Hung; Kuo, C.-C. J. J.

    2003-08-01

    A robust TV commercial detection system is proposed in this research. Even though several methods were investigated to address the TV commercial detection problem and interesting results were obtained before, most previous work focuses on features within a short temporal window. These methods are suitable for on-line detection, but often result in higher false alarm rates as a trade-off. To reduce the false alarm rate, we explore audiovisual features in a larger temporal window. Specifically, we group shots into scenes using audio data processing, and then obtain features that are related to commercial characteristics from scenes. Experimental results are given to demonstrate the effectiveness of the proposed system.

  9. Feature Detection Techniques for Preprocessing Proteomic Data

    PubMed Central

    Sellers, Kimberly F.; Miecznikowski, Jeffrey C.

    2010-01-01

    Numerous gel-based and nongel-based technologies are used to detect protein changes potentially associated with disease. The raw data, however, are abundant with technical and structural complexities, making statistical analysis a difficult task. Low-level analysis issues (including normalization, background correction, gel and/or spectral alignment, feature detection, and image registration) are substantial problems that need to be addressed, because any large-level data analyses are contingent on appropriate and statistically sound low-level procedures. Feature detection approaches are particularly interesting due to the increased computational speed associated with subsequent calculations. Such summary data corresponding to image features provide a significant reduction in overall data size and structure while retaining key information. In this paper, we focus on recent advances in feature detection as a tool for preprocessing proteomic data. This work highlights existing and newly developed feature detection algorithms for proteomic datasets, particularly relating to time-of-flight mass spectrometry, and two-dimensional gel electrophoresis. Note, however, that the associated data structures (i.e., spectral data, and images containing spots) used as input for these methods are obtained via all gel-based and nongel-based methods discussed in this manuscript, and thus the discussed methods are likewise applicable. PMID:20467457

  10. Learning Multilayer Channel Features for Pedestrian Detection

    NASA Astrophysics Data System (ADS)

    Cao, Jiale; Pang, Yanwei; Li, Xuelong

    2017-07-01

    Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN classifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the full-connected layer features while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called Multilayer Channel Features (MCF) to overcome the drawback. It firstly integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade is learned from the image channels of corresponding layer. With more abundant features, MCF achieves the state-of-the-art on Caltech pedestrian dataset (i.e., 10.40% miss rate). Using new and accurate annotations, MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, it's 4.07 times faster with negligible performance loss.

  11. Satellite mapping and automated feature extraction: Geographic information system-based change detection of the Antarctic coast

    NASA Astrophysics Data System (ADS)

    Kim, Kee-Tae

    Declassified Intelligence Satellite Photograph (DISP) data are important resources for measuring the geometry of the coastline of Antarctica. By using the state-of-art digital imaging technology, bundle block triangulation based on tie points and control points derived from a RADARSAT-1 Synthetic Aperture Radar (SAR) image mosaic and Ohio State University (OSU) Antarctic digital elevation model (DEM), the individual DISP images were accurately assembled into a map quality mosaic of Antarctica as it appeared in 1963. The new map is one of important benchmarks for gauging the response of the Antarctic coastline to changing climate. Automated coastline extraction algorithm design is the second theme of this dissertation. At the pre-processing stage, an adaptive neighborhood filtering was used to remove the film-grain noise while preserving edge features. At the segmentation stage, an adaptive Bayesian approach to image segmentation was used to split the DISP imagery into its homogenous regions, in which the fuzzy c-means clustering (FCM) technique and Gibbs random field (GRF) model were introduced to estimate the conditional and prior probability density functions. A Gaussian mixture model was used to estimate the reliable initial values for the FCM technique. At the post-processing stage, image object formation and labeling, removal of noisy image objects, and vectorization algorithms were sequentially applied to segmented images for extracting a vector representation of coastlines. Results were presented that demonstrate the effectiveness of the algorithm in segmenting the DISP data. In the cases of cloud cover and little contrast scenes, manual editing was carried out based on intermediate image processing and visual inspection in comparison of old paper maps. Through a geographic information system (GIS), the derived DISP coastline data were integrated with earlier and later data to assess continental scale changes in the Antarctic coast. Computing the area of

  12. Learning Multilayer Channel Features for Pedestrian Detection.

    PubMed

    Cao, Jiale; Pang, Yanwei; Li, Xuelong

    2017-07-01

    Pedestrian detection based on the combination of convolutional neural network (CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. In general, HOG+LUV are used to generate the candidate proposals and then CNN classifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the fully connected layer features, while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called multi-layer channel features (MCF) to overcome the drawback. It first integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade are learned from the image channels of corresponding layer. Experiments on Caltech data set, INRIA data set, ETH data set, TUD-Brussels data set, and KITTI data set are conducted. With more abundant features, an MCF achieves the state of the art on Caltech pedestrian data set (i.e., 10.40% miss rate). Using new and accurate annotations, an MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, it is 4.07 times faster than negligible performance loss.

  13. Detecting Nematode Features from Digital Images

    PubMed Central

    de la Blanca, N. Pérez; Fdez-Valdivia, J.; Castillo, P.; Gómez-Barcina, A.

    1992-01-01

    Procedures for estimating and calibrating nematode features from digitial images are described and evaluated by illustration and mathematical formulae. Technical problems, such as capturing and cleaning raw images, standardizing the grey level range of images, and the detection of characteristics of the body habitus, presence or absence of stylet knobs, and tail and lip region shape are discussed. This study is the first of a series aimed at developing a set of automated methods to permit more rapid, objective characterizations of nematode features than is achievable by cumbersome conventional methods. PMID:19282998

  14. Feature matching method in shaped light mode VFD defect detection

    NASA Astrophysics Data System (ADS)

    Jin, Xuanhong; Dai, Shuguang; Mu, Pingan

    2010-08-01

    In recent years, Vacuum Fluorescent Display (VFD) module in the car audio panel has been widely used. However, due to process reasons, VFD display production process will produce defects, not only affect the appearance, but also affect the display correctly. So building a car VFD display panel defect detection system is of great significance. Machine vision technology is introduced into the automotive VFD display defect detection in order to achieve fast and accurate detection of defects. Shaped light mode is a typical flaw detection mode which is based on characteristics of vehicle VFD panel. According to the image features, learning of the gray matching and feature matching method, we integrated use of feature matching method and the gray level matching method to achieve defect detection.

  15. Picture Detection in RSVP: Features or Identity?

    PubMed Central

    Potter, Mary C.; Wyble, Brad; Pandav, Rijuta; Olejarczyk, Jennifer

    2010-01-01

    A pictured object can be readily detected in an RSVP sequence when the target is specified by a superordinate category name such as animal or vehicle. Are category features the initial basis for detection, with identification of the specific object occurring in a second stage (Evans & Treisman, 2005), or is identification of the object the basis for detection? When two targets in the same superordinate category are presented successively (lag 1), only the identification-first hypothesis predicts lag 1 sparing of the second target. The results of two experiments with novel pictures and a wide range of categories supported the identification-first hypothesis and a transient-attention model of lag 1 sparing and the attentional blink (Wyble, Bowman, & Potter, 2009). PMID:20695696

  16. Breast Cancer Detection with Reduced Feature Set.

    PubMed

    Mert, Ahmet; Kılıç, Niyazi; Bilgili, Erdem; Akan, Aydin

    2015-01-01

    This paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%-40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity.

  17. Breast Cancer Detection with Reduced Feature Set

    PubMed Central

    Kılıç, Niyazi; Bilgili, Erdem

    2015-01-01

    This paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%–40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity. PMID:26078774

  18. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  19. Detecting Curvilinear Features Using Structure Tensors.

    PubMed

    Vicas, Cristian; Nedevschi, Sergiu

    2015-11-01

    Few published articles on curvilinear structures exist compared with works on detecting lines or corners with high accuracy. In medical ultrasound imaging, the structures that need to be detected appear as a collection of microstructures correlated along a path. In this paper, we investigated techniques that extract meaningful low-level information for curvilinear structures, using techniques based on structure tensor. We proposed a novel structure tensor enhancement inspired by bilateral filtering. We compared the proposed approach with five state-of-the-art curvilinear structure detectors. We tested the algorithms against simulated images with known ground truth and real images from three different domains (medical ultrasound, scanning electron microscope, and astronomy). For the real images, we employed experts to delineate the ground truth for each domain. Techniques borrowed from machine learning robustly assessed the performance of the methods (area under curve and cross validation). As a practical application, we used the proposed method to label a set of 5000 ultrasound images. We conclude that the proposed tensor-based approach outperforms the state-of-the-art methods in providing magnitude and orientation information for curvilinear structures. The evaluation methodology ensures that the employed feature-detection method will yield reproducible performance on new, unseen images. We published all the implemented methods as open-source software.

  20. A prototype feature system for feature retrieval using relationships

    USGS Publications Warehouse

    Choi, J.; Usery, E.L.

    2009-01-01

    Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.

  1. Wildfire smoke detection using temporospatial features and random forest classifiers

    NASA Astrophysics Data System (ADS)

    Ko, Byoungchul; Kwak, Joon-Young; Nam, Jae-Yeal

    2012-01-01

    We propose a wildfire smoke detection algorithm that uses temporospatial visual features and an ensemble of decision trees and random forest classifiers. In general, wildfire smoke detection is particularly important for early warning systems because smoke is usually generated before flames; in addition, smoke can be detected from a long distance owing to its diffusion characteristics. In order to detect wildfire smoke using a video camera, temporospatial characteristics such as color, wavelet coefficients, motion orientation, and a histogram of oriented gradients are extracted from the preceding 100 corresponding frames and the current keyframe. Two RFs are then trained using independent temporal and spatial feature vectors. Finally, a candidate block is declared as a smoke block if the average probability of two RFs in a smoke class is maximum. The proposed algorithm was successfully applied to various wildfire-smoke and smoke-colored videos and performed better than other related algorithms.

  2. Asymmetry features for classification of thermograms in breast cancer detection

    NASA Astrophysics Data System (ADS)

    Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz

    2016-09-01

    The computer system for an automatic interpretation of thermographic pictures created by the Br-aster devices uses image processing and machine learning algorithms. The huge set of attributes analyzed by this software includes the asymmetry measurements between corresponding images, and these features are analyzed in presented paper. The system was tested on real data and achieves accuracy comparable to other popular techniques used for breast tumour detection.

  3. Detection of breast asymmetry using anatomical features

    NASA Astrophysics Data System (ADS)

    Miller, Peter; Astley, Susan M.

    1993-07-01

    We present a new approach to the detection of breast asymmetry, an important radiological sign of cancer. The conventional approach to this problem is to search for brightness or texture differences between corresponding locations on left and right breast images. Due to the difficulty in accurately identifying corresponding locations, asymmetry cues generated in this way are insufficiently specific to be used as prompts for small and subtle abnormalities in a computer-aided diagnosis system. We have undertaken studies to discover more about the visual cues utilized by radiologists. We propose a new automatic method for detecting asymmetry based on the comparison of corresponding anatomical structures, which are identified by an automatic segmentation of breast tissue types. We describe a number of methods for comparing the shape and grey-level distribution of these regions, and we have achieved promising results by combining evidence for asymmetry.

  4. A feature-based model of symmetry detection.

    PubMed Central

    Scognamillo, Renata; Rhodes, Gillian; Morrone, Concetta; Burr, David

    2003-01-01

    Symmetry detection is important for many biological visual systems, including those of mammals, insects and birds. We constructed a symmetry-detection algorithm with two stages: location of the visually salient features of the image, then evaluating the symmetry of these features over a long range, by means of a simple Gaussian filter. The algorithm detects the axis of maximum symmetry for human faces (or any arbitrary image) and calculates the magnitude of the asymmetry. We have evaluated the algorithm on the dataset of Rhodes et al. (1998 Psychonom. Bull. Rev. 5, 659-669) and found that the algorithm is able to discriminate small variations of symmetry created by computer-manipulating the symmetry levels in individual faces, and that the values measured by the algorithm correlate well with human psycho-physical symmetry ratings. PMID:12965001

  5. Automated detection of pulmonary nodules from low-dose computed tomography scans using a two-stage classification system based on local image features

    NASA Astrophysics Data System (ADS)

    Murphy, K.; Schilham, A.; Gietema, H.; Prokop, M.; van Ginneken, B.

    2007-03-01

    The automated detection of lung nodules in CT scans is an important problem in computer-aided diagnosis. In this paper an approach to nodule candidate detection is presented which utilises the local image features of shape index and curvedness. False-positive candidates are removed by means of a two-step approach using kNN classification. The kNN classifiers are trained using features of the image intensity gradients and grey-values in addition to further measures of shape index and curvedness profiles in the candidate regions. The training set consisted of data from 698 scans while the independent test set comprised a further 142 images. At 84% sensitivity an average of 8.2 false-positive detections per scan were observed.

  6. Lean histogram of oriented gradients features for effective eye detection

    NASA Astrophysics Data System (ADS)

    Sharma, Riti; Savakis, Andreas

    2015-11-01

    Reliable object detection is very important in computer vision and robotics applications. The histogram of oriented gradients (HOG) is established as one of the most popular hand-crafted features, which along with support vector machine (SVM) classification provides excellent performance for object recognition. We investigate dimensionality deduction on HOG features in combination with SVM classifiers to obtain efficient feature representation and improved classification performance. In addition to lean HOG features, we explore descriptors resulting from dimensionality reduction on histograms of binary descriptors. We consider three-dimensionality reduction techniques: standard principal component analysis, random projections, a computationally efficient linear mapping that is data independent, and locality preserving projections (LPP), which learns the manifold structure of the data. Our methods focus on the application of eye detection and were tested on an eye database created using the BioID and FERET face databases. Our results indicate that manifold learning is beneficial to classification utilizing HOG features. To demonstrate the broader usefulness of lean HOG features for object class recognition, we evaluated our system's classification performance on the CalTech-101 dataset with favorable outcomes.

  7. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  8. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  9. Structure damage detection based on random forest recursive feature elimination

    NASA Astrophysics Data System (ADS)

    Zhou, Qifeng; Zhou, Hao; Zhou, Qingqing; Yang, Fan; Luo, Linkai

    2014-05-01

    Feature extraction is a key former step in structural damage detection. In this paper, a structural damage detection method based on wavelet packet decomposition (WPD) and random forest recursive feature elimination (RF-RFE) is proposed. In order to gain the most effective feature subset and to improve the identification accuracy a two-stage feature selection method is adopted after WPD. First, the damage features are sorted according to original random forest variable importance analysis. Second, using RF-RFE to eliminate the least important feature and reorder the feature list each time, then get the new feature importance sequence. Finally, k-nearest neighbor (KNN) algorithm, as a benchmark classifier, is used to evaluate the extracted feature subset. A four-storey steel shear building model is chosen as an example in method verification. The experimental results show that using the fewer features got from proposed method can achieve higher identification accuracy and reduce the detection time cost.

  10. A Robust Shape Reconstruction Method for Facial Feature Point Detection.

    PubMed

    Tan, Shuqiu; Chen, Dongyi; Guo, Chenggang; Huang, Zhiqi

    2017-01-01

    Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  11. Like-feature detection in geo-spatial sources

    NASA Astrophysics Data System (ADS)

    Samal, Ashok; Seth, Sharad; Cueto, Kevin

    2001-06-01

    The emergence of a new generation of satellites, increased dependence on computer-aided cartography, and conversion of paper-based maps along with the universal acceptance of the World Wide Web as a distribution medium, has resulted in widespread availability of geospatial data. Geospatial information systems have the potential to use this wealth of data to provide high-level decision support in important military, agricultural, urban planning, transportation and environmental monitoring applications. There are many challenges to take full advantage of this geo-spatial data collection. The first step in integration is to determine the correspondence between features in different sources. This problem, called like-feature detection is addressed in this paper. In addition to using the individual attributes of features, we use the geographic context abstracted as proximity graphs, to improve the matching process. The proximity graph models the surroundings of a feature in a source and provides a measure of similarity between features in two sources. Pair-wise similarity between features of two sources is then extended to multiple sources in a graph- theoretic framework. Experiments conducted to demonstrate the viability of our approach using a variety of data sources including satellite imagery, maps, and gazetteers show that the approach is effective.

  12. P300 Detection Based on EEG Shape Features

    PubMed Central

    Alvarado-González, Montserrat; Garduño, Edgar; Bribiesca, Ernesto; Yáñez-Suárez, Oscar; Medina-Bañuelos, Verónica

    2016-01-01

    We present a novel approach to describe a P300 by a shape-feature vector, which offers several advantages over the feature vector used by the BCI2000 system. Additionally, we present a calibration algorithm that reduces the dimensionality of the shape-feature vector, the number of trials, and the electrodes needed by a Brain Computer Interface to accurately detect P300s; we also define a method to find a template that best represents, for a given electrode, the subject's P300 based on his/her own acquired signals. Our experiments with 21 subjects showed that the SWLDA's performance using our shape-feature vector was 93%, that is, 10% higher than the one obtained with BCI2000-feature's vector. The shape-feature vector is 34-dimensional for every electrode; however, it is possible to significantly reduce its dimensionality while keeping a high sensitivity. The validation of the calibration algorithm showed an averaged area under the ROC (AUROC) curve of 0.88. Also, most of the subjects needed less than 15 trials to have an AUROC superior to 0.8. Finally, we found that the electrode C4 also leads to better classification. PMID:26881010

  13. Regularized feature reconstruction for spatio-temporal saliency detection.

    PubMed

    Ren, Zhixiang; Gao, Shenghua; Chia, Liang-Tien; Rajan, Deepu

    2013-08-01

    Multimedia applications such as image or video retrieval, copy detection, and so forth can benefit from saliency detection, which is essentially a method to identify areas in images and videos that capture the attention of the human visual system. In this paper, we propose a new spatio-temporal saliency detection framework on the basis of regularized feature reconstruction. Specifically, for video saliency detection, both the temporal and spatial saliency detection are considered. For temporal saliency, we model the movement of the target patch as a reconstruction process using the patches in neighboring frames. A Laplacian smoothing term is introduced to model the coherent motion trajectories. With psychological findings that abrupt stimulus could cause a rapid and involuntary deployment of attention, our temporal model combines the reconstruction error, regularizer, and local trajectory contrast to measure the temporal saliency. For spatial saliency, a similar sparse reconstruction process is adopted to capture the regions with high center-surround contrast. Finally, the temporal saliency and spatial saliency are combined together to favor salient regions with high confidence for video saliency detection. We also apply the spatial saliency part of the spatio-temporal model to image saliency detection. Experimental results on a human fixation video dataset and an image saliency detection dataset show that our method achieves the best performance over several state-of-the-art approaches.

  14. Feature Selection and Pedestrian Detection Based on Sparse Representation

    PubMed Central

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony. PMID:26295480

  15. Feature Selection and Pedestrian Detection Based on Sparse Representation.

    PubMed

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.

  16. Face liveness detection using shearlet-based feature descriptors

    NASA Astrophysics Data System (ADS)

    Feng, Litong; Po, Lai-Man; Li, Yuming; Yuan, Fang

    2016-07-01

    Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.

  17. Neonatal Jaundice Detection System.

    PubMed

    Aydın, Mustafa; Hardalaç, Fırat; Ural, Berkan; Karap, Serhat

    2016-07-01

    Neonatal jaundice is a common condition that occurs in newborn infants in the first week of life. Today, techniques used for detection are required blood samples and other clinical testing with special equipment. The aim of this study is creating a non-invasive system to control and to detect the jaundice periodically and helping doctors for early diagnosis. In this work, first, a patient group which is consisted from jaundiced babies and a control group which is consisted from healthy babies are prepared, then between 24 and 48 h after birth, 40 jaundiced and 40 healthy newborns are chosen. Second, advanced image processing techniques are used on the images which are taken with a standard smartphone and the color calibration card. Segmentation, pixel similarity and white balancing methods are used as image processing techniques and RGB values and pixels' important information are obtained exactly. Third, during feature extraction stage, with using colormap transformations and feature calculation, comparisons are done in RGB plane between color change values and the 8-color calibration card which is specially designed. Finally, in the bilirubin level estimation stage, kNN and SVR machine learning regressions are used on the dataset which are obtained from feature extraction. At the end of the process, when the control group is based on for comparisons, jaundice is succesfully detected for 40 jaundiced infants and the success rate is 85 %. Obtained bilirubin estimation results are consisted with bilirubin results which are obtained from the standard blood test and the compliance rate is 85 %.

  18. Voronoi poles-based saliency feature detection from point clouds

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Wei, Ning; Dong, Fangmin; Yang, Yuanqin

    2016-12-01

    In this paper, we represent a novel algorithm for point cloud feature detection. Firstly, the algorithm estimates the local feature for each sample point by computing the ratio of the distance from the inner voronoi pole and the outer voronoi pole to the surface. Then the surface global saliency feature is detected by adding the results of the difference of Gaussian for local feature under different scales. Compared with the state of the art methods, our algorithm has higher computing efficiency and more accurate feature detection for sharp edge. The detected saliency features are applied as the weights for surface mesh simplification. The numerical results for mesh simplification show that our method keeps the more details of key features than the traditional methods.

  19. Multispectral image feature fusion for detecting land mines

    SciTech Connect

    Clark, G.A.; Fields, D.J.; Sherwood, R.J.

    1994-11-15

    Our system fuses information contained in registered images from multiple sensors to reduce the effect of clutter and improve the the ability to detect surface and buried land mines. The sensor suite currently consists if a camera that acquires images in sixible wavelength bands, du, dual-band infrared (5 micron and 10 micron) and ground penetrating radar. Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separate in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, holes made by animals and natural processes, etc.) and some artifacts.

  20. Land cover change detection using a GIS-guided, feature-based classification of Landsat thematic mapper data. [Geographic Information System

    NASA Technical Reports Server (NTRS)

    Enslin, William R.; Ton, Jezching; Jain, Anil

    1987-01-01

    Landsat TM data were combined with land cover and planimetric data layers contained in the State of Michigan's geographic information system (GIS) to identify changes in forestlands, specifically new oil/gas wells. A GIS-guided feature-based classification method was developed. The regions extracted by the best image band/operator combination were studied using a set of rules based on the characteristics of the GIS oil/gas pads.

  1. Land cover change detection using a GIS-guided, feature-based classification of Landsat thematic mapper data. [Geographic Information System

    NASA Technical Reports Server (NTRS)

    Enslin, William R.; Ton, Jezching; Jain, Anil

    1987-01-01

    Landsat TM data were combined with land cover and planimetric data layers contained in the State of Michigan's geographic information system (GIS) to identify changes in forestlands, specifically new oil/gas wells. A GIS-guided feature-based classification method was developed. The regions extracted by the best image band/operator combination were studied using a set of rules based on the characteristics of the GIS oil/gas pads.

  2. Gamma ray spectroscopy features for detection of small explosives

    NASA Astrophysics Data System (ADS)

    Gozani, T.; Elsalim, M.; Ingle, M.; Phillips, E.

    2003-06-01

    Thermal neutron capture techniques, as embodied in Thermal Neutron Analysis (TNA ®) devices, provide a powerful tool for counter terrorism and environmental demilitarization. The common objective in both applications is the detection of explosives via their unique elemental constituents. In TNA, the primary explosive signature is the nitrogen concentration. Hydrogen is a secondary one. However, useful tertiary signatures exist in the full gamma-spectrum reflecting the explosive material itself and its surrounding. All these signatures, or spectra features, are derived from the analysis of the gamma-ray spectra collected by NaI detectors with a good energy resolution. This approach to the generation of explosive decision algorithms was incorporated in Ancore's Small Parcel Explosive Detection System (SPEDS) and other systems. The application described in this paper was the inspection airline passenger carry-on items such as laptop computers, briefcases, liquid bottles, etc., for the presence of small explosives. The feature analysis and the resulting excellent receiver operator characteristics are shown in the paper. The SPEDS was able to automatically detect less than 100 g of explosives in carry-on items, with a low false alarm rate.

  3. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  4. Deep PDF parsing to extract features for detecting embedded malware.

    SciTech Connect

    Munson, Miles Arthur; Cross, Jesse S.

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout

  5. Computer detection of features in biomedical images

    SciTech Connect

    Not Available

    1993-05-01

    Two projects under way at LLNL require the detection of spots in biomedical images: physical mapping of DNA in chromosomes, for the Human Genome Project, and finding microcalcifications, which may be an early sign of breast cancer, in mammograms. We have developed several computational algorithms to analyze these two kinds of images. The two detection methods described here use morphological imaging techniques to obtain size, shape, texture, and other information inherent in am image without trying to fit the data to a rigid mathematical model. The spot-finding algorithm has been incorporated into a DNA mapping tool for chromosomes in the metaphase of cell division; it is heavily used by researchers at the University of California, San Francisco, and may soon be distributed to other universities. Our computerized mammography work is in progress; when completed, we plan to transfer the technology to a medical imaging company.

  6. Detection of Signal Signatures of Cartographic Features,

    DTIC Science & Technology

    1980-01-17

    straight line roads, and rectangular objects from aerial photo- graphs. The method uses the Walsh transform processing technique, and was...32-element solid state sensor array to convert aerial imagery into an electronic signal which was processed in a minicomputer to yield Walsh...brevity. The overall results indicate that the Walsh transform processing technique is quite successful for detecting well- defined linear man-made

  7. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  8. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  9. Detection and analysis of diamond fingerprinting feature and its application

    NASA Astrophysics Data System (ADS)

    Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  10. Stereo vision-based pedestrian detection using multiple features for automotive application

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Hee; Kim, Dongyoung

    2015-12-01

    In this paper, we propose a stereo vision-based pedestrian detection using multiple features for automotive application. The disparity map from stereo vision system and multiple features are utilized to enhance the pedestrian detection performance. Because the disparity map offers us 3D information, which enable to detect obstacles easily and reduce the overall detection time by removing unnecessary backgrounds. The road feature is extracted from the v-disparity map calculated by the disparity map. The road feature is a decision criterion to determine the presence or absence of obstacles on the road. The obstacle detection is performed by comparing the road feature with all columns in the disparity. The result of obstacle detection is segmented by the bird's-eye-view mapping to separate the obstacle area which has multiple objects into single obstacle area. The histogram-based clustering is performed in the bird's-eye-view map. Each segmented result is verified by the classifier with the training model. To enhance the pedestrian recognition performance, multiple features such as HOG, CSS, symmetry features are utilized. In particular, the symmetry feature is proper to represent the pedestrian standing or walking. The block-based symmetry feature is utilized to minimize the type of image and the best feature among the three symmetry features of H-S-V image is selected as the symmetry feature in each pixel. ETH database is utilized to verify our pedestrian detection algorithm.

  11. Aberration features in directional dark matter detection

    SciTech Connect

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu

    2012-08-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation.

  12. Automatic detection of clustered microcalcifications in digital mammograms based on wavelet features and neural network classification

    NASA Astrophysics Data System (ADS)

    Yu, Songyang; Guan, Ling; Brown, Stephen

    1998-06-01

    The appearance of clustered microcalcifications in mammogram films is one of the important early signs of breast cancer. This paper presents a new image processing system for the automatic detection of clustered microcalcifications in digitized mammogram films. The detection method uses wavelet features and feed forward neural network to find possible microcalcifications pixels and a set of features to locate individual microcalcifications.

  13. PCA-HOG symmetrical feature based diseased cell detection

    NASA Astrophysics Data System (ADS)

    Wan, Min-jie

    2016-04-01

    A histogram of oriented gradient (HOG) feature is applied to the field of diseased cell detection, which can detect diseased cells in high resolution tissue images rapidly, accurately and efficiently. Firstly, motivated by symmetrical cellular forms, a new HOG symmetrical feature based on the traditional HOG feature is proposed to meet the condition of cell detection. Secondly, considering the high feature dimension of traditional HOG feature leads to plenty of memory resources and long runtime in practical applications, a classical dimension reduction method called principal component analysis (PCA) is used to reduce the dimension of high-dimensional HOG descriptor. Because of that, computational speed is increased greatly, and the accuracy of detection can be controlled in a proper range at the same time. Thirdly, support vector machine (SVM) classifier is trained with PCA-HOG symmetrical features proposed above. At last, practical tissue images is detected and analyzed by SVM classifier. In order to verify the effectiveness of this new algorithm, it is practically applied to conduct diseased cell detection which takes 200 pieces of H&E (hematoxylin & eosin) high resolution staining histopathological images collected from 20 breast cancer patients as a sample. The experiment shows that the average processing rate can be 25 frames per second and the detection accuracy can be 92.1%.

  14. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  15. Interior intrusion detection systems

    SciTech Connect

    Rodriguez, J.R.; Matter, J.C. ); Dry, B. )

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  16. Detecting Image Splicing Using Merged Features in Chroma Space

    PubMed Central

    Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature. PMID:24574877

  17. Detecting image splicing using merged features in chroma space.

    PubMed

    Xu, Bo; Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature.

  18. A Robust Shape Reconstruction Method for Facial Feature Point Detection

    PubMed Central

    Huang, Zhiqi

    2017-01-01

    Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods. PMID:28316615

  19. Robust feature detection for 3D object recognition and matching

    NASA Astrophysics Data System (ADS)

    Pankanti, Sharath; Dorai, Chitra; Jain, Anil K.

    1993-06-01

    Salient surface features play a central role in tasks related to 3-D object recognition and matching. There is a large body of psychophysical evidence demonstrating the perceptual significance of surface features such as local minima of principal curvatures in the decomposition of objects into a hierarchy of parts. Many recognition strategies employed in machine vision also directly use features derived from surface properties for matching. Hence, it is important to develop techniques that detect surface features reliably. Our proposed scheme consists of (1) a preprocessing stage, (2) a feature detection stage, and (3) a feature integration stage. The preprocessing step selectively smoothes out noise in the depth data without degrading salient surface details and permits reliable local estimation of the surface features. The feature detection stage detects both edge-based and region-based features, of which many are derived from curvature estimates. The third stage is responsible for integrating the information provided by the individual feature detectors. This stage also completes the partial boundaries provided by the individual feature detectors, using proximity and continuity principles of Gestalt. All our algorithms use local support and, therefore, are inherently parallelizable. We demonstrate the efficacy and robustness of our approach by applying it to two diverse domains of applications: (1) segmentation of objects into volumetric primitives and (2) detection of salient contours on free-form surfaces. We have tested our algorithms on a number of real range images with varying degrees of noise and missing data due to self-occlusion. The preliminary results are very encouraging.

  20. Line Length: An Efficient Feature for Seizure Onset Detection

    DTIC Science & Technology

    2007-11-02

    feature was evaluated over a total of 1,215 hours of intracranial EEG signal from 10 patients. Results confirmed this feature as being useful for...of 111 seizures analyzed of which 23 were subclinical. Keywords – seizure detection, fractal dimension . I. INTRODUCTION There is a lot of...Olsen [4], and later referred to as curve length in [3]. This feature can be derived from the fractal dimension by Katz [5] studied in [6]-[7]; however

  1. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  2. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  3. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  4. Feature Integration Theory Revisited: Dissociating Feature Detection and Attentional Guidance in Visual Search

    ERIC Educational Resources Information Center

    Chan, Louis K. H.; Hayward, William G.

    2009-01-01

    In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed…

  5. Feature Integration Theory Revisited: Dissociating Feature Detection and Attentional Guidance in Visual Search

    ERIC Educational Resources Information Center

    Chan, Louis K. H.; Hayward, William G.

    2009-01-01

    In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed…

  6. Study of Prominence Detection Based on Various Phone-Specific Features

    NASA Astrophysics Data System (ADS)

    Kim, Sung Soo; Han, Chang Woo; Kim, Nam Soo

    In this letter, we present useful features accounting for pronunciation prominence and propose a classification technique for prominence detection. A set of phone-specific features are extracted based on a forced alignment of the test pronunciation provided by a speech recognition system. These features are then applied to the traditional classifiers such as the support vector machine (SVM), artificial neural network (ANN) and adaptive boosting (Adaboost) for detecting the place of prominence.

  7. Picture Detection in Rapid Serial Visual Presentation: Features or Identity?

    ERIC Educational Resources Information Center

    Potter, Mary C.; Wyble, Brad; Pandav, Rijuta; Olejarczyk, Jennifer

    2010-01-01

    A pictured object can be readily detected in a rapid serial visual presentation sequence when the target is specified by a superordinate category name such as "animal" or "vehicle". Are category features the initial basis for detection, with identification of the specific object occurring in a second stage (Evans &…

  8. New approach in features extraction for EEG signal detection.

    PubMed

    Guerrero-Mosquera, Carlos; Vazquez, Angel Navia

    2009-01-01

    This paper describes a new approach in features extraction using time-frequency distributions (TFDs) for detecting epileptic seizures to identify abnormalities in electroencephalogram (EEG). Particularly, the method extracts features using the Smoothed Pseudo Wigner-Ville distribution combined with the McAulay-Quatieri sinusoidal model and identifies abnormal neural discharges. We propose a new feature based on the length of the track that, combined with energy and frequency features, allows to isolate a continuous energy trace from another oscillations when an epileptic seizure is beginning. We evaluate our approach using data consisting of 16 different seizures from 6 epileptic patients. The results show that our extraction method is a suitable approach for automatic seizure detection, and opens the possibility of formulating new criteria to detect and analyze abnormal EEGs.

  9. Feature quantification and abnormal detection on cervical squamous epithelial cells.

    PubMed

    Zhao, Mingzhu; Chen, Lei; Bian, Linjie; Zhang, Jianhua; Yao, Chunyan; Zhang, Jianwei

    2015-01-01

    Feature analysis and classification detection of abnormal cells from images for pathological analysis are an important issue for the realization of computer assisted disease diagnosis. This paper studies a method for cervical squamous epithelial cells. Based on cervical cytological classification standard and expert diagnostic experience, expressive descriptors are extracted according to morphology, color, and texture features of cervical scales epithelial cells. Further, quantificational descriptors related to cytopathology are derived as well, including morphological difference degree, cell hyperkeratosis, and deeply stained degree. The relationship between quantified value and pathological feature can be established by these descriptors. Finally, an effective method is proposed for detecting abnormal cells based on feature quantification. Integrated with clinical experience, the method can realize fast abnormal cell detection and preliminary cell classification.

  10. Moment feature based fast feature extraction algorithm for moving object detection using aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2015-01-01

    Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.

  11. Genetic Programming of Conventional Features to Detect Seizure Precursors

    PubMed Central

    Smart, Otis; Firpi, Hiram; Vachtsevanos, George

    2008-01-01

    This paper presents an application of genetic programming (GP) to optimally select and fuse conventional features (C-features) for the detection of epileptic waveforms within intracranial electroencephalogram (IEEG) recordings that precede seizures, known as seizure-precursors. Evidence suggests that seizure-precursors may localize regions important to seizure generation on the IEEG and epilepsy treatment. However, current methods to detect epileptic precursors lack a sound approach to automatically select and combine C-features that best distinguish epileptic events from background, relying on visual review predominantly. This work suggests GP as an optimal alternative to create a single feature after evaluating the performance of a binary detector that uses: 1) genetically programmed features; 2) features selected via GP; 3) forward sequentially selected features; and 4) visually selected features. Results demonstrate that a detector with a genetically programmed feature outperforms the other three approaches, achieving over 78.5% positive predictive value, 83.5% sensitivity, and 93% specificity at the 95% level of confidence. PMID:19050744

  12. Genetic Programming of Conventional Features to Detect Seizure Precursors.

    PubMed

    Smart, Otis; Firpi, Hiram; Vachtsevanos, George

    2007-12-01

    This paper presents an application of genetic programming (GP) to optimally select and fuse conventional features (C-features) for the detection of epileptic waveforms within intracranial electroencephalogram (IEEG) recordings that precede seizures, known as seizure-precursors. Evidence suggests that seizure-precursors may localize regions important to seizure generation on the IEEG and epilepsy treatment. However, current methods to detect epileptic precursors lack a sound approach to automatically select and combine C-features that best distinguish epileptic events from background, relying on visual review predominantly. This work suggests GP as an optimal alternative to create a single feature after evaluating the performance of a binary detector that uses: 1) genetically programmed features; 2) features selected via GP; 3) forward sequentially selected features; and 4) visually selected features. Results demonstrate that a detector with a genetically programmed feature outperforms the other three approaches, achieving over 78.5% positive predictive value, 83.5% sensitivity, and 93% specificity at the 95% level of confidence.

  13. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler

    2013-07-01

    Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

  14. Feature Parameter Optimization for Seizure Detection/Prediction

    DTIC Science & Technology

    2007-11-02

    the window length for the feature under consideration. Figure 4 illustrates the variation of the k-factor for the fractal dimension feature, as...r Figure 4: K-Factor from the Fractal Dimension for Different Window Sizes Typically, the window sizes that maximized the k-factor were...Esteller R., Ph.D dissertation “Detection of seizure onset in epileptic patients from intracranial EEG signals ”, Georgia Institute of Technology

  15. Drowsiness detection during different times of day using multiple features.

    PubMed

    Sahayadhas, Arun; Sundaraj, Kenneth; Murugappan, Murugappan

    2013-06-01

    Driver drowsiness has been one of the major causes of road accidents that lead to severe trauma, such as physical injury, death, and economic loss, which highlights the need to develop a system that can alert drivers of their drowsy state prior to accidents. Researchers have therefore attempted to develop systems that can determine driver drowsiness using the following four measures: (1) subjective ratings from drivers, (2) vehicle-based measures, (3) behavioral measures and (4) physiological measures. In this study, we analyzed the various factors that contribute towards drowsiness. A total of 15 male subjects were asked to drive for 2 h at three different times of the day (00:00-02:00, 03:00-05:00 and 15:00-17:00 h) when the circadian rhythm is low. The less intrusive physiological signal measurements, ECG and EMG, are analyzed during this driving task. Statistically significant differences in the features of ECG and sEMG signals were observed between the alert and drowsy states of the drivers during different times of day. In the future, these physiological measures can be fused with vision-based measures for the development of an efficient drowsiness detection system.

  16. Life detection systems.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1972-01-01

    Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.

  17. Solar Physics Automated Feature Detection: Progress and Scientific Return

    NASA Astrophysics Data System (ADS)

    Martens, P. C.; SDO Feature Finding Team

    2011-12-01

    The SDO Feature Finding Team (FFT) has been implementing 16 feature finding modules for the last two and a half years. These modules have been designed to analyze the incoming stream of SDO data in near-real-time. Several modules are in regular operation now, most others are reaching that point. Our modules detect flares, filaments, dimming regions, sigmoids, emerging flux, bright points, jets, oscillations, active regions, coronal holes, and several other solar features. We are also developing a general trainable feature detection module, which can be applied to detect any phenomenon. Automated feature recognition has several advantages over the same by humans: first, and most importantly, much larger amounts of images can be analyzed by machines; second, the codes will apply consistent criteria for the detection of phenomena, much more so than humans. Of course the second point implies that the detection criteria must be carefully calibrated, otherwise the outcome will be consistent, but consistently wrong. Examples of the scientific potential unleashed our project are: i) Draw a butterfly diagram for Active Regions, ii) Find all filaments that coincide with sigmoids, and then correlate sigmoid handedness with filament chirality, iii) Correlate EUV jets with small scale flux emergence in coronal holes, iv) Draw polarity inversion line maps with regions of high shear and large magnetic field gradients overlayed, to pinpoint potential flaring regions. Then correlate with actual flare occurrence. All of these tasks will be accomplished with great ease; the power of this method is limited merely by the imagination of the researcher. In addition our modules provide space-weather alerts for flares, dimmings (proxies for eruptions), and flux emergence. In my presentation I will present an overview of the output from our feature detection codes, as well as first results of scientific analysis from the metadata.

  18. Saliency Detection Using Sparse and Nonlinear Feature Representation

    PubMed Central

    Zhao, Qingjie; Manzoor, Muhammad Farhan; Ishaq Khan, Saqib

    2014-01-01

    An important aspect of visual saliency detection is how features that form an input image are represented. A popular theory supports sparse feature representation, an image being represented with a basis dictionary having sparse weighting coefficient. Another method uses a nonlinear combination of image features for representation. In our work, we combine the two methods and propose a scheme that takes advantage of both sparse and nonlinear feature representation. To this end, we use independent component analysis (ICA) and covariant matrices, respectively. To compute saliency, we use a biologically plausible center surround difference (CSD) mechanism. Our sparse features are adaptive in nature; the ICA basis function are learnt at every image representation, rather than being fixed. We show that Adaptive Sparse Features when used with a CSD mechanism yield better results compared to fixed sparse representations. We also show that covariant matrices consisting of nonlinear integration of color information alone are sufficient to efficiently estimate saliency from an image. The proposed dual representation scheme is then evaluated against human eye fixation prediction, response to psychological patterns, and salient object detection on well-known datasets. We conclude that having two forms of representation compliments one another and results in better saliency detection. PMID:24895644

  19. Multiscale differential fractal feature with application to target detection

    NASA Astrophysics Data System (ADS)

    Shi, Zelin; Wei, Ying; Huang, Shabai

    2004-07-01

    A multiscale differential fractal feature of an image is proposed and a small target detection method from complex nature clutter is presented. Considering the speciality that the fractal features of man-made objects change much more violently than that of nature's when the scale is varied, fractal features at multiple scales used for distinguishing man-made target from nature clutter should have more advantages over standard fractal dimensions. Multiscale differential fractal dimensions are deduced from typical fractal model and standard covering-blanket method is improved and used to estimate multiscale fractal dimensions. A multiscale differential fractal feature is defined as the variation of fractal dimensions between two scales at a rational scale range. It can stand out the fractal feature of man-made object from natural clutters much better than the fractal dimension by standard covering-blanket method. Meanwhile, the calculation and the storage amount are reduced greatly, they are 4/M and 2/M that of the standard covering-blanket method respectively (M is scale). In the image of multiscale differential fractal feature, local gray histogram statistical method is used for target detection. Experiment results indicate that this method is suitable for both kinds background of land and sea. It also can be appropriate in both kinds of infrared and TV images, and can detect small targets from a single frame correctly. This method is with high speed and is easy to be implemented.

  20. Cascade Classification with Adaptive Feature Extraction for Arrhythmia Detection.

    PubMed

    Park, Juyoung; Kang, Mingon; Gao, Jean; Kim, Younghoon; Kang, Kyungtae

    2017-01-01

    Detecting arrhythmia from ECG data is now feasible on mobile devices, but in this environment it is necessary to trade computational efficiency against accuracy. We propose an adaptive strategy for feature extraction that only considers normalized beat morphology features when running in a resource-constrained environment; but in a high-performance environment it takes account of a wider range of ECG features. This process is augmented by a cascaded random forest classifier. Experiments on data from the MIT-BIH Arrhythmia Database showed classification accuracies from 96.59% to 98.51%, which are comparable to state-of-the art methods.

  1. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  2. Video Anomaly Detection with Compact Feature Sets for Online Performance.

    PubMed

    Leyva, Roberto; Sanchez, Victor; Li, Chang-Tsun

    2017-04-18

    Over the past decade, video anomaly detection has been explored with remarkable results. However, research on methodologies suitable for online performance is still very limited. In this paper, we present an online framework for video anomaly detection. The key aspect of our framework is a compact set of highly descriptive features, which is extracted from a novel cell structure that helps to define support regions in a coarse-to-fine fashion. Based on the scene's activity, only a limited number of support regions are processed, thus limiting the size of the feature set. Specifically, we use foreground occupancy and optical flow features. The framework uses an inference mechanism that evaluates the compact feature set via Gaussian Mixture Models, Markov Chains and Bag-of-Words in order to detect abnormal events. Our framework also considers the joint response of the models in the local spatio-temporal neighborhood to increase detection accuracy. We test our framework on popular existing datasets and on a new dataset comprising a wide variety of realistic videos captured by surveillance cameras. This particular dataset includes surveillance videos depicting criminal activities, car accidents and other dangerous situations. Evaluation results show that our framework outperforms other online methods and attains a very competitive detection performance compared to state-of-the-art non-online methods.

  3. Idaho Explosive Detection System

    ScienceCinema

    Klinger, Jeff

    2016-07-12

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  4. Idaho Explosive Detection System

    SciTech Connect

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  5. Unified Saliency Detection Model Using Color and Texture Features.

    PubMed

    Zhang, Libo; Yang, Lin; Luo, Tiejian

    2016-01-01

    Saliency detection attracted attention of many researchers and had become a very active area of research. Recently, many saliency detection models have been proposed and achieved excellent performance in various fields. However, most of these models only consider low-level features. This paper proposes a novel saliency detection model using both color and texture features and incorporating higher-level priors. The SLIC superpixel algorithm is applied to form an over-segmentation of the image. Color saliency map and texture saliency map are calculated based on the region contrast method and adaptive weight. Higher-level priors including location prior and color prior are incorporated into the model to achieve a better performance and full resolution saliency map is obtained by using the up-sampling method. Experimental results on three datasets demonstrate that the proposed saliency detection model outperforms the state-of-the-art models.

  6. Unified Saliency Detection Model Using Color and Texture Features

    PubMed Central

    Luo, Tiejian

    2016-01-01

    Saliency detection attracted attention of many researchers and had become a very active area of research. Recently, many saliency detection models have been proposed and achieved excellent performance in various fields. However, most of these models only consider low-level features. This paper proposes a novel saliency detection model using both color and texture features and incorporating higher-level priors. The SLIC superpixel algorithm is applied to form an over-segmentation of the image. Color saliency map and texture saliency map are calculated based on the region contrast method and adaptive weight. Higher-level priors including location prior and color prior are incorporated into the model to achieve a better performance and full resolution saliency map is obtained by using the up-sampling method. Experimental results on three datasets demonstrate that the proposed saliency detection model outperforms the state-of-the-art models. PMID:26889826

  7. Adaptive skin segmentation via feature-based face detection

    NASA Astrophysics Data System (ADS)

    Taylor, Michael J.; Morris, Tim

    2014-05-01

    Variations in illumination can have significant effects on the apparent colour of skin, which can be damaging to the efficacy of any colour-based segmentation approach. We attempt to overcome this issue by presenting a new adaptive approach, capable of generating skin colour models at run-time. Our approach adopts a Viola-Jones feature-based face detector, in a moderate-recall, high-precision configuration, to sample faces within an image, with an emphasis on avoiding potentially detrimental false positives. From these samples, we extract a set of pixels that are likely to be from skin regions, filter them according to their relative luma values in an attempt to eliminate typical non-skin facial features (eyes, mouths, nostrils, etc.), and hence establish a set of pixels that we can be confident represent skin. Using this representative set, we train a unimodal Gaussian function to model the skin colour in the given image in the normalised rg colour space - a combination of modelling approach and colour space that benefits us in a number of ways. A generated function can subsequently be applied to every pixel in the given image, and, hence, the probability that any given pixel represents skin can be determined. Segmentation of the skin, therefore, can be as simple as applying a binary threshold to the calculated probabilities. In this paper, we touch upon a number of existing approaches, describe the methods behind our new system, present the results of its application to arbitrary images of people with detectable faces, which we have found to be extremely encouraging, and investigate its potential to be used as part of real-time systems.

  8. Palmprint Based Verification System Using SURF Features

    NASA Astrophysics Data System (ADS)

    Srinivas, Badrinath G.; Gupta, Phalguni

    This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.

  9. [Special features of systemic sclerosis in men].

    PubMed

    Ben Dhaou, Besma; Derbali, Fatma; Aydi, Zohra; Baili, Lilia; Boussema, Fatma; Ketari, Sonia; Kochbati, Samir; Cherif, Ouahida; Rokbani, Lilia

    2012-01-01

    Systemic sclerosis (SS) is a generalized disorder of connective tissue and microvasculature characterized by tissue fibrosis and obliteration of the vessels. Several features of systemic scleroderma in men are discussed in the literature. To investigate the initial clinical features, evolution and prognosis of systemic sclerosis in men. Patients with systemic sclerosis based on ACR's criteria were included. In this retrospective study we compared a cohort of men to a cohort of women, diagnosed between 2000 and 2010 in department of internal medicine. Fifty four patients were included amongst which nine men. The mean follow-up duration was 39.5 months. A higher proportion of cardiac, renal and lung involvement were noted at diagnosis Localized cutaneous sclerosis was predominant in men. This work has highlighted several features of systemic sclerosis encountered in men. These results warrant confirmation by analyzing a larger population.

  10. Automatic infection detection system.

    PubMed

    Granberg, Ove; Bellika, Johan Gustav; Arsand, Eirik; Hartvigsen, Gunnar

    2007-01-01

    An infected person may be contagious already before the first symptoms appear. This person can, in the period of disease evolution, infect several associated citizens before consulting a general practitioner (GP). Early detection of contagion is therefore important to prevent spreading of diseases. The Automatic Infection Detection (AID) System faces this problem through investigating the hypothesis that the blood glucose (BG) level increases when a person is infected. The first objective of the prototyped version of the AID system was to identify possible BG elevations in the incubation time that could be related to the spread of infectious diseases. To do this, we monitored two groups of people, with and without diabetes mellitus. The AID system analyzed the results and we were able to detect two cases of infection during the study period. The time of detection occurred simultaneous or near the time of onset of symptoms. The detection did not occur earlier for a number of reasons. The most likely one is that the evolution process of an infectious disease is both complicated and involves the immune system and several organs in the body. The investigation with regard to isolating the key relations is therefore considered as a very complex study. Nevertheless, the AID system managed to detect the infection much earlier than what is possible with today's early warning systems for infectious diseases.

  11. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  12. Selective detection of linear features in geological remote sensing data

    NASA Astrophysics Data System (ADS)

    Parikh, Jo Ann; DaPonte, John S.; DiNicola, Emily G.; Pedersen, Robert A.

    1992-09-01

    One of the major problems in the development of computer-assisted systems for geologic mapping is how to individualize the system to meet user needs. Ideally, the system should be responsive to specifications of desired types of output structures. Also, the system should be able to incorporate the user's knowledge of regional characteristics into the feature extraction/selection and classification components. Automatic techniques for classification of remote sensing data typically require relatively large, labeled training sets which are well- organized with respect to the desired mapping between input and output patterns. The present paper focuses on the feature extraction/selection component of the system. Kohonen self- organizing feature maps in conjunction with image processing procedures for linear feature extraction are used for explorative data analysis, feature selection, and construction of exemplar patterns. The results of training Kohonen feature maps with different pattern sets and different feature combinations provide insight into the nature of pattern relationships which enables the user to develop sets of positive and negative training patterns for the classification component.

  13. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  14. Feature analysis for detecting people from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Sirmacek, Beril; Reinartz, Peter

    2013-01-01

    We propose a novel approach using airborne image sequences for detecting dense crowds and individuals. Although airborne images of this resolution range are not enough to see each person in detail, we can still notice a change of color and intensity components of the acquired image in the location where a person exists. Therefore, we propose a local feature detection-based probabilistic framework to detect people automatically. Extracted local features behave as observations of the probability density function (PDF) of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding PDF. First, we use estimated PDF to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in noncrowd regions automatically for each image in the sequence. To test our crowd and people detection algorithm, we use airborne images taken over Munich during the Oktoberfest event, two different open-air concerts, and an outdoor festival. In addition, we apply tests on GeoEye-1 satellite images. Our experimental results indicate possible use of the algorithm in real-life mass events.

  15. Computerized feature systems for identifying suspects

    NASA Astrophysics Data System (ADS)

    Lee, Eric; Whalen, Thom; McCarthy, Andrew; Sakalauskas, John; Wotton, Cynthia

    1995-09-01

    In suspect identification, witnesses examine photos of known offenders in mugshot albums. The probability of correct identification deteriorates rapidly, however, as the number of mugshots examined increases. Feature approaches, where mugshots are displayed in order of similarity to witness descriptions of suspects, increase identification success by reducing this number. In our computerized feature system, both police raters and witnesses describe facial features of suspects on rating scales such as nose size: small 1 2 3 4 5 large. Feature users consistently identify more target suspects correctly than do album users. Previous experimental tests have failed, however, to examine the effects of feature system performance of the use of live targets as suspects rather than photos, the use of realistic crime scenarios, the number of police raters/mugshot, and differences among raters in their effect on system perfomance. In three experiments, we investigated those four issues. The first experiment used photos as target suspects but with multiple distractors, the second tested live suspects, while the third tested live suspects in a realistic crime scenario. The database contained the official mugshots of 1,000 offenders. Across the three experiments, a second and sometimes a third rater/mugshot significantly reduced the number of photos examined. More raters/mugshot did not affect performance further. Raters differed significantly in their effect on system perfomance. Significantly, our feature system performed well both with target suspects seen live and with live suspects in realistic crime scenarios (performance was comparable to that in previous experiments for photos of target suspects). These results strongly support our contention that feature systems are superior to album systems.

  16. Association rule mining in intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Lu, Yan-sheng

    2004-04-01

    In a modern computer system, intrusion detection has become an essential and critical component. Data mining generally refers to the process of extracting models from large stores of data. The intrusion detection system first apply data mining programs to audit data to compute frequent patterns, extract features, and then use classification algorithms to compute detection models. The most important step of this process is to determine relations between fields in the database records to construct features. The standard association rules have not enough expressiveness. Intrusion detection system can extract the association rule with negations and with varying support thresholds to get better performance rather than extract the standard association rule.

  17. Computer-aided detection of lung nodules using outer surface features.

    PubMed

    Demir, Önder; Yılmaz Çamurcu, Ali

    2015-01-01

    In this study, a computer-aided detection (CAD) system was developed for the detection of lung nodules in computed tomography images. The CAD system consists of four phases, including two-dimensional and three-dimensional preprocessing phases. In the feature extraction phase, four different groups of features are extracted from volume of interests: morphological features, statistical and histogram features, statistical and histogram features of outer surface, and texture features of outer surface. The support vector machine algorithm is optimized using particle swarm optimization for classification. The CAD system provides 97.37% sensitivity, 86.38% selectivity, 88.97% accuracy and 2.7 false positive per scan using three groups of classification features. After the inclusion of outer surface texture features, classification results of the CAD system reaches 98.03% sensitivity, 87.71% selectivity, 90.12% accuracy and 2.45 false positive per scan. Experimental results demonstrate that outer surface texture features of nodule candidates are useful to increase sensitivity and decrease the number of false positives in the detection of lung nodules in computed tomography images.

  18. Computed Tomography Features of Incidentally Detected Diffuse Thyroid Disease

    PubMed Central

    Rho, Myung Ho

    2014-01-01

    Objective. This study aimed to evaluate the CT features of incidentally detected DTD in the patients who underwent thyroidectomy and to assess the diagnostic accuracy of CT diagnosis. Methods. We enrolled 209 consecutive patients who received preoperative neck CT and subsequent thyroid surgery. Neck CT in each case was retrospectively investigated by a single radiologist. We evaluated the diagnostic accuracy of individual CT features and the cut-off CT criteria for detecting DTD by comparing the CT features with histopathological results. Results. Histopathological examination of the 209 cases revealed normal thyroid (n = 157), Hashimoto thyroiditis (n = 17), non-Hashimoto lymphocytic thyroiditis (n = 34), and diffuse hyperplasia (n = 1). The CT features suggestive of DTD included low attenuation, inhomogeneous attenuation, increased glandular size, lobulated margin, and inhomogeneous enhancement. ROC curve analysis revealed that CT diagnosis of DTD based on the CT classification of “3 or more” abnormal CT features was superior. When the “3 or more” CT classification was selected, the sensitivity, specificity, positive and negative predictive values, and accuracy of CT diagnosis for DTD were 55.8%, 95.5%, 80.6%, 86.7%, and 85.6%, respectively. Conclusion. Neck CT may be helpful for the detection of incidental DTD. PMID:25548565

  19. Joint Analysis of Dependent Features within Compound Spectra Can Improve Detection of Differential Features

    PubMed Central

    Trutschel, Diana; Schmidt, Stephan; Grosse, Ivo; Neumann, Steffen

    2015-01-01

    Mass spectrometry is an important analytical technology in metabolomics. After the initial feature detection and alignment steps, the raw data processing results in a high-dimensional data matrix of mass spectral features, which is then subjected to further statistical analysis. Univariate tests like Student’s t-test and Analysis of Variances (ANOVA) are hypothesis tests, which aim to detect differences between two or more sample classes, e.g., wildtype-mutant or between different doses of treatments. In both cases, one of the underlying assumptions is the independence between metabolic features. However, in mass spectrometry, a single metabolite usually gives rise to several mass spectral features, which are observed together and show a common behavior. This paper suggests to group the related features of metabolites with CAMERA into compound spectra, and then to use a multivariate statistical method to test whether a compound spectrum (and thus the actual metabolite) is differential between two sample classes. The multivariate method is first demonstrated with an analysis between wild-type and an over-expression line of the model plant Arabidopsis thaliana. For a quantitative evaluation data sets with a simulated known effect between two sample classes were analyzed. The spectra-wise analysis showed better detection results for all simulated effects. PMID:26442246

  20. Detection of fungal damaged popcorn using image property covariance features

    USDA-ARS?s Scientific Manuscript database

    Covariance-matrix-based features were applied to the detection of popcorn infected by a fungus that cause a symptom called “blue-eye.” This infection of popcorn kernels causes economic losses because of their poor appearance and the frequently disagreeable flavor of the popped kernels. Images of ker...

  1. Combining heterogeneous features for face detection using multiscale feature selection with binary particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Pan, Hong; Xia, Si-Yu; Jin, Li-Zuo; Xia, Liang-Zheng

    2011-12-01

    We propose a fast multiscale face detector that boosts a set of SVM-based hierarchy classifiers constructed with two heterogeneous features, i.e. Multi-block Local Binary Patterns (MB-LBP) and Speeded Up Robust Features (SURF), at different image resolutions. In this hierarchical architecture, simple and fast classifiers using efficient MB-LBP descriptors remove large parts of the background in low and intermediate scale layers, thus only a small percentage of background patches look similar to faces and require a more accurate but slower classifier that uses distinctive SURF descriptor to avoid false classifications in the finest scale. By propagating only those patterns that are not classified as background, we can quickly decrease the amount of data need to be processed. To lessen the training burden of the hierarchy classifier, in each scale layer, a feature selection scheme using Binary Particle Swarm Optimization (BPSO) searches the entire feature space and filters out the minimum number of discriminative features that give the highest classification rate on a validation set, then these selected distinctive features are fed into the SVM classifier. We compared detection performance of the proposed face detector with other state-of-the-art methods on the CMU+MIT face dataset. Our detector achieves the best overall detection performance. The training time of our algorithm is 60 times faster than the standard Adaboost algorithm. It takes about 70 ms for our face detector to process a 320×240 image, which is comparable to Viola and Jones' detector.

  2. Intruder detection system

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1973-01-01

    An intruder detection system is described. The system contains a transmitter which sends a frequency modulated and amplitude modulated signal to a remote receiver in response to a geophone detector which responds to seismic impulses created by the intruder. The signal makes it possible for an operator to determine the number of intruders and the manner of movement.

  3. Radiation detection system

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  4. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  5. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  6. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  7. Crowding with detection and coarse discrimination of simple visual features.

    PubMed

    Põder, Endel

    2008-04-24

    Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.

  8. Anomaly Detection Using an Ensemble of Feature Models.

    PubMed

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2010-12-13

    We present a new approach to semi-supervised anomaly detection. Given a set of training examples believed to come from the same distribution or class, the task is to learn a model that will be able to distinguish examples in the future that do not belong to the same class. Traditional approaches typically compare the position of a new data point to the set of "normal" training data points in a chosen representation of the feature space. For some data sets, the normal data may not have discernible positions in feature space, but do have consistent relationships among some features that fail to appear in the anomalous examples. Our approach learns to predict the values of training set features from the values of other features. After we have formed an ensemble of predictors, we apply this ensemble to new data points. To combine the contribution of each predictor in our ensemble, we have developed a novel, information-theoretic anomaly measure that our experimental results show selects against noisy and irrelevant features. Our results on 47 data sets show that for most data sets, this approach significantly improves performance over current state-of-the-art feature space distance and density-based approaches.

  9. Anomaly Detection Using an Ensemble of Feature Models

    PubMed Central

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2011-01-01

    We present a new approach to semi-supervised anomaly detection. Given a set of training examples believed to come from the same distribution or class, the task is to learn a model that will be able to distinguish examples in the future that do not belong to the same class. Traditional approaches typically compare the position of a new data point to the set of “normal” training data points in a chosen representation of the feature space. For some data sets, the normal data may not have discernible positions in feature space, but do have consistent relationships among some features that fail to appear in the anomalous examples. Our approach learns to predict the values of training set features from the values of other features. After we have formed an ensemble of predictors, we apply this ensemble to new data points. To combine the contribution of each predictor in our ensemble, we have developed a novel, information-theoretic anomaly measure that our experimental results show selects against noisy and irrelevant features. Our results on 47 data sets show that for most data sets, this approach significantly improves performance over current state-of-the-art feature space distance and density-based approaches. PMID:22020249

  10. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury

    2004-10-01

    The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  11. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; Larry G. Blackwood; Andrew J. Edwards; J. Keith Jewell; Kenneth W. Rohde; Edward H. Seabury; Jeffery B. Klinger

    2005-12-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  12. Detection of corn and weed species by the combination of spectral, shape and textural features

    USDA-ARS?s Scientific Manuscript database

    Accurate detection of weeds in farmland can help reduce pesticide use and protect the agricultural environment. To develop intelligent equipment for weed detection, this study used an imaging spectrometer system, which supports micro-scale plant feature analysis by acquiring high-resolution hyper sp...

  13. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  14. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  15. Feature Extraction and Selection From the Perspective of Explosive Detection

    SciTech Connect

    Sengupta, S K

    2009-09-01

    Features are extractable measurements from a sample image summarizing the information content in an image and in the process providing an essential tool in image understanding. In particular, they are useful for image classification into pre-defined classes or grouping a set of image samples (also called clustering) into clusters with similar within-cluster characteristics as defined by such features. At the lowest level, features may be the intensity levels of a pixel in an image. The intensity levels of the pixels in an image may be derived from a variety of sources. For example, it can be the temperature measurement (using an infra-red camera) of the area representing the pixel or the X-ray attenuation in a given volume element of a 3-d image or it may even represent the dielectric differential in a given volume element obtained from an MIR image. At a higher level, geometric descriptors of objects of interest in a scene may also be considered as features in the image. Examples of such features are: area, perimeter, aspect ratio and other shape features, or topological features like the number of connected components, the Euler number (the number of connected components less the number of 'holes'), etc. Occupying an intermediate level in the feature hierarchy are texture features which are typically derived from a group of pixels often in a suitably defined neighborhood of a pixel. These texture features are useful not only in classification but also in the segmentation of an image into different objects/regions of interest. At the present state of our investigation, we are engaged in the task of finding a set of features associated with an object under inspection ( typically a piece of luggage or a brief case) that will enable us to detect and characterize an explosive inside, when present. Our tool of inspection is an X-Ray device with provisions for computed tomography (CT) that generate one or more (depending on the number of energy levels used) digitized 3

  16. Comparative study of palm print authentication system using geometric features

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajeev, Srijith; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometrics, particularly palm print authentication has been a stimulating research area due to its abundance of features. Stable features and effective matching are the most crucial steps for an authentication system. In conventional palm print authentication systems, matching is based on flexion creases, friction ridges, and minutiae points. Currently, contactless palm print imaging is an emerging technology. However, they tend to involve fluctuations in the image quality and texture loss due to factors such as varying illumination conditions, occlusions, noise, pose, and ghosting. These variations decrease the performance of the authentication systems. Furthermore, real-time palm print authentication in large databases continue to be a challenging task. In order to effectively solve these problems, features which are invariant to these anomalies are required. This paper proposes a robust palm print matching framework by making a comparative study of different local geometric features such as Difference-of-Gaussian, Hessian, Hessian-Laplace, Harris-Laplace, and Multiscale Harris for feature detection. These detectors are coupled with Scale Invariant Feature Transformation (SIFT) descriptor to describe the identified features. Additionally, a two-stage refinement process is carried out to obtain the best stable matches. Computer simulations demonstrate that the accuracy of the system has increased effectively with an EER of 0.86% when Harris-Laplace detector is used on IITD database.

  17. Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning.

    PubMed

    Paisitkriangkrai, Sakrapee; Shen, Chunhua; Hengel, Anton van den

    2016-06-01

    Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the prescribed range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC). We propose a novel ensemble learning method which achieves a maximal detection rate at a user-defined range of false positive rates by directly optimizing the partial AUC using structured learning. In addition, in order to achieve high object detection performance, we propose a new approach to extracting low-level visual features based on spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our approach, and we show that it is possible to train state-of-the-art pedestrian detectors using the proposed structured ensemble learning method with spatially pooled features. The result is the current best reported performance on the Caltech-USA pedestrian detection dataset.

  18. A Wavelet-Statistical Features Approach for Nonconvulsive Seizure Detection.

    PubMed

    Sharma, Priyanka; Khan, Yusuf Uzzaman; Farooq, Omar; Tripathi, Manjari; Adeli, Hojjat

    2014-10-01

    The detection of nonconvulsive seizures (NCSz) is a challenge because of the lack of physical symptoms, which may delay the diagnosis of the disease. Many researchers have reported automatic detection of seizures. However, few investigators have concentrated on detection of NCSz. This article proposes a method for reliable detection of NCSz. The electroencephalography (EEG) signal is usually contaminated by various nonstationary noises. Signal denoising is an important preprocessing step in the analysis of such signals. In this study, a new wavelet-based denoising approach using cubical thresholding has been proposed to reduce noise from the EEG signal prior to analysis. Three statistical features were extracted from wavelet frequency bands, encompassing the frequency range of 0 to 8, 8 to 16, 16 to 32, and 0 to 32 Hz. Extracted features were used to train linear classifier to discriminate between normal and seizure EEGs. The performance of the method was tested on a database of nine patients with 24 seizures in 80 hours of EEG recording. All the seizures were successfully detected, and false positive rate was found to be 0.7 per hour. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  19. Maximizing feature detection in aerial unmanned aerial vehicle datasets

    NASA Astrophysics Data System (ADS)

    Byrne, Jonathan; Laefer, Debra F.; O'Keeffe, Evan

    2017-04-01

    This paper compares several feature detectors applied to imagery from an unmanned aerial vehicle to find the best detection algorithm when applied to datasets that vary in translation and have little or no image overlap. Metrics of inliers and reconstruction accuracy of feature detectors are considered with respect to three-dimensional reconstruction results. The image matching results are tested experimentally, and an approach to detecting false matches is outlined. Results showed that although the detectors varied in the number of keypoints generated, a large number of inliers does not necessarily translate into more points in the final point cloud reconstruction and that the process of comparing a large quantity of redundant keypoints may outweigh the advantage of having the extra points. The results also showed that despite the development of keypoint detectors and descriptors, none of them consistently demonstrated a substantial improvement in the quality of structure from motion reconstruction when applied to a wide range of disparate urban and rural images.

  20. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  1. DETECTION OR WARNING SYSTEM

    DOEpatents

    Tillman, J E

    1953-10-20

    This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

  2. Intruder detection system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Moving coil geophones are utilized to develop a small, rugged, battery operated system capable of detecting seismic disturbances caused by intruders. Seismic disturbances sensed by each geophone are converted into electrical signals, amplified, and transmitted to remote receiver which provides listener with aural signal.

  3. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection.

    PubMed

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  4. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    PubMed Central

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate. PMID:26295058

  5. Road marking features extraction using the VIAPIX® system

    NASA Astrophysics Data System (ADS)

    Kaddah, W.; Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.; Gutierrez, C.

    2016-07-01

    Precise extraction of road marking features is a critical task for autonomous urban driving, augmented driver assistance, and robotics technologies. In this study, we consider an autonomous system allowing us lane detection for marked urban roads and analysis of their features. The task is to relate the georeferencing of road markings from images obtained using the VIAPIX® system. Based on inverse perspective mapping and color segmentation to detect all white objects existing on this road, the present algorithm enables us to examine these images automatically and rapidly and also to get information on road marks, their surface conditions, and their georeferencing. This algorithm allows detecting all road markings and identifying some of them by making use of a phase-only correlation filter (POF). We illustrate this algorithm and its robustness by applying it to a variety of relevant scenarios.

  6. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  7. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque

    PubMed Central

    Šćepanović, Obrad R.; Fitzmaurice, Maryann; Miller, Arnold; Kong, Chae-Ryon; Volynskaya, Zoya; Dasari, Ramachandra R.; Kramer, John R.; Feld, Michael S.

    2011-01-01

    Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necrotic core (NC), superficial foam cells (SFC), and thrombus. Ex vivo MMS spectra are collected from 12 patients that underwent carotid endarterectomy or femoral bypass surgery. Data are collected by means of a unitary MMS optical fiber probe and a portable clinical instrument. Blinded histopathological analysis is used to assess the vulnerability of each spectrally evaluated artery lesion. Modeling of the ex vivo MMS spectra produce objective parameters that correlate with the presence of vulnerable plaque features: TFC with fluorescence parameters indicative of collagen presence; NC∕SFC with a combination of diffuse reflectance β-carotene∕ceroid absorption and the Raman spectral signature of lipids; and thrombus with its Raman signature. Using these parameters, suspected vulnerable plaques can be detected with a sensitivity of 96% and specificity of 72%. These encouraging results warrant the continued development of MMS as a catheter-based clinical diagnostic technique for early detection of vulnerable plaques. PMID:21280896

  8. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Šćepanović, Obrad R.; Fitzmaurice, Maryann; Miller, Arnold; Kong, Chae-Ryon; Volynskaya, Zoya; Dasari, Ramachandra R.; Kramer, John R.; Feld, Michael S.

    2011-01-01

    Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necrotic core (NC), superficial foam cells (SFC), and thrombus. Ex vivo MMS spectra are collected from 12 patients that underwent carotid endarterectomy or femoral bypass surgery. Data are collected by means of a unitary MMS optical fiber probe and a portable clinical instrument. Blinded histopathological analysis is used to assess the vulnerability of each spectrally evaluated artery lesion. Modeling of the ex vivo MMS spectra produce objective parameters that correlate with the presence of vulnerable plaque features: TFC with fluorescence parameters indicative of collagen presence; NC/SFC with a combination of diffuse reflectance β-carotene/ceroid absorption and the Raman spectral signature of lipids; and thrombus with its Raman signature. Using these parameters, suspected vulnerable plaques can be detected with a sensitivity of 96% and specificity of 72%. These encouraging results warrant the continued development of MMS as a catheter-based clinical diagnostic technique for early detection of vulnerable plaques.

  9. Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs.

    PubMed

    Taşcı, Erdal; Uğur, Aybars

    2015-05-01

    Lung cancer is one of the types of cancer with highest mortality rate in the world. In case of early detection and diagnosis, the survival rate of patients significantly increases. In this study, a novel method and system that provides automatic detection of juxtapleural nodule pattern have been developed from cross-sectional images of lung CT (Computerized Tomography). Shape-based and both shape and texture based 7 features are contributed to the literature for lung nodules. System that we developed consists of six main stages called preprocessing, lung segmentation, detection of nodule candidate regions, feature extraction, feature selection (with five feature ranking criteria) and classification. LIDC dataset containing cross-sectional images of lung CT has been utilized, 1410 nodule candidate regions and 40 features have been extracted from 138 cross-sectional images for 24 patients. Experimental results for 10 classifiers are obtained and presented. Adding our derived features to known 33 features has increased nodule recognition performance from 0.9639 to 0.9679 AUC value on generalized linear model regression (GLMR) for 22 selected features and being reached one of the most successful results in the literature.

  10. Non-contact feature detection using ultrasonic Lamb waves

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  11. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  12. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  13. Tape Cassette Bacteria Detection System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  14. Feature detection in digitized mammograms using anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Aldrich, Bradley C.; Chinthala, S.; Desai, Mita D.

    1995-03-01

    This paper develops and presents methods for the detection of features in high-resolution digital mammograms using anisotropic diffusion techniques. The automated or semiautomated analysis of digital mammograms for the purpose of detecting suspicious changes in normal tissue structure is an exceedingly important and elusive goal confronting researchers in digital mammography. The nature of the changes can be quite variable, but often the quality of the periphery of suspect lesions contains strong cues regarding the nature of the lesion. Thus, it is of interest to consider processing paradigms that analyze lesion boundary information, both to isolate suspect lesions from normal tissue and to aid in the differentiation of benign vs. malignant lesions. In this paper a modified version of the Malik-Perona nonlinear diffusion model is adopted that provides superior boundary detection capability while simultaneously strongly rejecting noise or irrelevant image artifacts. The algorithm provide a multiscale family of smoothed images that display the important property of intra-region smoothing without smoothing across boundaries. Thus, the features extracted do not suffer from the unnecessary blurring arising from conventional smoothing-differentiation edge detectors, while retaining the highly desirable property of noise elimination. In other words, the anisotropic diffusion method performs a piecewise smoothing of the mammographic data image. These properties make it possible to achieve high-quality segmentations of mammographic images. The output of the algorithm is a binary representation containing detailed structural information for the potentially interesting features in the mammogram. Thus, lesions containing spiculations or with associated microcalcifications can be represented with a high resolution, and subjected to further processing towards attaining the difficult goals of detection and diagnosis. The results of this technique as applied to digitized

  15. Automated mitosis detection in histopathology using morphological and multi-channel statistics features

    PubMed Central

    Irshad, Humayun

    2013-01-01

    Context: According to Nottingham grading system, mitosis count plays a critical role in cancer diagnosis and grading. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to improve the accuracy of mitosis detection by selecting the color channels that better capture the statistical and morphological features, which classify mitosis from other objects. Materials and Methods: We propose a framework that includes comprehensive analysis of statistics and morphological features in selected channels of various color spaces that assist pathologists in mitosis detection. In candidate detection phase, we perform Laplacian of Gaussian, thresholding, morphology and active contour model on blue-ratio image to detect and segment candidates. In candidate classification phase, we extract a total of 143 features including morphological, first order and second order (texture) statistics features for each candidate in selected channels and finally classify using decision tree classifier. Results and Discussion: The proposed method has been evaluated on Mitosis Detection in Breast Cancer Histological Images (MITOS) dataset provided for an International Conference on Pattern Recognition 2012 contest and achieved 74% and 71% detection rate, 70% and 56% precision and 72% and 63% F-Measure on Aperio and Hamamatsu images, respectively. Conclusions and Future Work: The proposed multi-channel features computation scheme uses fixed image scale and extracts nuclei features in selected channels of various color spaces. This simple but robust model has proven to be highly efficient in capturing multi-channels statistical features for mitosis detection, during the MITOS international benchmark. Indeed, the mitosis detection of critical importance in cancer diagnosis is a very challenging visual task. In future work, we plan to use color deconvolution as preprocessing and Hough transform or local extrema based candidate detection

  16. Automated mitosis detection in histopathology using morphological and multi-channel statistics features.

    PubMed

    Irshad, Humayun

    2013-01-01

    According to Nottingham grading system, mitosis count plays a critical role in cancer diagnosis and grading. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to improve the accuracy of mitosis detection by selecting the color channels that better capture the statistical and morphological features, which classify mitosis from other objects. We propose a framework that includes comprehensive analysis of statistics and morphological features in selected channels of various color spaces that assist pathologists in mitosis detection. In candidate detection phase, we perform Laplacian of Gaussian, thresholding, morphology and active contour model on blue-ratio image to detect and segment candidates. In candidate classification phase, we extract a total of 143 features including morphological, first order and second order (texture) statistics features for each candidate in selected channels and finally classify using decision tree classifier. The proposed method has been evaluated on Mitosis Detection in Breast Cancer Histological Images (MITOS) dataset provided for an International Conference on Pattern Recognition 2012 contest and achieved 74% and 71% detection rate, 70% and 56% precision and 72% and 63% F-Measure on Aperio and Hamamatsu images, respectively. The proposed multi-channel features computation scheme uses fixed image scale and extracts nuclei features in selected channels of various color spaces. This simple but robust model has proven to be highly efficient in capturing multi-channels statistical features for mitosis detection, during the MITOS international benchmark. Indeed, the mitosis detection of critical importance in cancer diagnosis is a very challenging visual task. In future work, we plan to use color deconvolution as preprocessing and Hough transform or local extrema based candidate detection in order to reduce the number of candidates in mitosis and non-mitosis classes.

  17. [Detection of citrus greening based on Vis-NIR spectroscopy and spectral feature analysis].

    PubMed

    Ma, Hao; Ji, Hai-Yan; Won, Suk Lee

    2014-10-01

    In the present paper we discussed the methods of classification of citrus greening and extraction of spectral features based on the spectral reflectance of four different statuses of citrus leaves (healthy, HLB, iron deficiency and nitrogen deficiency). Between two classes of classification, the values of discriminability of different spectra were calculated to extract spectral features. The greater value of discriminability showed a bigger difference of the two spectra, which means it would be easier to distinguish the two classes. By the Fisher linear discriminant analysis, three classification models (HLB & healthy, HLB & iron deficiency and HLB & nitrogen deficiency) based on the spectral features yielded more than 90% accuracies, which were better than expected. And at last, we discussed the application of the classification tree in multi-class discriminant analysis and spectral features extraction. The models trained based on the original reflectance spectra, first derivative and selected spectral features yielded more than 88% average accuracy, and especially the model based on the spectral features yielded more than 94% average accuracies, which verified the feasibility of detection of citrus greening in multi-class discriminant analysis and the importance of the spectral feature extraction. The results were compared based on classification tree, k-NN and Bayesian classifiers. Adoption of spectral features as input variables was significantly superior to using the original spectrum, which confirmed the validity of spectral feature selection. Spectral features could be used well for developing a multi-spectral imaging system to detect the citrus greening.

  18. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  19. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)

    1978-01-01

    The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.

  20. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  1. Accurate feature detection for out-of-focus camera calibration.

    PubMed

    Wang, Yuwei; Chen, Xiangcheng; Tao, Jiayuan; Wang, Keyi; Ma, Mengchao

    2016-10-01

    For conventional camera calibration methods, well-focused images are necessary to detect features accurately. However, this requirement causes practical inconveniences to image acquisition for long- and short-distance photogrammetry. In this study, three active phase-shift circular grating (PCG) arrays are used as calibration patterns. The PCGs' centers are regarded as feature points that can be accurately extracted by ellipse fitting of 2π-phase points even though patterns are substantially blurred. In the experiments, Gaussian filters are utilized to blur pattern images, and different standard deviations are set for different fuzzy degrees. Pattern images with different defocusing degrees are also captured. The period and number of PCGs and noise are considered. Experimental results indicate that our method is accurate, reliable, and insensitive to image defocusing.

  2. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  3. A ROC-based feature selection method for computer-aided detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing

    2014-03-01

    Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.

  4. Cepstrum based feature extraction method for fungus detection

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Onur; Pearson, Tom C.; Çetin, A. Enis

    2011-06-01

    In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%.

  5. Robotic perimeter detection system

    NASA Astrophysics Data System (ADS)

    Lewis, Christopher L.; Feddema, John T.; Klarer, Paul

    1999-01-01

    Sandia National Labs is developing and testing a robotic perimeter detection system for small unit operations (small groups of warfighters). The objective is to demonstrate the feasibility of using a cooperative team of robotic sentry vehicles to assist the warfighter in guarding military assets. Eight 'Roving All Terrain Lunar Explorer Rovers' (RATLERs) have been built at Sandia and are being used as the test platform. A radio frequency receiver on each of the RATLERs alerts the sentry vehicles of alarms from hidden miniature intrusion detection sensors (MIDS). The MIDS currently deployed include seismic, magnetometer, passive and beam-break infrared sensor. Each RATTLER keeps an internal state representation of each of the MIDS and of the other vehicles' locations. This representation is updated several times per second as the vehicles broadcast their current state and any alarms received. When an alarm is received, each vehicle looks at this state information and decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. This cooperative team concept can significantly reduce the workload and increase the effectiveness of a single warfighter in the battlefield. Using robot vehicles makes the perimeter detection system easily mobilized for redeployment.

  6. Clinical feasibility of rapid confocal melanoma feature detection

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Jacques, Steve; Pellacani, Giovanni; Gareau, Daniel

    2010-02-01

    In vivo reflectance confocal microscopy shows promise for the early detection of malignant melanoma. One diagnostic trait of malignancy is the presence of pagetoid melanocytes in the epidermis. For automated detection of MM, this feature must be identified quantitatively through software. Beginning with in vivo, noninvasive confocal images from 10 unequivocal MMs and benign nevi, we developed a pattern recognition algorithm that automatically identified pagetoid melanocytes in all four MMs and identified none in five benign nevi. One data set was discarded due to artifacts caused by patient movement. With future work to bring the performance of this pattern recognition technique to the level of the clinicians on difficult lesions, melanoma diagnosis could be brought to primary care facilities and save many lives by improving early diagnosis.

  7. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  8. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  9. Detection and handling of occlusion in an object detection system

    NASA Astrophysics Data System (ADS)

    Op het Veld, R. M. G.; Wijnhoven, R. G. J.; Bondarev, Y.; de With, Peter H. N.

    2015-03-01

    Object detection is an important technique for video surveillance applications. Although different detection algorithms were proposed, they all have problems in detecting occluded objects. In this paper, we propose a novel system for occlusion handling and integrate this in a sliding-window detection framework using HOG features and linear classification. The occlusion handling is obtained by applying multiple classifiers, each covering a different level of occlusion and focusing on the non-occluded object parts. Experiments show that our approach based on 17 classifiers, obtains an increase of 8% in detection performance. To limit computational complexity, we propose a cascaded implementation that only increases the computational cost by 3.4%. Although the paper presents results for pedestrian detection, our approach is not limited to this object class. Finally, our system does not need an additional dataset for training, covering all possible types of occlusions.

  10. Textural feature selection for enhanced detection of stationary humans in through-the-wall radar imagery

    NASA Astrophysics Data System (ADS)

    Chaddad, A.; Ahmad, F.; Amin, M. G.; Sevigny, P.; DiFilippo, D.

    2014-05-01

    Feature-based methods have been recently considered in the literature for detection of stationary human targets in through-the-wall radar imagery. Specifically, textural features, such as contrast, correlation, energy, entropy, and homogeneity, have been extracted from gray-level co-occurrence matrices (GLCMs) to aid in discriminating the true targets from multipath ghosts and clutter that closely mimic the target in size and intensity. In this paper, we address the task of feature selection to identify the relevant subset of features in the GLCM domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between targets and ghosts/clutter. We apply a Decision Tree algorithm to find the optimal combination of co-occurrence based textural features for the problem at hand. We employ a K-Nearest Neighbor classifier to evaluate the performance of the optimal textural feature based scheme in terms of its target and ghost/clutter discrimination capability and use real-data collected with the vehicle-borne multi-channel through-the-wall radar imaging system by Defence Research and Development Canada. For the specific data analyzed, it is shown that the identified dominant features yield a higher classification accuracy, with lower number of false alarms and missed detections, compared to the full GLCM based feature set.

  11. Feature selection of seismic waveforms for long period event detection at Cotopaxi Volcano

    NASA Astrophysics Data System (ADS)

    Lara-Cueva, R. A.; Benítez, D. S.; Carrera, E. V.; Ruiz, M.; Rojo-Álvarez, J. L.

    2016-04-01

    Volcano Early Warning Systems (VEWS) have become a research topic in order to preserve human lives and material losses. In this setting, event detection criteria based on classification using machine learning techniques have proven useful, and a number of systems have been proposed in the literature. However, to the best of our knowledge, no comprehensive and principled study has been conducted to compare the influence of the many different sets of possible features that have been used as input spaces in previous works. We present an automatic recognition system of volcano seismicity, by considering feature extraction, event classification, and subsequent event detection, in order to reduce the processing time as a first step towards a high reliability automatic detection system in real-time. We compiled and extracted a comprehensive set of temporal, moving average, spectral, and scale-domain features, for separating long period seismic events from background noise. We benchmarked two usual kinds of feature selection techniques, namely, filter (mutual information and statistical dependence) and embedded (cross-validation and pruning), each of them by using suitable and appropriate classification algorithms such as k Nearest Neighbors (k-NN) and Decision Trees (DT). We applied this approach to the seismicity presented at Cotopaxi Volcano in Ecuador during 2009 and 2010. The best results were obtained by using a 15 s segmentation window, feature matrix in the frequency domain, and DT classifier, yielding 99% of detection accuracy and sensitivity. Selected features and their interpretation were consistent among different input spaces, in simple terms of amplitude and spectral content. Our study provides the framework for an event detection system with high accuracy and reduced computational requirements.

  12. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    PubMed Central

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. Results: The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Conclusions: Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate

  13. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

    PubMed

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

  14. Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery

    DTIC Science & Technology

    2014-07-09

    was reversing (waves) or unidirectional (currents), water or wind driven [1]. Cross- bedded stratification in sedimentary rocks , produced by sand...features in sedimentary envi- ronments and have received increased attention from diverse research communities in recent years. Historically, ripple ge...to difficulty of minehunting or to performance of ATR systems. REFERENCES [1] J. R. L. Allen (1993), “ Sedimentary structures - Sorby and the last

  15. Flow feature detection for grid adaptation and flow visualization

    NASA Astrophysics Data System (ADS)

    Kallinderis, Yannis; Lymperopoulou, Eleni M.; Antonellis, Panagiotis

    2017-07-01

    Adaptive grid refinement/coarsening is an important method for achieving increased accuracy of flow simulations with reduced computing resources. Further, flow visualization of complex 3-D fields is a major task of both computational fluid dynamics (CFD), as well as experimental data analysis. A primary issue of adaptive simulations and flow visualization is the reliable detection of the local regions containing features of interest. A relatively wide spectrum of detection functions (sensors) is employed for representative flow cases which include boundary layers, vortices, jets, wakes, shock waves, contact discontinuities, and expansions. The focus is on relatively simple sensors based on local flow field variation using 3-D general hybrid grids consisting of multiple types of elements. A quantitative approach for sensors evaluation and comparison is proposed and applied. It is accomplished via the employment of analytic flow fields. Automation and effectiveness of an adaptive grid or flow visualization process requires the reliable determination of an appropriate threshold for the sensor. Statistical evaluation of the distributions of the sensors results in a proposed empirical formula for the threshold. The qualified sensors along with the automatic threshold determination are tested with more complex flow cases exhibiting multiple flow features.

  16. Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT.

    PubMed

    Lopez-Martin, Manuel; Carro, Belen; Sanchez-Esguevillas, Antonio; Lloret, Jaime

    2017-08-26

    The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host's network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery.

  17. Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT

    PubMed Central

    Carro, Belen; Sanchez-Esguevillas, Antonio

    2017-01-01

    The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery. PMID:28846608

  18. Detecting paralinguistic events in audio stream using context in features and probabilistic decisions☆

    PubMed Central

    Gupta, Rahul; Audhkhasi, Kartik; Lee, Sungbok; Narayanan, Shrikanth

    2017-01-01

    Non-verbal communication involves encoding, transmission and decoding of non-lexical cues and is realized using vocal (e.g. prosody) or visual (e.g. gaze, body language) channels during conversation. These cues perform the function of maintaining conversational flow, expressing emotions, and marking personality and interpersonal attitude. In particular, non-verbal cues in speech such as paralanguage and non-verbal vocal events (e.g. laughters, sighs, cries) are used to nuance meaning and convey emotions, mood and attitude. For instance, laughters are associated with affective expressions while fillers (e.g. um, ah, um) are used to hold floor during a conversation. In this paper we present an automatic non-verbal vocal events detection system focusing on the detect of laughter and fillers. We extend our system presented during Interspeech 2013 Social Signals Sub-challenge (that was the winning entry in the challenge) for frame-wise event detection and test several schemes for incorporating local context during detection. Specifically, we incorporate context at two separate levels in our system: (i) the raw frame-wise features and, (ii) the output decisions. Furthermore, our system processes the output probabilities based on a few heuristic rules in order to reduce erroneous frame-based predictions. Our overall system achieves an Area Under the Receiver Operating Characteristics curve of 95.3% for detecting laughters and 90.4% for fillers on the test set drawn from the data specifications of the Interspeech 2013 Social Signals Sub-challenge. We perform further analysis to understand the interrelation between the features and obtained results. Specifically, we conduct a feature sensitivity analysis and correlate it with each feature's stand alone performance. The observations suggest that the trained system is more sensitive to a feature carrying higher discriminability with implications towards a better system design. PMID:28713197

  19. Real-time face detection and lip feature extraction using field-programmable gate arrays.

    PubMed

    Nguyen, Duy; Halupka, David; Aarabi, Parham; Sheikholeslami, Ali

    2006-08-01

    This paper proposes a new technique for face detection and lip feature extraction. A real-time field-programmable gate array (FPGA) implementation of the two proposed techniques is also presented. Face detection is based on a naive Bayes classifier that classifies an edge-extracted representation of an image. Using edge representation significantly reduces the model's size to only 5184 B, which is 2417 times smaller than a comparable statistical modeling technique, while achieving an 86.6% correct detection rate under various lighting conditions. Lip feature extraction uses the contrast around the lip contour to extract the height and width of the mouth, metrics that are useful for speech filtering. The proposed FPGA system occupies only 15050 logic cells, or about six times less than a current comparable FPGA face detection system.

  20. Detection of hypertensive retinopathy using vessel measurements and textural features.

    PubMed

    Agurto, Carla; Joshi, Vinayak; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    Features that indicate hypertensive retinopathy have been well described in the medical literature. This paper presents a new system to automatically classify subjects with hypertensive retinopathy (HR) using digital color fundus images. Our method consists of the following steps: 1) normalization and enhancement of the image; 2) determination of regions of interest based on automatic location of the optic disc; 3) segmentation of the retinal vasculature and measurement of vessel width and tortuosity; 4) extraction of color features; 5) classification of vessel segments as arteries or veins; 6) calculation of artery-vein ratios using the six widest (major) vessels for each category; 7) calculation of mean red intensity and saturation values for all arteries; 8) calculation of amplitude-modulation frequency-modulation (AM-FM) features for entire image; and 9) classification of features into HR and non-HR using linear regression. This approach was tested on 74 digital color fundus photographs taken with TOPCON and CANON retinal cameras using leave-one out cross validation. An area under the ROC curve (AUC) of 0.84 was achieved with sensitivity and specificity of 90% and 67%, respectively.

  1. Passive intrusion detection system

    NASA Technical Reports Server (NTRS)

    Laue, E. G. (Inventor)

    1980-01-01

    An intrusion detection system is described in which crystal oscillators are used to provide a frequency which varies as a function of fluctuations of a particular environmental property of the atmosphere, e.g., humidity, in the protected volume. The system is based on the discovery that the frequency of an oscillator whose crystal is humidity sensitive, varies at a frequency or rate which is within a known frequency band, due to the entry of an intruder into the protected volume. The variable frequency is converted into a voltage which is then filtered by a filtering arrangement which permits only voltage variations at frequencies within the known frequency band to activate an alarm, while inhibiting the alarm activation when the voltage frequency is below or above the known frequency band.

  2. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  3. Features, Events, and Processes: system Level

    SciTech Connect

    D. McGregor

    2004-10-15

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).

  4. Chromatic information and feature detection in fast visual analysis

    SciTech Connect

    Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.; Solomon, Samuel G.

    2016-08-01

    The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.

  5. Chromatic information and feature detection in fast visual analysis

    DOE PAGES

    Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.; ...

    2016-08-01

    The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity ofmore » color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.« less

  6. Chromatic Information and Feature Detection in Fast Visual Analysis.

    PubMed

    Del Viva, Maria M; Punzi, Giovanni; Shevell, Steven K

    2016-01-01

    The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.

  7. Chromatic Information and Feature Detection in Fast Visual Analysis

    PubMed Central

    Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.

    2016-01-01

    The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in. PMID:27478891

  8. First and second-order features for detection of masses in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir; Cha, Kenny; Helvie, Mark A.

    2016-03-01

    We are developing novel methods for prescreening of mass candidates in computer-aided detection (CAD) system for digital breast tomosynthesis (DBT). With IRB approval and written informed consent, 186 views from 94 breasts were imaged using a GE GEN2 prototype DBT system. The data set was randomly separated into training and test sets by cases. Gradient field convergence features based on first-order features were used to select the initial set of mass candidates. Eigenvalues based on second-order features from the Hessian matrix were extracted for the mass candidate locations in the DBT volume. The features from the first- and second-order analysis form the feature vector that was input to a linear discriminant analysis (LDA) classifier to generate a candidate-likelihood score. The likelihood scores were ranked and the top N candidates were passed onto the subsequent detection steps. The improvement between using only first-order features and the combination of first and second-order features was analyzed using a rank-sensitivity plot. 3D objects were obtained with two-stage 3D clustering followed by active contour segmentation. Morphological, gradient field, and texture features were extracted and feature selection was performed using stepwise feature selection. A combination of LDA and rule-based classifiers was used for FP reduction. The LDA classifier output a masslikelihood score for each object that was used as a decision variable for FROC analysis. At breast-based sensitivities of 70% and 80%, prescreening using first-order and second-order features resulted in 0.7 and 1.0 FPs/DBT.

  9. Feature Detection, Characterization and Confirmation Methodology: Final Report

    SciTech Connect

    Karasaki, Kenzi; Apps, John; Doughty, Christine; Gwatney, Hope; Onishi, Celia Tiemi; Trautz, Robert; Tsang, Chin-Fu

    2007-03-01

    This is the final report of the NUMO-LBNL collaborative project: Feature Detection, Characterization and Confirmation Methodology under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix. We examine site characterization projects from several sites in the world. The list includes Yucca Mountain in the USA, Tono and Horonobe in Japan, AECL in Canada, sites in Sweden, and Olkiluoto in Finland. We identify important geologic features and parameters common to most (or all) sites to provide useful information for future repository siting activity. At first glance, one could question whether there was any commonality among the sites, which are in different rock types at different locations. For example, the planned Yucca Mountain site is a dry repository in unsaturated tuff, whereas the Swedish sites are situated in saturated granite. However, the study concludes that indeed there are a number of important common features and parameters among all the sites--namely, (1) fault properties, (2) fracture-matrix interaction (3) groundwater flux, (4) boundary conditions, and (5) the permeability and porosity of the materials. We list the lessons learned from the Yucca Mountain Project and other site characterization programs. Most programs have by and large been quite successful. Nonetheless, there are definitely 'should-haves' and 'could-haves', or lessons to be learned, in all these programs. Although each site characterization program has some unique aspects, we believe that these crosscutting lessons can be very useful for future site investigations to be conducted in Japan. One of the most common lessons learned is that a repository program should allow for flexibility, in both schedule and approach. We examine field investigation technologies used to collect site characterization data in the field. An extensive list of existing field technologies is presented, with some discussion on usage and limitations. Many of the

  10. Automated Solar Feature Detection for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Pérez-Suárez, David; Higgins, Paul A.; Bloomfield, D. Shaun; McAteer, R. T. James; Krista, Larisza D.; Byrne, Jason P.; Gallagher, Peter. T.

    2011-03-01

    The solar surface and atmosphere are highly dynamic plasma environments, which evolve over a wide range of temporal and spatial scales. Large-scale eruptions, such as coronal mass ejections, can be accelerated to millions of kilometres per hour in a matter of minutes, making their automated detection and characterisation challenging. Additionally, there are numerous faint solar features, such as coronal holes and coronal dimmings, which are important for space weather monitoring and forecasting, but their low intensity and sometimes transient nature makes them problematic to detect using traditional image processing techniques. These difficulties are compounded by advances in ground- and space- based instrumentation, which have increased the volume of data that solar physicists are confronted with on a minute-by-minute basis; NASA's Solar Dynamics Observatory for example is returning many thousands of images per hour (~1.5 TB/day). This chapter reviews recent advances in the application of images processing techniques to the automated detection of active regions, coronal holes, filaments, CMEs, and coronal dimmings for the purposes of space weather monitoring and prediction.

  11. Persistent topological features of dynamical systems

    SciTech Connect

    Maletić, Slobodan; Zhao, Yi; Rajković, Milan

    2016-05-15

    Inspired by an early work of Muldoon et al., Physica D 65, 1–16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  12. Persistent topological features of dynamical systems.

    PubMed

    Maletić, Slobodan; Zhao, Yi; Rajković, Milan

    2016-05-01

    Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  13. Persistent topological features of dynamical systems

    NASA Astrophysics Data System (ADS)

    Maletić, Slobodan; Zhao, Yi; Rajković, Milan

    2016-05-01

    Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  14. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  15. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  16. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  17. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  18. Safety features of subcritical fluid fueled systems

    SciTech Connect

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  19. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    SciTech Connect

    Jaros, W.

    2005-08-30

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project (YMP) administrative procedures as they

  20. The use of linear feature detection to investigate thematic mapper data performance and processing

    NASA Technical Reports Server (NTRS)

    Gurney, C. M.

    1983-01-01

    The geometric and radiometric characteristics of thematic mapper data through analysis of linear features in the data are investigated. The particular aspects considered are: (1) thematic mapper ground IFOV; (2) radiometric contrast between linear features and background; (3) precision of system geometric correction; (4) band-to-band registration; and (5) potential utility of TM data for linear feature detection especially as compared to MSS data. It is shown that TM data may be used to estimate TM pixel size and to illustrate band-band mis-registration. Further, the geometry and radiometry of the data are sufficiently precise to allow accurate estimation of the widths of linear features. In optimum conditions features one quarter of a pixel in width may be accurately measured. These results have considerable potential for applications for hydrological and topographic mapping.

  1. Detection of tuberculosis using hybrid features from chest radiographs

    NASA Astrophysics Data System (ADS)

    Fatima, Ayesha; Akram, M. Usman; Akhtar, Mahmood; Shafique, Irrum

    2017-02-01

    Tuberculosis is an infectious disease and becomes a major threat all over the world but still diagnosis of tuberculosis is a challenging task. In literature, chest radiographs are considered as most commonly used medical images in under developed countries for the diagnosis of TB. Different methods have been proposed but they are not helpful for radiologists due to cost and accuracy issues. Our paper presents a methodology in which different combinations of features are extracted based on intensities, shape and texture of chest radiograph and given to classifier for the detection of TB. The performance of our methodology is evaluated using publically available standard dataset Montgomery Country (MC) which contains 138 CXRs among which 80 CXRs are normal and 58 CXRs are abnormal including effusion and miliary patterns etc. The accuracy of 81.16% was achieved and the results show that proposed method have outperformed existing state of the art methods on MC dataset.

  2. Photoelectric detection system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.; Schansman, R. R.

    1982-03-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  3. Feature detection from IKONOS pan imagery based on phase congruency

    NASA Astrophysics Data System (ADS)

    Xiao, Pengfeng; Feng, Xuezhi; Zhao, Shuhe

    2006-09-01

    Phase Congruency is introduced as a frequency-domain based method to detect features from high-resolution remotely sensed imagery. Three types of objects were selected from the IKONOS pan imagery in Nanjing, i.e. paddy, road, and workshop objects. The Phase Congruency feature images were obtained by applying Phase Congruency model to these images with 2 octave log Gabor wavelets filters over 5 scales and 6 orientations. The outputs of space-domain based detectors Sobel and Canny are also presented for comparing to Phase Congruency. It is then shown the results that the magnitude of Phase Congruency response is largely independent of image local illumination and contrast, and Phase Congruency marks the line with a single response, not two. It is followed by a set of results illustrating the effects of varying filter parameters and noise in the calculation of Phase Congruency. It is found that Phase Congruency can obtain more accurate localization than space-domain based detectors because it does not need low-pass filtering to restrain noise first. The results also show that the noise has been successfully ignored in the smooth regions of the image, unlike the Canny detector results fluctuate all over the image.

  4. Behavioral features recognition and oestrus detection based on fast approximate clustering algorithm in dairy cows

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua

    2017-06-01

    Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.

  5. Combining Statistical and Geometric Features for Colonic Polyp Detection in CTC Based on Multiple Kernel Learning

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas; Summers, Ronald M.

    2010-01-01

    Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible approach for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these traditional features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features called histograms of curvature features are rotation, translation and scale invariant and can be treated as complementing existing feature set. Then in order to make full use of the traditional geometric features (defined as group A) and the new statistical features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to learn an optimized classification kernel from the two groups of features. We conducted leave-one-patient-out test on a CTC dataset which contained scans from 66 patients. Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per scan rate of 5, the sensitivity of the SVM using the combined features improved from 0.77 (Group A) and 0.73 (Group B) to 0.83 (p ≤ 0.01). PMID:20953299

  6. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.

    PubMed

    Akram, M Usman; Tariq, Anam; Khalid, Shehzad; Javed, M Younus; Abbas, Sarmad; Yasin, Ubaid Ullah

    2015-12-01

    Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient's vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.

  7. Computerized lung nodule detection using 3D feature extraction and learning based algorithms.

    PubMed

    Ozekes, Serhat; Osman, Onur

    2010-04-01

    In this paper, a Computer Aided Detection (CAD) system based on three-dimensional (3D) feature extraction is introduced to detect lung nodules. First, eight directional search was applied in order to extract regions of interests (ROIs). Then, 3D feature extraction was performed which includes 3D connected component labeling, straightness calculation, thickness calculation, determining the middle slice, vertical and horizontal widths calculation, regularity calculation, and calculation of vertical and horizontal black pixel ratios. To make a decision for each ROI, feed forward neural networks (NN), support vector machines (SVM), naive Bayes (NB) and logistic regression (LR) methods were used. These methods were trained and tested via k-fold cross validation, and results were compared. To test the performance of the proposed system, 11 cases, which were taken from Lung Image Database Consortium (LIDC) dataset, were used. ROC curves were given for all methods and 100% detection sensitivity was reached except naive Bayes.

  8. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; van Huis, Jasper R.; Dijk, Judith; van Rest, Jeroen H. C.

    2014-10-01

    Proactive detection of incidents is required to decrease the cost of security incidents. This paper focusses on the automatic early detection of suspicious behavior of pickpockets with track-based features in a crowded shopping mall. Our method consists of several steps: pedestrian tracking, feature computation and pickpocket recognition. This is challenging because the environment is crowded, people move freely through areas which cannot be covered by a single camera, because the actual snatch is a subtle action, and because collaboration is complex social behavior. We carried out an experiment with more than 20 validated pickpocket incidents. We used a top-down approach to translate expert knowledge in features and rules, and a bottom-up approach to learn discriminating patterns with a classifier. The classifier was used to separate the pickpockets from normal passers-by who are shopping in the mall. We performed a cross validation to train and evaluate our system. In this paper, we describe our method, identify the most valuable features, and analyze the results that were obtained in the experiment. We estimate the quality of these features and the performance of automatic detection of (collaborating) pickpockets. The results show that many of the pickpockets can be detected at a low false alarm rate.

  9. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  10. Automatic detection of lung nodules: false positive reduction using convolution neural networks and handcrafted features

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Ma, Jingchen; Ren, Yacheng; Han, Youn Seon; Zhao, Jun

    2017-03-01

    Lung cancer is the leading cause of cancer deaths worldwide. Early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules, potential precursors to lung cancer, is evermore important. In this paper, a computer-aided lung nodule detection system using convolution neural networks (CNN) and handcrafted features for false positive reduction is developed. The CNNs were trained with three types of images: lung CT images, their nodule-enhanced images, and their blood vessel-enhanced images. For each nodule candidate, nine 2D patches from differently oriented planes were extracted from each type of images. Patches of the same orientation from the same type of image across different candidates were used to train the CNNs independently, which were used to extract 864 features. 88 handcrafted features including intensity, shape, and texture features were also obtained from the lung CT images. The CNN features and handcrafted features were then combined to train a classifier, and a support vector machine was adopted to achieve the final classification results. The proposed method was evaluated on 1004 CT scans from the LIDC-IDRI database using 10-fold cross-validation. Compared with the traditional CNN method using only lung CT images, the proposed method boosted the sensitivity of nodule detection from 89.0% to 90.9% at 4 FPs/scan and from 71.6% to 78.2% at 1 FP/scan. This indicates that a combination of handcrafted features and CNN features from both lung CT images and enhanced images is a promising method for lung nodule detection.

  11. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  12. Detecting submerged features in water: modeling, sensors, and measurements

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  13. Feature detection in biological tissues using multi-band and narrow-band imaging.

    PubMed

    Tamura, Yuki; Mashita, Tomohiro; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo

    2016-12-01

    In the past decade, augmented reality systems have been expected to support surgical operations by making it possible to view invisible objects that are inside or occluded by the skull, hands, or organs. However, the properties of biological tissues that are non-rigid and featureless require a large number of distributed features to track the movement of tissues in detail. With the goal of increasing the number of feature points in organ tracking, we propose a feature detection using multi-band and narrow-band imaging and a new band selection method. The depth of light penetration into an object depends on the wavelength of light based on optical characteristics. We applied typical feature detectors to detect feature points using three selected bands in a human hand. To consider surgical situations, we applied our method to a chicken liver with a variety of light conditions. Our experimental results revealed that the image of each band exhibited a different distribution of feature points. In addition, the total number of feature points determined by the proposed method exceeded that of the R, G, and B images obtained using a normal camera. The results using a chicken liver with various light sources and intensities also show different distributions with each selected band. We have proposed a feature detection method using multi-band and narrow-band imaging and a band selection method. The results of our experiments confirmed that the proposed method increased the number of distributed feature points. The proposed method was also effective for different light conditions.

  14. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  15. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  16. Intelligent Leak Detection System

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise

  17. Automatic solar feature detection using image processing and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Qu, Ming

    The objective of the research in this dissertation is to develop a software system to automatically detect and characterize solar flares, filaments and Corona Mass Ejections (CMEs), the core of so-called solar activity. These tools will assist us to predict space weather caused by violent solar activity. Image processing and pattern recognition techniques are applied to this system. For automatic flare detection, the advanced pattern recognition techniques such as Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Support Vector Machine (SVM) are used. By tracking the entire process of flares, the motion properties of two-ribbon flares are derived automatically. In the applications of the solar filament detection, the Stabilized Inverse Diffusion Equation (SIDE) is used to enhance and sharpen filaments; a new method for automatic threshold selection is proposed to extract filaments from background; an SVM classifier with nine input features is used to differentiate between sunspots and filaments. Once a filament is identified, morphological thinning, pruning, and adaptive edge linking methods are applied to determine filament properties. Furthermore, a filament matching method is proposed to detect filament disappearance. The automatic detection and characterization of flares and filaments have been successfully applied on Halpha full-disk images that are continuously obtained at Big Bear Solar Observatory (BBSO). For automatically detecting and classifying CMEs, the image enhancement, segmentation, and pattern recognition techniques are applied to Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The processed LASCO and BBSO images are saved to file archive, and the physical properties of detected solar features such as intensity and speed are recorded in our database. Researchers are able to access the solar feature database and analyze the solar data efficiently and effectively. The detection and characterization system greatly improves

  18. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to

  19. Incipient fire detection system

    DOEpatents

    Brooks, Jr., William K.

    1999-01-01

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  20. Rapid detection and quantification of features such as damage or flaws in composite and metallic structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor); Smith, Barry T. (Inventor); Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor)

    1992-01-01

    An apparatus, system, and method for non-destructible evaluation (NDE) of a material use thermography to rapidly detect and/or generally locate a feature such as, for example, damage or a defect in the material. The apparatus, system, and method also use ultrasound to specifically locate the feature in the material for quantification and/or evaluation either by an operator or by an external device suited for such purpose. Accordingly, the apparatus, system and method are particularly useful for NDE in applications such as the analysis of the structure of an aircraft, for example, in which the scale of the material to be analyzed is large, thus requiring the rapid NDE afforded by thermography, and in which quantification and/or evaluation of a feature must be performed with precision, thus requiring the relatively high-resolution NDE afforded by ultrasound.

  1. Vehicle detection by means of stereo vision-based obstacles features extraction and monocular pattern analysis.

    PubMed

    Toulminet, Gwenaëlle; Bertozzi, Massimo; Mousset, Stéphane; Bensrhair, Abdelaziz; Broggi, Alberto

    2006-08-01

    This paper presents a stereo vision system for the detection and distance computation of a preceding vehicle. It is divided in two major steps. Initially, a stereo vision-based algorithm is used to extract relevant three-dimensional (3-D) features in the scene, these features are investigated further in order to select the ones that belong to vertical objects only and not to the road or background. These 3-D vertical features are then used as a starting point for preceding vehicle detection; by using a symmetry operator, a match against a simplified model of a rear vehicle's shape is performed using a monocular vision-based approach that allows the identification of a preceding vehicle. In addition, using the 3-D information previously extracted, an accurate distance computation is performed.

  2. Lumber Scanning System for Surface Defect Detection

    Treesearch

    D. Earl Kline; Y. Jason Hou; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman

    1992-01-01

    This paper describes research aimed at developing a machine vision technology to drive automated processes in the hardwood forest products manufacturing industry. An industrial-scale machine vision system has been designed to scan variable-size hardwood lumber for detecting important features that influence the grade and value of lumber such as knots, holes, wane,...

  3. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R(2)=0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Intrusion detection: systems and models

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Dearmond, T. G.

    2002-01-01

    This paper puts forward a review of state of the art and state of the applicability of intrusion detection systems, and models. The paper also presents a classfication of literature pertaining to intrusion detection.

  5. Feature-based active contour model and occluding object detection.

    PubMed

    Memar, Sara; Ksantini, Riadh; Boufama, Boubakeur

    2016-04-01

    This paper presents a method for image segmentation and object detection. The proposed strategy consists of two major stages. The first one corresponds to image segmentation, which is based on the active contour model (ACM) algorithm, using an automatic selection of the best candidate features among gradient, polarity, and depth, coupled with a combination of them by the kernel support vector machine (KSVM). Although existing techniques, such as the ones based on ACM, perform well in the single-object case and non-noisy environments, these techniques fail when the scene consists of multiple occluding objects, with possibly similar colors. Thus, the second stage corresponds to the identification of salient and occluded objects based on the fuzzy C-mean algorithm (FCM). In this stage, the depth is included as another clue that allows us to estimate the cluster number and to make the clustering process more robust. In particular, complex occlusions can be handled this way, and the objects can be properly segmented and identified. Experimental results on real images and on several standard datasets have shown the success and effectiveness of the proposed method.

  6. Systematic comparison of automated geological feature detection methods for impact craters

    NASA Astrophysics Data System (ADS)

    Vinogradova, T.; Mjolsness, E.

    2001-12-01

    Accurate, automated crater counts will be essential in extrapolating from existing Mars crater catalogs to much larger catalogs of impact craters in high-resolution orbital imagery for use in relative dating of surfaces in such imagery. Once validated, automatic methods for performing crater counts could be integrated into tools such as the Planetary Image Atlas, which is designed to be a convenient interface through which a user can search for, display, and download images and other ancillary data for planetary Missions, and the Diamond Eye image mining system. Here we report on preliminary computational experiments in using a trainable feature detection algorithm [Burl et al. 2001] to detect craters in real and simulated Mars orbital imagery, and to derive approximate impact crater counts for geological use. In these experiments, we consider two uses of the trainable feature detector: first, directly as a crater detector, and second, as two detectors for sunlit and shadowed inner walls of craters which can then be assembled into a single crater detection based on multiple pieces of evidence. For both of these methods, we consider two data sources: one consisting of real Viking Orbiter imagery of Mars with human expert-supplied ground truth labels, and the other consisting of computer generated renderings of simplified, synthetic cratered terrain with 100% accurate ground truth labels and known, controllable crater density. Each detector reports out a numeric detection ``likelihood'' for every candidate crater. This likelihood must then be thresholded to produce a detection decision. For each combination of two data sources (one natural and one synthetic) and two crater detection methods (whole-crater and parts-model), we vary image complexity and finally measure detection accuracy. Detection accuracy is measured by a Receiver Operator Characteristic (ROC) curve in which detection efficiency (the fraction of true craters detected) and purity (the fraction of

  7. Detection of deleted patterns in handwritten digits using topological and geometrical image features

    NASA Astrophysics Data System (ADS)

    Suwa, Misako; Naoi, Satoshi; Hotta, Yoshinobu

    1998-04-01

    One of the critical problems of an off-line handwritten character reader system is determining which patterns to read and which to ignore, as a form or a document contains not only characters but also spots and deletions. As long as they don't fit conditions for rejection, they cause recognition errors. Particularly, patterns of deleted single-character are difficult to be distinguished from a character, because their sizes are almost the same as that of a character and their shapes have variety. In this article, we proposed a method to detect such deletions in handwritten digits using topological and geometrical image- features suitable for detecting them; Eular number, pixel density, number of endpoint, maximum crossing counts and number of peaks of histogram. For precise detection, thresholds of the image features are adaptively selected according to their recognition results.

  8. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  9. An automatically tuning intrusion detection system.

    PubMed

    Yu, Zhenwei; Tsai, Jeffrey J P; Weigert, Thomas

    2007-04-01

    An intrusion detection system (IDS) is a security layer used to detect ongoing intrusive activities in information systems. Traditionally, intrusion detection relies on extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been deployed for intrusion detection. An IDS is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current systems depends on the system operators in working out the tuning solution and in integrating it into the detection model. In this paper, an automatically tuning IDS (ATIDS) is presented. The proposed system will automatically tune the detection model on-the-fly according to the feedback provided by the system operator when false predictions are encountered. The system is evaluated using the KDDCup'99 intrusion detection dataset. Experimental results show that the system achieves up to 35% improvement in terms of misclassification cost when compared with a system lacking the tuning feature. If only 10% false predictions are used to tune the model, the system still achieves about 30% improvement. Moreover, when tuning is not delayed too long, the system can achieve about 20% improvement, with only 1.3% of the false predictions used to tune the model. The results of the experiments show that a practical system can be built based on ATIDS: system operators can focus on verification of predictions with low confidence, as only those predictions determined to be false will be used to tune the detection model.

  10. Combining multiple features for error detection and its application in brain-computer interface.

    PubMed

    Tong, Jijun; Lin, Qinguang; Xiao, Ran; Ding, Lei

    2016-02-04

    Brain-computer interface (BCI) is an assistive technology that conveys users' intentions by decoding various brain activities and translating them into control commands, without the need of verbal instructions and/or physical interactions. However, errors existing in BCI systems affect their performance greatly, which in turn confines the development and application of BCI technology. It has been demonstrated viable to extract error potential from electroencephalography recordings. This study proposed a new approach of fusing multiple-channel features from temporal, spectral, and spatial domains through two times of dimensionality reduction based on neural network. 26 participants (13 males, mean age = 28.8 ± 5.4, range 20-37) took part in the study, who engaged in a P300 speller task spelling cued words from a 36-character matrix. In order to evaluate the generalization ability across subjects, the data from 16 participants were used for training and the rest for testing. The total classification accuracy with combination of features is 76.7 %. The receiver operating characteristic (ROC) curve and area under ROC curve (AUC) further indicate the superior performance of the combination of features over any single features in error detection. The average AUC reaches 0.7818 with combined features, while 0.7270, 0.6376, 0.7330 with single temporal, spectral, and spatial features respectively. The proposed method combining multiple-channel features from temporal, spectral, and spatial domain has better classification performance than any individual feature alone. It has good generalization ability across subject and provides a way of improving error detection, which could serve as promising feedbacks to promote the performance of BCI systems.

  11. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-03-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e. undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks (CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing performance by

  12. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features.

    PubMed

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-10-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually by a pathologist looking at multiple high power fields (HPFs) on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical, or textural attributes of mitoses or features learned with convolutional neural networks (CNN). Although handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely supervised feature generation methods, there is an appeal in attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. We present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color, and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing the performance

  13. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features

    PubMed Central

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-01-01

    Abstract. Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually by a pathologist looking at multiple high power fields (HPFs) on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical, or textural attributes of mitoses or features learned with convolutional neural networks (CNN). Although handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely supervised feature generation methods, there is an appeal in attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. We present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color, and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing the

  14. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques

    NASA Astrophysics Data System (ADS)

    Flach, Milan; Gans, Fabian; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus; Rodner, Erik; Bathiany, Sebastian; Bodesheim, Paul; Guanche, Yanira; Sippel, Sebastian; Mahecha, Miguel D.

    2017-08-01

    Today, many processes at the Earth's surface are constantly monitored by multiple data streams. These observations have become central to advancing our understanding of vegetation dynamics in response to climate or land use change. Another set of important applications is monitoring effects of extreme climatic events, other disturbances such as fires, or abrupt land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algorithms have been proposed for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends. This artificial experiment is needed as there is no gold standard for the identification of anomalies in real Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cycles, or dimensionality reduction) is more important than the choice of a particular anomaly detection algorithm. Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estimation, a recurrence approach) and their combinations (ensembles) that outperform other multivariate approaches as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to automatically detect

  15. Automated colon cancer detection using hybrid of novel geometric features and some traditional features.

    PubMed

    Rathore, Saima; Hussain, Mutawarra; Khan, Asifullah

    2015-10-01

    Automatic classification of colon into normal and malignant classes is complex due to numerous factors including similar colors in different biological constituents of histopathological imagery. Therefore, such techniques, which exploit the textural and geometric properties of constituents of colon tissues, are desired. In this paper, a novel feature extraction strategy that mathematically models the geometric characteristics of constituents of colon tissues is proposed. In this study, we also show that the hybrid feature space encompassing diverse knowledge about the tissues׳ characteristics is quite promising for classification of colon biopsy images. This paper thus presents a hybrid feature space based colon classification (HFS-CC) technique, which utilizes hybrid features for differentiating normal and malignant colon samples. The hybrid feature space is formed to provide the classifier different types of discriminative features such as features having rich information about geometric structure and image texture. Along with the proposed geometric features, a few conventional features such as morphological, texture, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) are also used to develop a hybrid feature set. The SIFT features are reduced using minimum redundancy and maximum relevancy (mRMR). Various kernels of support vector machines (SVM) are employed as classifiers, and their performance is analyzed on 174 colon biopsy images. The proposed geometric features have achieved an accuracy of 92.62%, thereby showing their effectiveness. Moreover, the proposed HFS-CC technique achieves 98.07% testing and 99.18% training accuracy. The better performance of HFS-CC is largely due to the discerning ability of the proposed geometric features and the developed hybrid feature space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  17. Efficient epileptic seizure detection by a combined IMF-VoE feature.

    PubMed

    Qi, Yu; Wang, Yueming; Zheng, Xiaoxiang; Zhang, Jianmin; Zhu, Junming; Guo, Jianping

    2012-01-01

    Automatic seizure detection from the electroen-cephalogram (EEG) plays an important role in an on-demand closed-loop therapeutic system. A new feature, called IMF-VoE, is proposed to predict the occurrence of seizures. The IMF-VoE feature combines three intrinsic mode functions (IMFs) from the empirical mode decomposition of a EEG signal and the variance of the range between the upper and lower envelopes (VoE) of the signal. These multiple cues encode the intrinsic characteristics of seizure states, thus are able to distinguish them from the background. The feature is tested on 80.4 hours of EEG data with 10 seizures of 4 patients. The sensitivity of 100% is obtained with a low false detection rate of 0.16 per hour. Average time delays are 19.4s, 13.2s, and 10.7s at the false detection rates of 0.16 per hour, 0.27 per hour, and 0.41 per hour respectively, when different thresholds are used. The result is competitive among recent studies. In addition, since the IMF-VoE is compact, the detection system is of high computational efficiency and able to run in real time.

  18. Features of the Deployed NPOESS Ground System

    NASA Astrophysics Data System (ADS)

    Smith, D.; Grant, K. D.; Route, G.; Heckmann, G.

    2009-12-01

    NOAA, DoD, and NASA are jointly acquiring the National Polar-orbiting Operational Environmental Satellite System (NPOESS) replacing the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and the DoD's Defense Meteorological Satellite Program (DMSP). The NPOESS satellites will carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere and space. The ground data processing segment is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence & Information Systems (IIS). The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to US NOAA and DoD processing centers. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and through the lifetime of the NPOESS system. The command and telemetry segment is the Command, Control and Communications Segment (C3S), also developed by Raytheon IIS. C3S is responsible for managing the overall NPOESS mission from control and status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment (SS) to IDPS for processing. In addition, the C3S provides the globally distributed ground assets necessary to collect and transport mission, telemetry, and command data between the satellites and the processing locations. The C3S provides all functions required for day-to-day commanding and state-of-health monitoring of the NPP and NPOESS satellites, and delivery of SMD to each Central IDP for data products development and transfer to System subscribers. The C3S also monitors and reports system-wide health, status and data communications with external systems and between the NPOESS segments. The NPOESS C3S and IDPS ground segments have been delivered and transitioned to operations for NPP. C3S was transitioned to operations at the NOAA Satellite Operations Facility in Suitland MD in August

  19. EEG-based mild depressive detection using feature selection methods and classifiers.

    PubMed

    Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu

    2016-11-01

    Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find

  20. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  1. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features.

    PubMed

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ∼80% (peak values above 90%) when using 2 s long data. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  2. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  3. Force protection demining system (FPDS) detection subsystem

    NASA Astrophysics Data System (ADS)

    Zachery, Karen N.; Schultz, Gregory M.; Collins, Leslie M.

    2005-06-01

    This study describes the U.S. Army Force Protection Demining System (FPDS); a remotely-operated, multisensor platform developed for reliable detection and neutralization of both anti-tank and anti-personnel landmines. The ongoing development of the prototype multisensor detection subsystem is presented, which integrates an advanced electromagnetic pulsed-induction array and ground penetrating synthetic aperture radar array on a single standoff platform. The FPDS detection subsystem is mounted on a robotic rubber-tracked vehicle and incorporates an accurate and precise navigation/positioning module making it well suited for operation in varied and irregular terrains. Detection sensors are optimally configured to minimize interference without loss in sensitivity or performance. Mine lane test data acquired from the prototype sensors are processed to extract signal- and image-based features for automatic target recognition. Preliminary results using optimal feature and classifier selection indicate the potential of the system to achieve high probabilities of detection while minimizing false alarms. The FPDS detection software system also exploits modern multi-sensor data fusion algorithms to provide real-time detection and discrimination information to the user.

  4. Improving the safety features of general practice computer systems.

    PubMed

    Avery, Anthony J; Savelyich, Boki S P; Teasdale, Sheila

    2003-01-01

    General practice computer systems already have a number of important safety features. However, there are problems in that general practitioners (GPs) have come to rely on hazard alerts when they are not foolproof. Furthermore, GPs do not know how to make best use of safety features on their systems. There are a number of solutions that could help to improve the safety features of general practice computer systems and also help to improve the abilities of healthcare professionals to use these safety features.

  5. Hand held explosives detection system

    DOEpatents

    Conrad, Frank J.

    1992-01-01

    The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.

  6. Ferret Workflow Anomaly Detection System

    DTIC Science & Technology

    2005-02-28

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure...completed to accomplish a goal. Anomaly detection is the determination that a condition departs from the expected. The baseline behavior from which the

  7. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms

    PubMed Central

    Topouzelis, Konstantinos N.

    2008-01-01

    This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR) for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject. PMID:27873890

  8. Fingertips detection for human computer interaction system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Jahangir; Nasierding, Gulisong; Sajjanhar, Atul; Chowdhury, Morshed

    2014-01-01

    Fingertips of human hand play an important role in hand-based interaction with computers. Identification of fingertips' positions in hand images is vital for developing a human computer interaction system. This paper proposes a novel method for detecting fingertips of a hand image analyzing the concept of the geometrical structural information of fingers. The research is divided into three parts: First, hand image is segmented for detecting hand; Second, invariant features (curvature zero-crossing points) are extracted from the boundary of the hand; Third, fingertips are detected. Experimental results show that the proposed approach is promising.

  9. Antigen detection systems

    USDA-ARS?s Scientific Manuscript database

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  10. Antigen detection systems

    USDA-ARS?s Scientific Manuscript database

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...

  11. Matching-range-constrained real-time loop closure detection with CNNs features.

    PubMed

    Bai, Dongdong; Wang, Chaoqun; Zhang, Bo; Yi, Xiaodong; Tang, Yuhua

    2016-01-01

    The loop closure detection (LCD) is an essential part of visual simultaneous localization and mapping systems (SLAM). LCD is capable of identifying and compensating the accumulation drift of localization algorithms to produce an consistent map if the loops are checked correctly. Deep convolutional neural networks (CNNs) have outperformed state-of-the-art solutions that use traditional hand-crafted features in many computer vision and pattern recognition applications. After the great success of CNNs, there has been much interest in applying CNNs features to robotic fields such as visual LCD. Some researchers focus on using a pre-trained CNNs model as a method of generating an image representation appropriate for visual loop closure detection in SLAM. However, there are many fundamental differences and challenges involved in character between simple computer vision applications and robotic applications. Firstly, the adjacent images in the dataset of loop closure detection might have more resemblance than the images that form the loop closure. Secondly, real-time performance is one of the most critical demands for robots. In this paper, we focus on making use of the feature generated by CNNs layers to implement LCD in real environment. In order to address the above challenges, we explicitly provide a value to limit the matching range of images to solve the first problem; meanwhile we get better results than state-of-the-art methods and improve the real-time performance using an efficient feature compression method.

  12. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination

    NASA Astrophysics Data System (ADS)

    Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan

    2015-02-01

    Objective. We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. Approach. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Main results. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). Significance. We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.

  13. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    SciTech Connect

    na

    2005-05-30

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The objective of this analysis was to develop the BDCFs for the

  14. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  15. Infrared small target's detection and identification with moving platform based on motion features

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Zou, Xu; Zhong, Sheng; Lu, Hongqiang

    2015-10-01

    The infrared small target's detection and tracking are important parts of the automatic target recognition. When the camera platform equipped with an infrared camera moves, the small target's position change in the imaging plane is affected by the composite motion of the small target and the camera platform. Traditional detection and tracking algorithms may lose the small target and make the follow-up detection and tracking fail because of not considering the camera platform's movement. Moreover, when there exist small targets with different motion features in the camera's view, some detection and tracking algorithms can't recognize different targets based on their motion features because there are no trajectories in a unified coordinate system, which may lead to the true small targets undetected or detected incorrectly . To solve those problems, we present a method under the condition of moving camera platform. Firstly, get the camera platform's motion information from the inertial measurement values, and then decouple to remove the motion of the camera platform itself by means of coordinate transformation. Next, estimate the trajectories of the small targets with different motion features based on their position changes in the same imaging plane coordinate system. Finally, recognize different small targets preliminarily based on their different trajectories. Experimental results show that this method can improve the small target's detection probability. Furthermore, when the camera platform fails to track the small target, it's possible to predict the position of the small target in the next frame based on the fitted motion equation and realize sustained and stable tracking.

  16. Karst features detection and mapping using airphotos, DSMs and GIS techniques

    NASA Astrophysics Data System (ADS)

    Kakavas, M. P.; Nikolakopoulos, K. G.; Zagana, E.

    2015-10-01

    The aim of this work is to detect and qualify natural karst depressions in the Aitoloakarnania Prefecture, Western Greece, using remote sensing data in conjunction with the Geographical Information Systems - GIS. The study area is a part of the Ionian geotectonic zone, and its geological background consists of the Triassic Evaporates. The Triassic carbonate breccias where formed as a result of the tectonic and orogenetic setting of the external Hellenides and the diaper phenomena of the Triassic Evaporates. The landscape characterized by exokarst features closed depressions in the Triassic carbonate breccias. At the threshold of this study, an in situ observation was performed in order to identify dolines and swallow holes. The creation of sinkholes, in general, is based on the collapse of the surface layer due to chemical dissolution of carbonate rocks. In the current study airphotos stereopairs, DSMs and GIS were combined in order to detect and map the karst features. Thirty seven airphotos were imported in Leica Photogrammetry Suite and a stereo model of the study area was created. Then in 3D view possible karst features were detected and digitized. Those sites were verified during the in situ survey. ASTER GDEM, SRTM DEM, high resolution airphoto DSM created from the Greek Cadastral and a DEM from digitized contours from the 1/50,000 topographic were also evaluated in GIS environment for the automatic detection of the karst depressions. The results are presented in this study.

  17. Feature Analysis of Generalized Data Base Management Systems.

    ERIC Educational Resources Information Center

    Conference on Data Systems Languages, Monroeville, PA. Systems Committee.

    A more complete definition of the features offered in present day generalized data base management systems is provided by this second technical report of the CODASYL Systems Committee. In a tutorial format, each feature description is followed by either narrative information covering ten systems or by a table for all systems. The ten systems…

  18. North energy system risk analysis features

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. A.; Prokhorov, D. V.

    2015-12-01

    Risk indicator analysis for a decentralized energy system of the North was carried out. Based on analysis of damages caused by accidents at energy systems, their structure is selected, and a North energy system risk determination method was proposed.

  19. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  20. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  1. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  2. Thermography based breast cancer detection using texture features and minimum variance quantization

    PubMed Central

    Milosevic, Marina; Jankovic, Dragan; Peulic, Aleksandar

    2014-01-01

    In this paper, we present a system based on feature extraction techniques and image segmentation techniques for detecting and diagnosing abnormal patterns in breast thermograms. The proposed system consists of three major steps: feature extraction, classification into normal and abnormal pattern and segmentation of abnormal pattern. Computed features based on gray-level co-occurrence matrices are used to evaluate the effectiveness of textural information possessed by mass regions. A total of 20 GLCM features are extracted from thermograms. The ability of feature set in differentiating abnormal from normal tissue is investigated using a Support Vector Machine classifier, Naive Bayes classifier and K-Nearest Neighbor classifier. To evaluate the classification performance, five-fold cross validation method and Receiver operating characteristic analysis was performed. The verification results show that the proposed algorithm gives the best classification results using K-Nearest Neighbor classifier and a accuracy of 92.5%. Image segmentation techniques can play an important role to segment and extract suspected hot regions of interests in the breast infrared images. Three image segmentation techniques: minimum variance quantization, dilation of image and erosion of image are discussed. The hottest regions of thermal breast images are extracted and compared to the original images. According to the results, the proposed method has potential to extract almost exact shape of tumors. PMID:26417334

  3. Thermography based breast cancer detection using texture features and minimum variance quantization.

    PubMed

    Milosevic, Marina; Jankovic, Dragan; Peulic, Aleksandar

    2014-01-01

    In this paper, we present a system based on feature extraction techniques and image segmentation techniques for detecting and diagnosing abnormal patterns in breast thermograms. The proposed system consists of three major steps: feature extraction, classification into normal and abnormal pattern and segmentation of abnormal pattern. Computed features based on gray-level co-occurrence matrices are used to evaluate the effectiveness of textural information possessed by mass regions. A total of 20 GLCM features are extracted from thermograms. The ability of feature set in differentiating abnormal from normal tissue is investigated using a Support Vector Machine classifier, Naive Bayes classifier and K-Nearest Neighbor classifier. To evaluate the classification performance, five-fold cross validation method and Receiver operating characteristic analysis was performed. The verification results show that the proposed algorithm gives the best classification results using K-Nearest Neighbor classifier and a accuracy of 92.5%. Image segmentation techniques can play an important role to segment and extract suspected hot regions of interests in the breast infrared images. Three image segmentation techniques: minimum variance quantization, dilation of image and erosion of image are discussed. The hottest regions of thermal breast images are extracted and compared to the original images. According to the results, the proposed method has potential to extract almost exact shape of tumors.

  4. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    NASA Astrophysics Data System (ADS)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  5. Randomness fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1996-01-01

    A method and apparatus are provided for detecting a fault on a power line carrying a line parameter such as a load current. The apparatus monitors and analyzes the load current to obtain an energy value. The energy value is compared to a threshold value stored in a buffer. If the energy value is greater than the threshold value a counter is incremented. If the energy value is greater than a high value threshold or less than a low value threshold then a second counter is incremented. If the difference between two subsequent energy values is greater than a constant then a third counter is incremented. A fault signal is issued if the counter is greater than a counter limit value and either the second counter is greater than a second limit value or the third counter is greater than a third limit value.

  6. Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Li, Feng; Doi, Kunio; Li, Qiang

    2009-11-01

    Accurate detection of diffuse lung disease is an important step for computerized diagnosis and quantification of this disease. It is also a difficult clinical task for radiologists. We developed a computerized scheme to assist radiologists in the detection of diffuse lung disease in multi-detector computed tomography (CT). Two radiologists selected 31 normal and 37 abnormal CT scans with ground glass opacity, reticular, honeycombing and nodular disease patterns based on clinical reports. The abnormal cases in our database must contain at least an abnormal area with a severity of moderate or severe level that was subjectively rated by the radiologists. Because statistical texture features may lack the power to distinguish a nodular pattern from a normal pattern, the abnormal cases that contain only a nodular pattern were excluded. The areas that included specific abnormal patterns in the selected CT images were then delineated as reference standards by an expert chest radiologist. The lungs were first segmented in each slice by use of a thresholding technique, and then divided into contiguous volumes of interest (VOIs) with a 64 × 64 × 64 matrix size. For each VOI, we determined and employed statistical texture features, such as run-length and co-occurrence matrix features, to distinguish abnormal from normal lung parenchyma. In particular, we developed new run-length texture features with clear physical meanings to considerably improve the accuracy of our detection scheme. A quadratic classifier was employed for distinguishing between normal and abnormal VOIs by the use of a leave-one-case-out validation scheme. A rule-based criterion was employed to further determine whether a case was normal or abnormal. We investigated the impact of new and conventional texture features, VOI size and the dimensionality for regions of interest on detecting diffuse lung disease. When we employed new texture features for 3D VOIs of 64 × 64 × 64 voxels, our system achieved the

  7. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  8. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  9. NORSAR Detection Processing System.

    DTIC Science & Technology

    1987-05-31

    systems have been reliable. NTA/Lillestrom and Hamar will take a new initiative medio April regarding 04C. The line will be remeasured and if a certain...estimate of the ambient noise level at the site of the FINESA array, ground motion spectra were calculated for four time intervals. Two intervals were

  10. Remote Voice Detection System

    DTIC Science & Technology

    2007-06-25

    back to the laser Doppler vibrometer and the digital camera, respectively. Mechanical beam steering mirror modules, such as galvanometer steering...mirror module 43 in accordance with this invention. An appropriate galvanometer -based tracker system has been used for tracking eye motion during laser

  11. Data assimilation in systems with strong signal features

    NASA Astrophysics Data System (ADS)

    Rosenthal, W. Steven

    Filtering problems in high dimensional geophysical applications often require spatially continuous models to interpolate spatially and temporally sparse data. Many applications in numerical weather and ocean state prediction are concerned with tracking and assessing the uncertainty in the position of large scale vorticity features, such as storm fronts, jets streams, and hurricanes. Quantifying the amplitude variance in these features is complicated by the fact that both height and lateral perturbations in the feature geometry are represented in the same covariance estimate. However, when there are sufficient observations to detect feature information like spatial gradients, the positions of these features can be used to further constrain the filter, as long as the statistical model (cost function) has provisions for both height perturbations and lateral displacements. Several authors since the 1990s have proposed various formalisms for the simultaneous modeling of position and amplitude errors, and the typical approaches to computing the generalized solutions in these applications are variational or direct optimization. The ensemble Kalman filter is often employed in large scale nonlinear filtering problems, but its predication on Gaussian statistics causes its estimators suffer from analysis deflation or collapse, as well as the usual curse of dimensionality in high dimensional Monte Carlo simulations. Moreover, there is no theoretical guarantee of the performance of the ensemble Kalman filter with nonlinear models. Particle filters which employ importance sampling to focus attention on the important regions of the likelihood have shown promise in recent studies on the control of particle size. Consider an ensemble forecast of a system with prominent feature information. The correction of displacements in these features, by pushing them into better aggrement with observations, is an application of importance sampling, and Monte Carlo methods, including particle

  12. Unsupervised Spectral-Spatial Feature Selection-Based Camouflaged Object Detection Using VNIR Hyperspectral Camera

    PubMed Central

    2015-01-01

    The detection of camouflaged objects is important for industrial inspection, medical diagnoses, and military applications. Conventional supervised learning methods for hyperspectral images can be a feasible solution. Such approaches, however, require a priori information of a camouflaged object and background. This letter proposes a fully autonomous feature selection and camouflaged object detection method based on the online analysis of spectral and spatial features. The statistical distance metric can generate candidate feature bands and further analysis of the entropy-based spatial grouping property can trim the useless feature bands. Camouflaged objects can be detected better with less computational complexity by optical spectral-spatial feature analysis. PMID:25879073

  13. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    SciTech Connect

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl; Stathopoulos, Andreas; Chang, Choong -Seock; Klasky, Scott A.

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  14. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    SciTech Connect

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl; Stathopoulos, Andreas; Chang, Choong -Seock; Klasky, Scott A.

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  15. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    DOE PAGES

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less

  16. Observation chart design features affect the detection of patient deterioration: a systematic experimental evaluation.

    PubMed

    Christofidis, Melany J; Hill, Andrew; Horswill, Mark S; Watson, Marcus O

    2016-01-01

    To systematically evaluate the impact of several design features on chart-users' detection of patient deterioration on observation charts with early-warning scoring-systems. Research has shown that observation chart design affects the speed and accuracy with which abnormal observations are detected. However, little is known about the contribution of individual design features to these effects. A 2 × 2 × 2 × 2 mixed factorial design, with data-recording format (drawn dots vs. written numbers), scoring-system integration (integrated colour-based system vs. non-integrated tabular system) and scoring-row placement (grouped vs. separate) varied within-participants and scores (present vs. absent) varied between-participants by random assignment. 205 novice chart-users, tested between March 2011-March 2014, completed 64 trials where they saw real patient data presented on an observation chart. Each participant saw eight cases (four containing abnormal observations) on each of eight designs (which represented a factorial combination of the within-participants variables). On each trial, they assessed whether any of the observations were physiologically abnormal, or whether all observations were normal. Response times and error rates were recorded for each design. Participants responded faster (scores present and absent) and made fewer errors (scores absent) using drawn-dot (vs. written-number) observations and an integrated colour-based (vs. non-integrated tabular) scoring-system. Participants responded faster using grouped (vs. separate) scoring-rows when scores were absent, but separate scoring-rows when scores were present. Our findings suggest that several individual design features can affect novice chart-users' ability to detect patient deterioration. More broadly, the study further demonstrates the need to evaluate chart designs empirically. © 2015 John Wiley & Sons Ltd.

  17. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  18. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  19. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  20. Radiation detection system

    DOEpatents

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  1. Automated detection of broadband clicks of freshwater fish using spectro-temporal features.

    PubMed

    Kottege, Navinda; Jurdak, Raja; Kroon, Frederieke; Jones, Dean

    2015-05-01

    Large scale networks of embedded wireless sensor nodes can passively capture sound for species detection. However, the acoustic recordings result in large amounts of data requiring in-network classification for such systems to be feasible. The current state of the art in the area of in-network bioacoustics classification targets narrowband or long-duration signals, which render it unsuitable for detecting species that emit impulsive broadband signals. In this study, impulsive broadband signals were classified using a small set of spectral and temporal features to aid in their automatic detection and classification. A prototype system is presented along with an experimental evaluation of automated classification methods. The sound used was recorded from a freshwater invasive fish in Australia, the spotted tilapia (Tilapia mariae). Results show a high degree of accuracy after evaluating the proposed detection and classification method for T. mariae sounds and comparing its performance against the state of the art. Moreover, performance slightly improves when the original signal was down-sampled from 44.1 to 16 kHz. This indicates that the proposed method is well-suited for detection and classification on embedded devices, which can be deployed to implement a large scale wireless sensor network for automated species detection.

  2. Automatic Detection and Classification of Breast Tumors in Ultrasonic Images Using Texture and Morphological Features

    PubMed Central

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity. PMID:21892371

  3. Obscenity Detection Using Haar-Like Features and Gentle Adaboost Classifier

    PubMed Central

    Min, Yang; Zhu, Dingju

    2014-01-01

    Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier. PMID:25003153

  4. Obscenity detection using haar-like features and Gentle Adaboost classifier.

    PubMed

    Mustafa, Rashed; Min, Yang; Zhu, Dingju

    2014-01-01

    Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier.

  5. Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.

    PubMed

    Jørgensen, Alex Skovsbo; Rasmussen, Anders Munk; Andersen, Niels Kristian Mäkinen; Andersen, Simon Kragh; Emborg, Jonas; Røge, Rasmus; Østergaard, Lasse Riis

    2017-08-01

    Currently, diagnosis of colon cancer is based on manual examination of histopathological images by a pathologist. This can be time consuming and interpretation of the images is subject to inter- and intra-observer variability. This may be improved by introducing a computer-aided diagnosis (CAD) system for automatic detection of cancer tissue within whole slide hematoxylin and eosin (H&E) stains. Cancer disrupts the normal control mechanisms of cell proliferation and differentiation, affecting the structure and appearance of the cells. Therefore, extracting features from segmented cell nuclei structures may provide useful information to detect cancer tissue. A framework for automatic classification of regions of interest (ROI) containing either benign or cancerous colon tissue extracted from whole slide H&E stained images using cell nuclei features was proposed. A total of 1,596 ROI's were extracted from 87 whole slide H&E stains (44 benign and 43 cancer). A cell nuclei segmentation algorithm consisting of color deconvolution, k-means clustering, local adaptive thresholding, and cell separation was performed within the ROI's to extract cell nuclei features. From the segmented cell nuclei structures a total of 750 texture and intensity-based features were extracted for classification of the ROI's. The nine most discriminative cell nuclei features were used in a random forest classifier to determine if the ROI's contained benign or cancer tissue. The ROI classification obtained an area under the curve (AUC) of 0.96, sensitivity of 0.88, specificity of 0.92, and accuracy of 0.91 using an optimized threshold. The developed framework showed promising results in using cell nuclei features to classify ROIs into containing benign or cancer tissue in H&E stained tissue samples. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  6. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  7. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  8. Diversified transmission multichannel detection system

    SciTech Connect

    Tournois, P.; Engelhard, P.

    1984-07-03

    A detection system for imaging by sonar or radar signals. The system associates diversified transmissions with an interferometric base. This base provides an angular channel formation means and each signal formed in this way is processed by matched filtering in a circuit containing copy signals characterizing the space coloring obtained by the diversified transmission means. The invention is particularly applicable to side or front looking detection sonars.

  9. Eigenvalue-weighting and feature selection for computer-aided polyp detection in CT colonography

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbin; Wang, Su; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2010-03-01

    With the development of computer-aided polyp detection towards virtual colonoscopy screening, the trade-off between detection sensitivity and specificity has gained increasing attention. An optimum detection, with least number of false positives and highest true positive rate, is desirable and involves interdisciplinary knowledge, such as feature extraction, feature selection as well as machine learning. Toward that goal, various geometrical and textural features, associated with each suspicious polyp candidate, have been individually extracted and stacked together as a feature vector. However, directly inputting these high-dimensional feature vectors into a learning machine, e.g., neural network, for polyp detection may introduce redundant information due to feature correlation and induce the curse of dimensionality. In this paper, we explored an indispensable building block of computer-aided polyp detection, i.e., principal component analysis (PCA)-weighted feature selection for neural network classifier of true and false positives. The major concepts proposed in this paper include (1) the use of PCA to reduce the feature correlation, (2) the scheme of adaptively weighting each principal component (PC) by the associated eigenvalue, and (3) the selection of feature combinations via the genetic algorithm. As such, the eigenvalue is also taken as part of the characterizing feature, and the necessary number of features can be exposed to mitigate the curse of dimensionality. Learned and tested by radial basis neural network, the proposed computer-aided polyp detection has achieved 95% sensitivity at a cost of average 2.99 false positives per polyp.

  10. Portable weighing system with alignment features

    DOEpatents

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh; Sheldon, Frederick T.

    2012-11-06

    A system for weighing a load is disclosed. The weighing system includes a pad having at least one transducer for weighing a load disposed on the pad. In some embodiments the pad has a plurality of foot members and the weighing system may include a plate that disposed underneath the pad for receiving the plurality of foot member and for aligning the foot members when the weighing system is installed. The weighing system may include a spacer disposed adjacent the pad and in some embodiments, a spacer anchor operatively secures the spacer to a support surface, such as a plate, a railway bed, or a roadway. In some embodiments the spacer anchor operatively secures both the spacer and the pad to a roadway.

  11. Some features of secretory systems in plants.

    PubMed

    Juniper, B E; Gilchrist, A J; Robins, R J

    1977-09-01

    Recent work on secretion in plants is reviewed, with emphasis on the anatomy and physiology of root cap cells in higher plants, the stalked glands of Drosera capensis, and the secretory mechanism of Dionaea muscipula. Cells of the root cap of higher plants switch from a geo-perceptive role to one of mucilage secretion at maturation. Features of this process, the role of the Golgi and the pathway for mucilage distribution are reviewed. In contrast, the stalked glands of the leaves of Drosera capensis are much longer lived and have a complex anatomy. The mechanisms for mucilage secretion, protein absorption and the role of the cell membranes in the internal secretion of the protein are described, using data from X-ray microscopv. The secretion of fluid and protein by Dionaea is stimulated by various nitrogen-containing compounds. Uric acid, often excreted by captured insects, is particularly effective in this respect.

  12. New HI Features of the Magellanic System

    NASA Astrophysics Data System (ADS)

    Putman, M. E.; Gibson, B. K.; Staveley-Smith, L.

    The first results from the HI Parkes All-Sky Survey (HIPASS) provide a new and spectacular view of the global HI distribution in the vicinity of the Magellanic Clouds and the southern Milky Way. A 2600 square degree mosaic of the South Celestial Pole (SCP) reveals the existence of a narrow, continuous counter-stream which "leads" the direction of motion of the Clouds, i.e. opposite in direction to the Stream. This strongly supports the gravitational model for the Stream in which the leading and trailing streams are tidally torn from the body of the Magellanic Clouds. We also reveal additional tidal features in the Bridge region which appear to emanate from the LMC, and a distinct spiral structure within the LMC itself.

  13. DETECTION AND TRACKING OF SUBTLE CLOUD FEATURES ON URANUS

    SciTech Connect

    Fry, P. M.; Sromovsky, L. A.; De Pater, I.; Hammel, H. B.; Rages, K. A.

    2012-06-15

    The recently updated Uranus zonal wind profile (Sromovsky et al.) samples latitudes from 71 Degree-Sign S to 73 Degree-Sign N. But many latitudes remain grossly undersampled (outside 20 Degree-Sign -45 Degree-Sign S and 20 Degree-Sign -50 Degree-Sign N) due to a lack of trackable cloud features. Offering some hope of filling these gaps is our recent discovery of low-contrast cloud that can be revealed by imaging at much higher signal-to-noise ratios (S/Ns) than previously obtained. This is demonstrated using an average of 2007 Keck II NIRC2 near-IR observations. Eleven one-minute H-band exposures, acquired over a 1.6 hr time span, were rectilinearly remapped and zonally shifted to account for planetary rotation. This increased the S/N by about a factor of 3.3. A new fine structure in latitude bands appeared, small previously unobservable cloud tracers became discernible, and some faint cloud features became prominent. While we could produce one such high-quality average, we could not produce enough to actually track the newly revealed features. This requires a specially designed observational effort. We have designed recent Hubble Space Telescope WFC3 F845M observations to allow application of the technique. We measured eight zonal winds by tracking features in these images and found that several fall off of the current zonal wind profile of Sromovsky et al., and are consistent with a partial reversal of their hemispherically asymmetric profile.

  14. Empirical Evaluation of Different Feature Representations for Social Circles Detection

    DTIC Science & Technology

    2015-06-16

    Kaggle competition on learning social circles in networks [5]. The data consist of hand- labelled friendship egonets from Facebook and a set of 57...study and compare the performance on the available labelled Facebook data from the Kaggle competition on learning social circles in networks. We...from both structural egonet information and user profile features. We study and compare the performance on the available labelled Facebook data from

  15. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

    NASA Astrophysics Data System (ADS)

    Gong, Maoguo; Yang, Hailun; Zhang, Puzhao

    2017-07-01

    Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.

  16. Learning Slowness in a Sparse Model of Invariant Feature Detection.

    PubMed

    Chandrapala, Thusitha N; Shi, Bertram E

    2015-07-01

    Primary visual cortical complex cells are thought to serve as invariant feature detectors and to provide input to higher cortical areas. We propose a single model for learning the connectivity required by complex cells that integrates two factors that have been hypothesized to play a role in the development of invariant feature detectors: temporal slowness and sparsity. This model, the generative adaptive subspace self-organizing map (GASSOM), extends Kohonen's adaptive subspace self-organizing map (ASSOM) with a generative model of the input. Each observation is assumed to be generated by one among many nodes in the network, each being associated with a different subspace in the space of all observations. The generating nodes evolve according to a first-order Markov chain and generate inputs that lie close to the associated subspace. This model differs from prior approaches in that temporal slowness is not an externally imposed criterion to be maximized during learning but, rather, an emergent property of the model structure as it seeks a good model of the input statistics. Unlike the ASSOM, the GASSOM does not require an explicit segmentation of the input training vectors into separate episodes. This enables us to apply this model to an unlabeled naturalistic image sequence generated by a realistic eye movement model. We show that the emergence of temporal slowness within the model improves the invariance of feature detectors trained on this input.

  17. EEG Signal Description with Spectral-Envelope-Based Speech Recognition Features for Detection of Neonatal Seizures

    PubMed Central

    Temko, Andriy; Nadeu, Climent; Marnane, William; Boylan, Geraldine; Lightbody, Gordon

    2012-01-01

    In this work, features which are usually employed in automatic speech recognition (ASR) are used for the detection of seizures in newborn EEG. In particular, spectral envelope based features, composed of spectral powers and their spectral derivatives are compared to the established feature set which has been previously developed for EEG analysis. The results indicate that the ASR features which model the spectral derivatives, (either full-band or localized in frequency), yielded a performance improvement, in comparison to spectral-power based features. Indeed it is shown here that they perform reasonably well in comparison with the conventional EEG feature set. The contribution of the ASR features was analyzed here using the Support Vector Machines (SVM) recursive feature elimination technique. It is shown that the spectral derivative features consistently appear among the top-rank features. The study shows that the ASR features should be given a high priority when dealing with the description of the EEG signal. PMID:21690018

  18. EEG signal description with spectral-envelope-based speech recognition features for detection of neonatal seizures.

    PubMed

    Temko, Andriy; Nadeu, Climent; Marnane, William; Boylan, Geraldine; Lightbody, Gordon

    2011-11-01

    In this paper, features which are usually employed in automatic speech recognition (ASR) are used for the detection of seizures in newborn EEG. In particular, spectral envelope-based features, composed of spectral powers and their spectral derivatives are compared to the established feature set which has been previously developed for EEG analysis. The results indicate that the ASR features which model the spectral derivatives, either full-band or localized in frequency, yielded a performance improvement, in comparison to spectral-power-based features. Indeed it is shown here that they perform reasonably well in comparison with the conventional EEG feature set. The contribution of the ASR features was analyzed here using the support vector machines (SVM) recursive feature elimination technique. It is shown that the spectral derivative features consistently appear among the top-rank features. The study shows that the ASR features should be given a high priority when dealing with the description of the EEG signal.

  19. Boolean map saliency combined with motion feature used for dim and small target detection in infrared video sequences

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Peng, Zhenming; Zhang, Ping

    2016-10-01

    Infrared dim and small target detection plays an important role in infrared search and tracking systems. In this paper, a novel infrared dim and small target detection method based on Boolean map saliency and motion feature is proposed. Infrared targets are the most salient parts in images, with high gray level and continuous moving trajectory. Utilizing this property, we build a feature space containing gray level feature and motion feature. The gray level feature is the intensity of input images, while the motion feature is obtained by motion charge in consecutive frames. In the second step, the Boolean map saliency approach is implemented on the gray level feature and motion feature to obtain the gray saliency map and motion saliency map. In the third step, two saliency maps are combined together to get the final result. Numerical experiments have verified the effectiveness of the proposed method. The final detection result can not only get an accurate detection result, but also with fewer false alarms, which is suitable for practical use.

  20. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  1. Structural Features of a Solar TPV System

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. D.; Khvostikov, V. P.; Khvostikova, O. A.; Gazaryan, P. Y.; Sadchikov, N. A.; Vlasov, A. S.; Ionova, E. A.; Andreev, V. M.

    2004-11-01

    Developed solar TPV system consists of sunlight tracker, sunlight concentrator, absorber of concentrated sunlight, selective emitter of radiation, internal reflectors of radiation from the emitter, and PV cells cooled by water or forced air. The concentration ratio exceeding 8000 suns is ensured by the developed 300W dish mirror with secondary compound parabolic concentrator. The emitter is made of tungsten evacuated in a vacuum bulb. To decrease the losses of the photons emitted back to outside of TPV system, the area of the emitter surface exceeds up to 10 times the absorber aperture area. The developed PV cells based on Ge and GaSb have a back-surface mirror, which reflects the sub-bandgap photons to the emitter increasing its temperature and overall system efficiency.

  2. Feature Sampling in Detection: Implications for the Measurement of Perceptual Independence

    ERIC Educational Resources Information Center

    Macho, Siegfried

    2007-01-01

    The article presents the feature sampling signal detection (FS-SDT) model, an extension of the multivariate signal detection (SDT) model. The FS-SDT model assumes that, because of attentional shifts, different subsets of features are sampled for different presentations of the same multidimensional stimulus. Contrary to the SDT model, the FS-SDT…

  3. Detection and Location of Structural Degradation in Mechanical Systems

    SciTech Connect

    Blakeman, E.D.; Damiano, B.; Phillips, L.D.

    1999-08-30

    The investigation of a diagnostic method for detecting and locating the source of structural degradation in a mechanical system is described in this paper. The diagnostic method uses a mathematical model of the mechanical system to determine relationships between system parameters and measurable spectral features. These relationships are incorporated into a neural network, which associates measured spectral features with system parameters. Condition diagnosis is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system.

  4. Pair normalized channel feature and statistics-based learning for high-performance pedestrian detection

    NASA Astrophysics Data System (ADS)

    Zeng, Bobo; Wang, Guijin; Ruan, Zhiwei; Lin, Xinggang; Meng, Long

    2012-07-01

    High-performance pedestrian detection with good accuracy and fast speed is an important yet challenging task in computer vision. We design a novel feature named pair normalized channel feature (PNCF), which simultaneously combines and normalizes two channel features in image channels, achieving a highly discriminative power and computational efficiency. PNCF applies to both gradient channels and color channels so that shape and appearance information are described and integrated in the same feature. To efficiently explore the formidably large PNCF feature space, we propose a statistics-based feature learning method to select a small number of potentially discriminative candidate features, which are fed into the boosting algorithm. In addition, channel compression and a hybrid pyramid are employed to speed up the multiscale detection. Experiments illustrate the effectiveness of PNCF and its learning method. Our proposed detector outperforms the state-of-the-art on several benchmark datasets in both detection accuracy and efficiency.

  5. Individual-specific features of brain systems identified with resting state functional correlations.

    PubMed

    Gordon, Evan M; Laumann, Timothy O; Adeyemo, Babatunde; Gilmore, Adrian W; Nelson, Steven M; Dosenbach, Nico U F; Petersen, Steven E

    2017-02-01

    Recent work has made important advances in describing the large-scale systems-level organization of human cortex by analyzing functional magnetic resonance imaging (fMRI) data averaged across groups of subjects. However, new findings have emerged suggesting that individuals' cortical systems are topologically complex, containing small but reliable features that cannot be observed in group-averaged datasets, due in part to variability in the position of such features along the cortical sheet. This previous work has reported only specific examples of these individual-specific system features; to date, such features have not been comprehensively described. Here we used fMRI to identify cortical system features in individual subjects within three large cross-subject datasets and one highly sampled within-subject dataset. We observed system features that have not been previously characterized, but 1) were reliably detected across many scanning sessions within a single individual, and 2) could be matched across many individuals. In total, we identified forty-three system features that did not match group-average systems, but that replicated across three independent datasets. We described the size and spatial distribution of each non-group feature. We further observed that some individuals were missing specific system features, suggesting individual differences in the system membership of cortical regions. Finally, we found that individual-specific system features could be used to increase subject-to-subject similarity. Together, this work identifies individual-specific features of human brain systems, thus providing a catalog of previously unobserved brain system features and laying the foundation for detailed examinations of brain connectivity in individuals.

  6. Breast cancer mitosis detection in histopathological images with spatial feature extraction

    NASA Astrophysics Data System (ADS)

    Albayrak, Abdülkadir; Bilgin, Gökhan

    2013-12-01

    In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.

  7. Face detection on distorted images using perceptual quality-aware features

    NASA Astrophysics Data System (ADS)

    Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.

    2014-02-01

    We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.

  8. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn.

    PubMed

    Gordon, S H; Schudy, R B; Wheeler, B C; Wicklow, D T; Greene, R V

    1997-04-01

    Aspergillus flavus and other pathogenic fungi display typical infrared spectra which differ significantly from spectra of substrate materials such as corn. On this basis, specific spectral features have been identified which permit detection of fungal infection on the surface of corn kernels by photoacoustic infrared spectroscopy. In a blind study, ten corn kernels showing bright greenish yellow fluorescence (BGYF) in the germ or endosperm and ten BGYF-negative kernels were correctly classified as infected or not infected by Fourier transform infrared photoacoustic spectroscopy. Earlier studies have shown that BGYF-positive kernels contain the bulk of the aflatoxin contaminating grain at harvest. Ten major spectral features, identified by visual inspection of the photoacoustic spectra of A. flavus mycelium grown in culture versus uninfected corn, were interpreted and assigned by theoretical comparisons of the relative chemical compositions of fungi and corn. The spectral features can be built into either empirical or knowledge-based computer models (expert systems) for automatic infrared detection and segregation of grains or kernels containing aflatoxin from the food and feed supply.

  9. Comparing features extractors in EEG-based cognitive fatigue detection of demanding computer tasks.

    PubMed

    Rifai Chai; Smith, Mitchell R; Nguyen, Tuan N; Sai Ho Ling; Coutts, Aaron J; Nguyen, Hung T

    2015-01-01

    An electroencephalography (EEG)-based classification system could be used as a tool for detecting cognitive fatigue from demanding computer tasks. The most widely used feature extractor in EEG-based fatigue classification is power spectral density (PSD). This paper investigates PSD and three alternative feature extraction methods, in order to find the best feature extractor for the classification of cognitive fatigue during cognitively demanding tasks. These compared methods are power spectral entropy (PSE), wavelet, and autoregressive (AR). Bayesian neural network was selected as the classifier in this study. The results showed that the use of PSD and PSE methods provide an average accuracy of 60% for each computer task. This finding is slightly improved using the wavelet method which has an average accuracy of 61%. The AR method is the best feature extractor compared with the PSD, PSE and wavelet in this study with accuracy of 75.95% in AX-continuous performance test (AX-CPT), 75.23% in psychomotor vigilance test (PVT) and 76.02% in Stroop task (p-value <; 0.05).

  10. Feature Detection for Model Assessment in State Estimation

    DTIC Science & Technology

    1991-10-15

    Gong Combat Control Systems Department S. C. Nardone University of Massachusetts Dartmouth DTICS ELECTE JUL 141992 DlNA Naval Underwater Systems...Assessment in State Estimation .AUTHOR(S) D. J. Ferkinhoff S. C. Nardone * J. G. Baylog K. F. Gong 7. PERFORLMING ORGANIZATION NAME(S) AND ADORESS(ES...VA 22203 11. SUPPLEMENTARY NOTES *S. C. Nardone is affiliated with the University of Massachusetts Dartmouth, North Dartmouth, MA 02747. 12

  11. Effective method for detecting regions of given colors and the features of the region surfaces

    NASA Astrophysics Data System (ADS)

    Gong, Yihong; Zhang, HongJiang

    1994-03-01

    Color can be used as a very important cue for image recognition. In industrial and commercial areas, color is widely used as a trademark or identifying feature in objects, such as packaged goods, advertising signs, etc. In image database systems, one may retrieve an image of interest by specifying prominent colors and their locations in the image (image retrieval by contents). These facts enable us to detect or identify a target object using colors. However, this task depends mainly on how effectively we can identify a color and detect regions of the given color under possibly non-uniform illumination conditions such as shade, highlight, and strong contrast. In this paper, we present an effective method to detect regions matching given colors, along with the features of the region surfaces. We adopt the HVC color coordinates in the method because of its ability of completely separating the luminant and chromatic components of colors. Three basis functions functionally serving as the low-pass, high-pass, and band-pass filters, respectively, are introduced.

  12. Improving Detection of Axillary Lymph Nodes by Computer-Aided Kinetic Feature Identification in Positron Emission Tomography

    DTIC Science & Technology

    2004-08-01

    Detection of Early Metastasized Molecular Feature (IDEMMF) system; and test and evaluate the prototype with phantom , animal study and clinical patient...reported below. 5 2.1.1 TAC feature extraction Using dynamic phantom data with known ground truth, we tested, to a certain degree, how the time activity...averaged time activity curve. We have performed an experimental study with a realistic liver phantom . In the liver phantom three artificial spherical

  13. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  14. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    PubMed

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  15. Hyperspectral Feature Detection Onboard the Earth Observing One Spacecraft using Superpixel Segmentation and Endmember Extraction

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Bornstein, Benjamin; Bue, Brian D.; Tran, Daniel Q.; Chien, Steve A.; Castano, Rebecca

    2012-01-01

    We present a demonstration of onboard hyperspectral image processing with the potential to reduce mission downlink requirements. The system detects spectral endmembers and then uses them to map units of surface material. This summarizes the content of the scene, reveals spectral anomalies warranting fast response, and reduces data volume by two orders of magnitude. We have integrated this system into the Autonomous Science craft Experiment for operational use onboard the Earth Observing One (EO-1) Spacecraft. The system does not require prior knowledge about spectra of interest. We report on a series of trial overflights in which identical spacecraft commands are effective for autonomous spectral discovery and mapping for varied target features, scenes and imaging conditions.

  16. Hyperspectral Feature Detection Onboard the Earth Observing One Spacecraft using Superpixel Segmentation and Endmember Extraction

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Bornstein, Benjamin; Bue, Brian D.; Tran, Daniel Q.; Chien, Steve A.; Castano, Rebecca

    2012-01-01

    We present a demonstration of onboard hyperspectral image processing with the potential to reduce mission downlink requirements. The system detects spectral endmembers and then uses them to map units of surface material. This summarizes the content of the scene, reveals spectral anomalies warranting fast response, and reduces data volume by two orders of magnitude. We have integrated this system into the Autonomous Science craft Experiment for operational use onboard the Earth Observing One (EO-1) Spacecraft. The system does not require prior knowledge about spectra of interest. We report on a series of trial overflights in which identical spacecraft commands are effective for autonomous spectral discovery and mapping for varied target features, scenes and imaging conditions.

  17. Rotation-Invariant Features for Multi-Oriented Text Detection in Natural Images

    PubMed Central

    Yao, Cong; Zhang, Xin; Bai, Xiang; Liu, Wenyu; Ma, Yi; Tu, Zhuowen

    2013-01-01

    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes. PMID:23940544

  18. Road detection in arid environments using uniformly distributed random based features

    NASA Astrophysics Data System (ADS)

    Plodpradista, P.; Keller, J. M.; Popescu, M.

    2016-05-01

    The capability of detecting an unpaved road in arid environments can greatly enhance an explosive hazard detection system. One approach is to segment out the off-road area and the area above the horizon, which is considered to be irrelevant for the task in hand. Segmenting out irrelevant areas, such as the region above the horizon, allows the explosive hazard detection system to process a smaller region in a scene, enabling a more computationally complex approach. In this paper, we propose a novel approach for speeding up the detection algorithms based on random projection and random selection. Both methods have a low computational cost and reduce the dimensionality of the data while approximately preserving, with a certain probability, the pair-wise point distances. Dimensionality reduction allows any classifier employed in our proposed algorithm to consume fewer computational resources. Furthermore, by applying the random projections directly to image intensity patches, there is no feature extraction needed. The data used in our proposed algorithms are obtained from sensors on board a U.S. Army countermine vehicle. We tested our proposed algorithms on data obtained from several runs on an arid climate road. In our experiments we compare our algorithms based on random projection and random selection to Principal Component Analysis (PCA), a popular dimensionality reduction method.

  19. A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features.

    PubMed

    Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang

    2016-12-01

    Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.

  20. A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features

    NASA Astrophysics Data System (ADS)

    Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang

    2016-04-01

    Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.

  1. Invariant recognition of feature combinations in the visual system.

    PubMed

    Elliffe, M C M; Rolls, E T; Stringer, S M

    2002-01-01

    The operation of a hierarchical competitive network model (VisNet) of invariance learning in the visual system is investigated to determine how this class of architecture can solve problems that require the spatial binding of features. First, we show that VisNet neurons can be trained to provide transform-invariant discriminative responses to stimuli which are composed of the same basic alphabet of features, where no single stimulus contains a unique feature not shared by any other stimulus. The investigation shows that the network can discriminate stimuli consisting of sets of features which are subsets or supersets of each other. Second, a key feature-binding issue we address is how invariant representations of low-order combinations of features in the early layers of the visual system are able to uniquely specify the correct spatial arrangement of features in the overall stimulus and ensure correct stimulus identification in the output layer. We show that output layer neurons can learn new stimuli if the lower layers are trained solely through exposure to simpler feature combinations from which the new stimuli are composed. Moreover, we show that after training on the low-order feature combinations which are common to many objects, this architecture can--after training with a whole stimulus in some locations--generalise correctly to the same stimulus when it is shown in a new location. We conclude that this type of hierarchical model can solve feature-binding problems to produce correct invariant identification of whole stimuli.

  2. Special Features of Copper(II) Detection in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Y.; Leonov, A. A.; Nazirov, A. E.; Voznesenskiy, S. S.; Bratskaya, S. Y.; Kulchin, Y. N.

    New approach to organize fluorescent sensor system for determination of metal ions in aqueous solutions was presented. The approach is based on modification of hydrophilic polymer with sensitive fluorescent indicators. Possibility to register Cu2+ ions by analyzing of luminescence excitation spectra and lifetimes of the sensitive coating is presented.

  3. Hearing aid malfunction detection system

    NASA Technical Reports Server (NTRS)

    Kessinger, R. L. (Inventor)

    1977-01-01

    A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.

  4. Portable Microleak-Detection System

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Sikora, Joseph G.; Sankaran, Sankara N.

    2007-01-01

    The figure schematically depicts a portable microleak-detection system that has been built especially for use in testing hydrogen tanks made of polymer-matrix composite materials. (As used here, microleak signifies a leak that is too small to be detectable by the simple soap-bubble technique.) The system can also be used to test for microleaks in tanks that are made of other materials and that contain gases other than hydrogen. Results of calibration tests have shown that measurement errors are less than 10 percent for leak rates ranging from 0.3 to 200 cm3/min. Like some other microleak-detection systems, this system includes a vacuum pump and associated plumbing for sampling the leaking gas, and a mass spectrometer for analyzing the molecular constituents of the gas. The system includes a flexible vacuum chamber that can be attached to the outer surface of a tank or other object of interest that is to be tested for leakage (hereafter denoted, simply, the test object). The gas used in a test can be the gas or vapor (e.g., hydrogen in the original application) to be contained by the test object. Alternatively, following common practice in leak testing, helium can be used as a test gas. In either case, the mass spectrometer can be used to verify that the gas measured by the system is the test gas rather than a different gas and, hence, that the leak is indeed from the test object.

  5. Semi autonomous mine detection system

    NASA Astrophysics Data System (ADS)

    Few, Doug; Versteeg, Roelof; Herman, Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude - from an autonomous robotic perspective - the rapid development and deployment of fieldable systems.

  6. Semi autonomous mine detection system

    SciTech Connect

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  7. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  8. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  9. Quantum entanglement for systems of identical bosons: I. General features

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems in which the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. There are many aspects of entanglement that can be studied. This two-part review focuses on the meaning of entanglement, the quantum paradoxes associated with entangled states, and the important tests that allow an experimentalist to determine whether a quantum state—in particular, one for massive bosons is entangled. An overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement that fully utilize the symmetrization principle and the super-selection rules that can be applied to bosonic massive particles. In the first paper (I), the background is given for the meaning of entanglement in the context of systems of identical particles. For such systems, the requirement is that the relevant quantum density operators must satisfy the symmetrization principle and that global and local super-selection rules prohibit states in which there are coherences between differing particle numbers. The justification for these requirements is fully discussed. In the second quantization approach that is used, both the system and the sub-systems are modes (or sets of modes) rather than particles, particles being associated with different occupancies of the modes. The definition of entangled states is based on first defining the non-entangled states—after specifying which modes constitute the sub-systems. This work mainly focuses on the two mode entanglement for massive bosons, but is put in the context of tests of local hidden variable theories, where one may not be able to make the above restrictions. The review provides the detailed

  10. Medical image retrieval system using multiple features from 3D ROIs

    NASA Astrophysics Data System (ADS)

    Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming

    2012-02-01

    Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.

  11. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?

    PubMed

    Ali, Zulfiqar; Alsulaiman, Mansour; Muhammad, Ghulam; Elamvazuthi, Irraivan; Al-Nasheri, Ahmed; Mesallam, Tamer A; Farahat, Mohamed; Malki, Khalid H

    2016-10-10

    A large population around the world has voice complications. Various approaches for subjective and objective evaluations have been suggested in the literature. The subjective approach strongly depends on the experience and area of expertise of a clinician, and human error cannot be neglected. On the other hand, the objective or automatic approach is noninvasive. Automatic developed systems can provide complementary information that may be helpful for a clinician in the early screening of a voice disorder. At the same time, automatic systems can be deployed in remote areas where a general practitioner can use them and may refer the patient to a specialist to avoid complications that may be life threatening. Many automatic systems for disorder detection have been developed by applying different types of conventional speech features such as the linear prediction coefficients, linear prediction cepstral coefficients, and Mel-frequency cepstral coefficients (MFCCs). This study aims to ascertain whether conventional speech features detect voice pathology reliably, and whether they can be correlated with voice quality. To investigate this, an automatic detection system based on MFCC was developed, and three different voice disorder databases were used in this study. The experimental results suggest that the accuracy of the MFCC-based system varies from database to database. The detection rate for the intra-database ranges from 72% to 95%, and that for the inter-database is from 47% to 82%. The results conclude that conventional speech features are not correlated with voice, and hence are not reliable in pathology detection.

  12. Thermal stability of soils and detectability of intrinsic soil features

    NASA Astrophysics Data System (ADS)

    Siewert, Christian; Kucerik, Jiri

    2014-05-01

    applicability of thermogravimetry for soil property determination. Despite of the extreme diversity of individual substances in soils, the thermal decay can be predicted with simple mathematical models. For example, the sum of mass losses in the large temperature interval from 100 °C to 550 °C (known from organic matter determination by ignition mass loss in past) can be predicted using TML in two small temperature intervals: 130 - 140 °C and 320 - 330 °C. In this case, the coefficient of determination between measured and calculated results reached an R2 above 0.97. Further, we found close autocorrelations between thermal mass losses in different temperature intervals. They refer to interrelations between evaporation of bound water and thermal decay of organo-mineral complexes in soils less affected by human influence. In contrast, deviations from such interrelations were found under extreme environmental conditions and in soils under human use. Those results confirm current knowledge about influence of clay on both water binding and organic matter accumulation during natural soil formation. Therefore, these interrelations between soil components are discussed as intrinsic features of soils which open the opportunity for experimental distinction of natural soils from organic and inorganic materials which do not have pedogenetic origin.

  13. A systematic exploration of the micro-blog feature space for teens stress detection.

    PubMed

    Zhao, Liang; Li, Qi; Xue, Yuanyuan; Jia, Jia; Feng, Ling

    2016-01-01

    In the modern stressful society, growing teenagers experience severe stress from different aspects from school to friends, from self-cognition to inter-personal relationship, which negatively influences their smooth and healthy development. Being timely and accurately aware of teenagers psychological stress and providing effective measures to help immature teenagers to cope with stress are highly valuable to both teenagers and human society. Previous work demonstrates the feasibility to sense teenagers' stress from their tweeting contents and context on the open social media platform-micro-blog. However, a tweet is still too short for teens to express their stressful status in a comprehensive way. Considering the topic continuity from the tweeting content to the follow-up comments and responses between the teenager and his/her friends, we combine the content of comments and responses under the tweet to supplement the tweet content. Also, such friends' caring comments like "what happened?", "Don't worry!", "Cheer up!", etc. provide hints to teenager's stressful status. Hence, in this paper, we propose to systematically explore the micro-blog feature space, comprised of four kinds of features [tweeting content features (FW), posting features (FP), interaction features (FI), and comment-response features (FC) between teenagers and friends] for teenager' stress category and stress level detection. We extract and analyze these feature values and their impacts on teens stress detection. We evaluate the framework through a real user study of 36 high school students aged 17. Different classifiers are employed to detect potential stress categories and corresponding stress levels. Experimental results show that all the features in the feature space positively affect stress detection, and linguistic negative emotion, proportion of negative sentences, friends' caring comments and teen's reply rate play more significant roles than the rest features. Micro-blog platform provides

  14. Automatic layout feature extraction for lithography hotspot detection based on deep neural network

    NASA Astrophysics Data System (ADS)

    Matsunawa, Tetsuaki; Nojima, Shigeki; Kotani, Toshiya

    2016-03-01

    Lithography hotspot detection in the physical verification phase is one of the most important techniques in today's optical lithography based manufacturing process. Although lithography simulation based hotspot detection is widely used, it is also known to be time-consuming. To detect hotspots in a short runtime, several machine learning based methods have been proposed. However, it is difficult to realize highly accurate detection without an increase in false alarms because an appropriate layout feature is undefined. This paper proposes a new method to automatically extract a proper layout feature from a given layout for improvement in detection performance of machine learning based methods. Experimental results show that using a deep neural network can achieve better performance than other frameworks using manually selected layout features and detection algorithms, such as conventional logistic regression or artificial neural network.

  15. Towards a Selection Mechanism of Relevant Features for Automatic Epileptic Seizures Detection.

    PubMed

    Mera-Gaona, Maritza; Vargas-Canas, Rubiel; Lopez, Diego M

    2016-01-01

    Epilepsy diagnosis is frequently confirmed using electroencephalogram (EEG) along with clinical data. The main difficulty in the diagnosis is associated with the large amount of data generated by EEG, which must be analyzed by neurologists for identifying abnormalities. One of the main research challenges in this area is the identification of relevant EEG features that allow automatic detection of epileptic seizures, especially when a large number of EEG features are analyzed. The aim of this paper is to analize the accuracy of algorithms typically used in feature selection processes, in order to propose a mechanism to identify a set of relevant features to support automatic epileptic seizures detection. This paper presents a set of 161 features extracted from EEG signals and the relevance analysis of these features in order to identify a reduced set for efficiently classifying EEG signals in two categories: normal o epileptic seizure (abnormal). A public EEG database was used to assess the relevance of the selected features. The results show that the number of features used for classification were reduced by 97.51%. The paper provided an analysis of the accuracy of three algorithms, typically used in feature selection processes, in the selection of a set of relevant features to support the automatic epileptic seizures detection. The Forward Selection algorithm (FSA) produced the best results in the classification process, with an accuracy of 80.77%.

  16. Features and Historical Aspects of the Philippines Educational System

    ERIC Educational Resources Information Center

    Musa, Sajid; Ziatdinov, Rushan

    2012-01-01

    This article deals with the features of the Philippine educational system. Additionally, brief and concise information will be given on how the educational system came into existence, the organization and the structure of the system itself. This paper also tackles the obstacles and problems observed in the past and up to the present, and gives…

  17. Sea Turtle Navigation and the Detection of Geomagnetic Field Features

    NASA Astrophysics Data System (ADS)

    Lohmann, Kenneth J.; Lohmann, Catherine M. F.

    The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.

  18. Detection of linear features using a localized radon transform with a wavelet filter

    SciTech Connect

    Warrick, A L; Delaney, P A

    1999-12-13

    One problem of interest to the oceanic engineering community is the detection and enhancement of internal wakes in open water synthetic aperture radar (SAR) images. Internal wakes, which occur when a ship travels in a stratified medium, have a V shape extending from the ship, and a chirp-like feature across each arm. The Radon transform has been applied to the detection and the enhancement problems in internal wake images to account for the linear features while the wavelet transform has been applied to the enhancement problem in internal wake images to account for the chirp-like features. In this paper, a new transform, a localized Radon transform with a wavelet filter (LRTWF), is developed which accounts for both the linear and the chirp-like features of the internal wake. This transform is then incorporated into optimal and sub-optimal detection schemes for images (with these features) which are contaminated by additive Gaussian noise.

  19. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

  20. Affective Video Retrieval: Violence Detection in Hollywood Movies by Large-Scale Segmental Feature Extraction

    PubMed Central

    Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard

    2013-01-01

    Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology “out of the lab” to real-world, diverse data. In this contribution, we address the problem of finding “disturbing” scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis. PMID:24391704

  1. Affective video retrieval: violence detection in Hollywood movies by large-scale segmental feature extraction.

    PubMed

    Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard

    2013-01-01

    Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology "out of the lab" to real-world, diverse data. In this contribution, we address the problem of finding "disturbing" scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis.

  2. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  3. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1994-09-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  4. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Mat Isa, Nor Ashidi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Abu Osman, Noor Azuan

    2016-07-01

    Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.

  5. Joint spatial-spectral feature space clustering for speech activity detection from ECoG signals.

    PubMed

    Kanas, Vasileios G; Mporas, Iosif; Benz, Heather L; Sgarbas, Kyriakos N; Bezerianos, Anastasios; Crone, Nathan E

    2014-04-01

    Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.

  6. Computing network-based features from physiological time series: application to sepsis detection.

    PubMed

    Santaniello, Sabato; Granite, Stephen J; Sarma, Sridevi V; Winslow, Raimond L

    2014-01-01

    Sepsis is a systemic deleterious host response to infection. It is a major healthcare problem that affects millions of patients every year in the intensive care units (ICUs) worldwide. Despite the fact that ICU patients are heavily instrumented with physiological sensors, early sepsis detection remains challenging, perhaps because clinicians identify sepsis by using static scores derived from bed-side measurements individually, i.e., without systematically accounting for potential interactions between these signals and their dynamics. In this study, we apply network-based data analysis to take into account interactions between bed-side physiological time series (PTS) data collected in ICU patients, and we investigate features to distinguish between sepsis and non-sepsis conditions. We treated each PTS source as a node on a graph and we retrieved the graph connectivity matrix over time by tracking the correlation between each pair of sources' signals over consecutive time windows. Then, for each connectivity matrix, we computed the eigenvalue decomposition. We found that, even though raw PTS measurements may have indistinguishable distributions in non-sepsis and early sepsis states, the median /I of the eigenvalues computed from the same data is statistically different (p <; 0.001) in the two states and the evolution of /I may reflect the disease progression. Although preliminary, these findings suggest that network-based features computed from continuous PTS data may be useful for early sepsis detection.

  7. Spinal focal lesion detection in multiple myeloma using multimodal image features

    NASA Astrophysics Data System (ADS)

    Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf

    2015-03-01

    Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.

  8. Fuzzy Logic-Supported Detection of Complex Geospatial Features in a Web Service Environment

    NASA Astrophysics Data System (ADS)

    He, L. L.; Di, L. P.; Yue, P.; Zhang, M. D.

    2013-10-01

    Spatial relations among simple features can be used to characterize complex geospatial features. These spatial relations are often represented using linguistic terms such as near, which have inherent vagueness and imprecision. Fuzzy logic can be used to modeling fuzziness of the terms. Once simple features are extracted from remote sensing imagery, degree of satisfaction of spatial relations among these simple features can be derived to detect complex features. The derivation process can be performed in a distributed service environment, which benefits Earth science society in the last decade. Workflow-based service can provide ondemand uncertainty-aware discovery of complex features in a distributed environment. A use case on the complex facility detection illustrates the applicability of the fuzzy logic-supported service-oriented approach.

  9. A new approach for EEG feature extraction in P300-based lie detection.

    PubMed

    Abootalebi, Vahid; Moradi, Mohammad Hassan; Khalilzadeh, Mohammad Ali

    2009-04-01

    P300-based Guilty Knowledge Test (GKT) has been suggested as an alternative approach for conventional polygraphy. The purpose of this study was to extend a previously introduced pattern recognition method for the ERP assessment in this application. This extension was done by the further extending the feature set and also the employing a method for the selection of optimal features. For the evaluation of the method, several subjects went through the designed GKT paradigm and their respective brain signals were recorded. Next, a P300 detection approach based on some features and a statistical classifier was implemented. The optimal feature set was selected using a genetic algorithm from a primary feature set including some morphological, frequency and wavelet features and was used for the classification of the data. The rates of correct detection in guilty and innocent subjects were 86%, which was better than other previously used methods.

  10. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  11. Object orientation detection and character recognition using optimal feedforward network and Kohonen's feature map

    NASA Astrophysics Data System (ADS)

    Baykal, Nazife; Yalabik, Nese

    1992-09-01

    A neural network model, namely, Kohonen's Feature Map, together with the optimal feedforward network is used for variable font machine printed character recognition with tolerance to rotation, shift in position, and size errors. The determination of object orientation is found using the many rotated versions of individual symbols. Orientations are detected from printed text, but no knowledge of the context is used. The optimal Bayesian detector is derived, and it is shown that the optimal detector has the form of a feedforward network. This network together with the learning vector quantization (LVQ) approach is able to implement an inspection system which determines the orientation of the fonts. After the size normalization, rotation, and component finding process as a preprocessing step, the text becomes the input for the feature map. The feature map is trained first in an unsupervised manner. The algorithm is then adapted for supervised learning using improved LVQ technique. Rectangular and minimal spanning tree (MST) neighborhood topologies are experimented with. The results are encouraging, 87% of the characters of various fonts are correctly recognized even though the pattern is distorted in shape and transformed in a shift, size, and rotation invariant manner. Experimental results and comparisons are described.

  12. Detection of impact crater in 3D mesh by extraction of feature lines

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Mari, J.-L.; Viseur, S.; Bouley, S.

    2013-09-01

    Impact craters are observed at the surface of most solar system bodies: terrestrial planets, satellites and asteroids. The measurement of their size-frequency distribution (SFD) is the only method available to estimate the age of the observed geological units, assuming a rate and velocity distributions of impactors and a crater scaling law. The age of the geological units is fundamental to establish a chronology of events explaining the global evolution of the surface. In addition, the detailed characterization of the crater properties (depth-to-diameter ratio and radial profile) yields a better understanding of the geological processes which altered the observed surfaces. Crater detection is usually performed manually directly from the acquired images. However, this method can become prohibitive when dealing with small craters extracted from very large data sets. A large number of solar system objects is being mapped at a very high spatial resolution by space probes since a few decades, emphasizing the need for new automatic methods of crater detection. Powerful computers are now available to produce and analyze huge 3D models of the surface in the form of 3D meshes containing tens to hundreds of billions of facets. This motivates the development of a new family of automatic crater detection algorithms (CDAs). The automatic CDAs developed so far were mainly based on morphological analyses and pattern recognition techniques on 2D images (e.g., Bandeira et al., 2012). Since a few years, new CDAs based on 3D models are being developed (see, e.g., Salamuniccar and Loncaric, 2010). Our objective is to develop and test against existing methods an automatic CDA using a new approach based on the discrete differential properties of 3D meshes. The method (Kudelski et al., 2010, 2011a,b) produces the feature lines (the crest and the ravine lines) lying on the surface. It is based on a double step algorithm: first, the regions of interest are flagged according to curvature

  13. An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

    PubMed

    Shu, Ting; Zhang, Bob; Yan Tang, Yuan

    2017-04-01

    Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  15. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  16. Integration of local and global features for anatomical object detection in ultrasound.

    PubMed

    Rahmatullah, Bahbibi; Papageorghiou, Aris T; Noble, J Alison

    2012-01-01

    The use of classifier-based object detection has found to be a promising approach in medical anatomy detection. In ultrasound images, the detection task is very challenging due to speckle, shadows and low contrast characteristic features. Typical detection algorithms that use purely intensity-based image features with an exhaustive scan of the image (sliding window approach) tend not to perform very well and incur a very high computational cost. The proposed approach in this paper achieves a significant improvement in detection rates while avoiding exhaustive scanning, thereby gaining a large increase in speed. Our approach uses the combination of local features from an intensity image and global features derived from a local phase-based image known as feature symmetry. The proposed approach has been applied to 2384 two-dimensional (2D) fetal ultrasound abdominal images for the detection of the stomach and the umbilical vein. The results presented show that it outperforms prior related work that uses only local or only global features.

  17. Lightning Protection and Detection System

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Woodard, Marie (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor); Wang, Chuantong (Inventor); Mielnik, John J. (Inventor); Koppen, Sandra V. (Inventor); Smith, Laura J. (Inventor)

    2017-01-01

    A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.

  18. Feature-level fusion of multiple target detection results in hyperspectral image based on RX detector

    NASA Astrophysics Data System (ADS)

    Sun, Xu; Zhang, Bing; Yang, Lina; Gao, Lianru; Zhang, Wenjuan

    2012-05-01

    Target detection is an important research content in hyperspectral remote sensing technology, which is widely used in securities and defenses. Nowadays, many target detection algorithm have been proposed. One of the key evaluation indicators of these algorithms performance is false-alarm rate. The feature-level fusion of different target detection results is a simple and effective method to reduce false-alarm rate. But the different value ranges of different algorithms bring difficulties for data fusion. This paper proposed a feature-level fusion method based on RXD detector, which is to integrate multiple target detection results into a multi-bands image, and fuse detection results using principal theory of abnormal detection. Experiments revealed that, this method is not restricted by the quantity of target detection algorithms and not influenced by different value ranges of different algorithms, which can reduce false-alarm rate effectively.

  19. Real-Time Sensor Validation, Signal Reconstruction, and Feature Detection for an RLV Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.

    1998-01-01

    A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.

  20. Gastric Cancer Regional Detection System.

    PubMed

    Ural, Berkan; Hardalaç, Fırat; Serhatlioğlu, Selami; İlhan, Mustafa Necmi

    2016-01-01

    In this study, a novel system was created to localize cancerous regions for stomach images which were taken with computed tomography(CT). The aim was to determine the coordinates of cancerous regions which spread in the stomach area in the color space with using this system. Also, to limit these areas with a high accuracy ratio and to feedback to the user of this system were the other objectives. This integration was performed with using energy mapping, analysis methods and multiple image processing methods and the system which was consisted from these advanced algorithms was appeared. For this work, in the range of 25-40 years and when gender discrimination was insignificant, 30 volunteer patients were chosen. During the formation of the system, to exalt the accuracy to the maximum level, 2 main stages were followed up. First, in the system, advanced image processing methods were processed between each other and obtained data were studied. Second, in the system, FFT and Log transformations were used respectively for the first two cases, then these transformations were used together for the third case. For totally three cases, energy distribution and DC energy intensity analysis were done and the performance of this system was investigated. Finally, with using the system's unique algorithms, a non-invasive method was achieved to detect the gastric cancer and when FFT and Log transformation were used together, the maximum success rate was obtained and this rate was calculated as 83,3119 %.

  1. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  2. Cloud Detection Method Based on Feature Extraction in Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Changhui, Y.; Yuan, Y.; Minjing, M.; Menglu, Z.

    2013-05-01

    In remote sensing images, the existence of the clouds has a great impact on the image quality and subsequent image processing, as the images covered with clouds contain little useful information. Therefore, the detection and recognition of clouds is one of the major problems in the application of remote sensing images. Present there are two categories of method to cloud detection. One is setting spectrum thresholds based on the characteristics of the clouds to distinguish them. However, the instability and uncertainty of the practical clouds makes this kind of method complexity and weak adaptability. The other method adopts the features in the images to identify the clouds. Since there will be significant overlaps in some features of the clouds and grounds, the detection result is highly dependent on the effectiveness of the features. This paper presented a cloud detection method based on feature extraction for remote sensing images. At first, find out effective features through training pattern, the features are selected from gray, frequency and texture domains. The different features in the three domains of the training samples are calculated. Through the result of statistical analysis of all the features, the useful features are picked up to form a feature set. In concrete, the set includes three feature vectors, respectively, the gray feature vector constituted of average gray, variance, first-order difference, entropy and histogram, the frequency feature vector constituted of DCT high frequency coefficient and wavelet high frequency coefficient, and the texture feature vector constituted of the hybrid entropy and difference of the gray-gradient co-occurrence matrix and the image fractal dimension. Secondly, a thumbnail will be obtained by down sampling the original image and its features of gray, frequency and texture are computed. Last but not least, the cloud region will be judged by the comparison between the actual feature values and the thresholds

  3. Spectral feature variations in x-ray diffraction imaging systems

    NASA Astrophysics Data System (ADS)

    Wolter, Scott D.; Greenberg, Joel A.

    2016-05-01

    Materials with different atomic or molecular structures give rise to unique scatter spectra when measured by X-ray diffraction. The details of these spectra, though, can vary based on both intrinsic (e.g., degree of crystallinity or doping) and extrinsic (e.g., pressure or temperature) conditions. While this sensitivity is useful for detailed characterizations of the material properties, these dependences make it difficult to perform more general classification tasks, such as explosives threat detection in aviation security. A number of challenges, therefore, currently exist for reliable substance detection including the similarity in spectral features among some categories of materials combined with spectral feature variations from materials processing and environmental factors. These factors complicate the creation of a material dictionary and the implementation of conventional classification and detection algorithms. Herein, we report on two prominent factors that lead to variations in spectral features: crystalline texture and temperature variations. Spectral feature comparisons between materials categories will be described for solid metallic sheet, aqueous liquids, polymer sheet, and metallic, organic, and inorganic powder specimens. While liquids are largely immune to texture effects, they are susceptible to temperature changes that can modify their density or produce phase changes. We will describe in situ temperature-dependent measurement of aqueous-based commercial goods in the temperature range of -20°C to 35°C.

  4. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  5. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  6. LC-IMS-MS Feature Finder. Detecting Multidimensional Liquid Chromatography, Ion Mobility, and Mass Spectrometry Features in Complex Datasets

    SciTech Connect

    Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin Shammel; Lamarche, Brian L.; Monroe, Matthew E.; Ibrahim, Yehia M.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.

    2013-09-05

    We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time, and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension.

  7. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  8. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  9. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  10. Investigation of automated feature extraction techniques for applications in cancer detection from multispectral histopathology images

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Levenson, Richard M.; Rimm, David L.

    2003-05-01

    Recent developments in imaging technology mean that it is now possible to obtain high-resolution histological image data at multiple wavelengths. This allows pathologists to image specimens over a full spectrum, thereby revealing (often subtle) distinctions between different types of tissue. With this type of data, the spectral content of the specimens, combined with quantitative spatial feature characterization may make it possible not only to identify the presence of an abnormality, but also to classify it accurately. However, such are the quantities and complexities of these data, that without new automated techniques to assist in the data analysis, the information contained in the data will remain inaccessible to those who need it. We investigate the application of a recently developed system for the automated analysis of multi-/hyper-spectral satellite image data to the problem of cancer detection from multispectral histopathology image data. The system provides a means for a human expert to provide training data simply by highlighting regions in an image using a computer mouse. Application of these feature extraction techniques to examples of both training and out-of-training-sample data demonstrate that these, as yet unoptimized, techniques already show promise in the discrimination between benign and malignant cells from a variety of samples.

  11. Early breast cancer detection with digital mammograms using Haar-like features and AdaBoost algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Yang, Clifford; Merkulov, Alex; Bandari, Malavika

    2016-05-01

    The current computer-aided detection (CAD) methods are not sufficiently accurate in detecting masses, especially in dense breasts and/or small masses (typically at their early stages). A small mass may not be perceived when it is small and/or homogeneous with surrounding tissues. Possible reasons for the limited performance of existing CAD methods are lack of multiscale analysis and unification of variant masses. The speed of CAD analysis is important for field applications. We propose a new CAD model for mass detection, which extracts simple Haar-like features for fast detection, uses AdaBoost approach for feature selection and classifier training, applies cascading classifiers for reduction of false positives, and utilizes multiscale detection for variant sizes of masses. In addition to Haar features, local binary pattern (LBP) and histograms of oriented gradient (HOG) are extracted and applied to mass detection. The performance of a CAD system can be measured with true positive rate (TPR) and false positives per image (FPI). We are collecting our own digital mammograms for the proposed research. The proposed CAD model will be initially demonstrated with mass detection including architecture distortion.

  12. A Feature Analysis of Interactive Retrieval Systems. Final Report.

    ERIC Educational Resources Information Center

    Martin, Thomas H.

    The command language features of 11 on-line information retrieval systems are presented in terms of the functional needs of a searcher sitting at a terminal. Functional areas considered are: becoming familiar with the system, receiving help when in trouble, regulating usage, selecting a data base, formulating simple queries, expressing single…

  13. Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search

    ERIC Educational Resources Information Center

    Calvo, Manuel G.; Nummenmaa, Lauri

    2008-01-01

    In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…

  14. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  15. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    PubMed

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  16. Design of steerable filters for feature detection using canny-like criteria.

    PubMed

    Jacob, Mathews; Unser, Michael

    2004-08-01

    We propose a general approach for the design of 2D feature detectors from a class of steerable functions based on the optimization of a Canny-like criterion. In contrast with previous computational designs, our approach is truly 2D and provides filters that have closed-form expressions. It also yields operators that have a better orientation selectivity than the classical gradient or Hessian-based detectors. We illustrate the method with the design of operators for edge and ridge detection. We present some experimental results that demonstrate the performance improvement of these new feature detectors. We propose computationally efficient local optimization algorithms for the estimation of feature orientation. We also introduce the notion of shape-adaptable feature detection and use it for the detection of image corners.

  17. Change detection in high resolution SAR images based on multiscale texture features

    NASA Astrophysics Data System (ADS)

    Wen, Caihuan; Gao, Ziqiang

    2011-12-01

    This paper studied on change detection algorithm of high resolution (HR) Synthetic Aperture Radar (SAR) images based on multi-scale texture features. Firstly, preprocessed multi-temporal Terra-SAR images were decomposed by 2-D dual tree complex wavelet transform (DT-CWT), and multi-scale texture features were extracted from those images. Then, log-ratio operation was utilized to get difference images, and the Bayes minimum error theory was used to extract change information from difference images. Lastly, precision assessment was done. Meanwhile, we compared with the result of method based on texture features extracted from gray-level cooccurrence matrix (GLCM). We had a conclusion that, change detection algorithm based on multi-scale texture features has a great more improvement, which proves an effective method to change detect of high spatial resolution SAR images.

  18. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  19. Adaptive Parameter Identification Based on Morlet Wavelet and Application in Gearbox Fault Feature Detection

    NASA Astrophysics Data System (ADS)

    Wang, Shibin; Zhu, Z. K.; He, Yingping; Huang, Weiguo

    2010-12-01

    Localized defects in rotating mechanical parts tend to result in impulse response in vibration signal, which contain important information about system dynamics being analyzed. Thus, parameter identification of impulse response provides a potential approach for localized fault diagnosis. A method combining the Morlet wavelet and correlation filtering, named Cyclic Morlet Wavelet Correlation Filtering (CMWCF), is proposed for identifying both parameters of impulse response and the cyclic period between adjacent impulses. Simulation study concerning cyclic impulse response signal with different SNR shows that CMWCF is effective in identifying the impulse response parameters and the cyclic period. Applications in parameter identification of gearbox vibration signal for localized fault diagnosis show that CMWCF is effective in identifying the parameters and thus provides a feature detection method for gearbox fault diagnosis.

  20. Compensated intruder-detection systems

    DOEpatents

    McNeilly, David R.; Miller, William R.

    1984-01-01

    Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.

  1. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  2. Spectrum based feature extraction using spectrum intensity ratio for SSVEP detection.

    PubMed

    Itai, Akitoshi; Funase, Arao

    2012-01-01

    Recent years, a Steady-State Visual Evoked Potential (SSVEP) is used as a basis for Brain Computer Interface (BCI)[1]. Various feature extraction and classification techniques are proposed to achieve BCI based on SSVEP. The feature extraction of SSVEP is developed in the frequency domain regardless of the limitation in flickering frequency of visual stimulus caused by hardware architecture. We introduce here the feature extraction using a spectrum intensity ratio. Results show that the detection ratio reaches 84% by using a spectrum intensity ratio with unsupervised classification. It also indicates the SSVEP is enhanced by proposed feature extraction with second harmonic.

  3. The relationship study between image features and detection probability based on psychology experiments

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Chen, Yu-hua; Wang, Ji-yuan; Gao, Hong-sheng; Wang, Ji-jun; Su, Rong-hua; Mao, Wei

    2011-04-01

    Detection probability is an important index to represent and estimate target viability, which provides basis for target recognition and decision-making. But it will expend a mass of time and manpower to obtain detection probability in reality. At the same time, due to the different interpretation of personnel practice knowledge and experience, a great difference will often exist in the datum obtained. By means of studying the relationship between image features and perception quantity based on psychology experiments, the probability model has been established, in which the process is as following.Firstly, four image features have been extracted and quantified, which affect directly detection. Four feature similarity degrees between target and background were defined. Secondly, the relationship between single image feature similarity degree and perception quantity was set up based on psychological principle, and psychological experiments of target interpretation were designed which includes about five hundred people for interpretation and two hundred images. In order to reduce image features correlativity, a lot of artificial synthesis images have been made which include images with single brightness feature difference, images with single chromaticity feature difference, images with single texture feature difference and images with single shape feature difference. By analyzing and fitting a mass of experiments datum, the model quantitys have been determined. Finally, by applying statistical decision theory and experimental results, the relationship between perception quantity with target detection probability has been found. With the verification of a great deal of target interpretation in practice, the target detection probability can be obtained by the model quickly and objectively.

  4. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  5. An arc fault detection system

    SciTech Connect

    Jha, Kamal N.

    1997-12-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  6. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  7. Fish detection and classification system

    NASA Astrophysics Data System (ADS)

    Tidd, Richard A.; Wilder, Joseph

    2001-01-01

    Marine biologists traditionally determine the presence and quantities of different types of fish by dragging nets across the bottom, and examining their contents. This method, although accurate, kills the collected fish, damages their habitat, and consumes large quantities of resources. This paper presents an alternative, a machine vision system capable of determining the presence of fish species. Illumination presents a unique problem in this environment, and the design of an effective illumination system is discussed. The related issues of object orientation and measurement are also discussed and resolved. Capturing images of fish in murky water also presents challenges. An adaptive thresholding technique is required to appropriately segment the fish from the background in these images. Mode detection, and histogram analysis are useful tools in determining these localized thresholds. It is anticipated that this system, created in conjunction with the Rutgers Institute for Marine and Coastal Science, will effectively classify fish in the estuarine environment.

  8. Vehicle detection system using artificial retina chips

    NASA Astrophysics Data System (ADS)

    Ikuta, Koichi; Tamura, Toshiyuki; Tanaka, Ken-ichi; Kyuma, Kazuo

    2001-05-01

    The AR chip is a versatile CMOS image sensor, functions are not only normal image acquisition but also on-chip image processing. Such features can accelerate algorithms of image processing and the controls of proper image. We have developed the low-cost and compact vehicle detection system using he AR chips. The system is composed of a processing module and an AR camera module. The AR Camera module has dual artificial retina chips to cover the wide dynamic range of the outdoor brightness environment. The ND filter is coated on the lens of one of the chips, each AR chip covers different range of the brightness. The control algorithm of image acquisition is designed to select an adequate chip based on the image quality. The images of the selected chip are processed by on-chip functions for pre-processing and they are transferred to the processing module. Finally the processing module judges the existence of vehicles and detects several kinds of attributive information of the detected vehicle such as moving direction. In our paper, we describe details of the system and the algorithm and we show several result data through field experiments under the real road environment.

  9. Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery.

    PubMed

    Lee, Hae Woo; Lawton, Carl; Na, Young Jeong; Yoon, Seongkyu

    2013-03-13

    In omics studies aimed at the early detection and diagnosis of cancer, bioinformatics tools play a significant role when analyzing high dimensional, complex datasets, as well as when identifying a small set of biomarkers. However, in many cases, there are ambiguities in the robustness and the consistency of the discovered biomarker sets, since the feature selection methods often lead to irreproducible results. To address this, both the stability and the classification power of several chemometrics-based feature selection algorithms were evaluated using the Monte Carlo sampling technique, aiming at finding the most suitable feature selection methods for early cancer detection and biomarker discovery. To this end, two data sets were analyzed, which comprised of MALDI-TOF-MS and LC/TOF-MS spectra measured on serum samples in order to diagnose ovarian cancer. Using these datasets, the stability and the classification power of multiple feature subsets found by different feature selection methods were quantified by varying either the number of selected features, or the number of samples in the training set, with special emphasis placed on the property of stability. The results show that high consistency does not necessarily guarantee high predictive power. In addition, differences in the stability, as well as agreement in feature lists between several feature selection methods, depend on several factors, such as the number of available samples, feature sizes, quality of the information in the dataset, etc. Among the tested methods, only the variable importance in projection (VIP)-based method shows complementary properties, providing both highly consistent and accurate subsets of features. In addition, successive projection analysis (SPA) was excellent with regards to maintaining high stability over a wide range of experimental conditions. The stability of several feature selection methods is highly variable, stressing the importance of making the proper choice among

  10. Performance Comparison of Feature Extraction Algorithms for Target Detection and Classification

    DTIC Science & Technology

    2013-01-01

    Succi, D. Clapp, R. Gampert, and G. Prado, “ Footstep detection and tracking,” Unattended Ground Sensor Technologies and Applications III, vol. 4393... Detection and Classification⋆ Soheil Bahrampour1 Asok Ray2 Soumalya Sarkar2 Thyagaraju Damarla3 Nasser M. Nasrabadi3 Keywords: Feature Extraction...rithm, symbolic dynamic filtering (SDF), is investigated for target detection and classification by using unmanned ground sensors (UGS). In SDF, sensor

  11. Face verification system for Android mobile devices using histogram based features

    NASA Astrophysics Data System (ADS)

    Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu

    2016-07-01

    This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.

  12. Autonomous pathogen detection system 2001

    SciTech Connect

    Langlois, R G; Wang, A; Colston, B; Masquelier, D; Jones, L; Venkateswaran, K S; Nasarabadi, S; Brown, S; Ramponi, A; Milanovich, F P

    2001-01-09

    The objective of this project is to design, fabricate and field-demonstrate a fully Autonomous Pathogen Detector (identifier) System (APDS). This will be accomplished by integrating a proven flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics to provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will be designed to operate in fixed locations, where it continuously monitors air samples and automatically reports the presence of specific biological agents. The APDS will utilize both multiplex immuno and nucleic acid assays to provide ''quasi-orthogonal'', multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advancements across several fronts must first be made in order to realize the full extent of the APDS. Commercialization will be accomplished through three progressive generations of instruments. The APDS is targeted for domestic applications in which (1) the public is at high risk of exposure to covert releases of bioagent such as in major subway systems and other transportation terminals, large office complexes, and convention centers; and (2) as part of a monitoring network of sensors integrated with command and control systems for wide area monitoring of urban areas and major gatherings (e.g., inaugurations, Olympics, etc.). In this latter application there is potential that a fully developed APDS could add value to Defense Department monitoring architectures.

  13. Imaging systems and applications: introduction to the feature.

    PubMed

    Imai, Francisco H; Linne von Berg, Dale C; Skauli, Torbjørn; Tominaga, Shoji; Zalevsky, Zeev

    2014-05-01

    Imaging systems have numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging system requires the integration of optics, sensing, image processing, and display rendering. This issue features original research ranging from design of stimuli for human perception, optics applications, and image enhancement to novel imaging modalities in both color and infrared spectral imaging, gigapixel imaging as well as a systems perspective to imaging.

  14. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  15. Technical features of the INCRAFT™ AAA Stent Graft System.

    PubMed

    Bertoglio, L; Logaldo, D; Marone, E M; Rinaldi, E; Chiesa, R

    2014-10-01

    The INCRAFT® AAA Stent Graft System is the advanced endovascular aneurysm repair (EVAR) technology for the treatment of infrarenal abdominal aneurysms. This new system is designed to address the unmet needs of current endografts by combining unique features and adding new refinements compared to existing endografts delivered through a flexible 14-Fr ultra-low system. The INCRAFT® AAA Stent Graft System introduces innovative features without deviating from proven stent-graft design principles. It is a three-piece modular system, made of low porosity polyester and segmented nitinol stents. However, the introduction of cap-free delivery and partial proximal repositioning enhances the ability of the device to better match individual aortoiliac anatomy with a high deliverability and placement accuracy in a easy to use system. Moreover, the INCRAFT® System allows a "customization" of the implant during the procedure with bilateral in-situ length adjustment features. The present data from the ongoing clinical trials confirm excellent results with this system, but postmarket studies will be necessary to verify the effectiveness of this system in the real-world setting.

  16. Helicobacter Pylori infection detection from gastric X-ray images based on feature fusion and decision fusion.

    PubMed

    Ishihara, Kenta; Ogawa, Takahiro; Haseyama, Miki

    2017-05-01

    In this paper, a fully automatic method for detection of Helicobacter pylori (H. pylori) infection is presented with the aim of constructing a computer-aided diagnosis (CAD) system. In order to realize a CAD system with good performance for detection of H. pylori infection, we focus on the following characteristic of stomach X-ray examination. The accuracy of X-ray examination differs depending on the symptom of H. pylori infection that is focused on and the position from which X-ray images are taken. Therefore, doctors have to comprehensively assess the symptoms and positions. In order to introduce the idea of doctors' assessment into the CAD system, we newly propose a method for detection of H. pylori infection based on the combined use of feature fusion and decision fusion. As a feature fusion scheme, we adopt Multiple Kernel Learning (MKL). Since MKL can combine several features with determination of their weights, it can represent the differences in symptoms. By constructing an MKL classifier for each position, we can obtain several detection results. Furthermore, we introduce confidence-based decision fusion, which can consider the relationship between the classifier's performance and the detection results. Consequently, accurate detection of H. pylori infection becomes possible by the proposed method. Experimental results obtained by applying the proposed method to real X-ray images show that our method has good performance, close to the results of detection by specialists, and indicate that the realization of a CAD system for determining the risk of H. pylori infection is possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Human Detection Using Random Color Similarity Feature and Random Ferns Classifier.

    PubMed

    Zhang, Miaohui; Xin, Ming

    2016-01-01

    We explore a novel approach for human detection based on random color similarity feature (RCS) and random ferns classifier which is also known as semi-naive Bayesian classifier. In contrast to other existing features employed by human detection, color-based features are rarely used in vision-based human detection because of large intra-class variations. In this paper, we propose a novel color-based feature, RCS feature, which is yielded by simple color similarity computation between image cells randomly picked in still images, and can effectively characterize human appearances. In addition, a histogram of oriented gradient based local binary feature (HOG-LBF) is also introduced to enrich the human descriptor set. Furthermore, random ferns classifier is used in the proposed approach because of its faster speed in training and testing than traditional classifiers such as Support Vector Machine (SVM) classifier, without a loss in performance. Finally, the proposed method is conducted in public datasets and achieves competitive detection results.

  18. Passive Copy-Move Forgery Detection Using Halftoning-based Block Truncation Coding Feature

    NASA Astrophysics Data System (ADS)

    Harjito, Bambang; Prasetyo, Heri

    2017-06-01

    This paper presents a new method on passive copy-move forgery detection by exploiting the effectiveness and usability of Halftoning-based Block Truncation Coding (HBTC) image feature. Copy-move forgery detection precisely locates the large size or flat tampered regions of an image. On our method, the tampered input image is firstly divided into several overlapping image blocks to construct the image feature descriptors. Each image block is further divided into several non-overlapping image blocks for processing HBTC. Two image feature descriptors, namely Color Feature (CF) and Bit Pattern Feature (BF) are computed from the HBTC compressed data-stream of each image block. Lexicography sorting rearranges the image feature descriptors in ascending manner for whole image. The similarity between some tampered image regions is measured based on their CF and BF under specific shift frequency threshold. As documented in the experimental results, the proposed method yields a promising result for detecting the tampered or copy-move forgery regions. It has proved that the HBTC is not only suitable for image compression, but it can also be used in the copy-move forgery detection.

  19. Landmine detection with Bayesian cross-categorization on point-wise, contextual and spatial features

    NASA Astrophysics Data System (ADS)

    Léveillé, Jasmin; Yu, Ssu-Hsin; Gandhe, Avinash

    2016-05-01

    Recently developed feature extraction methods proposed in the explosive hazard detection community have yielded many features that potentially provide complementary information for explosive detection. Finding the right combination of features that is most effective in distinguishing targets from clutter, on the other hand, is extremely challenging due to a large number of potential features to explore. Furthermore, sensors employed for mine and buried explosive hazard detection are typically sensitive to environmental conditions such as soil properties and weather as well as other operating parameters. In this work, we applied Bayesian cross-categorization (CrossCat) to a heterogeneous set of features derived from electromagnetic induction (EMI) sensor time-series for purposes of buried explosive hazard detection. The set of features used here includes simple, point-wise measurements such as the overall magnitude of the EMI response, contextual information such as soil type, and a new feature consisting of spatially aggregated Discrete Spectra of Relaxation Frequencies (DSRFs). Previous work showed that the DSRF characterizes target properties with some invariance to orientation and position. We have developed a novel approach to aggregate point-wise DSRF estimates. The spatial aggregation is based on the Bag-of-Words (BoW) model found in the machine learning and computer vision literatures and aims to enhance the invariance properties of point-wise DSRF estimates. We considered various refinements to the BoW model for purpose of buried explosive hazard detection and tested their usefulness as part of a Bayesian cross-categorization framework on data collected from two different sites. The results show improved performance over classifiers using only point-wise features.

  20. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  1. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  2. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  3. DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco

    SciTech Connect

    Janson, Markus; Asensio-Torres, Ruben; Thalmann, Christian; Meyer, Michael R.; Garufi, Antonio; Boccaletti, Anthony; Maire, Anne-Lise; Henning, Thomas; Pohl, Adriana; Zurlo, Alice; Marzari, Francesco; Carson, Joseph C.; Augereau, Jean-Charles; Desidera, Silvano

    2016-01-01

    The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.

  4. A Study of Feature Combination for Vehicle Detection Based on Image Processing

    PubMed Central

    2014-01-01

    Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification. PMID:24672299

  5. Explosives detection system and method

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  6. Evaluation of Intrusion Detection Systems

    PubMed Central

    Ulvila, Jacob W.; Gaffney, John E.

    2003-01-01

    This paper presents a comprehensive method for evaluating intrusion detection systems (IDSs). It integrates and extends ROC (receiver operating characteristic) and cost analysis methods to provide an expected cost metric. Results are given for determining the optimal operation of an IDS based on this expected cost metric. Results are given for the operation of a single IDS and for a combination of two IDSs. The method is illustrated for: 1) determining the best operating point for a single and double IDS based on the costs of mistakes and the hostility of the operating environment as represented in the prior probability of intrusion and 2) evaluating single and double IDSs on the basis of expected cost. A method is also described for representing a compound IDS as an equivalent single IDS. Results are presented from the point of view of a system administrator, but they apply equally to designers of IDSs. PMID:27413623

  7. Evaluation of Intrusion Detection Systems.

    PubMed

    Ulvila, Jacob W; Gaffney, John E

    2003-01-01

    This paper presents a comprehensive method for evaluating intrusion detection systems (IDSs). It integrates and extends ROC (receiver operating characteristic) and cost analysis methods to provide an expected cost metric. Results are given for determining the optimal operation of an IDS based on this expected cost metric. Results are given for the operation of a single IDS and for a combination of two IDSs. The method is illustrated for: 1) determining the best operating point for a single and double IDS based on the costs of mistakes and the hostility of the operating environment as represented in the prior probability of intrusion and 2) evaluating single and double IDSs on the basis of expected cost. A method is also described for representing a compound IDS as an equivalent single IDS. Results are presented from the point of view of a system administrator, but they apply equally to designers of IDSs.

  8. Actively controlled multiple-sensor system for feature extraction

    NASA Astrophysics Data System (ADS)

    Daily, Michael J.; Silberberg, Teresa M.

    1991-08-01

    Typical vision systems which attempt to extract features from a visual image of the world for the purposes of object recognition and navigation are limited by the use of a single sensor and no active sensor control capability. To overcome limitations and deficiencies of rigid single sensor systems, more and more researchers are investigating actively controlled, multisensor systems. To address these problems, we have developed a self-calibrating system which uses active multiple sensor control to extract features of moving objects. A key problem in such systems is registering the images, that is, finding correspondences between images from cameras of differing focal lengths, lens characteristics, and positions and orientations. The authors first propose a technique which uses correlation of edge magnitudes for continuously calibrating pan and tilt angles of several different cameras relative to a single camera with a wide angle field of view, which encompasses the views of every other sensor. A simulation of a world of planar surfaces, visual sensors, and a robot platform used to test active control for feature extraction is then described. Motion in the field of view of at least one sensor is used to center the moving object for several sensors, which then extract object features such as color, boundary, and velocity from the appropriate sensors. Results are presented from real cameras and from the simulated world.

  9. [The frequency features and application of edge detection differential operators in medical image].

    PubMed

    Wu, Jian; Ding, Hui; Wang, Guangzhi; Ding, Haishu; Zhou, Yiyi

    2005-02-01

    Edge detection is an absolutely necessary step in medical image processing, and the use of differential operators to detect edge is one of the most common and effective methods. In this paper are analyzed the frequency features of the Roberts operator, Prewitt operator, Sobel operator and Laplacian operator from the viewpoint of frequency domain, and it is proposed that the frequency features of the differential operators should be considered when differential operator is being used and/or constructed. Because edge detection operator is sensitive to the edge type, the appropriate operator should be adopted in different edge type detection. Finally, the importance and necessity of selecting edge detection operator are validated in the MRI image edge processing.

  10. Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features

    PubMed Central

    Kumar, Rajesh; Srivastava, Subodh

    2015-01-01

    A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include enhancement of microscopic images, segmentation of background cells, features extraction, and finally the classification. An appropriate and efficient method is employed in each of the design steps of the proposed framework after making a comparative analysis of commonly used method in each category. For highlighting the details of the tissue and structures, the contrast limited adaptive histogram equalization approach is used. For the segmentation of background cells, k-means segmentation algorithm is used because it performs better in comparison to other commonly used segmentation methods. In feature extraction phase, it is proposed to extract various biologically interpretable and clinically significant shapes as well as morphology based features from the segmented images. These include gray level texture features, color based features, color gray level texture features, Law's Texture Energy based features, Tamura's features, and wavelet features. Finally, the K-nearest neighborhood method is used for classification of images into normal and cancerous categories because it is performing better in comparison to other commonly used methods for this application. The performance of the proposed framework is evaluated using well-known parameters for four fundamental tissues (connective, epithelial, muscular, and nervous) of randomly selected 1000 microscopic biopsy images. PMID:27006938

  11. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  12. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

    PubMed Central

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency. PMID:26346654

  13. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System.

    PubMed

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  14. Automated Global Feature Analyzer (AGFA) for the Intelligent and Autonomous Robotic Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Fink, W.; Datta, A.; Dohm, J. M.; Tarbell, M. A.; Jobling, F. M.; Furfaro, R.; Kargel, J. S.; Schulze-Makuch, D.; Lunine, J. I.; Baker, V. R.

    2008-03-01

    AGFA performs automated target identification and characterization through segmentation, providing for feature extraction, feature classification, target prioritization, and unbiased anomaly detection within mapped planetary operational areas.

  15. An Android malware detection system based on machine learning

    NASA Astrophysics Data System (ADS)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  16. Kinect based body posture detection and recognition system

    NASA Astrophysics Data System (ADS)

    Pisharady, Pramod K.; Saerbeck, Martin

    2013-03-01

    A multi-class human posture detection and recognition algorithm using Kinect based geometric features is presented. The three dimensional skeletal data from the Kinect is converted to a set of angular features. The postures are classified using a support vector machines classifier with polynomial kernel. Detection of posture is done by thresholding the posture probability. The algorithm provided a recognition accuracy of 95.78% when tested using a 10 class dataset containing 6000 posture samples. The precision and recall rates of the detection system are 100% and 98.54% respectively.

  17. GridMass: a fast two-dimensional feature detection method for LC/MS.

    PubMed

    Treviño, Victor; Yañez-Garza, Irma-Luz; Rodriguez-López, Carlos E; Urrea-López, Rafael; Garza-Rodriguez, Maria-Lourdes; Barrera-Saldaña, Hugo-Alberto; Tamez-Peña, José G; Winkler, Robert; Díaz de-la-Garza, Rocío-Isabel

    2015-01-01

    One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two-dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one-dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://www.bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community.

  18. Multipolarimetric SAR image change detection based on multiscale feature-level fusion

    NASA Astrophysics Data System (ADS)

    Sun, X.; Zhang, J.; Zhai, L.

    2015-06-01

    Many methodologies of change detection have been discussed in the literature, but most of them are tested on only optical images or traditional synthetic-aperture radar (SAR) images. Few studies have investigated multipolarimetric SAR image change detection. In this study, we presented a type of multipolarimetric SAR image change detection approach based on nonsubsampled contourlet transform and multiscale feature-level fusion techniques. In this approach, Instead of denoising an image in advance, the nonsubsampled contourlet transform multiscale decomposition was used to reduce the effect of speckle noise by processing only the low-frequency sub-band coefficients of the decomposed image, and the multiscale feature-level fusion technique was employed to integrate the rich information obtained from various polarization images. Because SAR image information is dependent on scale, a multiscale multipolarimetric feature-level fusion strategy is introduced into the change detection to improve change detection precision; this feature-level fusion can not only achieve complementation of information with different polarizations and on different scales, but also has better robustness against noise. Compared with PCA methods, the proposed method constructs better differential images, resulting in higher change detection precision.

  19. Detection of Harbours from High Resolution Remote Sensing Imagery via Saliency Analysis and Feature Learning

    NASA Astrophysics Data System (ADS)

    Wang, Yetianjian; Pan, Li; Wang, Dagang; Kang, Yifei

    2016-06-01

    Harbours are very important objects in civil and military fields. To detect them from high resolution remote sensing imagery is important in various fields and also a challenging task. Traditional methods of detecting harbours mainly focus on the segmentation of water and land and the manual selection of knowledge. They do not make enough use of other features of remote sensing imagery and often fail to describe the harbours completely. In order to improve the detection, a new method is proposed. First, the image is transformed to Hue, Saturation, Value (HSV) colour space and saliency analysis is processed via the generation and enhancement of the co-occurrence histogram to help detect and locate the regions of interest (ROIs) that is salient and may be parts of the harbour. Next, SIFT features are extracted and feature learning is processed to help represent the ROIs. Then, by using classified feature of the harbour, a classifier is trained and used to check the ROIs to find whether they belong to the harbour. Finally, if the ROIs belong to the harbour, a minimum bounding rectangle is formed to include all the harbour ROIs and detect and locate the harbour. The experiment on high resolution remote sensing imagery shows that the proposed method performs better than other methods in precision of classifying ROIs and accuracy of completely detecting and locating harbours.

  20. Seizure detection in intracranial EEG using a fuzzy inference system.

    PubMed

    Aarabi, A; Fazel-Rezai, R; Aghakhani, Y

    2009-01-01

    In this paper, we present a fuzzy rule-based system for the automatic detection of seizures in the intracranial EEG (IEEG) recordings. A total of 302.7 hours of the IEEG with 78 seizures, recorded from 21 patients aged between 10 and 47 years were used for the evaluation of the system. After preprocessing, temporal, spectral, and complexity features were extracted from the segmented IEEGs. The results were thresholded using the statistics of a reference window and integrated spatio-temporally using a fuzzy rule-based decision making system. The system yielded a sensitivity of 98.7%, a false detection rate of 0.27/h, and an average detection latency of 11 s. The results from the automatic system correlate well with the visual analysis of the seizures by the expert. This system may serve as a good seizure detection tool for monitoring long-term IEEG with relatively high sensitivity and low false detection rate.

  1. Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva

    1996-01-01

    This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.

  2. A general purpose feature extractor for light detection and ranging data.

    PubMed

    Li, Yangming; Olson, Edwin B

    2010-01-01

    Feature extraction is a central step of processing Light Detection and Ranging (LIDAR) data. Existing detectors tend to exploit characteristics of specific environments: corners and lines from indoor (rectilinear) environments, and trees from outdoor environments. While these detectors work well in their intended environments, their performance in different environments can be poor. We describe a general purpose feature detector for both 2D and 3D LIDAR data that is applicable to virtually any environment. Our method adapts classic feature detection methods from the image processing literature, specifically the multi-scale Kanade-Tomasi corner detector. The resulting method is capable of identifying highly stable and repeatable features at a variety of spatial scales without knowledge of environment, and produces principled uncertainty estimates and corner descriptors at same time. We present results on both software simulation and standard datasets, including the 2D Victoria Park and Intel Research Center datasets, and the 3D MIT DARPA Urban Challenge dataset.

  3. A General Purpose Feature Extractor for Light Detection and Ranging Data

    PubMed Central

    Li, Yangming; Olson, Edwin B.

    2010-01-01

    Feature extraction is a central step of processing Light Detection and Ranging (LIDAR) data. Existing detectors tend to exploit characteristics of specific environments: corners and lines from indoor (rectilinear) environments, and trees from outdoor environments. While these detectors work well in their intended environments, their performance in different environments can be poor. We describe a general purpose feature detector for both 2D and 3D LIDAR data that is applicable to virtually any environment. Our method adapts classic feature detection methods from the image processing literature, specifically the multi-scale Kanade-Tomasi corner detector. The resulting method is capable of identifying highly stable and repeatable features at a variety of spatial scales without knowledge of environment, and produces principled uncertainty estimates and corner descriptors at same time. We present results on both software simulation and standard datasets, including the 2D Victoria Park and Intel Research Center datasets, and the 3D MIT DARPA Urban Challenge dataset. PMID:22163474

  4. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme

    PubMed Central

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    Purpose: Selecting optimal features from a large image feature pool remains a major challenge in developing computer-aided detection (CAD) schemes of medical images. The objective of this study is to investigate a new approach to significantly improve efficacy of image feature selection and classifier optimization in developing a CAD scheme of mammographic masses. Methods: An image dataset including 1600 regions of interest (ROIs) in which 800 are positive (depicting malignant masses) and 800 are negative (depicting CAD-generated false positive regions) was used in this study. After segmentation of each suspicious lesion by a multilayer topographic region growth algorithm, 271 features were computed in different feature categories including shape, texture, contrast, isodensity, spiculation, local topological features, as well as the features related to the presence and location of fat and calcifications. Besides computing features from the original images, the authors also computed new texture features from the dilated lesion segments. In order to select optimal features from this initial feature pool and build a highly performing classifier, the authors examined and compared four feature selection methods to optimize an artificial neural network (ANN) based classifier, namely: (1) Phased Searching with NEAT in a Time-Scaled Framework, (2) A sequential floating forward selection (SFFS) method, (3) A genetic algorithm (GA), and (4) A sequential forward selection (SFS) method. Performances of the four approaches were assessed using a tenfold cross validation method. Results: Among these four methods, SFFS has highest efficacy, which takes 3%–5% of computational time as compared to GA approach, and yields the highest performance level with the area under a receiver operating characteristic curve (AUC) = 0.864 ± 0.034. The results also demonstrated that except using GA, including the new texture features computed from the dilated mass segments improved the AUC

  5. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme.

    PubMed

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-08-01

    Selecting optimal features from a large image feature pool remains a major challenge in developing computer-aided detection (CAD) schemes of medical images. The objective of this study is to investigate a new approach to significantly improve efficacy of image feature selection and classifier optimization in developing a CAD scheme of mammographic masses. An image dataset including 1600 regions of interest (ROIs) in which 800 are positive (depicting malignant masses) and 800 are negative (depicting CAD-generated false positive regions) was used in this study. After segmentation of each suspicious lesion by a multilayer topographic region growth algorithm, 271 features were computed in different feature categories including shape, texture, contrast, isodensity, spiculation, local topological features, as well as the features related to the presence and location of fat and calcifications. Besides computing features from the original images, the authors also computed new texture features from the dilated lesion segments. In order to select optimal features from this initial feature pool and build a highly performing classifier, the authors examined and compared four feature selection methods to optimize an artificial neural network (ANN) based classifier, namely: (1) Phased Searching with NEAT in a Time-Scaled Framework, (2) A sequential floating forward selection (SFFS) method, (3) A genetic algorithm (GA), and (4) A sequential forward selection (SFS) method. Performances of the four approaches were assessed using a tenfold cross validation method. Among these four methods, SFFS has highest efficacy, which takes 3%-5% of computational time as compared to GA approach, and yields the highest performance level with the area under a receiver operating characteristic curve (AUC) = 0.864 ± 0.034. The results also demonstrated that except using GA, including the new texture features computed from the dilated mass segments improved the AUC results of the ANNs optimized

  6. Spectrum and Image Texture Features Analysis for Early Blight Disease Detection on Eggplant Leaves.

    PubMed

    Xie, Chuanqi; He, Yong

    2016-05-11

    This study investigated both spectrum and texture features for detecting early blight disease on eggplant leaves. Hyperspectral images for healthy and diseased samples were acquired covering the wavelengths from 380 to 1023 nm. Four gray images were identified according to the effective wavelengths (408, 535, 624 and 703 nm). Hyperspectral images were then converted into RGB, HSV and HLS images. Finally, eight texture features (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) based on gray level co-occurrence matrix (GLCM) were extracted from gray images, RGB, HSV and HLS images, respectively. The dependent variables for healthy and diseased samples were set as 0 and 1. K-Nearest Neighbor (KNN) and AdaBoost classification models were established for detecting healthy and infected samples. All models obtained good results with the classification rates (CRs) over 88.46% in the testing sets. The results demonstrated that spectrum and texture features were effective for early blight disease detection on eggplant leaves.

  7. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.

    2017-01-01

    The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.

  8. Hard X-Ray Spectral Feature Detected in the Region of MCG 8-11-11

    NASA Astrophysics Data System (ADS)

    Perotti, F.; Mattaini, E.; Quadrini, E.; Santambrogio, E.; Bassani, L.; Stephen, J. B.

    1997-02-01

    During a balloon flight of the High Energy Astronomical Telescope on 1995 July 29, a region of the sky of 2.5d width around the Seyfert galaxy MCG 8-11-11 was studied over the photon energy range 20-300 keV. An excess at the 9 σ level--well described by a power-law photon spectrum with a slope of α = 2.1 +/- 1.2, plus a Gaussian line centered at 112 +/- 6 keV having a flux of (9.0 +/- 3.4) × 10-4 photons cm-2 s-1 and a FWHM of 32 +/- 6 keV--was detected in the energy range 20-160 keV. A contemporary detection of a strong γ-ray flux in the veto system of the telescope suggests that the observed spectral feature may be the result of double-Compton backscattering of a 511 keV line source incident on an external cloud. If associated with the Seyfert galaxy MCG 8-11-11, the present measurement would provide the first evidence for electron-positron pair annihilation flux emission from an active galactic nucleus. An observation of the Crab Nebula as an in-flight calibration source of the telescope is also decribed.

  9. False-positive reduction using Hessian features in computer-aided detection of pulmonary nodules on thoracic CT images

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Ge, Zhanyu; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Bogot, Naama; Cascade, Philip N.; Kazerooni, Ella A.

    2005-04-01

    We are developing a computer-aided detection (CAD) system for lung nodules in thoracic CT volumes. During false positive (FP) reduction, the image structures around the identified nodule candidates play an important role in differentiating nodules from vessels. In our previous work, we exploited shape and first-order derivative information of the images by extracting ellipsoid and gradient field features. The purpose of this study was to explore the object shape information using second-order derivatives and the Hessian matrix to further improve the performance of our detection system. Eight features related to the eigenvalues of the Hessian matrix were extracted from a volume of interest containing the object, and were combined with ellipsoid and gradient field features to discriminate nodules from FPs. A data set of 82 CT scans from 56 patients was used to evaluate the usefulness of the FP reduction technique. The classification accuracy was assessed using the area Az under the receiving operating characteristic curve and the number of FPs per section at 80% sensitivity. In the combined feature space, we obtained a test Az of 0.97 +/- 0.01, and 0.27 FPs/section at 80% sensitivity. Our results indicate that combining the Hessian, ellipsoid and gradient field features can significantly improve the performance of our FP reduction stage.

  10. Recent advances in microfluidic detection systems

    PubMed Central

    Baker, Christopher A; Duong, Cindy T; Grimley, Alix; Roper, Michael G

    2009-01-01

    There are numerous detection methods available for methods are being put to use for detection on these miniaturized systems, with the analyte of interest driving the choice of detection method. In this article, we summarize microfluidic 2 years. More focus is given to unconventional approaches to detection routes and novel strategies for performing high-sensitivity detection. PMID:20414455

  11. An FPGA-Based Rapid Wheezing Detection System

    PubMed Central

    Lin, Bor-Shing; Yen, Tian-Shiue

    2014-01-01

    Wheezing is often treated as a crucial indicator in the diagnosis of obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to monitor patients over the long-term. In this study, a portable wheezing detection system based on a field-programmable gate array (FPGA) is proposed. This system accelerates wheezing detection, and can be used as either a single-process system, or as an integrated part of another biomedical signal detection system. The system segments sound signals into 2-second units. A short-time Fourier transform was used to determine the relationship between the time and frequency components of wheezing sound data. A spectrogram was processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, morphological image processing, and image labeling, to extract wheezing features according to computerized respiratory sound analysis (CORSA) standards. These features were then used to train the support vector machine (SVM) and build the classification models. The trained model was used to analyze sound data to detect wheezing. The system runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that the system offered excellent wheezing recognition performance (0.912). The detection process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid wheezing classification. PMID:24481034

  12. A stereo vision-based obstacle detection system in vehicles

    NASA Astrophysics Data System (ADS)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  13. An FPGA-based rapid wheezing detection system.

    PubMed

    Lin, Bor-Shing; Yen, Tian-Shiue

    2014-01-29

    Wheezing is often treated as a crucial indicator in the diagnosis of obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to monitor patients over the long-term. In this study, a portable wheezing detection system based on a field-programmable gate array (FPGA) is proposed. This system accelerates wheezing detection, and can be used as either a single-process system, or as an integrated part of another biomedical signal detection system. The system segments sound signals into 2-second units. A short-time Fourier transform was used to determine the relationship between the time and frequency components of wheezing sound data. A spectrogram was processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, morphological image processing, and image labeling, to extract wheezing features according to computerized respiratory sound analysis (CORSA) standards. These features were then used to train the support vector machine (SVM) and build the classification models. The trained model was used to analyze sound data to detect wheezing. The system runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that the system offered excellent wheezing recognition performance (0.912). The detection process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid wheezing classification.

  14. Feature Line Based Building Detection and Reconstruction from Oblique Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Jiang, W.; Zhang, J.

    2015-05-01

    In this paper, a feature line based method for building detection and reconstruction from oblique airborne imagery is presented. With the development of Multi-View Stereo technology, increasing photogrammetric softwares are provided to generate textured meshes from oblique airborne imagery. However, errors in image matching and mesh segmentation lead to the low geometrical accuracy of building models, especially at building boundaries. To simplify massive meshes and construct accurate 3D building models, we integrate multi-view images and meshes by using feature lines, in which contour lines are used for building detection and straight skeleton for building reconstruction. Firstly, through the contour clustering method, buildings can be quickly and robustly detected from meshes. Then, a feature preserving mesh segmentation method is applied to accurately extract 3D straight skeleton from meshes. Finally, straight feature lines derived from multi-view images are used to rectify inaccurate parts of 3D straight skeleton of buildings. Therefore, low quality model can be refined by the accuracy improvement of mesh feature lines and rectification with feature lines of multi-view images. The test dataset in Zürich is provided by ISPRS/EuroSDR initiative Benchmark on High Density Image Matching for DSM Computation. The experiments reveal that the proposed method can obtain convincing and high quality 3D building models from oblique airborne imagery.

  15. Significance of MPEG-7 textural features for improved mass detection in mammography.

    PubMed

    Eltonsy, Nevine H; Tourassi, Georgia D; Fadeev, Aleksey; Elmaghraby, Adel S

    2006-01-01

    The purpose of the study is to investigate the significance of MPEG-7 textural features for improving the detection of masses in screening mammograms. The detection scheme was originally based on morphological directional neighborhood features extracted from mammographic regions of interest (ROIs). Receiver Operating Characteristics (ROC) was performed to evaluate the performance of each set of features independently and merged into a back-propagation artificial neural network (BPANN) using the leave-one-out sampling scheme (LOOSS). The study was based on a database of 668 mammographic ROIs (340 depicting cancer regions and 328 depicting normal parenchyma). Overall, the ROC area index of the BPANN using the directional morphological features was Az=0.85+/-0.01. The MPEG-7 edge histogram descriptor-based BPNN showed an ROC area index of Az=0.71+/-0.01 while homogeneous textural descriptors using 30 and 120 channels helped the BPNN achieve similar ROC area indexes of Az=0.882+/-0.02 and Az=0.877+/-0.01 respectively. After merging the MPEG-7 homogeneous textural features with the directional neighborhood features the performance of the BPANN increased providing an ROC area index of Az=0.91+/-0.01. MPEG-7 homogeneous textural descriptor significantly improved the morphology-based detection scheme.

  16. Object-Based Analysis of LIDAR Geometric Features for Vegetation Detection in Shaded Areas

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ching; Lin, ChinSu; Tsai, Ming-Da; Lin, Chun-Lin

    2016-06-01

    The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class.

  17. Digital mammography: Mixed feature neural network with spectral entropy decision for detection of microcalcifications

    SciTech Connect

    Zheng, B. |; Qian, W.; Clarke, L.P.

    1996-10-01

    A computationally efficient mixed feature based neural network (MFNN) is proposed for the detection of microcalcification clusters (MCC`s) in digitized mammograms. The MFNN employs features computed in both the spatial and spectral domain and uses spectral entropy as a decision parameter. Backpropagation with Kalman Filtering (KF) is employed to allow more efficient network training as required for evaluation of different features, input images, and related error analysis. A previously reported, wavelet-based image-enhancement method is also employed to enhance microcalcification clusters for improved detection. The relative performance of the MFNN for both the raw and enhanced images is evaluated using a common image database of 30 digitized mammograms, with 20 images containing 21 biopsy proven MCC`s and ten normal cases. The computed sensitivity (true positive (TP) detection rate) was 90.1% with an average low false positive (FP) detection of 0.71 MCCs/image for the enhanced images using a modified k-fold validation error estimation technique. The corresponding computed sensitivity for the raw images was reduced to 81.4% and with 0.59 FP`s MCCs/image. A relative comparison to an earlier neural network (NN) design, using only spatially related features, suggests the importance of the addition of spectral domain features when the raw image data are analyzed.

  18. Computer-aided diagnosis in CT colonography: detection of polyps based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Naeppi, Janne J.; Frimmel, Hans; Dachman, Abraham H.

    2002-05-01

    A computer-aided diagnosis scheme for the detection of colonic polyps in CT colonography has been developed, and its performance has been assessed based on clinical cases with colonoscopy-confirmed polyps. In the scheme, the colon was automatically segmented by use of knowledge-guided segmentation from 3-dimensional isotropic volumes reconstructed from axial CT slices in CT colonography. Polyp candidates are detected by first computing of 3-dimensional geometric features that characterize polyps, and then segmenting of connected components corresponding to suspicious regions by hysteresis thresholding and fuzzy clustering based on these geometric features. False-positive detections are reduced by computation of 3-dimensional texture features characterizing the internal structures of the polyp candidates, followed by application of discriminant analysis to the feature space generated by the geometric and texture features. We applied our scheme to 43 CT colonographic cases with cleansed colon, including 12 polyps larger than 5 mm. In a by-dataset analysis, the CAD scheme yielded a sensitivity of 95% with 1.2 false positives per data set. The false negative was one of the two polyps in a single patient. Consequently, in by-patient analysis, our method yielded 100% sensitivity with 2.0 false positives per patient. The results indicate that our CAD scheme has the potential to detect clinically important polyp cases with a high sensitivity and a relatively low false-positive rate.

  19. A new feature constituting approach to detection of vocal fold pathology

    NASA Astrophysics Data System (ADS)

    Hariharan, M.; Polat, Kemal; Yaacob, Sazali

    2014-08-01

    In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.

  20. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features

    SciTech Connect

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B.; Yao, Jianhua; Summers, Ronald M.; Linguraru, Marius George

    2015-01-15

    Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. Methods: The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e − 3) on all calculi from 1 to 433 mm{sup 3} in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.

  1. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features

    PubMed Central

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B.; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.

    2015-01-01

    Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. Methods: The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e − 3) on all calculi from 1 to 433 mm3 in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis. PMID:25563255

  2. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features.

    PubMed

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M

    2015-01-01

    Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e - 3) on all calculi from 1 to 433 mm(3) in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.

  3. Change Detection in Uav Video Mosaics Combining a Feature Based Approach and Extended Image Differencing

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang

    2016-06-01

    Change detection is an important task when using unmanned aerial vehicles (UAV) for video surveillance. We address changes of short time scale using observations in time distances of a few hours. Each observation (previous and current) is a short video sequence acquired by UAV in near-Nadir view. Relevant changes are, e.g., recently parked or moved vehicles. Examples for non-relevant changes are parallaxes caused by 3D structures of the scene, shadow and illumination changes, and compression or transmission artifacts. In this paper we present (1) a new feature based approach to change detection, (2) a combination with extended image differencing (Saur et al., 2014), and (3) the application to video sequences using temporal filtering. In the feature based approach, information about local image features, e.g., corners, is extracted in both images. The label "new object" is generated at image points, where features occur in the current image and no or weaker features are present in the previous image. The label "vanished object" corresponds to missing or weaker features in the current image and present features in the previous image. This leads to two "directed" change masks and differs from image differencing where only one "undirected" change mask is extracted which combines both label types to the single label "changed object". The combination of both algorithms is performed by merging the change masks of both approaches. A color mask showing the different contributions is used for visual inspection by a human image interpreter.

  4. A Solitary Feature-based Lung Nodule Detection Approach for Chest X-Ray Radiographs.

    PubMed

    Li, Xuechen; Shen, Linlin; Luo, Suhuai

    2017-01-31

    Lung cancer is one of the most deadly diseases. It has a high death rate and its incidence rate has been increasing all over the world. Lung cancer appears as a solitary nodule in chest x-ray radiograph (CXR). Therefore, lung nodule detection in CXR could have a significant impact on early detection of lung cancer. Radiologists define a lung nodule in chest x-ray radiographs as "solitary white nodule-like blob". However, the solitary feature has not been employed for lung nodule detection before. In this paper, a solitary feature-based lung nodule detection method was proposed. We employed stationary wavelet transform and convergence index filter to extract the texture features and used AdaBoost to generate white nodule-likeness map. A solitary feature was defined to evaluate the isolation degree of candidates. Both the isolation degree and the white nodule-likeness were used as final evaluation of lung nodule candidates. The proposed method shows better performance and robustness than those reported in previous research. More than 80% and 93% of lung nodules in the lung field in the JSRT database were detected when the false positives per image was two and five, respectively. The proposed approach has the potential of being used in clinical practice.

  5. Planetary system detection by POINTS

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The final report and semiannual reports 1, 2, and 3 in response to the study of 'Planetary System Detection by POINTS' is presented. The grant covered the period from 15 Jun. 1988 through 31 Dec. 1989. The work during that period comprised the further development and refinement of the POINTS concept. The status of the POINTS development at the end of the Grant period was described by Reasenberg in a paper given at the JPL Workshop on Space Interferometry, 12-13 Mar. 1990, and distributed as CfA Preprint 3138. That paper, 'POINTS: a Small Astrometric Interferometer,' follows as Appendix-A. Our proposal P2276-7-09, dated July 1990, included a more detailed description of the state of the development of POINTS at the end of the tenure of Grant NAGW-1355. That proposal, which resulted in Grant NAGW-2497, is included by reference.

  6. Photoelectric detection system. [manufacturing automation

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Schansman, R. R. (Inventor)

    1982-01-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  7. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  8. Complex Features in Lotka-Volterra Systems with Behavioral Adaptation

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudio; Lacitignola, Deborah

    Lotka-Volterra systems have played a fundamental role for mathematical modelling in many branches of theoretical biology and proved to describe, at least qualitatively, the essential features of many phenomena, see for example Murray [Murray 2002]. Furthermore models of that kind have been considered successfully also in quite different and less mathematically formalized context: Goodwin' s model of economic growth cycles [Goodwin 1967] and urban dynamics [Dendrinos 1992] are only two of a number of examples. Such systems can certainly be defined as complex ones and in fact the aim of modelling was essentially to clarify mechanims rather than to provide actual precise simulations and predictions. With regards to complex systems, we recall that one of their main feature, no matter of the specific definition one has in mind, is adaptation, i. e. the ability to adjust.

  9. Complex Features in Lotka-Volterra Systems with Behavioral Adaptation

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudio; Lacitignola, Deborah

    Lotka-Volterra systems have played a fundamental role for mathematical modelling in many branches of theoretical biology and proved to describe, at least qualitatively, the essential features of many phenomena, see for example Murray [Murray 2002]. Furthermore models of that kind have been considered successfully also in quite different and less mathematically formalized context: Goodwin' s model of economic growth cycles [Goodwin 1967] and urban dynamics [Dendrinos 1992] are only two of a number of examples. Such systems can certainly be defined as complex ones and in fact the aim of modelling was essentially to clarify mechanims rather than to provide actual precise simulations and predictions. With regards to complex systems, we recall that one of their main feature, no matter of the specific definition one has in mind, is adaptation, i. e. the ability to adjust.

  10. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    PubMed

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis.

  11. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.

  12. A novel scheme for detection of diffuse lung disease in MDCT by use of statistical texture features

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Li, Feng; Doi, Kunio; Li, Qiang

    2009-02-01

    The successful development of high performance computer-aided-diagnostic systems has potential to assist radiologists in the detection and diagnosis of diffuse lung disease. We developed in this study an automated scheme for the detection of diffuse lung disease on multi-detector computed tomography (MDCT). Our database consisted of 68 CT scans, which included 31 normal and 37 abnormal cases with three kinds of abnormal patterns, i.e., ground glass opacity, reticular, and honeycombing. Two radiologists first selected the CT scans with abnormal patterns based on clinical reports. The areas that included specific abnormal patterns in the selected CT images were then delineated as reference standards by an expert chest radiologist. To detect abnormal cases with diffuse lung disease, the lungs were first segmented from the background in each slice by use of a texture analysis technique, and then divided into contiguous volumes of interest (VOIs) with a 64×64×64 matrix size. For each VOI, we calculated many statistical texture features, including the mean and standard deviation of CT values, features determined from the run length matrix, and features from the co-occurrence matrix. A quadratic classifier was employed for distinguishing between normal and abnormal VOIs by use of a leave-one-case-out validation scheme. A rule-based criterion was employed to further determine whether a case was normal or abnormal. For the detection of abnormal VOIs, our CAD system achieved a sensitivity of 86% and a specificity of 90%. For the detection of abnormal cases, it achieved a sensitivity of 89% and a specificity of 90%. This preliminary study indicates that our CAD system would be useful for the detection of diffuse lung disease.

  13. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have

  14. AINIDS: an immune-based network intrusion detection system

    NASA Astrophysics Data System (ADS)

    Yan, Qiao; Yu, Jianping

    2006-04-01

    Intrusion detection can be looked as a problem of pattern classification. Since intrusion detection has some intrinsic characteristic such as high dimensional feature spaces, linearity non-differentiation, severe unevenness of normal pattern and anomaly pattern, it is very difficult to detection intrusions directly by use of classical pattern recognition method. Nature immune system is a self-adaptive and self-learning classifier, which can accomplish recognition and classification by learning, remembrance and association. First we use four-tuple to define nature immune system and intrusion detection system, then we give the mathematic formalization description of performance index of intrusion detection system. Finally we design and develop an immune-based network intrusion detection system-- AINIDS, which includes a data collector component, a packet head parser and feature extraction component, antibody generation and antigen detection component, co-stimulation and report component and rule optimization component. The antibody generation and antigen detection component is the key module of AINIDS. In the component the passive immune antibodies and the automatic immune antibodies that include memory automatic immune antibodies and fuzzy automatic immune antibodies are proposed by analogy with natural immune system. The passive immune antibodies inherit available rules and can detect known intrusion rapidly. The automatic immune antibodies integrate statistic method with fuzzy reasoning system to improve the detection performance and can discover novel attacks. AINIDS is tested by the data that we collect from our LANs and by the data from 1999 DARPA intrusion detection evaluation data sets. Both experiments prove AINIDS has good detection rate for old and novel attacks.

  15. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  16. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection

    PubMed Central

    Brodley, Carla; Slonim, Donna

    2011-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called “normal” instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach. PMID:22639542

  17. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.

    PubMed

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2012-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called "normal" instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach.

  18. [The Argentine Health System: organization and financial features].

    PubMed

    Arce, Hugo E

    2012-01-01

    The Argentine health system is defined by the following features: a) federal country organization; b) coexistence of public and private services with either outpatients or inpatients; c) fragmented entities of social security, most of these originated outside of the state organization. Components of the system are described and weighed; making decisions strength between national and provincial health authorities is analyzed and the Argentine system is compared with that of other countries. Statistical data on distribution of health expenditures and coverage of health services are presented as well as financial flow among diverse funding sources, insurers, providers and users of each sector.

  19. Detecting Small-Scale Topographic Changes and Relict Geomorphic Features on Barrier Islands Using SAR

    NASA Technical Reports Server (NTRS)

    Gibeaut, James C.; Crawford, Melba M.; Gutierrez, Roberto; Slatton, K. Clint; Neuenschwander, Amy L.; Ricard, Michael R.

    1997-01-01

    The shapes and elevations of barrier islands may change dramatically over a short period of time during a storm. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to measure coastal topography and to detect storm-induced changes in topography. Surrogate measures of topography observed in multiband, fully polarimetric AIRSAR (This type of data are now referred to as POLSAR data.) are also being investigated. Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas obtained with Topographic SAR (TOPSAR) are compared with measurements by Global Positioning System (GPS) ground surveys and electronic total station surveys. In addition to topographic mapping, this project is evaluating the use of POLSAR to detect old features such as storm scarps, storm channels, former tidal inlets, and beach ridges that have been obscured by vegetation, erosion, deposition, and artificial filling. We have also expanded the work from the original proposal to include the mapping of coastal wetland vegetation and depositional environments. Methods developed during this project will provide coastal geologists with an unprecedented tool for monitoring and understanding barrier island systems. This understanding will improve overall coastal management policies and will help reduce the effects of natural and man-induced coastal hazards. This report summarizes our accomplishments during the second year of the study. Also included is a discussion of our planned activities for year 3 and a revised budget.

  20. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  1. A review of feature detection and match algorithms for localization and mapping

    NASA Astrophysics Data System (ADS)

    Li, Shimiao

    2017-09-01

    Localization and mapping is an essential ability of a robot to keep track of its own location in an unknown environment. Among existing methods for this purpose, vision-based methods are more effective solutions for being accurate, inexpensive and versatile. Vision-based methods can generally be categorized as feature-based approaches and appearance-based approaches. The feature-based approaches prove higher performance in textured scenarios. However, their performance depend highly on the applied feature-detection algorithms. In this paper, we surveyed algorithms for feature detection, which is an essential step in achieving vision-based localization and mapping. In this pater, we present mathematical models of the algorithms one after another. To compare the performances of the algorithms, we conducted a series of experiments on their accuracy, speed, scale invariance and rotation invariance. The results of the experiments showed that ORB is the fastest algorithm in detecting and matching features, the speed of which is more than 10 times that of SURF and approximately 40 times that of SIFT. And SIFT, although with no advantage in terms of speed, shows the most correct matching pairs and proves its accuracy.

  2. Dynamical Systems Analysis of Fully 3D Ocean Features

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.

    2011-12-01

    Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.

  3. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  4. Computer-aided detection of polyps in CT colonography based on geometric features

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Masutani, Yoshitaka; MacEneaney, Peter; Dachman, Abraham H.

    2001-05-01

    CT colonography is a promising technique with a long-term goal to provide mass screening for colorectal carcinoma. Colorectal screening by CT colonography requires that the examination be cost-effective. The correct interpretation time is excessive for a screening test. Therefore, a computerized detection method capable of indicating regions of suspicion is attractive as a diagnostic aid for radiologists. We have developed a new CAD scheme for automated detection of polyps based on CT colonographic data sets. Our method characterizes polyps by geometric features of volumetric data including the volumetric shape index and curvedness. Polyps were detected by fuzzy clustering in a feature space generated by the feature values and spatial coordinates, followed by a rule-based test in the feature space. In an analysis of 41 patients, 9 of whom had at least one biopsy-proved polyp, our CAD scheme detected 100% of polyps with 2.5 false positives per patient. Our preliminary result indicates that the CAD scheme is potentially useful for highlighting areas of suspicion in the colon and, therefore, facilitates widespread screening by reducing the reading time substantially.

  5. Gain of the human dura in vivo and its effects on invasive brain signal feature detection.

    PubMed

    Torres Valderrama, Aldemar; Oostenveld, Robert; Vansteensel, Mariska J; Huiskamp, Geertjan M; Ramsey, Nicolas Franciscus

    2010-03-30

    Invasive brain signal recordings generally rely on bioelectrodes implanted on the cortex underneath the dura. Subdural recordings have strong advantages in terms of bandwidth, spatial resolution and signal quality. However, subdural electrodes also have the drawback of compromising the long-term stability of such implants and heighten the risk of infection. Epidurally implanted electrodes might provide a viable alternative to subdural electrodes, offering a compromise between signal quality and invasiveness. Determining the feasibility of epidural electrode implantation for e.g., clinical research, brain-computer interfacing (BCI) and cognitive experiments, requires the characterization of the electrical properties of the dura, and its effect on signal feature detection. In this paper we report measurements of brain signal attenuation by the human dura in vivo. In addition, we use signal detection theory to study how the presence of the dura between the sources and the recording electrodes affects signal power features in motor BCI experiments. For noise levels typical of clinical brain signal recording equipment, we observed no detrimental effects on signal feature detection due to the dura. Subdural recordings were found to be more robust with respect to increased instrumentation noise level as compared to their epidural counterpart nonetheless. Our findings suggest that epidural electrode implantation is a viable alternative to subdural implants from the feature detection viewpoint.

  6. Evaluation of image features and classification methods for Barrett's cancer detection using VLE imaging

    NASA Astrophysics Data System (ADS)

    Klomp, Sander; van der Sommen, Fons; Swager, Anne-Fré; Zinger, Svitlana; Schoon, Erik J.; Curvers, Wouter L.; Bergman, Jacques J.; de With, Peter H. N.

    2017-03-01

    Volumetric Laser Endomicroscopy (VLE) is a promising technique for the detection of early neoplasia in Barrett's Esophagus (BE). VLE generates hundreds of high resolution, grayscale, cross-sectional images of the esophagus. However, at present, classifying these images is a time consuming and cumbersome effort performed by an expert using a clinical prediction model. This paper explores the feasibility of using computer vision techniques to accurately predict the presence of dysplastic tissue in VLE BE images. Our contribution is threefold. First, a benchmarking is performed for widely applied machine learning techniques and feature extraction methods. Second, three new features based on the clinical detection model are proposed, having superior classification accuracy and speed, compared to earlier work. Third, we evaluate automated parameter tuning by applying simple grid search and feature selection methods. The results are evaluated on a clinically validated dataset of 30 dysplastic and 30 non-dysplastic VLE images. Optimal classification accuracy is obtained by applying a support vector machine and using our modified Haralick features and optimal image cropping, obtaining an area under the receiver operating characteristic of 0.95 compared to the clinical prediction model at 0.81. Optimal execution time is achieved using a proposed mean and median feature, which is extracted at least factor 2.5 faster than alternative features with comparable performance.

  7. Speech recognition in dental software systems: features and functionality.

    PubMed

    Yuhaniak Irwin, Jeannie; Fernando, Shawn; Schleyer, Titus; Spallek, Heiko

    2007-01-01

    Speech recognition allows clinicians a hands-free option for interacting with computers, which is important for dentists who have difficulty using a keyboard and a mouse when working with patients. While roughly 13% of all general dentists with computers at chairside use speech recognition for data entry, 16% have tried and discontinued using this technology. In this study, researches explored the speech recognition features and functionality of four dental software applications. For each system, the documentation as well as the working program was evaluated to determine speech recognition capabilities. A comparison checklist was created to highlight each program's speech functionality. Next, after the development of charting scripts, feasibility user tests were conducted to determine if performance comparisons could be made across systems. While four systems were evaluated in the feature comparison, only two of the systems were reviewed during the feasibility user tests. Results show that current speech functionality, instead of being intuitive, is directly comparable to using a mouse. Further, systems require memorizing an enormous amount of specific terminology opposed to using natural language. User testing is a feasible way to measure the performance of speech recognition across systems and will be conducted in the near future. Overall, limited speech functionality reduces the ability of clinicians to interact directly with the computer during clinical care. This can hinder the benefits of electronic patient records and clinical decision support systems.

  8. Detection of Variable Gaseous Absorption Features in the Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon L.; Welsh, Barry Y.

    2012-10-01

    We present medium resolution (R = 60,000) absorption measurements of the interstellar Ca II K line observed towards five nearby A-type stars (49 Ceti, 5 Vul, ι Cyg, 2 And, and HD 223884) suspected of possessing circumstellar gas debris disks. The stars were observed on a nightly basis during a six night observing run on the 2.1-meter Otto Struve telescope at the McDonald Observatory, Texas. We have detected nightly changes in the absorption strength of the Ca II K line observed near the stellar radial velocity in three of the stars (49 Ceti, i Cyg and HD 223884). Such changes in absorption suggest the presence of a circumstellar (atomic) gas disk around these stars. In addition to the absorption changes in the main Ca II K line profile, we have also observed weak transient absorption features that randomly appear at redshifted velocities in the spectra of 49 Ceti, 5 Vul, and 2 And. These absorption features are most probably associated with the presence of falling evaporated bodies (exo-comets) that liberate evaporating gas on their approach to the central star. This now brings the total number of systems in which exocomet activity has been observed at Ca II or Na I wavelengths on a nightly basis to seven (β Pic, HR 10, HD 85905, β Car, 49 Ceti, 5 Vul, and 2 And), with 2 And exhibiting weaker and less frequent changes. All of the disk systems presently known to exhibit either type of short-term variability in Ca II K line absorption are rapidly rotating A-type stars (V sin i > 120 km s-1). Most exhibit mid-IR excesses, and many of them are very young (< 20 Myr), thus supporting the argument that many of them are transitional objects between Herbig Ae and “Vega-like” A-type stars with more tenuous circumstellar disks. No mid-IR excess (due to the presence of a dust disk) has yet been detected around either 2 And or HD 223884, both of which have been classified as λ Boötis-type stars. This may indicate that the observed changes in gas absorption for these

  9. Glacier surface feature detection and classification from airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Höfle, B.; Sailer, R.; Vetter, M.; Rutzinger, M.; Pfeifer, N.

    2009-04-01

    In recent years airborne LiDAR evolved to the state-of-the-art technology for topographic data acquisition. Up to now mainly the derived elevation information has been used in glaciology (e.g. roughness determination, multitemporal elevation and volume changes). Few studies have already shown the potential of using LiDAR signal intensities for glacier surface differentiation, primarily based on visual interpretation of signal intensity images. This contribution brings together the spatial and radiometric information provided by airborne LiDAR, in order to make an automatic glacier surface feature detection and classification possible. The automation of the processing workflow and the standardization of the used input data become important particularly for multitemporal analysis where surface changes and feature tracking are of major interest. This study is carried out at the Hintereisferner, Ötztal Alps/Austria, where 16 airborne LiDAR acquisitions have taken place since 2001. We aim at detecting the main glacier surface classes as defined by crevasses, snow, firn, ice and debris covered ice areas. Prior to the glacier facies differentiation, an automated glacier delineation based on roughness constraints is performed. It is assumed that the glacier surface, except the crevasse zone, tends to a smoother surface than the adjacent slopes and represents one large connected spatial unit. The developed method combines raster and point cloud based processing steps in an object-based segmentation and classification procedure where elevation and calibrated signal intensity are used as complementary input. The calibration of the recorded signal intensity removes known effects originating from the atmosphere, topography and scan geometry (e.g. distance to target) and hence provides a value proportional to surface reflectance in the wavelength of the laser system. Since the Bidirectional Reflectance Distribution Function (BRDF) of the scanned surface is not known beforehand

  10. On the use of log-gabor features for subsurface object detection using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Harris, Samuel; Ho, K. C.; Zare, Alina

    2016-05-01

    regions with significant amount of metal debris. The challenge for the handheld GPR is to reduce the false alarm rate and limit the undesirable human operator effect. This paper proposes the use of log-Gabor features to improve the detection performance. In particular, we apply 36 log-Gabor filters to the B-scan of the GPR data in the time domain for the purpose to extract the edge behaviors of a prescreener alarm. The 36 log-Gabor filters cover the entire frequency plane with different bandwidths and orientations. The energy of each filter output forms an element of the feature vector and an SVM is trained to perform target vs non-target classification. Experimental results using the experimental hand held demonstrator data collected at a government site supports the increase in detection performance by using the log-Gabor features.

  11. Hybrid image representation learning model with invariant features for basal cell carcinoma detection

    NASA Astrophysics Data System (ADS)

    Arevalo, John; Cruz-Roa, Angel; González, Fabio A.

    2013-11-01

    This paper presents a novel method for basal-cell carcinoma detection, which combines state-of-the-art methods for unsupervised feature learning (UFL) and bag of features (BOF) representation. BOF, which is a form of representation learning, has shown a good performance in automatic histopathology image classi cation. In BOF, patches are usually represented using descriptors such as SIFT and DCT. We propose to use UFL to learn the patch representation itself. This is accomplished by applying a topographic UFL method (T-RICA), which automatically learns visual invariance properties of color, scale and rotation from an image collection. These learned features also reveals these visual properties associated to cancerous and healthy tissues and improves carcinoma detection results by 7% with respect to traditional autoencoders, and 6% with respect to standard DCT representations obtaining in average 92% in terms of F-score and 93% of balanced accuracy.