A novel feature extraction approach for microarray data based on multi-algorithm fusion
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277
A novel feature extraction approach for microarray data based on multi-algorithm fusion.
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
FEX: A Knowledge-Based System For Planimetric Feature Extraction
NASA Astrophysics Data System (ADS)
Zelek, John S.
1988-10-01
Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis
NASA Astrophysics Data System (ADS)
Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui
2015-07-01
Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Robust digital image watermarking using distortion-compensated dither modulation
NASA Astrophysics Data System (ADS)
Li, Mianjie; Yuan, Xiaochen
2018-04-01
In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.
Target recognition based on convolutional neural network
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
ECG Identification System Using Neural Network with Global and Local Features
ERIC Educational Resources Information Center
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui
2017-08-17
It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.
Engagement Assessment Using EEG Signals
NASA Technical Reports Server (NTRS)
Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean
2012-01-01
In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans
2017-04-01
Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
Finger vein recognition based on the hyperinformation feature
NASA Astrophysics Data System (ADS)
Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Yang, Lu
2014-01-01
The finger vein is a promising biometric pattern for personal identification due to its advantages over other existing biometrics. In finger vein recognition, feature extraction is a critical step, and many feature extraction methods have been proposed to extract the gray, texture, or shape of the finger vein. We treat them as low-level features and present a high-level feature extraction framework. Under this framework, base attribute is first defined to represent the characteristics of a certain subcategory of a subject. Then, for an image, the correlation coefficient is used for constructing the high-level feature, which reflects the correlation between this image and all base attributes. Since the high-level feature can reveal characteristics of more subcategories and contain more discriminative information, we call it hyperinformation feature (HIF). Compared with low-level features, which only represent the characteristics of one subcategory, HIF is more powerful and robust. In order to demonstrate the potential of the proposed framework, we provide a case study to extract HIF. We conduct comprehensive experiments to show the generality of the proposed framework and the efficiency of HIF on our databases, respectively. Experimental results show that HIF significantly outperforms the low-level features.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
A method for real-time implementation of HOG feature extraction
NASA Astrophysics Data System (ADS)
Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai
2011-08-01
Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals
Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu
2012-01-01
Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.
Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn
2017-12-01
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L
2016-07-01
Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben
2015-08-01
Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Information based universal feature extraction
NASA Astrophysics Data System (ADS)
Amiri, Mohammad; Brause, Rüdiger
2015-02-01
In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
Variogram-based feature extraction for neural network recognition of logos
NASA Astrophysics Data System (ADS)
Pham, Tuan D.
2003-03-01
This paper presents a new approach for extracting spatial features of images based on the theory of regionalized variables. These features can be effectively used for automatic recognition of logo images using neural networks. Experimental results on a public-domain logo database show the effectiveness of the proposed approach.
Text feature extraction based on deep learning: a review.
Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan
2017-01-01
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
Mathematical morphology-based shape feature analysis for Chinese character recognition systems
NASA Astrophysics Data System (ADS)
Pai, Tun-Wen; Shyu, Keh-Hwa; Chen, Ling-Fan; Tai, Gwo-Chin
1995-04-01
This paper proposes an efficient technique of shape feature extraction based on the application of mathematical morphology theory. A new shape complexity index for preclassification of machine printed Chinese Character Recognition (CCR) is also proposed. For characters represented in different fonts/sizes or in a low resolution environment, a more stable local feature such as shape structure is preferred for character recognition. Morphological valley extraction filters are applied to extract the protrusive strokes from four sides of an input Chinese character. The number of extracted local strokes reflects the shape complexity of each side. These shape features of characters are encoded as corresponding shape complexity indices. Based on the shape complexity index, data base is able to be classified into 16 groups prior to recognition procedures. The performance of associating with shape feature analysis reclaims several characters from misrecognized character sets and results in an average of 3.3% improvement of recognition rate from an existing recognition system. In addition to enhance the recognition performance, the extracted stroke information can be further analyzed and classified its own stroke type. Therefore, the combination of extracted strokes from each side provides a means for data base clustering based on radical or subword components. It is one of the best solutions for recognizing high complexity characters such as Chinese characters which are divided into more than 200 different categories and consist more than 13,000 characters.
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Comparative analysis of feature extraction methods in satellite imagery
NASA Astrophysics Data System (ADS)
Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad
2017-10-01
Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.
Segovia, F; Górriz, J M; Ramírez, J; Phillips, C
2016-01-01
Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.
An ensemble method for extracting adverse drug events from social media.
Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi
2016-06-01
Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Hoang, Tuan; Tran, Dat; Huang, Xu
2013-01-01
Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.
Research of facial feature extraction based on MMC
NASA Astrophysics Data System (ADS)
Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun
2017-07-01
Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.
NASA Astrophysics Data System (ADS)
Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang
2014-11-01
The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.
Multi-Feature Based Information Extraction of Urban Green Space Along Road
NASA Astrophysics Data System (ADS)
Zhao, H. H.; Guan, H. Y.
2018-04-01
Green space along road of QuickBird image was studied in this paper based on multi-feature-marks in frequency domain. The magnitude spectrum of green along road was analysed, and the recognition marks of the tonal feature, contour feature and the road were built up by the distribution of frequency channels. Gabor filters in frequency domain were used to detect the features based on the recognition marks built up. The detected features were combined as the multi-feature-marks, and watershed based image segmentation were conducted to complete the extraction of green space along roads. The segmentation results were evaluated by Fmeasure with P = 0.7605, R = 0.7639, F = 0.7622.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
He, Dengchao; Zhang, Hongjun; Hao, Wenning; Zhang, Rui; Cheng, Kai
2017-07-01
Distant supervision, a widely applied approach in the field of relation extraction can automatically generate large amounts of labeled training corpus with minimal manual effort. However, the labeled training corpus may have many false-positive data, which would hurt the performance of relation extraction. Moreover, in traditional feature-based distant supervised approaches, extraction models adopt human design features with natural language processing. It may also cause poor performance. To address these two shortcomings, we propose a customized attention-based long short-term memory network. Our approach adopts word-level attention to achieve better data representation for relation extraction without manually designed features to perform distant supervision instead of fully supervised relation extraction, and it utilizes instance-level attention to tackle the problem of false-positive data. Experimental results demonstrate that our proposed approach is effective and achieves better performance than traditional methods.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Sidek, Khairul; Khali, Ibrahim
2012-01-01
In this paper, a person identification mechanism implemented with Cardioid based graph using electrocardiogram (ECG) is presented. Cardioid based graph has given a reasonably good classification accuracy in terms of differentiating between individuals. However, the current feature extraction method using Euclidean distance could be further improved by using Mahalanobis distance measurement producing extracted coefficients which takes into account the correlations of the data set. Identification is then done by applying these extracted features to Radial Basis Function Network. A total of 30 ECG data from MITBIH Normal Sinus Rhythm database (NSRDB) and MITBIH Arrhythmia database (MITDB) were used for development and evaluation purposes. Our experimentation results suggest that the proposed feature extraction method has significantly increased the classification performance of subjects in both databases with accuracy from 97.50% to 99.80% in NSRDB and 96.50% to 99.40% in MITDB. High sensitivity, specificity and positive predictive value of 99.17%, 99.91% and 99.23% for NSRDB and 99.30%, 99.90% and 99.40% for MITDB also validates the proposed method. This result also indicates that the right feature extraction technique plays a vital role in determining the persistency of the classification accuracy for Cardioid based person identification mechanism.
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini
2011-01-01
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.
Novel Features for Brain-Computer Interfaces
Woon, W. L.; Cichocki, A.
2007-01-01
While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
Glioma grading using cell nuclei morphologic features in digital pathology images
NASA Astrophysics Data System (ADS)
Reza, Syed M. S.; Iftekharuddin, Khan M.
2016-03-01
This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.
Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed
2017-01-01
Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.
Image feature extraction based on the camouflage effectiveness evaluation
NASA Astrophysics Data System (ADS)
Yuan, Xin; Lv, Xuliang; Li, Ling; Wang, Xinzhu; Zhang, Zhi
2018-04-01
The key step of camouflage effectiveness evaluation is how to combine the human visual physiological features, psychological features to select effectively evaluation indexes. Based on the predecessors' camo comprehensive evaluation method, this paper chooses the suitable indexes combining with the image quality awareness, and optimizes those indexes combining with human subjective perception. Thus, it perfects the theory of index extraction.
Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images
NASA Astrophysics Data System (ADS)
Eken, S.; Aydın, E.; Sayar, A.
2017-11-01
In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.
2015-06-01
Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
NASA Astrophysics Data System (ADS)
Jiang, Li; Xuan, Jianping; Shi, Tielin
2013-12-01
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.
Content-based audio authentication using a hierarchical patchwork watermark embedding
NASA Astrophysics Data System (ADS)
Gulbis, Michael; Müller, Erika
2010-05-01
Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
Research on oral test modeling based on multi-feature fusion
NASA Astrophysics Data System (ADS)
Shi, Yuliang; Tao, Yiyue; Lei, Jun
2018-04-01
In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.
Study on Hybrid Image Search Technology Based on Texts and Contents
NASA Astrophysics Data System (ADS)
Wang, H. T.; Ma, F. L.; Yan, C.; Pan, H.
2018-05-01
Image search was studied first here based on texts and contents, respectively. The text-based image feature extraction was put forward by integrating the statistical and topic features in view of the limitation of extraction of keywords only by means of statistical features of words. On the other hand, a search-by-image method was put forward based on multi-feature fusion in view of the imprecision of the content-based image search by means of a single feature. The layered-searching method depended on primarily the text-based image search method and additionally the content-based image search was then put forward in view of differences between the text-based and content-based methods and their difficult direct fusion. The feasibility and effectiveness of the hybrid search algorithm were experimentally verified.
Compressed normalized block difference for object tracking
NASA Astrophysics Data System (ADS)
Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge
2018-04-01
Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.
A neural joint model for entity and relation extraction from biomedical text.
Li, Fei; Zhang, Meishan; Fu, Guohong; Ji, Donghong
2017-03-31
Extracting biomedical entities and their relations from text has important applications on biomedical research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be made on feature engineering when feature-based models are employed. Moreover, pipeline models may suffer error propagation and are not able to utilize the interactions between subtasks. Therefore, we propose a neural joint model to extract biomedical entities as well as their relations simultaneously, and it can alleviate the problems above. Our model was evaluated on two tasks, i.e., the task of extracting adverse drug events between drug and disease entities, and the task of extracting resident relations between bacteria and location entities. Compared with the state-of-the-art systems in these tasks, our model improved the F1 scores of the first task by 5.1% in entity recognition and 8.0% in relation extraction, and that of the second task by 9.2% in relation extraction. The proposed model achieves competitive performances with less work on feature engineering. We demonstrate that the model based on neural networks is effective for biomedical entity and relation extraction. In addition, parameter sharing is an alternative method for neural models to jointly process this task. Our work can facilitate the research on biomedical text mining.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
Classification of clinically useful sentences in clinical evidence resources.
Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme
2016-04-01
Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.
Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan
2016-06-01
Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate helpless sub-bands for each subject and make remaining fewer sub-bands keep better separability by fisher distance, which leads to a higher classification accuracy than WPD-CSP method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Fabric defect detection based on visual saliency using deep feature and low-rank recovery
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan
2018-04-01
Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.
Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.
Gutta, Sandeep; Cheng, Qi
2016-03-01
Traditional biometric recognition systems often utilize physiological traits such as fingerprint, face, iris, etc. Recent years have seen a growing interest in electrocardiogram (ECG)-based biometric recognition techniques, especially in the field of clinical medicine. In existing ECG-based biometric recognition methods, feature extraction and classifier design are usually performed separately. In this paper, a multitask learning approach is proposed, in which feature extraction and classifier design are carried out simultaneously. Weights are assigned to the features within the kernel of each task. We decompose the matrix consisting of all the feature weights into sparse and low-rank components. The sparse component determines the features that are relevant to identify each individual, and the low-rank component determines the common feature subspace that is relevant to identify all the subjects. A fast optimization algorithm is developed, which requires only the first-order information. The performance of the proposed approach is demonstrated through experiments using the MIT-BIH Normal Sinus Rhythm database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Jeraj, R; Galavis, P
Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
A method of vehicle license plate recognition based on PCANet and compressive sensing
NASA Astrophysics Data System (ADS)
Ye, Xianyi; Min, Feng
2018-03-01
The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
Medical image retrieval system using multiple features from 3D ROIs
NASA Astrophysics Data System (ADS)
Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming
2012-02-01
Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.
A framework for feature extraction from hospital medical data with applications in risk prediction.
Tran, Truyen; Luo, Wei; Phung, Dinh; Gupta, Sunil; Rana, Santu; Kennedy, Richard Lee; Larkins, Ann; Venkatesh, Svetha
2014-12-30
Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema. The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines generated from the Elixhauser comorbidities. Hospital medical records was transformed to event sequences, to which filters were applied to extract feature sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts defined on non-overlapping data-collection periods. For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records, outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings (5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD-baseline: 0.60 (95% CI: 0.57, 0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes-baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69); mental disorders-baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia-baseline: 0.61 (0.59, 0.63), auto-extracted: 0.70 (0.67, 0.72). The advantages of auto-extracted standard features from complex medical records, in a disease and task agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons. Such feature sets have potential to form the foundation of complex automated analytic tasks.
System and method for automated object detection in an image
Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.
2015-10-06
A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
Masquerade Detection Using a Taxonomy-Based Multinomial Modeling Approach in UNIX Systems
2008-08-25
primarily the modeling of statistical features , such as the frequency of events, the duration of events, the co- occurrence of multiple events...are identified, we can extract features representing such behavior while auditing the user’s behavior. Figure1: Taxonomy of Linux and Unix...achieved when the features are extracted just from simple commands. Method Hit Rate False Positive Rate ocSVM using simple cmds (freq.-based
NASA Astrophysics Data System (ADS)
Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Markelin, L.; Nezami, S.; Suomalainen, J.; Honkavaara, E.
2018-04-01
Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure. Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10 % better results than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 40 % compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0 %) was obtained with multiview anisotropy corrected data set and the 3D features.
User-oriented summary extraction for soccer video based on multimodal analysis
NASA Astrophysics Data System (ADS)
Liu, Huayong; Jiang, Shanshan; He, Tingting
2011-11-01
An advanced user-oriented summary extraction method for soccer video is proposed in this work. Firstly, an algorithm of user-oriented summary extraction for soccer video is introduced. A novel approach that integrates multimodal analysis, such as extraction and analysis of the stadium features, moving object features, audio features and text features is introduced. By these features the semantic of the soccer video and the highlight mode are obtained. Then we can find the highlight position and put them together by highlight degrees to obtain the video summary. The experimental results for sports video of world cup soccer games indicate that multimodal analysis is effective for soccer video browsing and retrieval.
The algorithm of fast image stitching based on multi-feature extraction
NASA Astrophysics Data System (ADS)
Yang, Chunde; Wu, Ge; Shi, Jing
2018-05-01
This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.
Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum
NASA Astrophysics Data System (ADS)
Guan, Shan; Song, Weijie; Pang, Hongyang
2017-09-01
In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.
2017-01-01
Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method. PMID:28558002
Detection of goal events in soccer videos
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas
2005-01-01
In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
Morphological Feature Extraction for Automatic Registration of Multispectral Images
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, Lynn L.; Trease, Harold E.; Fowler, John
2007-03-15
One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang
2018-06-21
B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.
Chinese character recognition based on Gabor feature extraction and CNN
NASA Astrophysics Data System (ADS)
Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan
2018-03-01
As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.
Deep features for efficient multi-biometric recognition with face and ear images
NASA Astrophysics Data System (ADS)
Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng
2017-07-01
Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.
Research of infrared laser based pavement imaging and crack detection
NASA Astrophysics Data System (ADS)
Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang
2013-08-01
Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.
NASA Astrophysics Data System (ADS)
Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua
2017-04-01
Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.
Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang
2016-12-07
The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.
Dependency-based long short term memory network for drug-drug interaction extraction.
Wang, Wei; Yang, Xi; Yang, Canqun; Guo, Xiaowei; Zhang, Xiang; Wu, Chengkun
2017-12-28
Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification. We propose a dependency-based deep neural network model for DDI extraction. By introducing the dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels, namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers, including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it to the softmax layer for relation identification. To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the existing methods. The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and Recall values.
Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul
2013-01-01
Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.
Zheng, Yuanjie; Keller, Brad M; Ray, Shonket; Wang, Yan; Conant, Emily F; Gee, James C; Kontos, Despina
2015-07-01
Mammographic percent density (PD%) is known to be a strong risk factor for breast cancer. Recent studies also suggest that parenchymal texture features, which are more granular descriptors of the parenchymal pattern, can provide additional information about breast cancer risk. To date, most studies have measured mammographic texture within selected regions of interest (ROIs) in the breast, which cannot adequately capture the complexity of the parenchymal pattern throughout the whole breast. To better characterize patterns of the parenchymal tissue, the authors have developed a fully automated software pipeline based on a novel lattice-based strategy to extract a range of parenchymal texture features from the entire breast region. Digital mammograms from 106 cases with 318 age-matched controls were retrospectively analyzed. The lattice-based approach is based on a regular grid virtually overlaid on each mammographic image. Texture features are computed from the intersection (i.e., lattice) points of the grid lines within the breast, using a local window centered at each lattice point. Using this strategy, a range of statistical (gray-level histogram, co-occurrence, and run-length) and structural (edge-enhancing, local binary pattern, and fractal dimension) features are extracted. To cover the entire breast, the size of the local window for feature extraction is set equal to the lattice grid spacing and optimized experimentally by evaluating different windows sizes. The association between their lattice-based texture features and breast cancer was evaluated using logistic regression with leave-one-out cross validation and further compared to that of breast PD% and commonly used single-ROI texture features extracted from the retroareolar or the central breast region. Classification performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC). DeLong's test was used to compare the different ROCs in terms of AUC performance. The average univariate performance of the lattice-based features is higher when extracted from smaller than larger window sizes. While not every individual texture feature is superior to breast PD% (AUC: 0.59, STD: 0.03), their combination in multivariate analysis has significantly better performance (AUC: 0.85, STD: 0.02, p < 0.001). The lattice-based texture features also outperform the single-ROI texture features when extracted from the retroareolar or the central breast region (AUC: 0.60-0.74, STD: 0.03). Adding breast PD% does not make a significant performance improvement to the lattice-based texture features or the single-ROI features (p > 0.05). The proposed lattice-based strategy for mammographic texture analysis enables to characterize the parenchymal pattern over the entire breast. As such, these features provide richer information compared to currently used descriptors and may ultimately improve breast cancer risk assessment. Larger studies are warranted to validate these findings and also compare to standard demographic and reproductive risk factors.
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
Vision-Based UAV Flight Control and Obstacle Avoidance
2006-01-01
denoted it by Vb = (Vb1, Vb2 , Vb3). Fig. 2 shows the block diagram of the proposed vision-based motion analysis and obstacle avoidance system. We denote...structure analysis often involve computation- intensive computer vision tasks, such as feature extraction and geometric modeling. Computation-intensive...First, we extract a set of features from each block. 2) Second, we compute the distance between these two sets of features. In conventional motion
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun
2017-07-01
Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.
Gesture recognition for smart home applications using portable radar sensors.
Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip
2014-01-01
In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.
Extraction of edge-based and region-based features for object recognition
NASA Astrophysics Data System (ADS)
Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima
1993-08-01
One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.
Herrera, Pedro Javier; Pajares, Gonzalo; Guijarro, Maria; Ruz, José J.; Cruz, Jesús M.; Montes, Fernando
2009-01-01
This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. PMID:22303134
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina
2016-01-01
The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308
A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors
Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José
2009-01-01
In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160
NASA Astrophysics Data System (ADS)
Cong, Chao; Liu, Dingsheng; Zhao, Lingjun
2008-12-01
This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.
Zhao, Yong; Hong, Wen-Xue
2011-11-01
Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.
Sideris, Costas; Alshurafa, Nabil; Pourhomayoun, Mohammad; Shahmohammadi, Farhad; Samy, Lauren; Sarrafzadeh, Majid
2015-01-01
In this paper, we propose a novel methodology for utilizing disease diagnostic information to predict severity of condition for Congestive Heart Failure (CHF) patients. Our methodology relies on a novel, clustering-based, feature extraction framework using disease diagnostic information. To reduce the dimensionality we identify disease clusters using cooccurence frequencies. We then utilize these clusters as features to predict patient severity of condition. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 patients. We compare our cluster-based feature set with another that incorporates the Charlson comorbidity score as a feature and demonstrate an accuracy improvement of up to 14% in the predictability of the severity of condition.
Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan
2010-01-01
Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.
Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.
Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An
2008-01-01
An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Automated feature extraction and classification from image sources
,
1995-01-01
The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.
Nikfarjam, Azadeh; Sarker, Abeed; O'Connor, Karen; Ginn, Rachel; Gonzalez, Graciela
2015-05-01
Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media. We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words' semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique. ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance. It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at participating nodes. Therefore, the feature-extraction method based on the Haar DWT is presented that employs a maximum-entropy measure to determine significant wavelet coefficients. Features are formed by calculating the energy of coefficients grouped around the competing clusters. A DWT-based feature extraction algorithm used for vehicle classification in WSNs can be enhanced by an added rule for selecting the optimal number of resolution levels to improve the correct classification rate and reduce energy consumption expended in local algorithm computations. Published field trial data for vehicular ground targets, measured with multiple sensor types, are used to evaluate the wavelet-assisted algorithms. Extracted features are used in established target recognition routines, e.g., the Bayesian minimum-error-rate classifier, to compare the effects on the classification performance of the wavelet compression. Simulations of feature sets and recognition routines at different resolution levels in target scenarios indicate the impact on classification rates, while formulas are provided to estimate reduction in resource use due to distributed compression.
NASA Astrophysics Data System (ADS)
Wu, T. Y.; Lin, S. F.
2013-10-01
Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
NASA Astrophysics Data System (ADS)
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2011-12-01
Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi
2016-12-02
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.
Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi
2016-01-01
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works. PMID:27918414
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Constrained dictionary learning and probabilistic hypergraph ranking for person re-identification
NASA Astrophysics Data System (ADS)
He, You; Wu, Song; Pu, Nan; Qian, Li; Xiao, Guoqiang
2018-04-01
Person re-identification is a fundamental and inevitable task in public security. In this paper, we propose a novel framework to improve the performance of this task. First, two different types of descriptors are extracted to represent a pedestrian: (1) appearance-based superpixel features, which are constituted mainly by conventional color features and extracted from the supepixel rather than a whole picture and (2) due to the limitation of discrimination of appearance features, the deep features extracted by feature fusion Network are also used. Second, a view invariant subspace is learned by dictionary learning constrained by the minimum negative sample (termed as DL-cMN) to reduce the noise in appearance-based superpixel feature domain. Then, we use deep features and sparse codes transformed by appearancebased features to establish the hyperedges respectively by k-nearest neighbor, rather than jointing different features simply. Finally, a final ranking is performed by probabilistic hypergraph ranking algorithm. Extensive experiments on three challenging datasets (VIPeR, PRID450S and CUHK01) demonstrate the advantages and effectiveness of our proposed algorithm.
Recognition of fiducial marks applied to robotic systems. Thesis
NASA Technical Reports Server (NTRS)
Georges, Wayne D.
1991-01-01
The objective was to devise a method to determine the position and orientation of the links of a PUMA 560 using fiducial marks. As a result, it is necessary to design fiducial marks and a corresponding feature extraction algorithm. The marks used are composites of three basic shapes, a circle, an equilateral triangle and a square. Once a mark is imaged, it is thresholded and the borders of each shape are extracted. These borders are subsequently used in a feature extraction algorithm. Two feature extraction algorithms are used to determine which one produces the most reliable results. The first algorithm is based on moment invariants and the second is based on the discrete version of the psi-s curve of the boundary. The latter algorithm is clearly superior for this application.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Su, Fulin
2018-01-01
We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.
Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos
NASA Astrophysics Data System (ADS)
Miao, X.; Xie, H.
2015-12-01
High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.
A rapid extraction of landslide disaster information research based on GF-1 image
NASA Astrophysics Data System (ADS)
Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na
2015-08-01
In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.
An improved feature extraction algorithm based on KAZE for multi-spectral image
NASA Astrophysics Data System (ADS)
Yang, Jianping; Li, Jun
2018-02-01
Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-01-01
Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mesbah, Mostefa; Balakrishnan, Malarvili; Colditz, Paul B.; Boashash, Boualem
2012-12-01
This article proposes a new method for newborn seizure detection that uses information extracted from both multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to assess whether additional information extracted from ECG can improve the performance of seizure detectors based solely on EEG. Two different approaches were used to combine this extracted information. The first approach, known as feature fusion, involves combining features extracted from EEG and heart rate variability (HRV) into a single feature vector prior to feeding it to a classifier. The second approach, called classifier or decision fusion, is achieved by combining the independent decisions of the EEG and the HRV-based classifiers. Tested on recordings obtained from eight newborns with identified EEG seizures, the proposed neonatal seizure detection algorithms achieved 95.20% sensitivity and 88.60% specificity for the feature fusion case and 95.20% sensitivity and 94.30% specificity for the classifier fusion case. These results are considerably better than those involving classifiers using EEG only (80.90%, 86.50%) or HRV only (85.70%, 84.60%).
A window-based time series feature extraction method.
Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife
2017-10-01
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue
2018-04-01
The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.
Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning
2018-03-08
Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.
Feature generation using genetic programming with application to fault classification.
Guo, Hong; Jack, Lindsay B; Nandi, Asoke K
2005-02-01
One of the major challenges in pattern recognition problems is the feature extraction process which derives new features from existing features, or directly from raw data in order to reduce the cost of computation during the classification process, while improving classifier efficiency. Most current feature extraction techniques transform the original pattern vector into a new vector with increased discrimination capability but lower dimensionality. This is conducted within a predefined feature space, and thus, has limited searching power. Genetic programming (GP) can generate new features from the original dataset without prior knowledge of the probabilistic distribution. In this paper, a GP-based approach is developed for feature extraction from raw vibration data recorded from a rotating machine with six different conditions. The created features are then used as the inputs to a neural classifier for the identification of six bearing conditions. Experimental results demonstrate the ability of GP to discover autimatically the different bearing conditions using features expressed in the form of nonlinear functions. Furthermore, four sets of results--using GP extracted features with artificial neural networks (ANN) and support vector machines (SVM), as well as traditional features with ANN and SVM--have been obtained. This GP-based approach is used for bearing fault classification for the first time and exhibits superior searching power over other techniques. Additionaly, it significantly reduces the time for computation compared with genetic algorithm (GA), therefore, makes a more practical realization of the solution.
Finger-Vein Verification Based on Multi-Features Fusion
Qin, Huafeng; Qin, Lan; Xue, Lian; He, Xiping; Yu, Chengbo; Liang, Xinyuan
2013-01-01
This paper presents a new scheme to improve the performance of finger-vein identification systems. Firstly, a vein pattern extraction method to extract the finger-vein shape and orientation features is proposed. Secondly, to accommodate the potential local and global variations at the same time, a region-based matching scheme is investigated by employing the Scale Invariant Feature Transform (SIFT) matching method. Finally, the finger-vein shape, orientation and SIFT features are combined to further enhance the performance. The experimental results on databases of 426 and 170 fingers demonstrate the consistent superiority of the proposed approach. PMID:24196433
Hussain, Lal
2018-06-01
Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.
NASA Astrophysics Data System (ADS)
Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang
2017-11-01
In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.
NASA Astrophysics Data System (ADS)
Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.
1988-12-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
A hybrid model based on neural networks for biomedical relation extraction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang
2018-05-01
Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Imaging genetics approach to predict progression of Parkinson's diseases.
Mansu Kim; Seong-Jin Son; Hyunjin Park
2017-07-01
Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228
Hong, Zhiling; Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2017-05-01
Existing approaches to derive decision models from plaintext clinical data frequently depend on medical dictionaries as the sources of potential features. Prior research suggests that decision models developed using non-dictionary based feature sourcing approaches and "off the shelf" tools could predict cancer with performance metrics between 80% and 90%. We sought to compare non-dictionary based models to models built using features derived from medical dictionaries. We evaluated the detection of cancer cases from free text pathology reports using decision models built with combinations of dictionary or non-dictionary based feature sourcing approaches, 4 feature subset sizes, and 5 classification algorithms. Each decision model was evaluated using the following performance metrics: sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using dictionary and non-dictionary feature sourcing approaches produced performance metrics between 70 and 90%. The source of features and feature subset size had no impact on the performance of a decision model. Our study suggests there is little value in leveraging medical dictionaries for extracting features for decision model building. Decision models built using features extracted from the plaintext reports themselves achieve comparable results to those built using medical dictionaries. Overall, this suggests that existing "off the shelf" approaches can be leveraged to perform accurate cancer detection using less complex Named Entity Recognition (NER) based feature extraction, automated feature selection and modeling approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Boland, Mary Regina; Miotto, Riccardo; Gao, Junfeng; Weng, Chunhua
2013-01-01
Summary Background When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. Objectives This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. Methods We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. Results We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. Conclusions It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency. PMID:23666475
Boland, M R; Miotto, R; Gao, J; Weng, C
2013-01-01
When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency.
[Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].
Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao
2014-05-01
Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546
Feature-level sentiment analysis by using comparative domain corpora
NASA Astrophysics Data System (ADS)
Quan, Changqin; Ren, Fuji
2016-06-01
Feature-level sentiment analysis (SA) is able to provide more fine-grained SA on certain opinion targets and has a wider range of applications on E-business. This study proposes an approach based on comparative domain corpora for feature-level SA. The proposed approach makes use of word associations for domain-specific feature extraction. First, we assign a similarity score for each candidate feature to denote its similarity extent to a domain. Then we identify domain features based on their similarity scores on different comparative domain corpora. After that, dependency grammar and a general sentiment lexicon are applied to extract and expand feature-oriented opinion words. Lastly, the semantic orientation of a domain-specific feature is determined based on the feature-oriented opinion lexicons. In evaluation, we compare the proposed method with several state-of-the-art methods (including unsupervised and semi-supervised) using a standard product review test collection. The experimental results demonstrate the effectiveness of using comparative domain corpora.
Competitive region orientation code for palmprint verification and identification
NASA Astrophysics Data System (ADS)
Tang, Wenliang
2015-11-01
Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.
A face and palmprint recognition approach based on discriminant DCT feature extraction.
Jing, Xiao-Yuan; Zhang, David
2004-12-01
In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.
Near infrared and visible face recognition based on decision fusion of LBP and DCT features
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-03-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.
Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Aaron T.; Nash, Kenneth L.
The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less
Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME
Johnson, Aaron T.; Nash, Kenneth L.
2015-08-20
The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less
Palmprint verification using Lagrangian decomposition and invariant interest points
NASA Astrophysics Data System (ADS)
Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.
A flower image retrieval method based on ROI feature.
Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan
2004-07-01
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
A novel approach for fire recognition using hybrid features and manifold learning-based classifier
NASA Astrophysics Data System (ADS)
Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng
2018-03-01
Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.
Vaccine adverse event text mining system for extracting features from vaccine safety reports.
Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert
2012-01-01
To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.
Conversation Thread Extraction and Topic Detection in Text-Based Chat
2008-09-01
conversation extraction task. Multiple conversations in a session are interleaved. The goal in extraction is to select only those posts that belong...others. Our first-phase experiments quite clearly show the value of using time-distance as a feature in conversation thread extraction . In this set of... EXTRACTION AND TOPIC DETECTION IN TEXT-BASED CHAT by Paige Holland Adams September 2008 Thesis Advisor
NASA Astrophysics Data System (ADS)
Argyropoulou, Evangelia
2015-04-01
The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.
Rapid Training of Information Extraction with Local and Global Data Views
2012-05-01
relation type extension system based on active learning a relation type extension system based on semi-supervised learning, and a crossdomain...bootstrapping system for domain adaptive named entity extraction. The active learning procedure adopts features extracted at the sentence level as the local
Biomedical named entity extraction: some issues of corpus compatibilities.
Ekbal, Asif; Saha, Sriparna; Sikdar, Utpal Kumar
2013-01-01
Named Entity (NE) extraction is one of the most fundamental and important tasks in biomedical information extraction. It involves identification of certain entities from text and their classification into some predefined categories. In the biomedical community, there is yet no general consensus regarding named entity (NE) annotation; thus, it is very difficult to compare the existing systems due to corpus incompatibilities. Due to this problem we can not also exploit the advantages of using different corpora together. In our present work we address the issues of corpus compatibilities, and use a single objective optimization (SOO) based classifier ensemble technique that uses the search capability of genetic algorithm (GA) for NE extraction in biomedicine. We hypothesize that the reliability of predictions of each classifier differs among the various output classes. We use Conditional Random Field (CRF) and Support Vector Machine (SVM) frameworks to build a number of models depending upon the various representations of the set of features and/or feature templates. It is to be noted that we tried to extract the features without using any deep domain knowledge and/or resources. In order to assess the challenges of corpus compatibilities, we experiment with the different benchmark datasets and their various combinations. Comparison results with the existing approaches prove the efficacy of the used technique. GA based ensemble achieves around 2% performance improvements over the individual classifiers. Degradation in performance on the integrated corpus clearly shows the difficulties of the task. In summary, our used ensemble based approach attains the state-of-the-art performance levels for entity extraction in three different kinds of biomedical datasets. The possible reasons behind the better performance in our used approach are the (i). use of variety and rich features as described in Subsection "Features for named entity extraction"; (ii) use of GA based classifier ensemble technique to combine the outputs of multiple classifiers.
Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions.
Roy, Sharmili; Chi, Yanling; Liu, Jimin; Venkatesh, Sudhakar K; Brown, Michael S
2014-11-01
Content-based image retrieval systems for 3-D medical datasets still largely rely on 2-D image-based features extracted from a few representative slices of the image stack. Most 2 -D features that are currently used in the literature not only model a 3-D tumor incompletely but are also highly expensive in terms of computation time, especially for high-resolution datasets. Radiologist-specified semantic labels are sometimes used along with image-based 2-D features to improve the retrieval performance. Since radiological labels show large interuser variability, are often unstructured, and require user interaction, their use as lesion characterizing features is highly subjective, tedious, and slow. In this paper, we propose a 3-D image-based spatiotemporal feature extraction framework for fast content-based retrieval of focal liver lesions. All the features are computer generated and are extracted from four-phase abdominal CT images. Retrieval performance and query processing times for the proposed framework is evaluated on a database of 44 hepatic lesions comprising of five pathological types. Bull's eye percentage score above 85% is achieved for three out of the five lesion pathologies and for 98% of query lesions, at least one same type of lesion is ranked among the top two retrieved results. Experiments show that the proposed system's query processing is more than 20 times faster than other already published systems that use 2-D features. With fast computation time and high retrieval accuracy, the proposed system has the potential to be used as an assistant to radiologists for routine hepatic tumor diagnosis.
Bearing performance degradation assessment based on time-frequency code features and SOM network
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei
2017-04-01
Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI
NASA Astrophysics Data System (ADS)
He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun
2009-10-01
The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.
Homomorphic encryption-based secure SIFT for privacy-preserving feature extraction
NASA Astrophysics Data System (ADS)
Hsu, Chao-Yung; Lu, Chun-Shien; Pei, Soo-Chang
2011-02-01
Privacy has received much attention but is still largely ignored in the multimedia community. Consider a cloud computing scenario, where the server is resource-abundant and is capable of finishing the designated tasks, it is envisioned that secure media retrieval and search with privacy-preserving will be seriously treated. In view of the fact that scale-invariant feature transform (SIFT) has been widely adopted in various fields, this paper is the first to address the problem of secure SIFT feature extraction and representation in the encrypted domain. Since all the operations in SIFT must be moved to the encrypted domain, we propose a homomorphic encryption-based secure SIFT method for privacy-preserving feature extraction and representation based on Paillier cryptosystem. In particular, homomorphic comparison is a must for SIFT feature detection but is still a challenging issue for homomorphic encryption methods. To conquer this problem, we investigate a quantization-like secure comparison strategy in this paper. Experimental results demonstrate that the proposed homomorphic encryption-based SIFT performs comparably to original SIFT on image benchmarks, while preserving privacy additionally. We believe that this work is an important step toward privacy-preserving multimedia retrieval in an environment, where privacy is a major concern.
Automatic building extraction from LiDAR data fusion of point and grid-based features
NASA Astrophysics Data System (ADS)
Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang
2017-08-01
This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.
NASA Astrophysics Data System (ADS)
Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.
2017-03-01
Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
Sentiment Analysis Using Common-Sense and Context Information
Mittal, Namita; Bansal, Pooja; Garg, Sonal
2015-01-01
Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods. PMID:25866505
Sentiment analysis using common-sense and context information.
Agarwal, Basant; Mittal, Namita; Bansal, Pooja; Garg, Sonal
2015-01-01
Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.
1988-04-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
Finger-vein and fingerprint recognition based on a feature-level fusion method
NASA Astrophysics Data System (ADS)
Yang, Jinfeng; Hong, Bofeng
2013-07-01
Multimodal biometrics based on the finger identification is a hot topic in recent years. In this paper, a novel fingerprint-vein based biometric method is proposed to improve the reliability and accuracy of the finger recognition system. First, the second order steerable filters are used here to enhance and extract the minutiae features of the fingerprint (FP) and finger-vein (FV). Second, the texture features of fingerprint and finger-vein are extracted by a bank of Gabor filter. Third, a new triangle-region fusion method is proposed to integrate all the fingerprint and finger-vein features in feature-level. Thus, the fusion features contain both the finger texture-information and the minutiae triangular geometry structure. Finally, experimental results performed on the self-constructed finger-vein and fingerprint databases are shown that the proposed method is reliable and precise in personal identification.
Feature Extraction and Selection Strategies for Automated Target Recognition
NASA Technical Reports Server (NTRS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-01-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Feature extraction and selection strategies for automated target recognition
NASA Astrophysics Data System (ADS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-04-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
NASA Astrophysics Data System (ADS)
Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien
2017-09-01
Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection
Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe
2012-01-01
This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461
Deep Convolutional Neural Networks for Classifying Body Constitution Based on Face Image.
Huan, Er-Yang; Wen, Gui-Hua; Zhang, Shi-Jun; Li, Dan-Yang; Hu, Yang; Chang, Tian-Yuan; Wang, Qing; Huang, Bing-Lin
2017-01-01
Body constitution classification is the basis and core content of traditional Chinese medicine constitution research. It is to extract the relevant laws from the complex constitution phenomenon and finally build the constitution classification system. Traditional identification methods have the disadvantages of inefficiency and low accuracy, for instance, questionnaires. This paper proposed a body constitution recognition algorithm based on deep convolutional neural network, which can classify individual constitution types according to face images. The proposed model first uses the convolutional neural network to extract the features of face image and then combines the extracted features with the color features. Finally, the fusion features are input to the Softmax classifier to get the classification result. Different comparison experiments show that the algorithm proposed in this paper can achieve the accuracy of 65.29% about the constitution classification. And its performance was accepted by Chinese medicine practitioners.
NASA Astrophysics Data System (ADS)
Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.
2016-03-01
A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-01
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. PMID:28124985
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-23
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.
Houshyarifar, Vahid; Chehel Amirani, Mehdi
2016-08-12
In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong
2015-08-01
Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.
Ensemble methods with simple features for document zone classification
NASA Astrophysics Data System (ADS)
Obafemi-Ajayi, Tayo; Agam, Gady; Xie, Bingqing
2012-01-01
Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%.
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs
Gómez-Adorno, Helena; Sidorov, Grigori; Pinto, David; Vilariño, Darnes; Gelbukh, Alexander
2016-01-01
We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. PMID:27589740
A biometric identification system based on eigenpalm and eigenfinger features.
Ribaric, Slobodan; Fratric, Ivan
2005-11-01
This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).
NASA Astrophysics Data System (ADS)
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
Singha, Suman; Ressel, Rudolf
2016-11-15
Use of polarimetric SAR data for offshore pollution monitoring is relatively new and shows great potential for operational offshore platform monitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameters were extracted from different types of oil and 'look-alike' spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feature reconstruction of LFP signals based on PLSR in the neural information decoding study.
Yonghui Dong; Zhigang Shang; Mengmeng Li; Xinyu Liu; Hong Wan
2017-07-01
To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed. Finally, the K-Nearest Neighbor (KNN) method is used to classify the reconstructed coding features to verify the decoding performance. The results show that the proposed method can achieve the highest accuracy compared to the other three methods and the decoding effect of the proposed method is robust.
NASA Astrophysics Data System (ADS)
Shah, Syed Muhammad Saqlain; Batool, Safeera; Khan, Imran; Ashraf, Muhammad Usman; Abbas, Syed Hussnain; Hussain, Syed Adnan
2017-09-01
Automatic diagnosis of human diseases are mostly achieved through decision support systems. The performance of these systems is mainly dependent on the selection of the most relevant features. This becomes harder when the dataset contains missing values for the different features. Probabilistic Principal Component Analysis (PPCA) has reputation to deal with the problem of missing values of attributes. This research presents a methodology which uses the results of medical tests as input, extracts a reduced dimensional feature subset and provides diagnosis of heart disease. The proposed methodology extracts high impact features in new projection by using Probabilistic Principal Component Analysis (PPCA). PPCA extracts projection vectors which contribute in highest covariance and these projection vectors are used to reduce feature dimension. The selection of projection vectors is done through Parallel Analysis (PA). The feature subset with the reduced dimension is provided to radial basis function (RBF) kernel based Support Vector Machines (SVM). The RBF based SVM serves the purpose of classification into two categories i.e., Heart Patient (HP) and Normal Subject (NS). The proposed methodology is evaluated through accuracy, specificity and sensitivity over the three datasets of UCI i.e., Cleveland, Switzerland and Hungarian. The statistical results achieved through the proposed technique are presented in comparison to the existing research showing its impact. The proposed technique achieved an accuracy of 82.18%, 85.82% and 91.30% for Cleveland, Hungarian and Switzerland dataset respectively.
Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364
Opinion mining feature-level using Naive Bayes and feature extraction based analysis dependencies
NASA Astrophysics Data System (ADS)
Sanda, Regi; Baizal, Z. K. Abdurahman; Nhita, Fhira
2015-12-01
Development of internet and technology, has major impact and providing new business called e-commerce. Many e-commerce sites that provide convenience in transaction, and consumers can also provide reviews or opinions on products that purchased. These opinions can be used by consumers and producers. Consumers to know the advantages and disadvantages of particular feature of the product. Procuders can analyse own strengths and weaknesses as well as it's competitors products. Many opinions need a method that the reader can know the point of whole opinion. The idea emerged from review summarization that summarizes the overall opinion based on sentiment and features contain. In this study, the domain that become the main focus is about the digital camera. This research consisted of four steps 1) giving the knowledge to the system to recognize the semantic orientation of an opinion 2) indentify the features of product 3) indentify whether the opinion gives a positive or negative 4) summarizing the result. In this research discussed the methods such as Naï;ve Bayes for sentiment classification, and feature extraction algorithm based on Dependencies Analysis, which is one of the tools in Natural Language Processing (NLP) and knowledge based dictionary which is useful for handling implicit features. The end result of research is a summary that contains a bunch of reviews from consumers on the features and sentiment. With proposed method, accuration for sentiment classification giving 81.2 % for positive test data, 80.2 % for negative test data, and accuration for feature extraction reach 90.3 %.
ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm
NASA Astrophysics Data System (ADS)
Kora, Padmavathi; Sri Rama Krishna, K.
2016-12-01
Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
Multiple feature extraction by using simultaneous wavelet transforms
NASA Astrophysics Data System (ADS)
Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio
2003-07-01
We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.
NASA Astrophysics Data System (ADS)
Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.
2016-06-01
Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.
NASA Astrophysics Data System (ADS)
Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.
2018-05-01
In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.
Monocular precrash vehicle detection: features and classifiers.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-07-01
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.
Hyperspectral image classification based on local binary patterns and PCANet
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang
2018-04-01
Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.
Modified kernel-based nonlinear feature extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Perkins, S. J.; Theiler, J. P.
2002-01-01
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determinedmore » by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.« less
Radiomics: Extracting more information from medical images using advanced feature analysis
Lambin, Philippe; Rios-Velazquez, Emmanuel; Leijenaar, Ralph; Carvalho, Sara; van Stiphout, Ruud G.P.M.; Granton, Patrick; Zegers, Catharina M.L.; Gillies, Robert; Boellard, Ronald; Dekker, André; Aerts, Hugo J.W.L.
2015-01-01
Solid cancers are spatially and temporally heterogeneous. This limits the use of invasive biopsy based molecular assays but gives huge potential for medical imaging, which has the ability to capture intra-tumoural heterogeneity in a non-invasive way. During the past decades, medical imaging innovations with new hardware, new imaging agents and standardised protocols, allows the field to move towards quantitative imaging. Therefore, also the development of automated and reproducible analysis methodologies to extract more information from image-based features is a requirement. Radiomics – the high-throughput extraction of large amounts of image features from radiographic images – addresses this problem and is one of the approaches that hold great promises but need further validation in multi-centric settings and in the laboratory. PMID:22257792
NASA Astrophysics Data System (ADS)
Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin
2017-01-01
We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.
Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.
Ayinde, Babajide O; Zurada, Jacek M
2017-09-01
This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combined rule extraction and feature elimination in supervised classification.
Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E
2012-09-01
There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.
Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A
2018-02-01
Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.
Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang
2018-05-16
The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.
NASA Astrophysics Data System (ADS)
Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.
2018-04-01
A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.
n-SIFT: n-dimensional scale invariant feature transform.
Cheung, Warren; Hamarneh, Ghassan
2009-09-01
We propose the n-dimensional scale invariant feature transform (n-SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method's performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invariant features. We apply the features to images of arbitrary dimensionality through the use of hyperspherical coordinates for gradients and multidimensional histograms to create the feature vectors. We analyze the performance of a fully automated multimodal medical image matching technique based on these features, and successfully apply the technique to determine accurate feature point correspondence between pairs of 3-D MRI images and dynamic 3D + time CT data.
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
NASA Astrophysics Data System (ADS)
Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin
2016-03-01
Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.
Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan
2017-12-20
Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei
2015-03-01
A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.
Automation of lidar-based hydrologic feature extraction workflows using GIS
NASA Astrophysics Data System (ADS)
Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.
2016-10-01
With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this research is investigating which texture features extracted from FDG-PET images by gray-level co-occurrence matrix(GLCM) have a higher prognostic value than the other texture features. Methods: 21 non-small cell lung cancer(NSCLC) patients were approved in the study. Patients underwent 18F-FDG PET/CT scans with both pre-treatment and post-treatment. Firstly, the tumors were extracted by our house developed software. Secondly, the clinical features including the maximum SUV and tumor volume were extracted by MIM vista software, and texture features including angular second moment, contrast, inverse different moment, entropy and correlation were extracted using MATLAB.The differences can be calculatedmore » by using post-treatment features to subtract pre-treatment features. Finally, the SPSS software was used to get the Pearson correlation coefficients and Spearman rank correlation coefficients between the change ratios of texture features and change ratios of clinical features. Results: The Pearson and Spearman rank correlation coefficient between contrast and SUV maximum is 0.785 and 0.709. The P and S value between inverse difference moment and tumor volume is 0.953 and 0.942. Conclusion: This preliminary study showed that the relationships between different texture features and the same clinical feature are different. Finding the prognostic value of contrast and inverse difference moment were higher than the other three textures extracted by GLCM.« less
Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo
2011-04-01
The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Agarwalla, Swapna; Sarma, Kandarpa Kumar
2016-06-01
Automatic Speaker Recognition (ASR) and related issues are continuously evolving as inseparable elements of Human Computer Interaction (HCI). With assimilation of emerging concepts like big data and Internet of Things (IoT) as extended elements of HCI, ASR techniques are found to be passing through a paradigm shift. Oflate, learning based techniques have started to receive greater attention from research communities related to ASR owing to the fact that former possess natural ability to mimic biological behavior and that way aids ASR modeling and processing. The current learning based ASR techniques are found to be evolving further with incorporation of big data, IoT like concepts. Here, in this paper, we report certain approaches based on machine learning (ML) used for extraction of relevant samples from big data space and apply them for ASR using certain soft computing techniques for Assamese speech with dialectal variations. A class of ML techniques comprising of the basic Artificial Neural Network (ANN) in feedforward (FF) and Deep Neural Network (DNN) forms using raw speech, extracted features and frequency domain forms are considered. The Multi Layer Perceptron (MLP) is configured with inputs in several forms to learn class information obtained using clustering and manual labeling. DNNs are also used to extract specific sentence types. Initially, from a large storage, relevant samples are selected and assimilated. Next, a few conventional methods are used for feature extraction of a few selected types. The features comprise of both spectral and prosodic types. These are applied to Recurrent Neural Network (RNN) and Fully Focused Time Delay Neural Network (FFTDNN) structures to evaluate their performance in recognizing mood, dialect, speaker and gender variations in dialectal Assamese speech. The system is tested under several background noise conditions by considering the recognition rates (obtained using confusion matrices and manually) and computation time. It is found that the proposed ML based sentence extraction techniques and the composite feature set used with RNN as classifier outperform all other approaches. By using ANN in FF form as feature extractor, the performance of the system is evaluated and a comparison is made. Experimental results show that the application of big data samples has enhanced the learning of the ASR system. Further, the ANN based sample and feature extraction techniques are found to be efficient enough to enable application of ML techniques in big data aspects as part of ASR systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula
2018-01-01
Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.
Chriskos, Panteleimon; Frantzidis, Christos A.; Gkivogkli, Polyxeni T.; Bamidis, Panagiotis D.; Kourtidou-Papadeli, Chrysoula
2018-01-01
Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the “ENVIHAB” facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging. PMID:29628883
NASA Astrophysics Data System (ADS)
Pradana, Dimas Adhi; Pondawinata, Marizki; Widyarini, Sitarina
2017-03-01
This study aimed to determine the potential activity of standardized ethanolic extract of red spinach as prevention against atherosclerosis based on the level of Low-Density Lipoprotein (LDL) and histopathological feature of aorta in male Sprague-Dawley rats induced by high-fat, high-cholesterol diet. A total of 42 animals was divided into 6 groups: normal control group, negative control group, positive control group (0.9 mg/kgBW of simvastatin), first intervention group (200 mg/kgBW of red spinach extract), second intervention group (400 mg/kgBW of red spinach extract), and third intervention group (800 mg/kgBW of red spinach extract). From the first day up to the 66th day, all the groups, except the normal control group and negative control group, were administered simvastatin (positive control) and extract of amaranth (intervention). Then, from the eighth day until Day 66, induction of high-fat and high-cholesterol diet was given in two hours after the simvastatin and red spinach extract administration. The determination of LDL parameters was conducted on Day 0, Day 35, and Day 67. On the 67th day, the animals were dissected to examine the aortic histopathological parameters. The results showed that the ethanolic extract of red spinach with a dose of 200 mg/kgBW, 400 mg/kgBW, and 800 mg/kgBW statistically demonstrated a significant difference (p<0.05). The histopathological feature of the aorta in the treatment indicated the absence of fat in the blood vessel walls or even of foam cells supporting thereby the result of LDL level. This means there was a significant effect of ethanolic extract of red spinach on the prevention against atherosclerosis based on the level of Low-Density Lipoprotein and the histopathological feature of aorta in male Sprague-Dawley rats.
A Local DCT-II Feature Extraction Approach for Personal Identification Based on Palmprint
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Oyama, Tadahiro; Karungaru, Stephen; Tsuge, Satoru; Fukumi, Minoru
Biometric applications based on the palmprint have recently attracted increased attention from various researchers. In this paper, a method is presented that differs from the commonly used global statistical and structural techniques by extracting and using local features instead. The middle palm area is extracted after preprocessing for rotation, position and illumination normalization. The segmented region of interest is then divided into blocks of either 8×8 or 16×16 pixels in size. The type-II Discrete Cosine Transform (DCT) is applied to transform the blocks into DCT space. A subset of coefficients that encode the low to medium frequency components is selected using the JPEG-style zigzag scanning method. Features from each block are subsequently concatenated into a compact feature vector and used in palmprint verification experiments with palmprints from the PolyU Palmprint Database. Results indicate that this approach achieves better results than many conventional transform-based methods, with an excellent recognition accuracy above 99% and an Equal Error Rate (EER) of less than 1.2% in palmprint verification.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
NASA Astrophysics Data System (ADS)
Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun
2012-10-01
Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
ANN based Performance Evaluation of BDI for Condition Monitoring of Induction Motor Bearings
NASA Astrophysics Data System (ADS)
Patel, Raj Kumar; Giri, V. K.
2017-06-01
One of the critical parts in rotating machines is bearings and most of the failure arises from the defective bearings. Bearing failure leads to failure of a machine and the unpredicted productivity loss in the performance. Therefore, bearing fault detection and prognosis is an integral part of the preventive maintenance procedures. In this paper vibration signal for four conditions of a deep groove ball bearing; normal (N), inner race defect (IRD), ball defect (BD) and outer race defect (ORD) were acquired from a customized bearing test rig, under four different conditions and three different fault sizes. Two approaches have been opted for statistical feature extraction from the vibration signal. In the first approach, raw signal is used for statistical feature extraction and in the second approach statistical features extracted are based on bearing damage index (BDI). The proposed BDI technique uses wavelet packet node energy coefficients analysis method. Both the features are used as inputs to an ANN classifier to evaluate its performance. A comparison of ANN performance is made based on raw vibration data and data chosen by using BDI. The ANN performance has been found to be fairly higher when BDI based signals were used as inputs to the classifier.
Bearing diagnostics: A method based on differential geometry
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng
2016-12-01
The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason; ...
2018-04-05
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
The GPU implementation of micro - Doppler period estimation
NASA Astrophysics Data System (ADS)
Yang, Liyuan; Wang, Junling; Bi, Ran
2018-03-01
Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.
Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen
2016-06-01
High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
NASA Astrophysics Data System (ADS)
Pereira, Carina; Dighe, Manjiri; Alessio, Adam M.
2018-02-01
Various Computer Aided Diagnosis (CAD) systems have been developed that characterize thyroid nodules using the features extracted from the B-mode ultrasound images and Shear Wave Elastography images (SWE). These features, however, are not perfect predictors of malignancy. In other domains, deep learning techniques such as Convolutional Neural Networks (CNNs) have outperformed conventional feature extraction based machine learning approaches. In general, fully trained CNNs require substantial volumes of data, motivating several efforts to use transfer learning with pre-trained CNNs. In this context, we sought to compare the performance of conventional feature extraction, fully trained CNNs, and transfer learning based, pre-trained CNNs for the detection of thyroid malignancy from ultrasound images. We compared these approaches applied to a data set of 964 B-mode and SWE images from 165 patients. The data were divided into 80% training/validation and 20% testing data. The highest accuracies achieved on the testing data for the conventional feature extraction, fully trained CNN, and pre-trained CNN were 0.80, 0.75, and 0.83 respectively. In this application, classification using a pre-trained network yielded the best performance, potentially due to the relatively limited sample size and sub-optimal architecture for the fully trained CNN.
Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong
2017-11-01
With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.
Hybrid Feature Extraction-based Approach for Facial Parts Representation and Recognition
NASA Astrophysics Data System (ADS)
Rouabhia, C.; Tebbikh, H.
2008-06-01
Face recognition is a specialized image processing which has attracted a considerable attention in computer vision. In this article, we develop a new facial recognition system from video sequences images dedicated to person identification whose face is partly occulted. This system is based on a hybrid image feature extraction technique called ACPDL2D (Rouabhia et al. 2007), it combines two-dimensional principal component analysis and two-dimensional linear discriminant analysis with neural network. We performed the feature extraction task on the eyes and the nose images separately then a Multi-Layers Perceptron classifier is used. Compared to the whole face, the results of simulation are in favor of the facial parts in terms of memory capacity and recognition (99.41% for the eyes part, 98.16% for the nose part and 97.25 % for the whole face).
Hidden discriminative features extraction for supervised high-order time series modeling.
Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee
2016-11-01
In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative subspaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction (TDFE). TDFE relies on the employment of category information for the maximization of the between-class scatter and the minimization of the within-class scatter to extract optimal hidden discriminative feature subspaces that are simultaneously spanned by every modality for supervised tensor modeling. In this context, the proposed tensor-decomposition method provides the following benefits: i) reduces dimensionality while robustly mining the underlying discriminative features, ii) results in effective interpretable features that lead to an improved classification and visualization, and iii) reduces the processing time during the training stage and the filtering of the projection by solving the generalized eigenvalue issue at each alternation step. Two real third-order tensor-structures of time series datasets (an epilepsy electroencephalogram (EEG) that is modeled as channel×frequency bin×time frame and a microarray data that is modeled as gene×sample×time) were used for the evaluation of the TDFE. The experiment results corroborate the advantages of the proposed method with averages of 98.26% and 89.63% for the classification accuracies of the epilepsy dataset and the microarray dataset, respectively. These performance averages represent an improvement on those of the matrix-based algorithms and recent tensor-based, discriminant-decomposition approaches; this is especially the case considering the small number of samples that are used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
2012-01-01
Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this challenge, we first model a biomedical literature repository as a comprehensive network of biomedical concepts and formulate hypotheses generation as a process of link discovery on the concept network. We extract the relevant information from the biomedical literature corpus and generate a concept network and concept-author map on a cluster using Map-Reduce frame-work. We extract a set of heterogeneous features such as random walk based features, neighborhood features and common author features. The potential number of links to consider for the possibility of link discovery is large in our concept network and to address the scalability problem, the features from a concept network are extracted using a cluster with Map-Reduce framework. We further model link discovery as a classification problem carried out on a training data set automatically extracted from two network snapshots taken in two consecutive time duration. A set of heterogeneous features, which cover both topological and semantic features derived from the concept network, have been studied with respect to their impacts on the accuracy of the proposed supervised link discovery process. A case study of hypotheses generation based on the proposed method has been presented in the paper. PMID:22759614
HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.
Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar
2017-01-01
DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.
NASA Astrophysics Data System (ADS)
Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang
2017-07-01
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.
Contact-free palm-vein recognition based on local invariant features.
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
Contact-Free Palm-Vein Recognition Based on Local Invariant Features
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176
Paavilainen, P; Simola, J; Jaramillo, M; Näätänen, R; Winkler, I
2001-03-01
Brain mechanisms extracting invariant information from varying auditory inputs were studied using the mismatch-negativity (MMN) brain response. We wished to determine whether the preattentive sound-analysis mechanisms, reflected by MMN, are capable of extracting invariant relationships based on abstract conjunctions between two sound features. The standard stimuli varied over a large range in frequency and intensity dimensions following the rule that the higher the frequency, the louder the intensity. The occasional deviant stimuli violated this frequency-intensity relationship and elicited an MMN. The results demonstrate that preattentive processing of auditory stimuli extends to unexpectedly complex relationships between the stimulus features.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection
NASA Astrophysics Data System (ADS)
Huang, Weiqing; Hou, Erhang; Zheng, Liang; Feng, Weimiao
2018-05-01
In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes' effectiveness in Android malware detection.
Fall Detection Using Smartphone Audio Features.
Cheffena, Michael
2016-07-01
An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.
Emotion detection model of Filipino music
NASA Astrophysics Data System (ADS)
Noblejas, Kathleen Alexis; Isidro, Daryl Arvin; Samonte, Mary Jane C.
2017-02-01
This research explored the creation of a model to detect emotion from Filipino songs. The emotion model used was based from Paul Ekman's six basic emotions. The songs were classified into the following genres: kundiman, novelty, pop, and rock. The songs were annotated by a group of music experts based on the emotion the song induces to the listener. Musical features of the songs were extracted using jAudio while the lyric features were extracted by Bag-of- Words feature representation. The audio and lyric features of the Filipino songs were extracted for classification by the chosen three classifiers, Naïve Bayes, Support Vector Machines, and k-Nearest Neighbors. The goal of the research was to know which classifier would work best for Filipino music. Evaluation was done by 10-fold cross validation and accuracy, precision, recall, and F-measure results were compared. Models were also tested with unknown test data to further determine the models' accuracy through the prediction results.
Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors
Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung
2017-01-01
Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods. PMID:28587269
Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.
Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung
2017-06-06
Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.
ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.
Kora, Padmavathi
2017-12-01
Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Intelligent services for discovery of complex geospatial features from remote sensing imagery
NASA Astrophysics Data System (ADS)
Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo
2013-09-01
Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.
Choi, Insub; Kim, JunHee; Kim, Donghyun
2016-12-08
Existing vision-based displacement sensors (VDSs) extract displacement data through changes in the movement of a target that is identified within the image using natural or artificial structure markers. A target-less vision-based displacement sensor (hereafter called "TVDS") is proposed. It can extract displacement data without targets, which then serve as feature points in the image of the structure. The TVDS can extract and track the feature points without the target in the image through image convex hull optimization, which is done to adjust the threshold values and to optimize them so that they can have the same convex hull in every image frame and so that the center of the convex hull is the feature point. In addition, the pixel coordinates of the feature point can be converted to physical coordinates through a scaling factor map calculated based on the distance, angle, and focal length between the camera and target. The accuracy of the proposed scaling factor map was verified through an experiment in which the diameter of a circular marker was estimated. A white-noise excitation test was conducted, and the reliability of the displacement data obtained from the TVDS was analyzed by comparing the displacement data of the structure measured with a laser displacement sensor (LDS). The dynamic characteristics of the structure, such as the mode shape and natural frequency, were extracted using the obtained displacement data, and were compared with the numerical analysis results. TVDS yielded highly reliable displacement data and highly accurate dynamic characteristics, such as the natural frequency and mode shape of the structure. As the proposed TVDS can easily extract the displacement data even without artificial or natural markers, it has the advantage of extracting displacement data from any portion of the structure in the image.
Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo
2017-12-01
Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent performance improvement, indicating robustness of our approach. Furthermore, bi-clustering results of the extracted features are compatible with fold hierarchy of proteins, implying that these features are fold-specific. Together, these results suggest that the features extracted from predicted contacts are orthogonal to alignment-related features, and the combination of them could greatly facilitate fold recognition at superfamily/fold levels and template-based prediction of protein structures. Source code of DeepFR is freely available through https://github.com/zhujianwei31415/deepfr, and a web server is available through http://protein.ict.ac.cn/deepfr. zheng@itp.ac.cn or dbu@ict.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan
2016-03-01
Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.
Fang, Chunying; Li, Haifeng; Ma, Lin; Zhang, Mancai
2017-01-01
Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A novel method of generating feature set based on S -transform and chaotic analysis is proposed. There are BAFS (430, basic acoustics feature), local spectral characteristics MSCC (84, Mel S -transform cepstrum coefficients), and chaotic features (12). Finally, radar chart and F -score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus. The experimental results denote that new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.
NASA Astrophysics Data System (ADS)
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
Kernel-based discriminant feature extraction using a representative dataset
NASA Astrophysics Data System (ADS)
Li, Honglin; Sancho Gomez, Jose-Luis; Ahalt, Stanley C.
2002-07-01
Discriminant Feature Extraction (DFE) is widely recognized as an important pre-processing step in classification applications. Most DFE algorithms are linear and thus can only explore the linear discriminant information among the different classes. Recently, there has been several promising attempts to develop nonlinear DFE algorithms, among which is Kernel-based Feature Extraction (KFE). The efficacy of KFE has been experimentally verified by both synthetic data and real problems. However, KFE has some known limitations. First, KFE does not work well for strongly overlapped data. Second, KFE employs all of the training set samples during the feature extraction phase, which can result in significant computation when applied to very large datasets. Finally, KFE can result in overfitting. In this paper, we propose a substantial improvement to KFE that overcomes the above limitations by using a representative dataset, which consists of critical points that are generated from data-editing techniques and centroid points that are determined by using the Frequency Sensitive Competitive Learning (FSCL) algorithm. Experiments show that this new KFE algorithm performs well on significantly overlapped datasets, and it also reduces computational complexity. Further, by controlling the number of centroids, the overfitting problem can be effectively alleviated.
The feature extraction of "cat-eye" targets based on bi-spectrum
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Fan, Guihua; Sun, Huayan
2016-10-01
In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.
Improving EMG based classification of basic hand movements using EMD.
Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios
2013-01-01
This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.
Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui
2016-06-01
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
Research on feature extraction techniques of Hainan Li brocade pattern
NASA Astrophysics Data System (ADS)
Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua
2016-03-01
Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.
Technical design and system implementation of region-line primitive association framework
NASA Astrophysics Data System (ADS)
Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian
2017-08-01
Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Wavelet images and Chou's pseudo amino acid composition for protein classification.
Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra
2012-08-01
The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .
Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne
2012-01-01
We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil
2018-01-25
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
Thermography based diagnosis of ruptured anterior cruciate ligament (ACL) in canines
NASA Astrophysics Data System (ADS)
Lama, Norsang; Umbaugh, Scott E.; Mishra, Deependra; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
Anterior cruciate ligament (ACL) rupture in canines is a common orthopedic injury in veterinary medicine. Veterinarians use both imaging and non-imaging methods to diagnose the disease. Common imaging methods such as radiography, computed tomography (CT scan) and magnetic resonance imaging (MRI) have some disadvantages: expensive setup, high dose of radiation, and time-consuming. In this paper, we present an alternative diagnostic method based on feature extraction and pattern classification (FEPC) to diagnose abnormal patterns in ACL thermograms. The proposed method was experimented with a total of 30 thermograms for each camera view (anterior, lateral and posterior) including 14 disease and 16 non-disease cases provided from Long Island Veterinary Specialists. The normal and abnormal patterns in thermograms are analyzed in two steps: feature extraction and pattern classification. Texture features based on gray level co-occurrence matrices (GLCM), histogram features and spectral features are extracted from the color normalized thermograms and the computed feature vectors are applied to Nearest Neighbor (NN) classifier, K-Nearest Neighbor (KNN) classifier and Support Vector Machine (SVM) classifier with leave-one-out validation method. The algorithm gives the best classification success rate of 86.67% with a sensitivity of 85.71% and a specificity of 87.5% in ACL rupture detection using NN classifier for the lateral view and Norm-RGB-Lum color normalization method. Our results show that the proposed method has the potential to detect ACL rupture in canines.
Automatic feature design for optical character recognition using an evolutionary search procedure.
Stentiford, F W
1985-03-01
An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael
2018-02-01
Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.
The extraction and use of facial features in low bit-rate visual communication.
Pearson, D
1992-01-29
A review is given of experimental investigations by the author and his collaborators into methods of extracting binary features from images of the face and hands. The aim of the research has been to enable deaf people to communicate by sign language over the telephone network. Other applications include model-based image coding and facial-recognition systems. The paper deals with the theoretical postulates underlying the successful experimental extraction of facial features. The basic philosophy has been to treat the face as an illuminated three-dimensional object and to identify features from characteristics of their Gaussian maps. It can be shown that in general a composite image operator linked to a directional-illumination estimator is required to accomplish this, although the latter can often be omitted in practice.
Mladinich, C.
2010-01-01
Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.
Thermal feature extraction of servers in a datacenter using thermal image registration
NASA Astrophysics Data System (ADS)
Liu, Hang; Ran, Jian; Xie, Ting; Gao, Shan
2017-09-01
Thermal cameras provide fine-grained thermal information that enhances monitoring and enables automatic thermal management in large datacenters. Recent approaches employing mobile robots or thermal camera networks can already identify the physical locations of hot spots. Other distribution information used to optimize datacenter management can also be obtained automatically using pattern recognition technology. However, most of the features extracted from thermal images, such as shape and gradient, may be affected by changes in the position and direction of the thermal camera. This paper presents a method for extracting the thermal features of a hot spot or a server in a container datacenter. First, thermal and visual images are registered based on textural characteristics extracted from images acquired in datacenters. Then, the thermal distribution of each server is standardized. The features of a hot spot or server extracted from the standard distribution can reduce the impact of camera position and direction. The results of experiments show that image registration is efficient for aligning the corresponding visual and thermal images in the datacenter, and the standardization procedure reduces the impacts of camera position and direction on hot spot or server features.
PCA feature extraction for change detection in multidimensional unlabeled data.
Kuncheva, Ludmila I; Faithfull, William J
2014-01-01
When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.
Heart Sound Biometric System Based on Marginal Spectrum Analysis
Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin
2013-01-01
This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, A; Veeraraghavan, H; Oh, J
Purpose: To present an open source and free platform to facilitate radiomics research — The “Radiomics toolbox” in CERR. Method: There is scarcity of open source tools that support end-to-end modeling of image features to predict patient outcomes. The “Radiomics toolbox” strives to fill the need for such a software platform. The platform supports (1) import of various kinds of image modalities like CT, PET, MR, SPECT, US. (2) Contouring tools to delineate structures of interest. (3) Extraction and storage of image based features like 1st order statistics, gray-scale co-occurrence and zonesize matrix based texture features and shape features andmore » (4) Statistical Analysis. Statistical analysis of the extracted features is supported with basic functionality that includes univariate correlations, Kaplan-Meir curves and advanced functionality that includes feature reduction and multivariate modeling. The graphical user interface and the data management are performed with Matlab for the ease of development and readability of code and features for wide audience. Open-source software developed with other programming languages is integrated to enhance various components of this toolbox. For example: Java-based DCM4CHE for import of DICOM, R for statistical analysis. Results: The Radiomics toolbox will be distributed as an open source, GNU copyrighted software. The toolbox was prototyped for modeling Oropharyngeal PET dataset at MSKCC. The analysis will be presented in a separate paper. Conclusion: The Radiomics Toolbox provides an extensible platform for extracting and modeling image features. To emphasize new uses of CERR for radiomics and image-based research, we have changed the name from the “Computational Environment for Radiotherapy Research” to the “Computational Environment for Radiological Research”.« less
EEG feature selection method based on decision tree.
Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun
2015-01-01
This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.
NASA Astrophysics Data System (ADS)
Xu, Lili; Luo, Shuqian
2010-11-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Xu, Lili; Luo, Shuqian
2010-01-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Roychoudhury, Indranil; Balaban, Edward; Saxena, Abhinav
2010-01-01
Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this approach does not work very well when it is not feasible to create analytic relations describing all the observed data, e.g., for vibration data which is usually sampled at very high rates and requires very detailed finite element models to describe its behavior. In such cases, features (in time and frequency domains) that contain diagnostic information are extracted from the data. Since this is a computationally intensive process, it is not efficient to extract all the features all the time. In this paper we present an approach that combines the analytic model-based and feature-driven diagnosis approaches. The analytic approach is used to reduce the set of possible faults and then features are chosen to best distinguish among the remaining faults. We describe an implementation of this approach on the Flyable Electro-mechanical Actuator (FLEA) test bed.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
NASA Astrophysics Data System (ADS)
Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong
2017-11-01
In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.
Angular description for 3D scattering centers
NASA Astrophysics Data System (ADS)
Bhalla, Rajan; Raynal, Ann Marie; Ling, Hao; Moore, John; Velten, Vincent J.
2006-05-01
The electromagnetic scattered field from an electrically large target can often be well modeled as if it is emanating from a discrete set of scattering centers (see Fig. 1). In the scattering center extraction tool we developed previously based on the shooting and bouncing ray technique, no correspondence is maintained amongst the 3D scattering center extracted at adjacent angles. In this paper we present a multi-dimensional clustering algorithm to track the angular and spatial behaviors of 3D scattering centers and group them into features. The extracted features for the Slicy and backhoe targets are presented. We also describe two metrics for measuring the angular persistence and spatial mobility of the 3D scattering centers that make up these features in order to gather insights into target physics and feature stability. We find that features that are most persistent are also the most mobile and discuss implications for optimal SAR imaging.
An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data
NASA Astrophysics Data System (ADS)
Li, Y.; Hu, X.; Guan, H.; Liu, P.
2016-06-01
The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.
On Burst Detection and Prediction in Retweeting Sequence
2015-05-22
We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina
Color image definition evaluation method based on deep learning method
NASA Astrophysics Data System (ADS)
Liu, Di; Li, YingChun
2018-01-01
In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-05-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2011-11-24
Protein-protein interaction (PPI) extraction has been a focal point of many biomedical research and database curation tools. Both Active Learning and Semi-supervised SVMs have recently been applied to extract PPI automatically. In this paper, we explore combining the AL with the SSL to improve the performance of the PPI task. We propose a novel PPI extraction technique called PPISpotter by combining Deterministic Annealing-based SSL and an AL technique to extract protein-protein interaction. In addition, we extract a comprehensive set of features from MEDLINE records by Natural Language Processing (NLP) techniques, which further improve the SVM classifiers. In our feature selection technique, syntactic, semantic, and lexical properties of text are incorporated into feature selection that boosts the system performance significantly. By conducting experiments with three different PPI corpuses, we show that PPISpotter is superior to the other techniques incorporated into semi-supervised SVMs such as Random Sampling, Clustering, and Transductive SVMs by precision, recall, and F-measure. Our system is a novel, state-of-the-art technique for efficiently extracting protein-protein interaction pairs.
Superpixel-Augmented Endmember Detection for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha
2011-01-01
Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Paraskevopoulou, Sivylla E; Barsakcioglu, Deren Y; Saberi, Mohammed R; Eftekhar, Amir; Constandinou, Timothy G
2013-04-30
Next generation neural interfaces aspire to achieve real-time multi-channel systems by integrating spike sorting on chip to overcome limitations in communication channel capacity. The feasibility of this approach relies on developing highly efficient algorithms for feature extraction and clustering with the potential of low-power hardware implementation. We are proposing a feature extraction method, not requiring any calibration, based on first and second derivative features of the spike waveform. The accuracy and computational complexity of the proposed method are quantified and compared against commonly used feature extraction methods, through simulation across four datasets (with different single units) at multiple noise levels (ranging from 5 to 20% of the signal amplitude). The average classification error is shown to be below 7% with a computational complexity of 2N-3, where N is the number of sample points of each spike. Overall, this method presents a good trade-off between accuracy and computational complexity and is thus particularly well-suited for hardware-efficient implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Facial expression recognition based on improved deep belief networks
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.
From fuzzy recurrence plots to scalable recurrence networks of time series
NASA Astrophysics Data System (ADS)
Pham, Tuan D.
2017-04-01
Recurrence networks, which are derived from recurrence plots of nonlinear time series, enable the extraction of hidden features of complex dynamical systems. Because fuzzy recurrence plots are represented as grayscale images, this paper presents a variety of texture features that can be extracted from fuzzy recurrence plots. Based on the notion of fuzzy recurrence plots, defuzzified, undirected, and unweighted recurrence networks are introduced. Network measures can be computed for defuzzified recurrence networks that are scalable to meet the demand for the network-based analysis of big data.
GPR-Based Water Leak Models in Water Distribution Systems
Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael
2013-01-01
This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.
NASA Astrophysics Data System (ADS)
Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.
2015-05-01
In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.
NASA Astrophysics Data System (ADS)
Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.
2016-10-01
Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.
Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin
2016-11-01
Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
Linguistic feature analysis for protein interaction extraction
2009-01-01
Background The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information) and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels. Results Our results reveal that the contribution of the different feature types varies for the different data sets on which the experiments were conducted. The smaller the training corpus compared to the test data, the more important the role of grammatical relations becomes. Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous texts where no or only limited common vocabulary is shared. Conclusion Our findings suggest that grammatical relations play an important role in the interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic features is small related to the number of added features. This implies that efficient classifiers can be built by using only a small fraction of the features that are typically being used in recent approaches. PMID:19909518
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2012-01-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2011-12-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
Automatic Feature Extraction from Planetary Images
NASA Technical Reports Server (NTRS)
Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.
2010-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
Analysis of breast thermograms using Gabor wavelet anisotropy index.
Suganthi, S S; Ramakrishnan, S
2014-09-01
In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.
NASA Astrophysics Data System (ADS)
Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.
2003-05-01
We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.
Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds
NASA Astrophysics Data System (ADS)
Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert
2014-06-01
Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.
Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.
Lakshmi, Priya G G; Domnic, S
2014-12-01
Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Comparison of ANN and SVM for classification of eye movements in EOG signals
NASA Astrophysics Data System (ADS)
Qi, Lim Jia; Alias, Norma
2018-03-01
Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.
A Spiking Neural Network in sEMG Feature Extraction.
Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor
2015-11-03
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.
Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana
2014-01-01
Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.
Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C
2011-05-01
Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim
2016-02-01
Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Brownian motion curve-based textural classification and its application in cancer diagnosis.
Mookiah, Muthu Rama Krishnan; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K
2011-06-01
To develop an automated diagnostic methodology based on textural features of the oral mucosal epithelium to discriminate normal and oral submucous fibrosis (OSF). A total of 83 normal and 29 OSF images from histopathologic sections of the oral mucosa are considered. The proposed diagnostic mechanism consists of two parts: feature extraction using Brownian motion curve (BMC) and design ofa suitable classifier. The discrimination ability of the features has been substantiated by statistical tests. An error back-propagation neural network (BPNN) is used to classify OSF vs. normal. In development of an automated oral cancer diagnostic module, BMC has played an important role in characterizing textural features of the oral images. Fisher's linear discriminant analysis yields 100% sensitivity and 85% specificity, whereas BPNN leads to 92.31% sensitivity and 100% specificity, respectively. In addition to intensity and morphology-based features, textural features are also very important, especially in histopathologic diagnosis of oral cancer. In view of this, a set of textural features are extracted using the BMC for the diagnosis of OSF. Finally, a textural classifier is designed using BPNN, which leads to a diagnostic performance with 96.43% accuracy. (Anal Quant
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-06-21
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-01-01
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021
NASA Astrophysics Data System (ADS)
Lao, Zhiqiang; Zheng, Xin
2011-03-01
This paper proposes a multiscale method to quantify tissue spiculation and distortion in mammography CAD systems that aims at improving the sensitivity in detecting architectural distortion and spiculated mass. This approach addresses the difficulty of predetermining the neighborhood size for feature extraction in characterizing lesions demonstrating spiculated mass/architectural distortion that may appear in different sizes. The quantification is based on the recognition of tissue spiculation and distortion pattern using multiscale first-order phase portrait model in texture orientation field generated by Gabor filter bank. A feature map is generated based on the multiscale quantification for each mammogram and two features are then extracted from the feature map. These two features will be combined with other mass features to provide enhanced discriminate ability in detecting lesions demonstrating spiculated mass and architectural distortion. The efficiency and efficacy of the proposed method are demonstrated with results obtained by applying the method to over 500 cancer cases and over 1000 normal cases.
A wavelet-based approach for a continuous analysis of phonovibrograms.
Unger, Jakob; Meyer, Tobias; Doellinger, Michael; Hecker, Dietmar J; Schick, Bernhard; Lohscheller, Joerg
2012-01-01
Recently, endoscopic high-speed laryngoscopy has been established for commercial use and constitutes a state-of-the-art technique to examine vocal fold dynamics. Despite overcoming many limitations of commonly applied stroboscopy it has not gained widespread clinical application, yet. A major drawback is a missing methodology of extracting valuable features to support visual assessment or computer-aided diagnosis. In this paper a compact and descriptive feature set is presented. The feature extraction routines are based on two-dimensional color graphs called phonovibrograms (PVG). These graphs contain the full spatio-temporal pattern of vocal fold dynamics and are therefore suited to derive features that comprehensively describe the vibration pattern of vocal folds. Within our approach, clinically relevant features such as glottal closure type, symmetry and periodicity are quantified in a set of 10 descriptive features. The suitability for classification tasks is shown using a clinical data set comprising 50 healthy and 50 paralytic subjects. A classification accuracy of 93.2% has been achieved.
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi
2013-01-01
We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-01-01
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions. PMID:28154470
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-05-26
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
MindDigger: Feature Identification and Opinion Association for Chinese Movie Reviews
NASA Astrophysics Data System (ADS)
Zhao, Lili; Li, Chunping
In this paper, we present a prototype system called MindDigger, which can be used to analyze the opinions in Chinese movie reviews. Different from previous research that employed techniques on product reviews, we focus on Chinese movie reviews, in which opinions are expressed in subtle and varied ways. The system designed in this work aims to extract the opinion expressions and assign them to the corresponding features. The core tasks include feature and opinion extraction, and feature-opinion association. To deal with Chinese effectively, several novel approaches based on syntactic analysis are proposed in this paper. Running results show the performance is satisfactory.
NASA Astrophysics Data System (ADS)
Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen
2017-03-01
Intuitive segmentation-based CADx/radiomic features, calculated from the lesion segmentations of dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) have been utilized in the task of distinguishing between malignant and benign lesions. Additionally, transfer learning with pre-trained deep convolutional neural networks (CNNs) allows for an alternative method of radiomics extraction, where the features are derived directly from the image data. However, the comparison of computer-extracted segmentation-based and CNN features in MRI breast lesion characterization has not yet been conducted. In our study, we used a DCE-MRI database of 640 breast cases - 191 benign and 449 malignant. Thirty-eight segmentation-based features were extracted automatically using our quantitative radiomics workstation. Also, 2D ROIs were selected around each lesion on the DCE-MRIs and directly input into a pre-trained CNN AlexNet, yielding CNN features. Each method was investigated separately and in combination in terms of performance in the task of distinguishing between benign and malignant lesions. Area under the ROC curve (AUC) served as the figure of merit. Both methods yielded promising classification performance with round-robin cross-validated AUC values of 0.88 (se =0.01) and 0.76 (se=0.02) for segmentationbased and deep learning methods, respectively. Combination of the two methods enhanced the performance in malignancy assessment resulting in an AUC value of 0.91 (se=0.01), a statistically significant improvement over the performance of the CNN method alone.
Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping
2018-05-16
As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2016-10-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2017-01-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
EEG-based driver fatigue detection using hybrid deep generic model.
Phyo Phyo San; Sai Ho Ling; Rifai Chai; Tran, Yvonne; Craig, Ashley; Hung Nguyen
2016-08-01
Classification of electroencephalography (EEG)-based application is one of the important process for biomedical engineering. Driver fatigue is a major case of traffic accidents worldwide and considered as a significant problem in recent decades. In this paper, a hybrid deep generic model (DGM)-based support vector machine is proposed for accurate detection of driver fatigue. Traditionally, a probabilistic DGM with deep architecture is quite good at learning invariant features, but it is not always optimal for classification due to its trainable parameters are in the middle layer. Alternatively, Support Vector Machine (SVM) itself is unable to learn complicated invariance, but produces good decision surface when applied to well-behaved features. Consolidating unsupervised high-level feature extraction techniques, DGM and SVM classification makes the integrated framework stronger and enhance mutually in feature extraction and classification. The experimental results showed that the proposed DBN-based driver fatigue monitoring system achieves better testing accuracy of 73.29 % with 91.10 % sensitivity and 55.48 % specificity. In short, the proposed hybrid DGM-based SVM is an effective method for the detection of driver fatigue in EEG.
Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin
2016-01-01
Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging. PMID:27763555
Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin
2016-10-18
Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging.
Bubble structure evaluation method of sponge cake by using image morphology
NASA Astrophysics Data System (ADS)
Kato, Kunihito; Yamamoto, Kazuhiko; Nonaka, Masahiko; Katsuta, Yukiyo; Kasamatsu, Chinatsu
2007-01-01
Nowadays, many evaluation methods for food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that have been used for the quality evaluation recently. The goal of our research is structure evaluation of sponge cake by using the image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner, because the depth of field of this type scanner is very shallow. Therefore the bubble region of the surface has low gray scale value, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. The input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.
Features extraction in anterior and posterior cruciate ligaments analysis.
Zarychta, P
2015-12-01
The main aim of this research is finding the feature vectors of the anterior and posterior cruciate ligaments (ACL and PCL). These feature vectors have to clearly define the ligaments structure and make it easier to diagnose them. Extraction of feature vectors is obtained by analysis of both anterior and posterior cruciate ligaments. This procedure is performed after the extraction process of both ligaments. In the first stage in order to reduce the area of analysis a region of interest including cruciate ligaments (CL) is outlined in order to reduce the area of analysis. In this case, the fuzzy C-means algorithm with median modification helping to reduce blurred edges has been implemented. After finding the region of interest (ROI), the fuzzy connectedness procedure is performed. This procedure permits to extract the anterior and posterior cruciate ligament structures. In the last stage, on the basis of the extracted anterior and posterior cruciate ligament structures, 3-dimensional models of the anterior and posterior cruciate ligament are built and the feature vectors created. This methodology has been implemented in MATLAB and tested on clinical T1-weighted magnetic resonance imaging (MRI) slices of the knee joint. The 3D display is based on the Visualization Toolkit (VTK). Copyright © 2015 Elsevier Ltd. All rights reserved.
Diagnostic and prognostic histopathology system using morphometric indices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvin, Bahram; Chang, Hang; Han, Ju
Determining at least one of a prognosis or a therapy for a patient based on a stained tissue section of the patient. An image of a stained tissue section of a patient is processed by a processing device. A set of features values for a set of cell-based features is extracted from the processed image, and the processed image is associated with a particular cluster of a plurality of clusters based on the set of feature values, where the plurality of clusters is defined with respect to a feature space corresponding to the set of features.
NASA Astrophysics Data System (ADS)
Dubey, Kavita; Srivastava, Vishal; Singh Mehta, Dalip
2018-04-01
Early identification of fungal infection on the human scalp is crucial for avoiding hair loss. The diagnosis of fungal infection on the human scalp is based on a visual assessment by trained experts or doctors. Optical coherence tomography (OCT) has the ability to capture fungal infection information from the human scalp with a high resolution. In this study, we present a fully automated, non-contact, non-invasive optical method for rapid detection of fungal infections based on the extracted features from A-line and B-scan images of OCT. A multilevel ensemble machine model is designed to perform automated classification, which shows the superiority of our classifier to the best classifier based on the features extracted from OCT images. In this study, 60 samples (30 fungal, 30 normal) were imaged by OCT and eight features were extracted. The classification algorithm had an average sensitivity, specificity and accuracy of 92.30, 90.90 and 91.66%, respectively, for identifying fungal and normal human scalps. This remarkable classifying ability makes the proposed model readily applicable to classifying the human scalp.
Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao
2016-02-01
This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.
NASA Astrophysics Data System (ADS)
Li, M.; Jiang, Y. S.
2014-11-01
Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.
Stinnett, Jacob; Sullivan, Clair J.; Xiong, Hao
2017-03-02
Low-resolution isotope identifiers are widely deployed for nuclear security purposes, but these detectors currently demonstrate problems in making correct identifications in many typical usage scenarios. While there are many hardware alternatives and improvements that can be made, performance on existing low resolution isotope identifiers should be able to be improved by developing new identification algorithms. We have developed a wavelet-based peak extraction algorithm and an implementation of a Bayesian classifier for automated peak-based identification. The peak extraction algorithm has been extended to compute uncertainties in the peak area calculations. To build empirical joint probability distributions of the peak areas andmore » uncertainties, a large set of spectra were simulated in MCNP6 and processed with the wavelet-based feature extraction algorithm. Kernel density estimation was then used to create a new component of the likelihood function in the Bayesian classifier. Furthermore, identification performance is demonstrated on a variety of real low-resolution spectra, including Category I quantities of special nuclear material.« less
Set of Frequent Word Item sets as Feature Representation for Text with Indonesian Slang
NASA Astrophysics Data System (ADS)
Sa'adillah Maylawati, Dian; Putri Saptawati, G. A.
2017-01-01
Indonesian slang are commonly used in social media. Due to their unstructured syntax, it is difficult to extract their features based on Indonesian grammar for text mining. To do so, we propose Set of Frequent Word Item sets (SFWI) as text representation which is considered match for Indonesian slang. Besides, SFWI is able to keep the meaning of Indonesian slang with regard to the order of appearance sentence. We use FP-Growth algorithm with adding separation sentence function into the algorithm to extract the feature of SFWI. The experiments is done with text data from social media such as Facebook, Twitter, and personal website. The result of experiments shows that Indonesian slang were more correctly interpreted based on SFWI.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.
2016-05-01
Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-01-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666
Chen, Li; Mossa-Basha, Mahmud; Balu, Niranjan; Canton, Gador; Sun, Jie; Pimentel, Kristi; Hatsukami, Thomas S; Hwang, Jenq-Neng; Yuan, Chun
2018-06-01
To develop a quantitative intracranial artery measurement technique to extract comprehensive artery features from time-of-flight MR angiography (MRA). By semiautomatically tracing arteries based on an open-curve active contour model in a graphical user interface, 12 basic morphometric features and 16 basic intensity features for each artery were identified. Arteries were then classified as one of 24 types using prediction from a probability model. Based on the anatomical structures, features were integrated within 34 vascular groups for regional features of vascular trees. Eight 3D MRA acquisitions with intracranial atherosclerosis were assessed to validate this technique. Arterial tracings were validated by an experienced neuroradiologist who checked agreement at bifurcation and stenosis locations. This technique achieved 94% sensitivity and 85% positive predictive values (PPV) for bifurcations, and 85% sensitivity and PPV for stenosis. Up to 1,456 features, such as length, volume, and averaged signal intensity for each artery, as well as vascular group in each of the MRA images, could be extracted to comprehensively reflect characteristics, distribution, and connectivity of arteries. Length for the M1 segment of the middle cerebral artery extracted by this technique was compared with reviewer-measured results, and the intraclass correlation coefficient was 0.97. A semiautomated quantitative method to trace, label, and measure intracranial arteries from 3D-MRA was developed and validated. This technique can be used to facilitate quantitative intracranial vascular research, such as studying cerebrovascular adaptation to aging and disease conditions. Magn Reson Med 79:3229-3238, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Method for Face-Emotion Retrieval Using A Cartoon Emotional Expression Approach
NASA Astrophysics Data System (ADS)
Kostov, Vlaho; Yanagisawa, Hideyoshi; Johansson, Martin; Fukuda, Shuichi
A simple method for extracting emotion from a human face, as a form of non-verbal communication, was developed to cope with and optimize mobile communication in a globalized and diversified society. A cartoon face based model was developed and used to evaluate emotional content of real faces. After a pilot survey, basic rules were defined and student subjects were asked to express emotion using the cartoon face. Their face samples were then analyzed using principal component analysis and the Mahalanobis distance method. Feature parameters considered as having relations with emotions were extracted and new cartoon faces (based on these parameters) were generated. The subjects evaluated emotion of these cartoon faces again and we confirmed these parameters were suitable. To confirm how these parameters could be applied to real faces, we asked subjects to express the same emotions which were then captured electronically. Simple image processing techniques were also developed to extract these features from real faces and we then compared them with the cartoon face parameters. It is demonstrated via the cartoon face that we are able to express the emotions from very small amounts of information. As a result, real and cartoon faces correspond to each other. It is also shown that emotion could be extracted from still and dynamic real face images using these cartoon-based features.
Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting
NASA Astrophysics Data System (ADS)
Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing
2018-02-01
Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
Caggiano, Alessandra
2018-03-09
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.
2018-01-01
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443
Kruskal-Wallis-based computationally efficient feature selection for face recognition.
Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz
2014-01-01
Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.
Automated prediction of protein function and detection of functional sites from structure.
Pazos, Florencio; Sternberg, Michael J E
2004-10-12
Current structural genomics projects are yielding structures for proteins whose functions are unknown. Accordingly, there is a pressing requirement for computational methods for function prediction. Here we present PHUNCTIONER, an automatic method for structure-based function prediction using automatically extracted functional sites (residues associated to functions). The method relates proteins with the same function through structural alignments and extracts 3D profiles of conserved residues. Functional features to train the method are extracted from the Gene Ontology (GO) database. The method extracts these features from the entire GO hierarchy and hence is applicable across the whole range of function specificity. 3D profiles associated with 121 GO annotations were extracted. We tested the power of the method both for the prediction of function and for the extraction of functional sites. The success of function prediction by our method was compared with the standard homology-based method. In the zone of low sequence similarity (approximately 15%), our method assigns the correct GO annotation in 90% of the protein structures considered, approximately 20% higher than inheritance of function from the closest homologue.
Research and implementation of finger-vein recognition algorithm
NASA Astrophysics Data System (ADS)
Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin
2017-06-01
In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.
NASA Astrophysics Data System (ADS)
Gordon, Marshall N.; Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Cohan, Richard H.; Caoili, Elaine M.; Paramagul, Chintana; Alva, Ajjai; Weizer, Alon Z.
2018-02-01
We are developing a decision support system for assisting clinicians in assessment of response to neoadjuvant chemotherapy for bladder cancer. Accurate treatment response assessment is crucial for identifying responders and improving quality of life for non-responders. An objective machine learning decision support system may help reduce variability and inaccuracy in treatment response assessment. We developed a predictive model to assess the likelihood that a patient will respond based on image and clinical features. With IRB approval, we retrospectively collected a data set of pre- and post- treatment CT scans along with clinical information from surgical pathology from 98 patients. A linear discriminant analysis (LDA) classifier was used to predict the likelihood that a patient would respond to treatment based on radiomic features extracted from CT urography (CTU), a radiologist's semantic feature, and a clinical feature extracted from surgical and pathology reports. The classification accuracy was evaluated using the area under the ROC curve (AUC) with a leave-one-case-out cross validation. The classification accuracy was compared for the systems based on radiomic features, clinical feature, and radiologist's semantic feature. For the system based on only radiomic features the AUC was 0.75. With the addition of clinical information from examination under anesthesia (EUA) the AUC was improved to 0.78. Our study demonstrated the potential of designing a decision support system to assist in treatment response assessment. The combination of clinical features, radiologist semantic features and CTU radiomic features improved the performance of the classifier and the accuracy of treatment response assessment.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati
2018-03-01
Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.
Extracting BI-RADS Features from Portuguese Clinical Texts.
Nassif, Houssam; Cunha, Filipe; Moreira, Inês C; Cruz-Correia, Ricardo; Sousa, Eliana; Page, David; Burnside, Elizabeth; Dutra, Inês
2012-01-01
In this work we build the first BI-RADS parser for Portuguese free texts, modeled after existing approaches to extract BI-RADS features from English medical records. Our concept finder uses a semantic grammar based on the BIRADS lexicon and on iterative transferred expert knowledge. We compare the performance of our algorithm to manual annotation by a specialist in mammography. Our results show that our parser's performance is comparable to the manual method.
Real-Time Detection and Measurement of Eye Features from Color Images
Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu
2016-01-01
The accurate extraction and measurement of eye features is crucial to a variety of domains, including human-computer interaction, biometry, and medical research. This paper presents a fast and accurate method for extracting multiple features around the eyes: the center of the pupil, the iris radius, and the external shape of the eye. These features are extracted using a multistage algorithm. On the first stage the pupil center is localized using a fast circular symmetry detector and the iris radius is computed using radial gradient projections, and on the second stage the external shape of the eye (of the eyelids) is determined through a Monte Carlo sampling framework based on both color and shape information. Extensive experiments performed on a different dataset demonstrate the effectiveness of our approach. In addition, this work provides eye annotation data for a publicly-available database. PMID:27438838
Effective traffic features selection algorithm for cyber-attacks samples
NASA Astrophysics Data System (ADS)
Li, Yihong; Liu, Fangzheng; Du, Zhenyu
2018-05-01
By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.
The 3-D image recognition based on fuzzy neural network technology
NASA Technical Reports Server (NTRS)
Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei
1993-01-01
Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.
Radar fall detection using principal component analysis
NASA Astrophysics Data System (ADS)
Jokanovic, Branka; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem
2016-05-01
Falls are a major cause of fatal and nonfatal injuries in people aged 65 years and older. Radar has the potential to become one of the leading technologies for fall detection, thereby enabling the elderly to live independently. Existing techniques for fall detection using radar are based on manual feature extraction and require significant parameter tuning in order to provide successful detections. In this paper, we employ principal component analysis for fall detection, wherein eigen images of observed motions are employed for classification. Using real data, we demonstrate that the PCA based technique provides performance improvement over the conventional feature extraction methods.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform
Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel
2015-01-01
Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.
NASA Astrophysics Data System (ADS)
Liu, Qingsheng; Liang, Li; Liu, Gaohuan; Huang, Chong
2017-09-01
Vegetation often exists as patch in arid and semi-arid region throughout the world. Vegetation patch can be effectively monitored by remote sensing images. However, not all satellite platforms are suitable to study quasi-circular vegetation patch. This study compares fine (GF-1) and coarse (CBERS-04) resolution platforms, specifically focusing on the quasicircular vegetation patches in the Yellow River Delta (YRD), China. Vegetation patch features (area, shape) were extracted from GF-1 and CBERS-04 imagery using unsupervised classifier (K-Means) and object-oriented approach (Example-based feature extraction with SVM classifier) in order to analyze vegetation patterns. These features were then compared using vector overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped vegetation patches were significantly different. Regardless of K-Means or Example-based feature extraction with SVM classification, it was found that the area of quasi-circular vegetation patches from visual interpretation from QuickBird image (ground truth data) was greater than that from both of GF-1 and CBERS-04, and the number of patches detected from GF-1 data was more than that of CBERS-04 image. It was seen that without expert's experience and professional training on object-oriented approach, K-Means was better than example-based feature extraction with SVM for detecting the patch. It indicated that CBERS-04 could be used to detect the patch with area of more than 300 m2, but GF-1 data was a sufficient source for patch detection in the YRD. However, in the future, finer resolution platforms such as Worldview are needed to gain more detailed insight on patch structures and components and formation mechanism.
NASA Astrophysics Data System (ADS)
Lu, Shan; Zhang, Hanmo
2016-01-01
To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.
Utilizing gamma band to improve mental task based brain-computer interface design.
Palaniappan, Ramaswamy
2006-09-01
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
Singular value decomposition based feature extraction technique for physiological signal analysis.
Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C
2012-06-01
Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng
An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Friedman, K; Chandarana, H
Purpose: Radiomics involves the extraction of texture features from different imaging modalities with the purpose of developing models to predict patient treatment outcomes. The purpose of this study is to investigate texture feature reproducibility across [18F]FDG PET/CT and [18F]FDG PET/MR imaging in patients with primary malignancies. Methods: Twenty five prospective patients with solid tumors underwent clinical [18F]FDG PET/CT scan followed by [18F]FDG PET/MR scans. In all patients the lesions were identified using nuclear medicine reports. The images were co-registered and segmented using an in-house auto-segmentation method. Fifty features, based on the intensity histogram, second and high order matrices, were extractedmore » from the segmented regions from both image data sets. One-way random-effects ANOVA model of the intra-class correlation coefficient (ICC) was used to establish texture feature correlations between both data sets. Results: Fifty features were classified based on their ICC values, which were found in the range from 0.1 to 0.86, in three categories: high, intermediate, and low. Ten features extracted from second and high-order matrices showed large ICC ≥ 0.70. Seventeen features presented intermediate 0.5 ≤ ICC ≤ 0.65 and the remaining twenty three presented low ICC ≤ 0.45. Conclusion: Features with large ICC values could be reliable candidates for quantification as they lead to similar results from both imaging modalities. Features with small ICC indicates a lack of correlation. Therefore, the use of these features as a quantitative measure will lead to different assessments of the same lesion depending on the imaging modality from where they are extracted. This study shows the importance of the need for further investigation and standardization of features across multiple imaging modalities.« less
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Tabei, Yasuo; Pauwels, Edouard; Stoven, Véronique; Takemoto, Kazuhiro; Yamanishi, Yoshihiro
2012-01-01
Motivation: Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug–target interactions is crucial in the drug design process. Results: We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug–target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L1 regularized classifiers over the tensor product space of possible drug–target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug–target interactions and the extracted features are biologically meaningful. The extracted substructure–domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families. Availability: Softwares are available at the supplemental website. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ . PMID:22962471
Mutual information-based feature selection for radiomics
NASA Astrophysics Data System (ADS)
Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine
2016-03-01
Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.
Feature Extraction Assessment Study.
1984-11-01
base in the form of orthophotos , control manuscripts, . or maps or charts; aids to feature identification such as im- agery (rectified and unrectified...manually delineated (i.e. , drawn by * hand) on a feature manuscript which may be a mylar overlay on an orthophoto or other control base. Once delineated...partition of tiled constant gray level regions, with addi- tive noise in each, it is not clear that any segmentation tech- nique would identify each
Fusion of infrared polarization and intensity images based on improved toggle operator
NASA Astrophysics Data System (ADS)
Zhu, Pan; Ding, Lei; Ma, Xiaoqing; Huang, Zhanhua
2018-01-01
Integration of infrared polarization and intensity images has been a new topic in infrared image understanding and interpretation. The abundant infrared details and target from infrared image and the salient edge and shape information from polarization image should be preserved or even enhanced in the fused result. In this paper, a new fusion method is proposed for infrared polarization and intensity images based on the improved multi-scale toggle operator with spatial scale, which can effectively extract the feature information of source images and heavily reduce redundancy among different scale. Firstly, the multi-scale image features of infrared polarization and intensity images are respectively extracted at different scale levels by the improved multi-scale toggle operator. Secondly, the redundancy of the features among different scales is reduced by using spatial scale. Thirdly, the final image features are combined by simply adding all scales of feature images together, and a base image is calculated by performing mean value weighted method on smoothed source images. Finally, the fusion image is obtained by importing the combined image features into the base image with a suitable strategy. Both objective assessment and subjective vision of the experimental results indicate that the proposed method obtains better performance in preserving the details and edge information as well as improving the image contrast.
Vertical Feature Mask Feature Classification Flag Extraction
Atmospheric Science Data Center
2013-03-28
Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...
Global and Local Features Based Classification for Bleed-Through Removal
NASA Astrophysics Data System (ADS)
Hu, Xiangyu; Lin, Hui; Li, Shutao; Sun, Bin
2016-12-01
The text on one side of historical documents often seeps through and appears on the other side, so the bleed-through is a common problem in historical document images. It makes the document images hard to read and the text difficult to recognize. To improve the image quality and readability, the bleed-through has to be removed. This paper proposes a global and local features extraction based bleed-through removal method. The Gaussian mixture model is used to get the global features of the images. Local features are extracted by the patch around each pixel. Then, the extreme learning machine classifier is utilized to classify the scanned images into the foreground text and the bleed-through component. Experimental results on real document image datasets show that the proposed method outperforms the state-of-the-art bleed-through removal methods and preserves the text strokes well.
Radio-nuclide mixture identification using medium energy resolution detectors
Nelson, Karl Einar
2013-09-17
According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.
iPcc: a novel feature extraction method for accurate disease class discovery and prediction
Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi
2013-01-01
Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440
Spectral-spatial classification of hyperspectral image using three-dimensional convolution network
NASA Astrophysics Data System (ADS)
Liu, Bing; Yu, Xuchu; Zhang, Pengqiang; Tan, Xiong; Wang, Ruirui; Zhi, Lu
2018-01-01
Recently, hyperspectral image (HSI) classification has become a focus of research. However, the complex structure of an HSI makes feature extraction difficult to achieve. Most current methods build classifiers based on complex handcrafted features computed from the raw inputs. The design of an improved 3-D convolutional neural network (3D-CNN) model for HSI classification is described. This model extracts features from both the spectral and spatial dimensions through the application of 3-D convolutions, thereby capturing the important discrimination information encoded in multiple adjacent bands. The designed model views the HSI cube data altogether without relying on any pre- or postprocessing. In addition, the model is trained in an end-to-end fashion without any handcrafted features. The designed model was applied to three widely used HSI datasets. The experimental results demonstrate that the 3D-CNN-based method outperforms conventional methods even with limited labeled training samples.
Driving profile modeling and recognition based on soft computing approach.
Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya
2009-04-01
Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.
2012 Year-End Report on Neurotechnologies for In-Vehicle Applications
2013-06-01
signals. • Alternative feature extraction methods have been proposed based on matching pursuit and wavelet analysis . Examining specific features of...locally networked PCs. 4.3 Arduino- Based Simulation Synchronization Time synchronization across measurement devices in neuroscience experiments is...steering behavior; the Optalert† (Optalert, Melbourne, Australia) system, which predicts fatigue based on eye-tracking measures ; or the SafeTraK (Takata
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Wang, Zhe
2018-05-01
Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.
NASA Astrophysics Data System (ADS)
Li, Yane; Fan, Ming; Li, Lihua; Zheng, Bin
2017-03-01
This study proposed a near-term breast cancer risk assessment model based on local region bilateral asymmetry features in Mammography. The database includes 566 cases who underwent at least two sequential FFDM examinations. The `prior' examination in the two series all interpreted as negative (not recalled). In the "current" examination, 283 women were diagnosed cancers and 283 remained negative. Age of cancers and negative cases completely matched. These cases were divided into three subgroups according to age: 152 cases among the 37-49 age-bracket, 220 cases in the age-bracket 50- 60, and 194 cases with the 61-86 age-bracket. For each image, two local regions including strip-based regions and difference-of-Gaussian basic element regions were segmented. After that, structural variation features among pixel values and structural similarity features were computed for strip regions. Meanwhile, positional features were extracted for basic element regions. The absolute subtraction value was computed between each feature of the left and right local-regions. Next, a multi-layer perception classifier was implemented to assess performance of features for prediction. Features were then selected according stepwise regression analysis. The AUC achieved 0.72, 0.75 and 0.71 for these 3 age-based subgroups, respectively. The maximum adjustable odds ratios were 12.4, 20.56 and 4.91 for these three groups, respectively. This study demonstrate that the local region-based bilateral asymmetry features extracted from CC-view mammography could provide useful information to predict near-term breast cancer risk.
Gait recognition based on Gabor wavelets and modified gait energy image for human identification
NASA Astrophysics Data System (ADS)
Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang
2013-10-01
This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.
Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.
Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko
2017-07-01
Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
Gene/protein name recognition based on support vector machine using dictionary as features.
Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi
2005-01-01
Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.
Palanisamy, Vinupritha; Mariamichael, Anburajan
2016-10-01
Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.
Semi-Supervised Geographical Feature Detection
NASA Astrophysics Data System (ADS)
Yu, H.; Yu, L.; Kuo, K. S.
2016-12-01
Extraction and tracking geographical features is a fundamental requirement in many geoscience fields. However, this operation has become an increasingly challenging task for domain scientists when tackling a large amount of geoscience data. Although domain scientists may have a relatively clear definition of features, it is difficult to capture the presence of features in an accurate and efficient fashion. We propose a semi-supervised approach to address large geographical feature detection. Our approach has two main components. First, we represent a heterogeneous geoscience data in a unified high-dimensional space, which can facilitate us to evaluate the similarity of data points with respect to geolocation, time, and variable values. We characterize the data from these measures, and use a set of hash functions to parameterize the initial knowledge of the data. Second, for any user query, our approach can automatically extract the initial results based on the hash functions. To improve the accuracy of querying, our approach provides a visualization interface to display the querying results and allow users to interactively explore and refine them. The user feedback will be used to enhance our knowledge base in an iterative manner. In our implementation, we use high-performance computing techniques to accelerate the construction of hash functions. Our design facilitates a parallelization scheme for feature detection and extraction, which is a traditionally challenging problem for large-scale data. We evaluate our approach and demonstrate the effectiveness using both synthetic and real world datasets.
Classification of SD-OCT volumes for DME detection: an anomaly detection approach
NASA Astrophysics Data System (ADS)
Sankar, S.; Sidibé, D.; Cheung, Y.; Wong, T. Y.; Lamoureux, E.; Milea, D.; Meriaudeau, F.
2016-03-01
Diabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binary Pattern (LBP) features are considered. The dimensionality of the extracted features is reduced using PCA. As the last stage, a GMM is fitted with features from normal volumes. During testing, features extracted from the test volume are evaluated with the fitted model for anomaly and classification is made based on the number of B-scans detected as outliers. The proposed method is tested on two OCT datasets achieving a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, experiments show that the proposed method achieves better classification performances than other recently published works.
A flexible data-driven comorbidity feature extraction framework.
Sideris, Costas; Pourhomayoun, Mohammad; Kalantarian, Haik; Sarrafzadeh, Majid
2016-06-01
Disease and symptom diagnostic codes are a valuable resource for classifying and predicting patient outcomes. In this paper, we propose a novel methodology for utilizing disease diagnostic information in a predictive machine learning framework. Our methodology relies on a novel, clustering-based feature extraction framework using disease diagnostic information. To reduce the data dimensionality, we identify disease clusters using co-occurrence statistics. We optimize the number of generated clusters in the training set and then utilize these clusters as features to predict patient severity of condition and patient readmission risk. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million hospital discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 Congestive Heart Failure (CHF) patients and the UCI 130-US diabetes dataset that includes admissions from 69,980 diabetic patients. We compare our cluster-based feature set with the commonly used comorbidity frameworks including Charlson's index, Elixhauser's comorbidities and their variations. The proposed approach was shown to have significant gains between 10.7-22.1% in predictive accuracy for CHF severity of condition prediction and 4.65-5.75% in diabetes readmission prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.
Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei
2016-03-09
Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.
Feature extraction via KPCA for classification of gait patterns.
Wu, Jianning; Wang, Jue; Liu, Li
2007-06-01
Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.
Palmprint Based Verification System Using SURF Features
NASA Astrophysics Data System (ADS)
Srinivas, Badrinath G.; Gupta, Phalguni
This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.
Deep Learning Based Binaural Speech Separation in Reverberant Environments.
Zhang, Xueliang; Wang, DeLiang
2017-05-01
Speech signal is usually degraded by room reverberation and additive noises in real environments. This paper focuses on separating target speech signal in reverberant conditions from binaural inputs. Binaural separation is formulated as a supervised learning problem, and we employ deep learning to map from both spatial and spectral features to a training target. With binaural inputs, we first apply a fixed beamformer and then extract several spectral features. A new spatial feature is proposed and extracted to complement the spectral features. The training target is the recently suggested ideal ratio mask. Systematic evaluations and comparisons show that the proposed system achieves very good separation performance and substantially outperforms related algorithms under challenging multi-source and reverberant environments.
Composite Wavelet Filters for Enhanced Automated Target Recognition
NASA Technical Reports Server (NTRS)
Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2012-01-01
Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
Highway 3D model from image and lidar data
NASA Astrophysics Data System (ADS)
Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan
2014-05-01
We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.
Chemical name extraction based on automatic training data generation and rich feature set.
Yan, Su; Spangler, W Scott; Chen, Ying
2013-01-01
The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.
Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu
2018-05-01
Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.
Pynn, Christopher D; Chan, Lesley; Lora Gonzalez, Federico; Berry, Alex; Hwang, David; Wu, Haoyang; Margalith, Tal; Morse, Daniel E; DenBaars, Steven P; Gordon, Michael J
2017-07-10
Light extraction from InGaN/GaN-based multiple-quantum-well (MQW) light emitters is enhanced using a simple, scalable, and reproducible method to create hexagonally close-packed conical nano- and micro-scale features on the backside outcoupling surface. Colloidal lithography via Langmuir-Blodgett dip-coating using silica masks (d = 170-2530 nm) and Cl 2 /N 2 -based plasma etching produced features with aspect ratios of 3:1 on devices grown on semipolar GaN substrates. InGaN/GaN MQW structures were optically pumped at 266 nm and light extraction enhancement was quantified using angle-resolved photoluminescence. A 4.8-fold overall enhancement in light extraction (9-fold at normal incidence) relative to a flat outcoupling surface was achieved using a feature pitch of 2530 nm. This performance is on par with current photoelectrochemical (PEC) nitrogen-face roughening methods, which positions the technique as a strong alternative for backside structuring of c-plane devices. Also, because colloidal lithography functions independently of GaN crystal orientation, it is applicable to semipolar and nonpolar GaN devices, for which PEC roughening is ineffective.
Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.
Stockton, David B; Santamaria, Fidel
2017-10-01
We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.
A novel approach for SEMG signal classification with adaptive local binary patterns.
Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan
2016-07-01
Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.
Ludeña-Choez, Jimmy; Quispe-Soncco, Raisa; Gallardo-Antolín, Ascensión
2017-01-01
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC.
Quispe-Soncco, Raisa
2017-01-01
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC. PMID:28628630
Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang
2017-02-15
Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Salient object detection based on multi-scale contrast.
Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long
2018-05-01
Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-04-15
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-01-01
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Liu, Hong; Zheng, Bin
2016-03-01
Although mammography is the only clinically acceptable imaging modality used in the population-based breast cancer screening, its efficacy is quite controversy. One of the major challenges is how to help radiologists more accurately classify between benign and malignant lesions. The purpose of this study is to investigate a new mammographic mass classification scheme based on a deep learning method. In this study, we used an image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms, which includes 280 malignant and 280 benign mass ROIs, respectively. An eight layer deep learning network was applied, which employs three pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perception (MLP) classifier for feature categorization. In order to improve robustness of selected features, each convolution layer is connected with a max-pooling layer. A number of 20, 10, and 5 feature maps were utilized for the 1st, 2nd and 3rd convolution layer, respectively. The convolution networks are followed by a MLP classifier, which generates a classification score to predict likelihood of a ROI depicting a malignant mass. Among 560 ROIs, 420 ROIs were used as a training dataset and the remaining 140 ROIs were used as a validation dataset. The result shows that the new deep learning based classifier yielded an area under the receiver operation characteristic curve (AUC) of 0.810+/-0.036. This study demonstrated the potential superiority of using a deep learning based classifier to distinguish malignant and benign breast masses without segmenting the lesions and extracting the pre-defined image features.
Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600
Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.
Extracting BI-RADS Features from Portuguese Clinical Texts
Nassif, Houssam; Cunha, Filipe; Moreira, Inês C.; Cruz-Correia, Ricardo; Sousa, Eliana; Page, David; Burnside, Elizabeth; Dutra, Inês
2013-01-01
In this work we build the first BI-RADS parser for Portuguese free texts, modeled after existing approaches to extract BI-RADS features from English medical records. Our concept finder uses a semantic grammar based on the BIRADS lexicon and on iterative transferred expert knowledge. We compare the performance of our algorithm to manual annotation by a specialist in mammography. Our results show that our parser’s performance is comparable to the manual method. PMID:23797461
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip
2018-02-01
We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.
MPEG content summarization based on compressed domain feature analysis
NASA Astrophysics Data System (ADS)
Sugano, Masaru; Nakajima, Yasuyuki; Yanagihara, Hiromasa
2003-11-01
This paper addresses automatic summarization of MPEG audiovisual content on compressed domain. By analyzing semantically important low-level and mid-level audiovisual features, our method universally summarizes the MPEG-1/-2 contents in the form of digest or highlight. The former is a shortened version of an original, while the latter is an aggregation of important or interesting events. In our proposal, first, the incoming MPEG stream is segmented into shots and the above features are derived from each shot. Then the features are adaptively evaluated in an integrated manner, and finally the qualified shots are aggregated into a summary. Since all the processes are performed completely on compressed domain, summarization is achieved at very low computational cost. The experimental results show that news highlights and sports highlights in TV baseball games can be successfully extracted according to simple shot transition models. As for digest extraction, subjective evaluation proves that meaningful shots are extracted from content without a priori knowledge, even if it contains multiple genres of programs. Our method also has the advantage of generating an MPEG-7 based description such as summary and audiovisual segments in the course of summarization.
Pathological speech signal analysis and classification using empirical mode decomposition.
Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar
2013-07-01
Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.
NASA Astrophysics Data System (ADS)
Tatebe, Hironobu; Kato, Kunihito; Yamamoto, Kazuhiko; Katsuta, Yukio; Nonaka, Masahiko
2005-12-01
Now a day, many evaluation methods for the food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that are using for the quality evaluation. An advantage of the image processing is to be able to evaluate objectively. The goal of our research is structure evaluation of sponge cake by using image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner. Because the depth of field of this type scanner is very shallow, the bubble region of the surface has low gray scale values, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. First, input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.
Morris, Jeffrey S
2012-01-01
In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.
Extracting intrinsic functional networks with feature-based group independent component analysis.
Calhoun, Vince D; Allen, Elena
2013-04-01
There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.
Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction
NASA Astrophysics Data System (ADS)
Zang, Y.; Yang, B.
2018-04-01
3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.
Detecting modification of biomedical events using a deep parsing approach.
Mackinlay, Andrew; Martinez, David; Baldwin, Timothy
2012-04-30
This work describes a system for identifying event mentions in bio-molecular research abstracts that are either speculative (e.g. analysis of IkappaBalpha phosphorylation, where it is not specified whether phosphorylation did or did not occur) or negated (e.g. inhibition of IkappaBalpha phosphorylation, where phosphorylation did not occur). The data comes from a standard dataset created for the BioNLP 2009 Shared Task. The system uses a machine-learning approach, where the features used for classification are a combination of shallow features derived from the words of the sentences and more complex features based on the semantic outputs produced by a deep parser. To detect event modification, we use a Maximum Entropy learner with features extracted from the data relative to the trigger words of the events. The shallow features are bag-of-words features based on a small sliding context window of 3-4 tokens on either side of the trigger word. The deep parser features are derived from parses produced by the English Resource Grammar and the RASP parser. The outputs of these parsers are converted into the Minimal Recursion Semantics formalism, and from this, we extract features motivated by linguistics and the data itself. All of these features are combined to create training or test data for the machine learning algorithm. Over the test data, our methods produce approximately a 4% absolute increase in F-score for detection of event modification compared to a baseline based only on the shallow bag-of-words features. Our results indicate that grammar-based techniques can enhance the accuracy of methods for detecting event modification.
Application of higher order SVD to vibration-based system identification and damage detection
NASA Astrophysics Data System (ADS)
Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang
2012-04-01
Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.
NASA Astrophysics Data System (ADS)
Mahrooghy, Majid; Ashraf, Ahmed B.; Daye, Dania; Mies, Carolyn; Rosen, Mark; Feldman, Michael; Kontos, Despina
2014-03-01
We evaluate the prognostic value of sparse representation-based features by applying the K-SVD algorithm on multiparametric kinetic, textural, and morphologic features in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). K-SVD is an iterative dimensionality reduction method that optimally reduces the initial feature space by updating the dictionary columns jointly with the sparse representation coefficients. Therefore, by using K-SVD, we not only provide sparse representation of the features and condense the information in a few coefficients but also we reduce the dimensionality. The extracted K-SVD features are evaluated by a machine learning algorithm including a logistic regression classifier for the task of classifying high versus low breast cancer recurrence risk as determined by a validated gene expression assay. The features are evaluated using ROC curve analysis and leave one-out cross validation for different sparse representation and dimensionality reduction numbers. Optimal sparse representation is obtained when the number of dictionary elements is 4 (K=4) and maximum non-zero coefficients is 2 (L=2). We compare K-SVD with ANOVA based feature selection for the same prognostic features. The ROC results show that the AUC of the K-SVD based (K=4, L=2), the ANOVA based, and the original features (i.e., no dimensionality reduction) are 0.78, 0.71. and 0.68, respectively. From the results, it can be inferred that by using sparse representation of the originally extracted multi-parametric, high-dimensional data, we can condense the information on a few coefficients with the highest predictive value. In addition, the dimensionality reduction introduced by K-SVD can prevent models from over-fitting.
Boon, K H; Khalil-Hani, M; Malarvili, M B
2018-01-01
This paper presents a method that able to predict the paroxysmal atrial fibrillation (PAF). The method uses shorter heart rate variability (HRV) signals when compared to existing methods, and achieves good prediction accuracy. PAF is a common cardiac arrhythmia that increases the health risk of a patient, and the development of an accurate predictor of the onset of PAF is clinical important because it increases the possibility to electrically stabilize and prevent the onset of atrial arrhythmias with different pacing techniques. We propose a multi-objective optimization algorithm based on the non-dominated sorting genetic algorithm III for optimizing the baseline PAF prediction system, that consists of the stages of pre-processing, HRV feature extraction, and support vector machine (SVM) model. The pre-processing stage comprises of heart rate correction, interpolation, and signal detrending. After that, time-domain, frequency-domain, non-linear HRV features are extracted from the pre-processed data in feature extraction stage. Then, these features are used as input to the SVM for predicting the PAF event. The proposed optimization algorithm is used to optimize the parameters and settings of various HRV feature extraction algorithms, select the best feature subsets, and tune the SVM parameters simultaneously for maximum prediction performance. The proposed method achieves an accuracy rate of 87.7%, which significantly outperforms most of the previous works. This accuracy rate is achieved even with the HRV signal length being reduced from the typical 30 min to just 5 min (a reduction of 83%). Furthermore, another significant result is the sensitivity rate, which is considered more important that other performance metrics in this paper, can be improved with the trade-off of lower specificity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-02-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-06-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
Orientation Modeling for Amateur Cameras by Matching Image Line Features and Building Vector Data
NASA Astrophysics Data System (ADS)
Hung, C. H.; Chang, W. C.; Chen, L. C.
2016-06-01
With the popularity of geospatial applications, database updating is getting important due to the environmental changes over time. Imagery provides a lower cost and efficient way to update the database. Three dimensional objects can be measured by space intersection using conjugate image points and orientation parameters of cameras. However, precise orientation parameters of light amateur cameras are not always available due to their costliness and heaviness of precision GPS and IMU. To automatize data updating, the correspondence of object vector data and image may be built to improve the accuracy of direct georeferencing. This study contains four major parts, (1) back-projection of object vector data, (2) extraction of image feature lines, (3) object-image feature line matching, and (4) line-based orientation modeling. In order to construct the correspondence of features between an image and a building model, the building vector features were back-projected onto the image using the initial camera orientation from GPS and IMU. Image line features were extracted from the imagery. Afterwards, the matching procedure was done by assessing the similarity between the extracted image features and the back-projected ones. Then, the fourth part utilized line features in orientation modeling. The line-based orientation modeling was performed by the integration of line parametric equations into collinearity condition equations. The experiment data included images with 0.06 m resolution acquired by Canon EOS Mark 5D II camera on a Microdrones MD4-1000 UAV. Experimental results indicate that 2.1 pixel accuracy may be reached, which is equivalent to 0.12 m in the object space.
Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area
Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In
2016-01-01
Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Billen, R.
2017-08-01
Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.
Kolivand, Hoshang; Fern, Bong Mei; Rahim, Mohd Shafry Mohd; Sulong, Ghazali; Baker, Thar; Tully, David
2018-01-01
In this paper, we present a new method to recognise the leaf type and identify plant species using phenetic parts of the leaf; lobes, apex and base detection. Most of the research in this area focuses on the popular features such as the shape, colour, vein, and texture, which consumes large amounts of computational processing and are not efficient, especially in the Acer database with a high complexity structure of the leaves. This paper is focused on phenetic parts of the leaf which increases accuracy. Detecting the local maxima and local minima are done based on Centroid Contour Distance for Every Boundary Point, using north and south region to recognise the apex and base. Digital morphology is used to measure the leaf shape and the leaf margin. Centroid Contour Gradient is presented to extract the curvature of leaf apex and base. We analyse 32 leaf images of tropical plants and evaluated with two different datasets, Flavia, and Acer. The best accuracy obtained is 94.76% and 82.6% respectively. Experimental results show the effectiveness of the proposed technique without considering the commonly used features with high computational cost.