Sample records for feature selection analysis

  1. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less

  2. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.

    PubMed

    Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés

    2016-07-15

    Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.

  3. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    PubMed

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  4. Non-negative matrix factorization in texture feature for classification of dementia with MRI data

    NASA Astrophysics Data System (ADS)

    Sarwinda, D.; Bustamam, A.; Ardaneswari, G.

    2017-07-01

    This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).

  5. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  6. Quantum-enhanced feature selection with forward selection and backward elimination

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Li, Lvzhou; Huang, Zhiming; Situ, Haozhen

    2018-07-01

    Feature selection is a well-known preprocessing technique in machine learning, which can remove irrelevant features to improve the generalization capability of a classifier and reduce training and inference time. However, feature selection is time-consuming, particularly for the applications those have thousands of features, such as image retrieval, text mining and microarray data analysis. It is crucial to accelerate the feature selection process. We propose a quantum version of wrapper-based feature selection, which converts a classical feature selection to its quantum counterpart. It is valuable for machine learning on quantum computer. In this paper, we focus on two popular kinds of feature selection methods, i.e., wrapper-based forward selection and backward elimination. The proposed feature selection algorithm can quadratically accelerate the classical one.

  7. A Filter Feature Selection Method Based on MFA Score and Redundancy Excluding and It's Application to Tumor Gene Expression Data Analysis.

    PubMed

    Li, Jiangeng; Su, Lei; Pang, Zenan

    2015-12-01

    Feature selection techniques have been widely applied to tumor gene expression data analysis in recent years. A filter feature selection method named marginal Fisher analysis score (MFA score) which is based on graph embedding has been proposed, and it has been widely used mainly because it is superior to Fisher score. Considering the heavy redundancy in gene expression data, we proposed a new filter feature selection technique in this paper. It is named MFA score+ and is based on MFA score and redundancy excluding. We applied it to an artificial dataset and eight tumor gene expression datasets to select important features and then used support vector machine as the classifier to classify the samples. Compared with MFA score, t test and Fisher score, it achieved higher classification accuracy.

  8. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.

  10. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers

    NASA Astrophysics Data System (ADS)

    Weinmann, Martin; Jutzi, Boris; Hinz, Stefan; Mallet, Clément

    2015-07-01

    3D scene analysis in terms of automatically assigning 3D points a respective semantic label has become a topic of great importance in photogrammetry, remote sensing, computer vision and robotics. In this paper, we address the issue of how to increase the distinctiveness of geometric features and select the most relevant ones among these for 3D scene analysis. We present a new, fully automated and versatile framework composed of four components: (i) neighborhood selection, (ii) feature extraction, (iii) feature selection and (iv) classification. For each component, we consider a variety of approaches which allow applicability in terms of simplicity, efficiency and reproducibility, so that end-users can easily apply the different components and do not require expert knowledge in the respective domains. In a detailed evaluation involving 7 neighborhood definitions, 21 geometric features, 7 approaches for feature selection, 10 classifiers and 2 benchmark datasets, we demonstrate that the selection of optimal neighborhoods for individual 3D points significantly improves the results of 3D scene analysis. Additionally, we show that the selection of adequate feature subsets may even further increase the quality of the derived results while significantly reducing both processing time and memory consumption.

  11. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  12. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  13. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    PubMed Central

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  14. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  15. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  16. IMMAN: free software for information theory-based chemometric analysis.

    PubMed

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA supervised algorithms. Graphic representation for Shannon's distribution of MD calculating software.

  17. Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System

    NASA Technical Reports Server (NTRS)

    Penaloza, Mauel A.; Welch, Ronald M.

    1996-01-01

    Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.

  18. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  20. JCDSA: a joint covariate detection tool for survival analysis on tumor expression profiles.

    PubMed

    Wu, Yiming; Liu, Yanan; Wang, Yueming; Shi, Yan; Zhao, Xudong

    2018-05-29

    Survival analysis on tumor expression profiles has always been a key issue for subsequent biological experimental validation. It is crucial how to select features which closely correspond to survival time. Furthermore, it is important how to select features which best discriminate between low-risk and high-risk group of patients. Common features derived from the two aspects may provide variable candidates for prognosis of cancer. Based on the provided two-step feature selection strategy, we develop a joint covariate detection tool for survival analysis on tumor expression profiles. Significant features, which are not only consistent with survival time but also associated with the categories of patients with different survival risks, are chosen. Using the miRNA expression data (Level 3) of 548 patients with glioblastoma multiforme (GBM) as an example, miRNA candidates for prognosis of cancer are selected. The reliability of selected miRNAs using this tool is demonstrated by 100 simulations. Furthermore, It is discovered that significant covariates are not directly composed of individually significant variables. Joint covariate detection provides a viewpoint for selecting variables which are not individually but jointly significant. Besides, it helps to select features which are not only consistent with survival time but also associated with prognosis risk. The software is available at http://bio-nefu.com/resource/jcdsa .

  1. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  2. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  3. Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad

    2017-04-01

    Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

  4. Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution

    PubMed Central

    2013-01-01

    Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459

  5. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  6. Prediction of Protein Modification Sites of Pyrrolidone Carboxylic Acid Using mRMR Feature Selection and Analysis

    PubMed Central

    Zheng, Lu-Lu; Niu, Shen; Hao, Pei; Feng, KaiYan; Cai, Yu-Dong; Li, Yixue

    2011-01-01

    Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations. PMID:22174779

  7. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  8. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  9. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  11. A global optimization approach to multi-polarity sentiment analysis.

    PubMed

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From the results of this comparison, we found that PSOGO-Senti is more suitable for improving a difficult multi-polarity sentiment analysis problem.

  12. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  13. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.

    PubMed

    Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran

    2018-06-15

    Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.

  14. Dimensionality Reduction Through Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  15. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

    USDA-ARS?s Scientific Manuscript database

    The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...

  16. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  17. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  18. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  19. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  20. Simultaneous grouping pursuit and feature selection over an undirected graph*

    PubMed Central

    Zhu, Yunzhang; Shen, Xiaotong; Pan, Wei

    2013-01-01

    Summary In high-dimensional regression, grouping pursuit and feature selection have their own merits while complementing each other in battling the curse of dimensionality. To seek a parsimonious model, we perform simultaneous grouping pursuit and feature selection over an arbitrary undirected graph with each node corresponding to one predictor. When the corresponding nodes are reachable from each other over the graph, regression coefficients can be grouped, whose absolute values are the same or close. This is motivated from gene network analysis, where genes tend to work in groups according to their biological functionalities. Through a nonconvex penalty, we develop a computational strategy and analyze the proposed method. Theoretical analysis indicates that the proposed method reconstructs the oracle estimator, that is, the unbiased least squares estimator given the true grouping, leading to consistent reconstruction of grouping structures and informative features, as well as to optimal parameter estimation. Simulation studies suggest that the method combines the benefit of grouping pursuit with that of feature selection, and compares favorably against its competitors in selection accuracy and predictive performance. An application to eQTL data is used to illustrate the methodology, where a network is incorporated into analysis through an undirected graph. PMID:24098061

  1. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data

    PubMed Central

    2015-01-01

    Background Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial inflammation, using both proteomic and transcriptomic datasets. Results and discussion Our RGIFE heuristic increased the classification accuracies achieved for all datasets when no feature selection is used, and performed well in a comparison with other feature selection methods. Using this method the datasets were reduced to a smaller number of genes or proteins, including those known to be relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large ‘omics’ datasets are increasingly being used in the area of rheumatology. Conclusions Feature reduction methods are advantageous for the analysis of omics data in the field of rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment and drug discovery. PMID:25923811

  2. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  3. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  4. Statistical analysis for validating ACO-KNN algorithm as feature selection in sentiment analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Rohaidah; Yusop, Nurhafizah Moziyana Mohd; Bakar, Azuraliza Abu; Yaakub, Mohd Ridzwan

    2017-10-01

    This research paper aims to propose a hybrid of ant colony optimization (ACO) and k-nearest neighbor (KNN) algorithms as feature selections for selecting and choosing relevant features from customer review datasets. Information gain (IG), genetic algorithm (GA), and rough set attribute reduction (RSAR) were used as baseline algorithms in a performance comparison with the proposed algorithm. This paper will also discuss the significance test, which was used to evaluate the performance differences between the ACO-KNN, IG-GA, and IG-RSAR algorithms. This study evaluated the performance of the ACO-KNN algorithm using precision, recall, and F-score, which were validated using the parametric statistical significance tests. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. In addition, the experimental results have proven that the ACO-KNN can be used as a feature selection technique in sentiment analysis to obtain quality, optimal feature subset that can represent the actual data in customer review data.

  5. Non-specific filtering of beta-distributed data.

    PubMed

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered.

  6. A new approach to modeling the influence of image features on fixation selection in scenes

    PubMed Central

    Nuthmann, Antje; Einhäuser, Wolfgang

    2015-01-01

    Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's unique contribution to fixation selection. To demonstrate this method, we estimated the relative contribution of various image features to fixation selection: luminance and luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to approximate local object density in the scene (higher-level features). An additional predictor captured the central bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the parcellation of the scene and the selection of features can be tailored to the specific research question, our approach allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible manner. PMID:25752239

  7. Foveal analysis and peripheral selection during active visual sampling

    PubMed Central

    Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.

    2014-01-01

    Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588

  8. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  9. Visual Aggregate Analysis of Eligibility Features of Clinical Trials

    PubMed Central

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-01-01

    Objective To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Methods Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. Results We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions “hypertension” and “Type 2 diabetes”, respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. Conclusions We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. PMID:25615940

  10. Visual aggregate analysis of eligibility features of clinical trials.

    PubMed

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-04-01

    To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions "hypertension" and "Type 2 diabetes", respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A comparison of the usefulness of canonical analysis, principal components analysis, and band selection for extraction of features from TMS data for landcover analysis

    NASA Technical Reports Server (NTRS)

    Boyd, R. K.; Brumfield, J. O.; Campbell, W. J.

    1984-01-01

    Three feature extraction methods, canonical analysis (CA), principal component analysis (PCA), and band selection, have been applied to Thematic Mapper Simulator (TMS) data in order to evaluate the relative performance of the methods. The results obtained show that CA is capable of providing a transformation of TMS data which leads to better classification results than provided by all seven bands, by PCA, or by band selection. A second conclusion drawn from the study is that TMS bands 2, 3, 4, and 7 (thermal) are most important for landcover classification.

  12. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  13. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  14. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  15. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity.

    PubMed

    Sun, Lei; Wang, Jun; Wei, Jinmao

    2017-03-14

    The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based feature selection approaches are simple and effective in evaluating individual features. However, these approaches may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between features, which is essential in machine learning. In this paper, we propose to assess feature complementarity by a trick of measuring the distances between the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features with highest complementarities. The experimental results on a broad range of microarray data sets validate that the classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small amount of significant features. Compared with other ROC-based feature selection approaches, our new approach can select fewer features and effectively improve the classification performance.

  16. Derivation of an artificial gene to improve classification accuracy upon gene selection.

    PubMed

    Seo, Minseok; Oh, Sejong

    2012-02-01

    Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The limb movement analysis of rehabilitation exercises using wearable inertial sensors.

    PubMed

    Bingquan Huang; Giggins, Oonagh; Kechadi, Tahar; Caulfield, Brian

    2016-08-01

    Due to no supervision of a therapist in home based exercise programs, inertial sensor based feedback systems which can accurately assess movement repetitions are urgently required. The synchronicity and the degrees of freedom both show that one movement might resemble another movement signal which is mixed in with another not precisely defined movement. Therefore, the data and feature selections are important for movement analysis. This paper explores the data and feature selection for the limb movement analysis of rehabilitation exercises. The results highlight that the classification accuracy is very sensitive to the mount location of the sensors. The results show that the use of 2 or 3 sensor units, the combination of acceleration and gyroscope data, and the feature sets combined by the statistical feature set with another type of feature, can significantly improve the classification accuracy rates. The results illustrate that acceleration data is more effective than gyroscope data for most of the movement analysis.

  18. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  19. Text Classification for Assisting Moderators in Online Health Communities

    PubMed Central

    Huh, Jina; Yetisgen-Yildiz, Meliha; Pratt, Wanda

    2013-01-01

    Objectives Patients increasingly visit online health communities to get help on managing health. The large scale of these online communities makes it impossible for the moderators to engage in all conversations; yet, some conversations need their expertise. Our work explores low-cost text classification methods to this new domain of determining whether a thread in an online health forum needs moderators’ help. Methods We employed a binary classifier on WebMD’s online diabetes community data. To train the classifier, we considered three feature types: (1) word unigram, (2) sentiment analysis features, and (3) thread length. We applied feature selection methods based on χ2 statistics and under sampling to account for unbalanced data. We then performed a qualitative error analysis to investigate the appropriateness of the gold standard. Results Using sentiment analysis features, feature selection methods, and balanced training data increased the AUC value up to 0.75 and the F1-score up to 0.54 compared to the baseline of using word unigrams with no feature selection methods on unbalanced data (0.65 AUC and 0.40 F1-score). The error analysis uncovered additional reasons for why moderators respond to patients’ posts. Discussion We showed how feature selection methods and balanced training data can improve the overall classification performance. We present implications of weighing precision versus recall for assisting moderators of online health communities. Our error analysis uncovered social, legal, and ethical issues around addressing community members’ needs. We also note challenges in producing a gold standard, and discuss potential solutions for addressing these challenges. Conclusion Social media environments provide popular venues in which patients gain health-related information. Our work contributes to understanding scalable solutions for providing moderators’ expertise in these large-scale, social media environments. PMID:24025513

  20. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    NASA Astrophysics Data System (ADS)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  1. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  2. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. News video story segmentation method using fusion of audio-visual features

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang

    2007-11-01

    News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.

  4. Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease.

    PubMed

    Vivekanandan, T; Sriman Narayana Iyengar, N Ch

    2017-11-01

    Enormous data growth in multiple domains has posed a great challenge for data processing and analysis techniques. In particular, the traditional record maintenance strategy has been replaced in the healthcare system. It is vital to develop a model that is able to handle the huge amount of e-healthcare data efficiently. In this paper, the challenging tasks of selecting critical features from the enormous set of available features and diagnosing heart disease are carried out. Feature selection is one of the most widely used pre-processing steps in classification problems. A modified differential evolution (DE) algorithm is used to perform feature selection for cardiovascular disease and optimization of selected features. Of the 10 available strategies for the traditional DE algorithm, the seventh strategy, which is represented by DE/rand/2/exp, is considered for comparative study. The performance analysis of the developed modified DE strategy is given in this paper. With the selected critical features, prediction of heart disease is carried out using fuzzy AHP and a feed-forward neural network. Various performance measures of integrating the modified differential evolution algorithm with fuzzy AHP and a feed-forward neural network in the prediction of heart disease are evaluated in this paper. The accuracy of the proposed hybrid model is 83%, which is higher than that of some other existing models. In addition, the prediction time of the proposed hybrid model is also evaluated and has shown promising results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cluster analysis based on dimensional information with applications to feature selection and classification

    NASA Technical Reports Server (NTRS)

    Eigen, D. J.; Fromm, F. R.; Northouse, R. A.

    1974-01-01

    A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.

  6. Ordinal feature selection for iris and palmprint recognition.

    PubMed

    Sun, Zhenan; Wang, Libin; Tan, Tieniu

    2014-09-01

    Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.

  7. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Selective heart rate variability analysis to account for uterine activity during labor and improve classification of fetal distress.

    PubMed

    Warmerdam, G J J; Vullings, R; Van Laar, J O E H; Van der Hout-Van der Jagt, M B; Bergmans, J W M; Schmitt, L; Oei, S G

    2016-08-01

    Cardiotocography (CTG) is currently the most often used technique for detection of fetal distress. Unfortunately, CTG has a poor specificity. Recent studies suggest that, in addition to CTG, information on fetal distress can be obtained from analysis of fetal heart rate variability (HRV). However, uterine contractions can strongly influence fetal HRV. The aim of this study is therefore to investigate whether HRV analysis for detection of fetal distress can be improved by distinguishing contractions from rest periods. Our results from feature selection indicate that HRV features calculated separately during contractions or during rest periods are more informative on fetal distress than HRV features that are calculated over the entire fetal heart rate. Furthermore, classification performance improved from a geometric mean of 69.0% to 79.6% when including the contraction-dependent HRV features, in addition to HRV features calculated over the entire fetal heart rate.

  9. Sparse Zero-Sum Games as Stable Functional Feature Selection

    PubMed Central

    Sokolovska, Nataliya; Teytaud, Olivier; Rizkalla, Salwa; Clément, Karine; Zucker, Jean-Daniel

    2015-01-01

    In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints. PMID:26325268

  10. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  12. A comparative analysis of swarm intelligence techniques for feature selection in cancer classification.

    PubMed

    Gunavathi, Chellamuthu; Premalatha, Kandasamy

    2014-01-01

    Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative genes from thousands of genes of the microarray. The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF, the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied on 10 different benchmark datasets and examined with SI techniques. The experimental results show that the results obtained from k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.

  13. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  14. Mammogram classification scheme using 2D-discrete wavelet and local binary pattern for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Adi Putra, Januar

    2018-04-01

    In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.

  15. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  16. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  18. Sex determination based on a thoracic vertebra and ribs evaluation using clinical chest radiography.

    PubMed

    Tsubaki, Shun; Morishita, Junji; Usumoto, Yosuke; Sakaguchi, Kyoko; Matsunobu, Yusuke; Kawazoe, Yusuke; Okumura, Miki; Ikeda, Noriaki

    2017-07-01

    Our aim was to investigate whether sex can be determined from a combination of geometric features obtained from the 10th thoracic vertebra, 6th rib, and 7th rib. Six hundred chest radiographs (300 males and 300 females) were randomly selected to include patients of six age groups (20s, 30s, 40s, 50s, 60s, and 70s). Each group included 100 images (50 males and 50 females). A total of 14 features, including 7 lengths, 5 indices for the vertebra, and 2 types of widths for ribs, were utilized and analyzed for sex determination. Dominant features contributing to sex determination were selected by stepwise discriminant analysis after checking the variance inflation factors for multicollinearity. The accuracy of sex determination using a combination of the vertebra and ribs was evaluated from the selected features by the stepwise discriminant analysis. The accuracies in each age group were also evaluated in this study. The accuracy of sex determination based on a combination of features of the vertebra and ribs was 88.8% (533/600). This performance was superior to that of the vertebra or ribs only. Moreover, sex determination of subjects in their 20s demonstrated the highest accuracy (96.0%, 96/100). The features selected in the stepwise discriminant analysis included some features in both the vertebra and ribs. These results indicate the usefulness of combined information obtained from the vertebra and ribs for sex determination. We conclude that a combination of geometric characteristics obtained from the vertebra and ribs could be useful for determining sex. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Study of a Vocal Feature Selection Method and Vocal Properties for Discriminating Four Constitution Types

    PubMed Central

    Kim, Keun Ho; Ku, Boncho; Kang, Namsik; Kim, Young-Su; Jang, Jun-Su; Kim, Jong Yeol

    2012-01-01

    The voice has been used to classify the four constitution types, and to recognize a subject's health condition by extracting meaningful physical quantities, in traditional Korean medicine. In this paper, we propose a method of selecting the reliable variables from various voice features, such as frequency derivative features, frequency band ratios, and intensity, from vowels and a sentence. Further, we suggest a process to extract independent variables by eliminating explanatory variables and reducing their correlation and remove outlying data to enable reliable discriminant analysis. Moreover, the suitable division of data for analysis, according to the gender and age of subjects, is discussed. Finally, the vocal features are applied to a discriminant analysis to classify each constitution type. This method of voice classification can be widely used in the u-Healthcare system of personalized medicine and for improving diagnostic accuracy. PMID:22529874

  20. The Emotion Recognition System Based on Autoregressive Model and Sequential Forward Feature Selection of Electroencephalogram Signals

    PubMed Central

    Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie

    2014-01-01

    Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928

  1. Using multiscale texture and density features for near-term breast cancer risk analysis

    PubMed Central

    Sun, Wenqing; Tseng, Tzu-Liang (Bill); Qian, Wei; Zhang, Jianying; Saltzstein, Edward C.; Zheng, Bin; Lure, Fleming; Yu, Hui; Zhou, Shi

    2015-01-01

    Purpose: To help improve efficacy of screening mammography by eventually establishing a new optimal personalized screening paradigm, the authors investigated the potential of using the quantitative multiscale texture and density feature analysis of digital mammograms to predict near-term breast cancer risk. Methods: The authors’ dataset includes digital mammograms acquired from 340 women. Among them, 141 were positive and 199 were negative/benign cases. The negative digital mammograms acquired from the “prior” screening examinations were used in the study. Based on the intensity value distributions, five subregions at different scales were extracted from each mammogram. Five groups of features, including density and texture features, were developed and calculated on every one of the subregions. Sequential forward floating selection was used to search for the effective combinations. Using the selected features, a support vector machine (SVM) was optimized using a tenfold validation method to predict the risk of each woman having image-detectable cancer in the next sequential mammography screening. The area under the receiver operating characteristic curve (AUC) was used as the performance assessment index. Results: From a total number of 765 features computed from multiscale subregions, an optimal feature set of 12 features was selected. Applying this feature set, a SVM classifier yielded performance of AUC = 0.729 ± 0.021. The positive predictive value was 0.657 (92 of 140) and the negative predictive value was 0.755 (151 of 200). Conclusions: The study results demonstrated a moderately high positive association between risk prediction scores generated by the quantitative multiscale mammographic image feature analysis and the actual risk of a woman having an image-detectable breast cancer in the next subsequent examinations. PMID:26127038

  2. Predictive analysis effectiveness in determining the epidemic disease infected area

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najihah; Akhir, Nur Shazwani Md.; Hassan, Fadratul Hafinaz

    2017-10-01

    Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area. Backpropagation method was used for the counter measure and prediction analysis of the epidemic disease. The predictive analysis based on the backpropagation method can be determine via machine learning process that promotes the artificial intelligent in pattern recognition, statistics and features selection. This computational learning process will be integrated with data mining by measuring the score output as the classifier to the given set of input features through classification technique. The classification technique is the features selection of the disease dissemination factors that likely have strong interconnection between each other in causing infectious disease outbreaks. The predictive analysis of epidemic disease in determining the infected area was introduced in this preliminary study by using the backpropagation method in observation of other's findings. This study will classify the epidemic disease dissemination factors as the features for weight adjustment on the prediction of epidemic disease outbreaks. Through this preliminary study, the predictive analysis is proven to be effective method in determining the epidemic disease infected area by minimizing the error value through the features classification.

  3. Detrended fluctuation analysis for major depressive disorder.

    PubMed

    Mumtaz, Wajid; Malik, Aamir Saeed; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Amin, Hafeezullah

    2015-01-01

    Clinical utility of Electroencephalography (EEG) based diagnostic studies is less clear for major depressive disorder (MDD). In this paper, a novel machine learning (ML) scheme was presented to discriminate the MDD patients and healthy controls. The proposed method inherently involved feature extraction, selection, classification and validation. The EEG data acquisition involved eyes closed (EC) and eyes open (EO) conditions. At feature extraction stage, the de-trended fluctuation analysis (DFA) was performed, based on the EEG data, to achieve scaling exponents. The DFA was performed to analyzes the presence or absence of long-range temporal correlations (LRTC) in the recorded EEG data. The scaling exponents were used as input features to our proposed system. At feature selection stage, 3 different techniques were used for comparison purposes. Logistic regression (LR) classifier was employed. The method was validated by a 10-fold cross-validation. As results, we have observed that the effect of 3 different reference montages on the computed features. The proposed method employed 3 different types of feature selection techniques for comparison purposes as well. The results show that the DFA analysis performed better in LE data compared with the IR and AR data. In addition, during Wilcoxon ranking, the AR performed better than LE and IR. Based on the results, it was concluded that the DFA provided useful information to discriminate the MDD patients and with further validation can be employed in clinics for diagnosis of MDD.

  4. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  5. Effective Feature Selection for Classification of Promoter Sequences.

    PubMed

    K, Kouser; P G, Lavanya; Rangarajan, Lalitha; K, Acharya Kshitish

    2016-01-01

    Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  6. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.

    PubMed

    Gao, JianZhao; Tao, Xue-Wen; Zhao, Jia; Feng, Yuan-Ming; Cai, Yu-Dong; Zhang, Ning

    2017-01-01

    Lysine acetylation, as one type of post-translational modifications (PTM), plays key roles in cellular regulations and can be involved in a variety of human diseases. However, it is often high-cost and time-consuming to use traditional experimental approaches to identify the lysine acetylation sites. Therefore, effective computational methods should be developed to predict the acetylation sites. In this study, we developed a position-specific method for epsilon lysine acetylation site prediction. Sequences of acetylated proteins were retrieved from the UniProt database. Various kinds of features such as position specific scoring matrix (PSSM), amino acid factors (AAF), and disorders were incorporated. A feature selection method based on mRMR (Maximum Relevance Minimum Redundancy) and IFS (Incremental Feature Selection) was employed. Finally, 319 optimal features were selected from total 541 features. Using the 319 optimal features to encode peptides, a predictor was constructed based on dagging. As a result, an accuracy of 69.56% with MCC of 0.2792 was achieved. We analyzed the optimal features, which suggested some important factors determining the lysine acetylation sites. We developed a position-specific method for epsilon lysine acetylation site prediction. A set of optimal features was selected. Analysis of the optimal features provided insights into the mechanism of lysine acetylation sites, providing guidance of experimental validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Discriminative analysis of lip motion features for speaker identification and speech-reading.

    PubMed

    Cetingül, H Ertan; Yemez, Yücel; Erzin, Engin; Tekalp, A Murat

    2006-10-01

    There have been several studies that jointly use audio, lip intensity, and lip geometry information for speaker identification and speech-reading applications. This paper proposes using explicit lip motion information, instead of or in addition to lip intensity and/or geometry information, for speaker identification and speech-reading within a unified feature selection and discrimination analysis framework, and addresses two important issues: 1) Is using explicit lip motion information useful, and, 2) if so, what are the best lip motion features for these two applications? The best lip motion features for speaker identification are considered to be those that result in the highest discrimination of individual speakers in a population, whereas for speech-reading, the best features are those providing the highest phoneme/word/phrase recognition rate. Several lip motion feature candidates have been considered including dense motion features within a bounding box about the lip, lip contour motion features, and combination of these with lip shape features. Furthermore, a novel two-stage, spatial, and temporal discrimination analysis is introduced to select the best lip motion features for speaker identification and speech-reading applications. Experimental results using an hidden-Markov-model-based recognition system indicate that using explicit lip motion information provides additional performance gains in both applications, and lip motion features prove more valuable in the case of speech-reading application.

  8. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.

    PubMed

    Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang

    2013-01-27

    Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.

  9. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak.

    PubMed

    Donoho, David; Jin, Jiashun

    2008-09-30

    In important application fields today-genomics and proteomics are examples-selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, ..., p, let pi(i) denote the two-sided P-value associated with the ith feature Z-score and pi((i)) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p - pi((i)))/sqrt{i/p(1-i/p)}. We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT.

  10. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak

    PubMed Central

    Donoho, David; Jin, Jiashun

    2008-01-01

    In important application fields today—genomics and proteomics are examples—selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, …, p, let πi denote the two-sided P-value associated with the ith feature Z-score and π(i) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p − π(i))/i/p(1−i/p). We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT. PMID:18815365

  11. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image

    NASA Astrophysics Data System (ADS)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI

    2017-01-01

    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  12. Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation.

    PubMed

    Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S

    2017-10-01

    The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A bootstrap based Neyman-Pearson test for identifying variable importance.

    PubMed

    Ditzler, Gregory; Polikar, Robi; Rosen, Gail

    2015-04-01

    Selection of most informative features that leads to a small loss on future data are arguably one of the most important steps in classification, data analysis and model selection. Several feature selection (FS) algorithms are available; however, due to noise present in any data set, FS algorithms are typically accompanied by an appropriate cross-validation scheme. In this brief, we propose a statistical hypothesis test derived from the Neyman-Pearson lemma for determining if a feature is statistically relevant. The proposed approach can be applied as a wrapper to any FS algorithm, regardless of the FS criteria used by that algorithm, to determine whether a feature belongs in the relevant set. Perhaps more importantly, this procedure efficiently determines the number of relevant features given an initial starting point. We provide freely available software implementations of the proposed methodology.

  14. MRM-Lasso: A Sparse Multiview Feature Selection Method via Low-Rank Analysis.

    PubMed

    Yang, Wanqi; Gao, Yang; Shi, Yinghuan; Cao, Longbing

    2015-11-01

    Learning about multiview data involves many applications, such as video understanding, image classification, and social media. However, when the data dimension increases dramatically, it is important but very challenging to remove redundant features in multiview feature selection. In this paper, we propose a novel feature selection algorithm, multiview rank minimization-based Lasso (MRM-Lasso), which jointly utilizes Lasso for sparse feature selection and rank minimization for learning relevant patterns across views. Instead of simply integrating multiple Lasso from view level, we focus on the performance of sample-level (sample significance) and introduce pattern-specific weights into MRM-Lasso. The weights are utilized to measure the contribution of each sample to the labels in the current view. In addition, the latent correlation across different views is successfully captured by learning a low-rank matrix consisting of pattern-specific weights. The alternating direction method of multipliers is applied to optimize the proposed MRM-Lasso. Experiments on four real-life data sets show that features selected by MRM-Lasso have better multiview classification performance than the baselines. Moreover, pattern-specific weights are demonstrated to be significant for learning about multiview data, compared with view-specific weights.

  15. Effect of finite sample size on feature selection and classification: a simulation study.

    PubMed

    Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping

    2010-02-01

    The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.

  16. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  17. GAFFE: a gaze-attentive fixation finding engine.

    PubMed

    Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K

    2008-04-01

    The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.

  18. Discrimination of inflammatory bowel disease using Raman spectroscopy and linear discriminant analysis methods

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong

    2016-03-01

    Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.

  19. Feature extraction through parallel Probabilistic Principal Component Analysis for heart disease diagnosis

    NASA Astrophysics Data System (ADS)

    Shah, Syed Muhammad Saqlain; Batool, Safeera; Khan, Imran; Ashraf, Muhammad Usman; Abbas, Syed Hussnain; Hussain, Syed Adnan

    2017-09-01

    Automatic diagnosis of human diseases are mostly achieved through decision support systems. The performance of these systems is mainly dependent on the selection of the most relevant features. This becomes harder when the dataset contains missing values for the different features. Probabilistic Principal Component Analysis (PPCA) has reputation to deal with the problem of missing values of attributes. This research presents a methodology which uses the results of medical tests as input, extracts a reduced dimensional feature subset and provides diagnosis of heart disease. The proposed methodology extracts high impact features in new projection by using Probabilistic Principal Component Analysis (PPCA). PPCA extracts projection vectors which contribute in highest covariance and these projection vectors are used to reduce feature dimension. The selection of projection vectors is done through Parallel Analysis (PA). The feature subset with the reduced dimension is provided to radial basis function (RBF) kernel based Support Vector Machines (SVM). The RBF based SVM serves the purpose of classification into two categories i.e., Heart Patient (HP) and Normal Subject (NS). The proposed methodology is evaluated through accuracy, specificity and sensitivity over the three datasets of UCI i.e., Cleveland, Switzerland and Hungarian. The statistical results achieved through the proposed technique are presented in comparison to the existing research showing its impact. The proposed technique achieved an accuracy of 82.18%, 85.82% and 91.30% for Cleveland, Hungarian and Switzerland dataset respectively.

  20. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Initial development of a computer-aided diagnosis tool for solitary pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Catarious, David M., Jr.; Baydush, Alan H.; Floyd, Carey E., Jr.

    2001-07-01

    This paper describes the development of a computer-aided diagnosis (CAD) tool for solitary pulmonary nodules. This CAD tool is built upon physically meaningful features that were selected because of their relevance to shape and texture. These features included a modified version of the Hotelling statistic (HS), a channelized HS, three measures of fractal properties, two measures of spicularity, and three manually measured shape features. These features were measured from a difficult database consisting of 237 regions of interest (ROIs) extracted from digitized chest radiographs. The center of each 256x256 pixel ROI contained a suspicious lesion which was sent to follow-up by a radiologist and whose nature was later clinically determined. Linear discriminant analysis (LDA) was used to search the feature space via sequential forward search using percentage correct as the performance metric. An optimized feature subset, selected for the highest accuracy, was then fed into a three layer artificial neural network (ANN). The ANN's performance was assessed by receiver operating characteristic (ROC) analysis. A leave-one-out testing/training methodology was employed for the ROC analysis. The performance of this system is competitive with that of three radiologists on the same database.

  2. Application of texture analysis method for mammogram density classification

    NASA Astrophysics Data System (ADS)

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  3. Automated texture-based identification of ovarian cancer in confocal microendoscope images

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.

    2005-03-01

    The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.

  4. An Ensemble Method with Integration of Feature Selection and Classifier Selection to Detect the Landslides

    NASA Astrophysics Data System (ADS)

    Zhongqin, G.; Chen, Y.

    2017-12-01

    Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.

  5. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  6. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    PubMed Central

    Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen

    2018-01-01

    The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737

  7. Feature selection from a facial image for distinction of sasang constitution.

    PubMed

    Koo, Imhoi; Kim, Jong Yeol; Kim, Myoung Geun; Kim, Keun Ho

    2009-09-01

    Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here.

  8. Feature Selection from a Facial Image for Distinction of Sasang Constitution

    PubMed Central

    Koo, Imhoi; Kim, Jong Yeol; Kim, Myoung Geun

    2009-01-01

    Recently, oriental medicine has received attention for providing personalized medicine through consideration of the unique nature and constitution of individual patients. With the eventual goal of globalization, the current trend in oriental medicine research is the standardization by adopting western scientific methods, which could represent a scientific revolution. The purpose of this study is to establish methods for finding statistically significant features in a facial image with respect to distinguishing constitution and to show the meaning of those features. From facial photo images, facial elements are analyzed in terms of the distance, angle and the distance ratios, for which there are 1225, 61 250 and 749 700 features, respectively. Due to the very large number of facial features, it is quite difficult to determine truly meaningful features. We suggest a process for the efficient analysis of facial features including the removal of outliers, control for missing data to guarantee data confidence and calculation of statistical significance by applying ANOVA. We show the statistical properties of selected features according to different constitutions using the nine distances, 10 angles and 10 rates of distance features that are finally established. Additionally, the Sasang constitutional meaning of the selected features is shown here. PMID:19745013

  9. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model

    PubMed Central

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    Purpose: Improving radiologists’ performance in classification between malignant and benign breast lesions is important to increase cancer detection sensitivity and reduce false-positive recalls. For this purpose, developing computer-aided diagnosis (CAD) schemes has been attracting research interest in recent years. In this study, we investigated a new feature selection method for the task of breast mass classification. Methods: We initially computed 181 image features based on mass shape, spiculation, contrast, presence of fat or calcifications, texture, isodensity, and other morphological features. From this large image feature pool, we used a sequential forward floating selection (SFFS)-based feature selection method to select relevant features, and analyzed their performance using a support vector machine (SVM) model trained for the classification task. On a database of 600 benign and 600 malignant mass regions of interest (ROIs), we performed the study using a ten-fold cross-validation method. Feature selection and optimization of the SVM parameters were conducted on the training subsets only. Results: The area under the receiver operating characteristic curve (AUC) = 0.805±0.012 was obtained for the classification task. The results also showed that the most frequently-selected features by the SFFS-based algorithm in 10-fold iterations were those related to mass shape, isodensity and presence of fat, which are consistent with the image features frequently used by radiologists in the clinical environment for mass classification. The study also indicated that accurately computing mass spiculation features from the projection mammograms was difficult, and failed to perform well for the mass classification task due to tissue overlap within the benign mass regions. Conclusions: In conclusion, this comprehensive feature analysis study provided new and valuable information for optimizing computerized mass classification schemes that may have potential to be useful as a “second reader” in future clinical practice. PMID:24664267

  10. Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.

    PubMed

    Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M

    2015-08-01

    We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.

  11. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  12. An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques

    PubMed Central

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.

    2013-01-01

    Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398

  13. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  14. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  15. A Novel Feature Selection Technique for Text Classification Using Naïve Bayes.

    PubMed

    Dey Sarkar, Subhajit; Goswami, Saptarsi; Agarwal, Aman; Aktar, Javed

    2014-01-01

    With the proliferation of unstructured data, text classification or text categorization has found many applications in topic classification, sentiment analysis, authorship identification, spam detection, and so on. There are many classification algorithms available. Naïve Bayes remains one of the oldest and most popular classifiers. On one hand, implementation of naïve Bayes is simple and, on the other hand, this also requires fewer amounts of training data. From the literature review, it is found that naïve Bayes performs poorly compared to other classifiers in text classification. As a result, this makes the naïve Bayes classifier unusable in spite of the simplicity and intuitiveness of the model. In this paper, we propose a two-step feature selection method based on firstly a univariate feature selection and then feature clustering, where we use the univariate feature selection method to reduce the search space and then apply clustering to select relatively independent feature sets. We demonstrate the effectiveness of our method by a thorough evaluation and comparison over 13 datasets. The performance improvement thus achieved makes naïve Bayes comparable or superior to other classifiers. The proposed algorithm is shown to outperform other traditional methods like greedy search based wrapper or CFS.

  16. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhun, E-mail: leej15@upmc.edu; Nishikawa, Robert M.; Reiser, Ingrid

    2015-09-15

    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimalmore » feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C{sub T}) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C{sub T} yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C{sub T} were conducted. The results showed that C{sub T} was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure contains useful information in classifying breast tumors. Using this, one can reduce the number of features in a classifier, which may result in more robust classifiers for different datasets.« less

  17. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  18. Cancer Biomarkers from Genome-Scale DNA Methylation: Comparison of Evolutionary and Semantic Analysis Methods

    PubMed Central

    Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis

    2015-01-01

    DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245

  19. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  20. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    PubMed

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  1. Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

    USGS Publications Warehouse

    Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.

    2010-01-01

    Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions. ?? 2010 Elsevier B.V.

  2. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    NASA Astrophysics Data System (ADS)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  3. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells.

    PubMed

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  4. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    PubMed

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  5. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  6. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review.

    PubMed

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An

    2015-01-01

    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  7. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    PubMed

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  9. On-Line Pattern Analysis and Recognition System. OLPARS VI. Software Reference Manual,

    DTIC Science & Technology

    1982-06-18

    Discriminant Analysis Data Transformation, Feature Extraction, Feature Evaluation Cluster Analysis, Classification Computer Software 20Z. ABSTRACT... cluster /scatter cut-off value, (2) change the one-space bin factor, (3) change from long prompts to short prompts or vice versa, (4) change the...value, a cluster plot is displayed, otherwise a scatter plot is shown. if option 1 is selected, the program requests that a new value be input

  10. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less

  11. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  12. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  13. ELT Research in Turkey: A Content Analysis of Selected Features of Published Articles

    ERIC Educational Resources Information Center

    Yagiz, Oktay; Aydin, Burcu; Akdemir, Ahmet Selçuk

    2016-01-01

    This study reviews a selected sample of 274 research articles on ELT, published between 2005 and 2015 in Turkish contexts. In the study, 15 journals in ULAKBIM database and articles from national and international journals accessed according to convenience sampling method were surveyed and relevant articles were obtained. A content analysis was…

  14. Analysis of microarray leukemia data using an efficient MapReduce-based K-nearest-neighbor classifier.

    PubMed

    Kumar, Mukesh; Rath, Nitish Kumar; Rath, Santanu Kumar

    2016-04-01

    Microarray-based gene expression profiling has emerged as an efficient technique for classification, prognosis, diagnosis, and treatment of cancer. Frequent changes in the behavior of this disease generates an enormous volume of data. Microarray data satisfies both the veracity and velocity properties of big data, as it keeps changing with time. Therefore, the analysis of microarray datasets in a small amount of time is essential. They often contain a large amount of expression, but only a fraction of it comprises genes that are significantly expressed. The precise identification of genes of interest that are responsible for causing cancer are imperative in microarray data analysis. Most existing schemes employ a two-phase process such as feature selection/extraction followed by classification. In this paper, various statistical methods (tests) based on MapReduce are proposed for selecting relevant features. After feature selection, a MapReduce-based K-nearest neighbor (mrKNN) classifier is also employed to classify microarray data. These algorithms are successfully implemented in a Hadoop framework. A comparative analysis is done on these MapReduce-based models using microarray datasets of various dimensions. From the obtained results, it is observed that these models consume much less execution time than conventional models in processing big data. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems.

    PubMed

    Thomas, Minta; De Brabanter, Kris; De Moor, Bart

    2014-05-10

    DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

  16. The use of multidate multichannel radiance data in urban feature analysis

    NASA Technical Reports Server (NTRS)

    Duggin, M. J.; Rowntree, R.; Emmons, M.; Hubbard, N.; Odell, A. W.

    1986-01-01

    Two images were obtained from thematic mappers on Landsats 4 and 5 over the Washington, DC area during November 1982 and March 1984. Selected training areas containing different types of urban land use were examined,one area consisting entirely of forest. Mean digital radiance values for each bandpass in each image were examined, and variances, standard deviations, and covariances between bandpasses were calculated. It has been found that two bandpasses caused forested areas to stand out from other land use types, especially for the November 1982 image. In order to evaluate quantitatively the possible utility of the principal components analysis in selected feature extraction, the eigenvectors were evaluated for principal axes rotations which rendered each selected land use type most separable from all other land use types. The evaluated eigenvectors were plotted as a function of land use type, whose order was decided by considering anticipated shadow component and by examining the relative loadings indicative of vegetation for each of the principal components for the different features considered. The analysis was performed for each seven-band image separately and for the two combined images. It was found that by combining the two images, more dramatic land use type separation could be obtained.

  17. Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.

    PubMed

    Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa

    2017-03-01

    Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.

  18. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  19. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  20. Quantitative analysis of arterial flow properties for detection of non-calcified plaques in ECG-gated coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella

    2015-03-01

    We are developing a computer-aided detection system to assist radiologists in detection of non-calcified plaques (NCPs) in coronary CT angiograms (cCTA). In this study, we performed quantitative analysis of arterial flow properties in each vessel branch and extracted flow information to differentiate the presence and absence of stenosis in a vessel segment. Under rest conditions, blood flow in a single vessel branch was assumed to follow Poiseuille's law. For a uniform pressure distribution, two quantitative flow features, the normalized arterial compliance per unit length (Cu) and the normalized volumetric flow (Q) along the vessel centerline, were calculated based on the parabolic Poiseuille solution. The flow features were evaluated for a two-class classification task to differentiate NCP candidates obtained by prescreening as true NCPs and false positives (FPs) in cCTA. For evaluation, a data set of 83 cCTA scans was retrospectively collected from 83 patient files with IRB approval. A total of 118 NCPs were identified by experienced cardiothoracic radiologists. The correlation between the two flow features was 0.32. The discriminatory ability of the flow features evaluated as the area under the ROC curve (AUC) was 0.65 for Cu and 0.63 for Q in comparison with AUCs of 0.56-0.69 from our previous luminal features. With stepwise LDA feature selection, volumetric flow (Q) was selected in addition to three other luminal features. With FROC analysis, the test results indicated a reduction of the FP rates to 3.14, 1.98, and 1.32 FPs/scan at sensitivities of 90%, 80%, and 70%, respectively. The study indicated that quantitative blood flow analysis has the potential to provide useful features for the detection of NCPs in cCTA.

  1. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.

    PubMed

    Zhao, Xiaowei; Li, Xiangtao; Ma, Zhiqiang; Yin, Minghao

    2011-01-01

    Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the proposed method, 468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were encoded into feature vectors by using four kinds of protein sequences information. An effective feature selection method was then applied to extract informative feature subsets. After different feature subsets were obtained by setting different starting points in the search procedure, they were used to train multiple random forests classifiers and then aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and independent tests respectively, the accuracy of the proposed predictor reached 76.82% for the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was performed and it was shown that ubiquitylation is intimately correlated with the features of its surrounding sites in addition to features derived from the lysine site itself. The feature selection method is available upon request.

  2. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  3. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  4. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier.

    PubMed

    Desbordes, Paul; Ruan, Su; Modzelewski, Romain; Pineau, Pascal; Vauclin, Sébastien; Gouel, Pierrick; Michel, Pierre; Di Fiore, Frédéric; Vera, Pierre; Gardin, Isabelle

    2017-01-01

    In oncology, texture features extracted from positron emission tomography with 18-fluorodeoxyglucose images (FDG-PET) are of increasing interest for predictive and prognostic studies, leading to several tens of features per tumor. To select the best features, the use of a random forest (RF) classifier was investigated. Sixty-five patients with an esophageal cancer treated with a combined chemo-radiation therapy were retrospectively included. All patients underwent a pretreatment whole-body FDG-PET. The patients were followed for 3 years after the end of the treatment. The response assessment was performed 1 month after the end of the therapy. Patients were classified as complete responders and non-complete responders. Sixty-one features were extracted from medical records and PET images. First, Spearman's analysis was performed to eliminate correlated features. Then, the best predictive and prognostic subsets of features were selected using a RF algorithm. These results were compared to those obtained by a Mann-Whitney U test (predictive study) and a univariate Kaplan-Meier analysis (prognostic study). Among the 61 initial features, 28 were not correlated. From these 28 features, the best subset of complementary features found using the RF classifier to predict response was composed of 2 features: metabolic tumor volume (MTV) and homogeneity from the co-occurrence matrix. The corresponding predictive value (AUC = 0.836 ± 0.105, Se = 82 ± 9%, Sp = 91 ± 12%) was higher than the best predictive results found using the Mann-Whitney test: busyness from the gray level difference matrix (P < 0.0001, AUC = 0.810, Se = 66%, Sp = 88%). The best prognostic subset found using RF was composed of 3 features: MTV and 2 clinical features (WHO status and nutritional risk index) (AUC = 0.822 ± 0.059, Se = 79 ± 9%, Sp = 95 ± 6%), while no feature was significantly prognostic according to the Kaplan-Meier analysis. The RF classifier can improve predictive and prognostic values compared to the Mann-Whitney U test and the univariate Kaplan-Meier survival analysis when applied to several tens of features in a limited patient database.

  5. Enhancing the Early Reading Skills: Examining the Print Features of Preschool Children's Book

    ERIC Educational Resources Information Center

    Cetin, Ozlem Simsek; Bay, Neslihan

    2015-01-01

    The purpose of this study is to examine the uses of print features in preschool children's books in the US and Turkey, in order to helping adults to understand print features and supporting children's print awareness. In this context, two hundred children's books was randomly selected from the US and Turkey. Document analysis was used for…

  6. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  7. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences.

    PubMed

    Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning

    2018-03-08

    Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.

  8. Experiments on automatic classification of tissue malignancy in the field of digital pathology

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Barata, R.; Furtado, Pedro

    2017-06-01

    Automated analysis of histological images helps diagnose and further classify breast cancer. Totally automated approaches can be used to pinpoint images for further analysis by the medical doctor. But tissue images are especially challenging for either manual or automated approaches, due to mixed patterns and textures, where malignant regions are sometimes difficult to detect unless they are in very advanced stages. Some of the major challenges are related to irregular and very diffuse patterns, as well as difficulty to define winning features and classifier models. Although it is also hard to segment correctly into regions, due to the diffuse nature, it is still crucial to take low-level features over individualized regions instead of the whole image, and to select those with the best outcomes. In this paper we report on our experiments building a region classifier with a simple subspace division and a feature selection model that improves results over image-wide and/or limited feature sets. Experimental results show modest accuracy for a set of classifiers applied over the whole image, while the conjunction of image division, per-region low-level extraction of features and selection of features, together with the use of a neural network classifier achieved the best levels of accuracy for the dataset and settings we used in the experiments. Future work involves deep learning techniques, adding structures semantics and embedding the approach as a tumor finding helper in a practical Medical Imaging Application.

  9. Community Design Impacts on Health Habits in Low-income Southern Nevadans.

    PubMed

    Coughenour, Courtney; Burns, Mackenzie S

    2016-07-01

    The purposes of this exploratory study were to: (1) characterize selected community design features; and (2) determine the relationship between select features and physical activity (PA) levels and nutrition habits for a small sample of low-income southern Nevadans. Secondary analysis was conducted on data from selected participants of the Nevada Healthy Homes Partnership program; self-report data on PA and diet habits were compared to national guidelines. Community design features were identified via GIS within a one-mile radius of participants' homes. Descriptive statistics characterized these features and chi-square analyses were conducted to determine the relationship between select features and habits. Data from 71 participants were analyzed; the majority failed to reach either PA or fruit and vegetable guidelines (81.7% and 93.0%, respectively). Many neighborhoods were absent of parks (71.8%), trailheads (36.6%), or pay-for-use PA facilities (47.9%). The mean number of grocery stores was 3.4 ± 2.3 per neighborhood. Chi-square analyses were not statistically significant. Findings were insufficient to make meaningful conclusions, but support the need for health promotion to meet guidelines. More research is needed to assess the impact of health-promoting community design and healthy behaviors, particularly in vulnerable populations.

  10. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems.

    PubMed

    Lê Cao, Kim-Anh; Boitard, Simon; Besse, Philippe

    2011-06-22

    Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

  11. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.

  12. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  13. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  14. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  15. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.

    PubMed

    Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David

    2018-05-14

    To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.

  16. Selections from the ABC 2011 Annual Convention, Montreal, Canada

    ERIC Educational Resources Information Center

    Whalen, D. Joel; Andersen, Ken; Campbell, Gloria; Crenshaw, Cheri; Cross, Geoffrey A.; Grinols, Anne Bradstreet; Hildebrand, John; Newman, Amy; Ortiz, Lorelei A.; Paulson, Edward; Phillabaum, Melinda; Powell, Elizabeth A.; Sloan, Ryan

    2012-01-01

    The 12 Favorite Assignments featured in this article were presented at the 2011 Annual Convention of the Association for Business Communication (ABC), Montreal, Canada. A variety of learning objectives are featured: delivering bad news, handling difficult people, persuasion, reporting financial analysis, electronic media, face-to-face…

  17. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    PubMed Central

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-01

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. PMID:28124985

  18. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    PubMed

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  19. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    PubMed Central

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding algorithm can be made robust by using optimal features and feature selection algorithms. We believe that even a few percent increase in performance is important and improves the decoding accuracy of the machine learning algorithm potentially increasing the ease of use of a brain machine interface. PMID:29467602

  20. Geospatial Analytics in Retail Site Selection and Sales Prediction.

    PubMed

    Ting, Choo-Yee; Ho, Chiung Ching; Yee, Hui Jia; Matsah, Wan Razali

    2018-03-01

    Studies have shown that certain features from geography, demography, trade area, and environment can play a vital role in retail site selection, largely due to the impact they asserted on retail performance. Although the relevant features could be elicited by domain experts, determining the optimal feature set can be intractable and labor-intensive exercise. The challenges center around (1) how to determine features that are important to a particular retail business and (2) how to estimate retail sales performance given a new location? The challenges become apparent when the features vary across time. In this light, this study proposed a nonintervening approach by employing feature selection algorithms and subsequently sales prediction through similarity-based methods. The results of prediction were validated by domain experts. In this study, data sets from different sources were transformed and aggregated before an analytics data set that is ready for analysis purpose could be obtained. The data sets included data about feature location, population count, property type, education status, and monthly sales from 96 branches of a telecommunication company in Malaysia. The finding suggested that (1) optimal retail performance can only be achieved through fulfillment of specific location features together with the surrounding trade area characteristics and (2) similarity-based method can provide solution to retail sales prediction.

  1. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.

    PubMed

    Ju, Zhe; He, Jian-Jun

    2018-06-01

    Lysine glutarylation is new type of protein acylation modification in both prokaryotes and eukaryotes. To better understand the molecular mechanism of glutarylation, it is important to identify glutarylated substrates and their corresponding glutarylation sites accurately. In this study, a novel bioinformatics tool named GlutPred is developed to predict glutarylation sites by using multiple feature extraction and maximum relevance minimum redundancy feature selection. On the one hand, amino acid factors, binary encoding, and the composition of k-spaced amino acid pairs features are incorporated to encode glutarylation sites. And the maximum relevance minimum redundancy method and the incremental feature selection algorithm are adopted to remove the redundant features. On the other hand, a biased support vector machine algorithm is used to handle the imbalanced problem in glutarylation sites training dataset. As illustrated by 10-fold cross-validation, the performance of GlutPred achieves a satisfactory performance with a Sensitivity of 64.80%, a Specificity of 76.60%, an Accuracy of 74.90% and a Matthew's correlation coefficient of 0.3194. Feature analysis shows that some k-spaced amino acid pair features play the most important roles in the prediction of glutarylation sites. The conclusions derived from this study might provide some clues for understanding the molecular mechanisms of glutarylation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods.

    PubMed

    Martínez, María Jimena; Ponzoni, Ignacio; Díaz, Mónica F; Vazquez, Gustavo E; Soto, Axel J

    2015-01-01

    The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretability and generality of the QSAR/QSPR models obtained by these feature selection methods are drastically affected. Therefore, an approach for integrating domain expert's knowledge in the selection process is needed for increase the confidence in the final set of descriptors. In this paper a software tool, which we named Visual and Interactive DEscriptor ANalysis (VIDEAN), that combines statistical methods with interactive visualizations for choosing a set of descriptors for predicting a target property is proposed. Domain expertise can be added to the feature selection process by means of an interactive visual exploration of data, and aided by statistical tools and metrics based on information theory. Coordinated visual representations are presented for capturing different relationships and interactions among descriptors, target properties and candidate subsets of descriptors. The competencies of the proposed software were assessed through different scenarios. These scenarios reveal how an expert can use this tool to choose one subset of descriptors from a group of candidate subsets or how to modify existing descriptor subsets and even incorporate new descriptors according to his or her own knowledge of the target property. The reported experiences showed the suitability of our software for selecting sets of descriptors with low cardinality, high interpretability, low redundancy and high statistical performance in a visual exploratory way. Therefore, it is possible to conclude that the resulting tool allows the integration of a chemist's expertise in the descriptor selection process with a low cognitive effort in contrast with the alternative of using an ad-hoc manual analysis of the selected descriptors. Graphical abstractVIDEAN allows the visual analysis of candidate subsets of descriptors for QSAR/QSPR. In the two panels on the top, users can interactively explore numerical correlations as well as co-occurrences in the candidate subsets through two interactive graphs.

  3. A novel feature ranking method for prediction of cancer stages using proteomics data

    PubMed Central

    Saghapour, Ehsan; Sehhati, Mohammadreza

    2017-01-01

    Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234

  4. Reconstruction and feature selection for desorption electrospray ionization mass spectroscopy imagery

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhu, Liangjia; Norton, Isaiah; Agar, Nathalie Y. R.; Tannenbaum, Allen

    2014-03-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) provides a highly sensitive imaging technique for differentiating normal and cancerous tissue at the molecular level. This can be very useful, especially under intra-operative conditions where the surgeon has to make crucial decision about the tumor boundary. In such situations, the time it takes for imaging and data analysis becomes a critical factor. Therefore, in this work we utilize compressive sensing to perform the sparse sampling of the tissue, which halves the scanning time. Furthermore, sparse feature selection is performed, which not only reduces the dimension of data from about 104 to less than 50, and thus significantly shortens the analysis time. This procedure also identifies biochemically important molecules for further pathological analysis. The methods are validated on brain and breast tumor data sets.

  5. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE.

    PubMed

    Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput. 15, 1373-1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008)]. These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier's AUC performance. In the large U.S. data set, sample high performance results include, AUC0.632+ = 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+ = 0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+ = 0.90 with interval [0.847;0.919], all using the MCMC-BANN. Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space.

  6. Feature weight estimation for gene selection: a local hyperlinear learning approach

    PubMed Central

    2014-01-01

    Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071

  7. A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei

    2015-03-01

    A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.

  8. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  9. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  10. Special Issue of Selected Papers from Visualization and Data Analysis 2011

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Wong, Pak Chung

    2012-01-01

    This special issue features the best papers that were selected from the 18th SPIE Conference on Visualization and Data Analysis (VDA 2011). This annual conference is a major international forum for researchers and practitioners interested in data visualization and analytics research, development, and applications. VDA 2011 received 42 high-quality submissions from around the world. Twenty-four papers were selected for full conference papers. The top five papers have been expanded and reviewed for this special issue.

  11. Identification of important image features for pork and turkey ham classification using colour and wavelet texture features and genetic selection.

    PubMed

    Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy

    2010-04-01

    A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.

  12. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Velten, Andreas

    2014-11-01

    We discuss new approaches to analyze laser-gated viewing data for nonline-of-sight vision with a frame-to-frame back-projection as well as feature selection algorithms. Although first back-projection approaches use time transients for each pixel, our method has the ability to calculate the projection of imaging data on the voxel space for each frame. Further, different data analysis algorithms and their sequential application were studied with the aim of identifying and selecting signals from different target positions. A slight modification of commonly used filters leads to a powerful selection of local maximum values. It is demonstrated that the choice of the filter has an impact on the selectivity i.e., multiple target detection as well as on the localization precision.

  13. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    PubMed

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    PubMed Central

    Shi, Lei; Wan, Youchuan; Gao, Xianjun

    2018-01-01

    In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy. PMID:29581721

  15. Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization.

    PubMed

    Adam, Asrul; Shapiai, Mohd Ibrahim; Tumari, Mohd Zaidi Mohd; Mohamad, Mohd Saberi; Mubin, Marizan

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.

  16. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  17. Neuromuscular disease classification system

    NASA Astrophysics Data System (ADS)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  18. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.

    PubMed

    Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng

    2015-01-01

    In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.

  19. Molecular analysis of immunoglobulin variable genes supports a germinal center experienced normal counterpart in primary cutaneous diffuse large B-cell lymphoma, leg-type.

    PubMed

    Pham-Ledard, Anne; Prochazkova-Carlotti, Martina; Deveza, Mélanie; Laforet, Marie-Pierre; Beylot-Barry, Marie; Vergier, Béatrice; Parrens, Marie; Feuillard, Jean; Merlio, Jean-Philippe; Gachard, Nathalie

    2017-11-01

    Immunophenotype of primary cutaneous diffuse large B-cell lymphoma, leg-type (PCLBCL-LT) suggests a germinal center-experienced B lymphocyte (BCL2+ MUM1+ BCL6+/-). As maturation history of B-cell is "imprinted" during B-cell development on the immunoglobulin gene sequence, we studied the structure and sequence of the variable part of the genes (IGHV, IGLV, IGKV), immunoglobulin surface expression and features of class switching in order to determine the PCLBCL-LT cell of origin. Clonality analysis with BIOMED2 protocol and VH leader primers was done on DNA extracted from frozen skin biopsies on retrospective samples from 14 patients. The clonal DNA IGHV sequence of the tumor was aligned and compared with the closest germline sequence and homology percentage was calculated. Superantigen binding sites were studied. Features of selection pressure were evaluated with the multinomial Lossos model. A functional monoclonal sequence was observed in 14 cases as determined for IGHV (10), IGLV (2) or IGKV (3). IGV mutation rates were high (>5%) in all cases but one (median:15.5%), with superantigen binding sites conservation. Features of selection pressure were identified in 11/12 interpretable cases, more frequently negative (75%) than positive (25%). Intraclonal variation was detected in 3 of 8 tumor specimens with a low rate of mutations. Surface immunoglobulin was an IgM in 12/12 cases. FISH analysis of IGHM locus, deleted during class switching, showed heterozygous IGHM gene deletion in half of cases. The genomic PCR analysis confirmed the deletions within the switch μ region. IGV sequences were highly mutated but functional, with negative features of selection pressure suggesting one or more germinal center passage(s) with somatic hypermutation, but superantigen (SpA) binding sites conservation. Genetic features of class switch were observed, but on the non functional allele and co-existing with primary isotype IgM expression. These data suggest that cell-of origin is germinal center experienced and superantigen driven selected B-cell, in a stage between germinal center B-cell and plasma cell. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  20. Diagnostic features of Alzheimer's disease extracted from PET sinograms

    NASA Astrophysics Data System (ADS)

    Sayeed, A.; Petrou, M.; Spyrou, N.; Kadyrov, A.; Spinks, T.

    2002-01-01

    Texture analysis of positron emission tomography (PET) images of the brain is a very difficult task, due to the poor signal to noise ratio. As a consequence, very few techniques can be implemented successfully. We use a new global analysis technique known as the Trace transform triple features. This technique can be applied directly to the raw sinograms to distinguish patients with Alzheimer's disease (AD) from normal volunteers. FDG-PET images of 18 AD and 10 normal controls obtained from the same CTI ECAT-953 scanner were used in this study. The Trace transform triple feature technique was used to extract features that were invariant to scaling, translation and rotation, referred to as invariant features, as well as features that were sensitive to rotation but invariant to scaling and translation, referred to as sensitive features in this study. The features were used to classify the groups using discriminant function analysis. Cross-validation tests using stepwise discriminant function analysis showed that combining both sensitive and invariant features produced the best results, when compared with the clinical diagnosis. Selecting the five best features produces an overall accuracy of 93% with sensitivity of 94% and specificity of 90%. This is comparable with the classification accuracy achieved by Kippenhan et al (1992), using regional metabolic activity.

  1. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    NASA Astrophysics Data System (ADS)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  2. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells.

    PubMed

    Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori

    2017-10-01

    We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.

  3. Wheeze sound analysis using computer-based techniques: a systematic review.

    PubMed

    Ghulam Nabi, Fizza; Sundaraj, Kenneth; Chee Kiang, Lam; Palaniappan, Rajkumar; Sundaraj, Sebastian

    2017-10-31

    Wheezes are high pitched continuous respiratory acoustic sounds which are produced as a result of airway obstruction. Computer-based analyses of wheeze signals have been extensively used for parametric analysis, spectral analysis, identification of airway obstruction, feature extraction and diseases or pathology classification. While this area is currently an active field of research, the available literature has not yet been reviewed. This systematic review identified articles describing wheeze analyses using computer-based techniques on the SCOPUS, IEEE Xplore, ACM, PubMed and Springer and Elsevier electronic databases. After a set of selection criteria was applied, 41 articles were selected for detailed analysis. The findings reveal that 1) computerized wheeze analysis can be used for the identification of disease severity level or pathology, 2) further research is required to achieve acceptable rates of identification on the degree of airway obstruction with normal breathing, 3) analysis using combinations of features and on subgroups of the respiratory cycle has provided a pathway to classify various diseases or pathology that stem from airway obstruction.

  4. Can Laws Be a Potential PET Image Texture Analysis Approach for Evaluation of Tumor Heterogeneity and Histopathological Characteristics in NSCLC?

    PubMed

    Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan

    2018-04-01

    We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.

  5. The performance improvement of automatic classification among obstructive lung diseases on the basis of the features of shape analysis, in addition to texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Kim, Namkug; Seo, Joon Beom; Lee, JuneGoo; Kang, Suk Ho

    2007-03-01

    In this paper, we proposed novel shape features to improve classification performance of differentiating obstructive lung diseases, based on HRCT (High Resolution Computerized Tomography) images. The images were selected from HRCT images, obtained from 82 subjects. For each image, two experienced radiologists selected rectangular ROIs with various sizes (16x16, 32x32, and 64x64 pixels), representing each disease or normal lung parenchyma. Besides thirteen textural features, we employed additional seven shape features; cluster shape features, and Top-hat transform features. To evaluate the contribution of shape features for differentiation of obstructive lung diseases, several experiments were conducted with two different types of classifiers and various ROI sizes. For automated classification, the Bayesian classifier and support vector machine (SVM) were implemented. To assess the performance and cross-validation of the system, 5-folding method was used. In comparison to employing only textural features, adding shape features yields significant enhancement of overall sensitivity(5.9, 5.4, 4.4% in the Bayesian and 9.0, 7.3, 5.3% in the SVM), in the order of ROI size 16x16, 32x32, 64x64 pixels, respectively (t-test, p<0.01). Moreover, this enhancement was largely due to the improvement on class-specific sensitivity of mild centrilobular emphysema and bronchiolitis obliterans which are most hard to differentiate for radiologists. According to these experimental results, adding shape features to conventional texture features is much useful to improve classification performance of obstructive lung diseases in both Bayesian and SVM classifiers.

  6. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  7. A feature-based approach to modeling protein–protein interaction hot spots

    PubMed Central

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  8. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  9. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Feature Fusion Based Forecasting Model for Financial Time Series

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455

  11. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  12. SIMS analysis of extended impact features on LDEF experiment

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Jessberger, E. K.; Simon, C.; Stadermann, F. J.; Swan, P.; Walker, R.; Zinner, E.

    1991-01-01

    Discussed here are the first Secondary Ion Mass Spectroscopy (SIMS) analysis of projectile material deposited in extended impact features on Ge wafers from the trailing edge. Although most capture cells lost their plastic film covers, they contain extended impact features that apparently were produced by high velocity impacts when the plastic foils were still intact. Detailed optical scanning of all bare capture cells from the trailing edge revealed more than 100 impacts. Fifty-eight were selected by scanning electron microscope (SEM) inspection as prime candidates for SIMS analysis. Preliminary SIMS measurements were made on 15 impacts. More than half showed substantial enhancements of Mg, Al, Si, Ca, and Fe in the impact region, indicating micrometeorites as the projectiles.

  13. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; McGovern, Dermot P

    2017-01-01

    Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L 1 , SCAD and MC+. However, none of the existing algorithms optimizes L 0 , which penalizes the number of nonzero features directly. In this paper, we develop a novel sparse generalized linear model (GLM) with L 0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L 0 optimization directly. Even though the original L 0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms ( L 0 ADRIDGE) for L 0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. The developed Software L 0 ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge.

  14. Relationship between neural response and adaptation selectivity to form and color: an ERP study.

    PubMed

    Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees

    2012-01-01

    Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.

  15. Rough sets and Laplacian score based cost-sensitive feature selection

    PubMed Central

    Yu, Shenglong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of “good” features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms. PMID:29912884

  16. Rough sets and Laplacian score based cost-sensitive feature selection.

    PubMed

    Yu, Shenglong; Zhao, Hong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of "good" features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  17. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  18. Radiomics analysis of DWI data to identify the rectal cancer patients qualified for local excision after neoadjuvant chemoradiotherapy

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Zhang, Xiaoyan; Shi, Yanjie; Wang, Shou; Fang, Mengjie; Sun, Yingshi; Dong, Enqing; Tian, Jie

    2018-02-01

    The Locally advanced rectal cancer (LARC) patients were routinely treated with neoadjuvant chemoradiotherapy (CRT) firstly and received total excision afterwards. While, the LARC patients might relieve to T1N0M0/T0N0M0 stage after the CRT, which would enable the patients be qualified for local excision. However, accurate pathological TNM stage could only be obtained by the pathological examination after surgery. We aimed to conduct a Radiomics analysis of Diffusion weighted Imaging (DWI) data to identify the patients in T1N0M0/T0N0M0 stages before surgery, in hope of providing clinical surgery decision support. 223 routinely treated LARC patients in Beijing Cancer Hospital were enrolled in current study. DWI data and clinical characteristics were collected after CRT. According to the pathological TNM stage, the patients of T1N0M0 and T0N0M0 stages were labelled as 1 and the other patients were labelled as 0. The first 123 patients in chronological order were used as training set, and the rest patients as validation set. 563 image features extracted from the DWI data and clinical characteristics were used as features. Two-sample T test was conducted to pre-select the top 50% discriminating features. Least absolute shrinkage and selection operator (Lasso)-Logistic regression model was conducted to further select features and construct the classification model. Based on the 14 selected image features, the area under the Receiver Operating Characteristic (ROC) curve (AUC) of 0.8781, classification Accuracy (ACC) of 0.8432 were achieved in the training set. In the validation set, AUC of 0.8707, ACC (ACC) of 0.84 were observed.

  19. Classification of Alzheimer's disease patients with hippocampal shape wrapper-based feature selection and support vector machine

    NASA Astrophysics Data System (ADS)

    Young, Jonathan; Ridgway, Gerard; Leung, Kelvin; Ourselin, Sebastien

    2012-02-01

    It is well known that hippocampal atrophy is a marker of the onset of Alzheimer's disease (AD) and as a result hippocampal volumetry has been used in a number of studies to provide early diagnosis of AD and predict conversion of mild cognitive impairment patients to AD. However, rates of atrophy are not uniform across the hippocampus making shape analysis a potentially more accurate biomarker. This study studies the hippocampi from 226 healthy controls, 148 AD patients and 330 MCI patients obtained from T1 weighted structural MRI images from the ADNI database. The hippocampi are anatomically segmented using the MAPS multi-atlas segmentation method, and the resulting binary images are then processed with SPHARM software to decompose their shapes as a weighted sum of spherical harmonic basis functions. The resulting parameterizations are then used as feature vectors in Support Vector Machine (SVM) classification. A wrapper based feature selection method was used as this considers the utility of features in discriminating classes in combination, fully exploiting the multivariate nature of the data and optimizing the selected set of features for the type of classifier that is used. The leave-one-out cross validated accuracy obtained on training data is 88.6% for classifying AD vs controls and 74% for classifying MCI-converters vs MCI-stable with very compact feature sets, showing that this is a highly promising method. There is currently a considerable fall in accuracy on unseen data indicating that the feature selection is sensitive to the data used, however feature ensemble methods may overcome this.

  20. Latent feature decompositions for integrative analysis of multi-platform genomic data

    PubMed Central

    Gregory, Karl B.; Momin, Amin A.; Coombes, Kevin R.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to, a glioblastoma multiforme dataset from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between genomic platforms to aid accurate prediction and variable selection. Our methods perform best when principal components are used to define the latent features. PMID:26146492

  1. Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.

    PubMed

    Segovia, F; Górriz, J M; Ramírez, J; Phillips, C

    2016-01-01

    Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.

  2. Freezing of Gait Detection in Parkinson's Disease: A Subject-Independent Detector Using Anomaly Scores.

    PubMed

    Pham, Thuy T; Moore, Steven T; Lewis, Simon John Geoffrey; Nguyen, Diep N; Dutkiewicz, Eryk; Fuglevand, Andrew J; McEwan, Alistair L; Leong, Philip H W

    2017-11-01

    Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of (). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of () for ankle and () for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., versus ) and/or lower tolerance (e.g., versus ).Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of (). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of () for ankle and () for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., versus ) and/or lower tolerance (e.g., versus ).

  3. SU-F-R-33: Can CT and CBCT Be Used Simultaneously for Radiomics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, R; Wang, J; Zhong, H

    2016-06-15

    Purpose: To investigate whether CBCT and CT can be used in radiomics analysis simultaneously. To establish a batch correction method for radiomics in two similar image modalities. Methods: Four sites including rectum, bladder, femoral head and lung were considered as region of interest (ROI) in this study. For each site, 10 treatment planning CT images were collected. And 10 CBCT images which came from same site of same patient were acquired at first radiotherapy fraction. 253 radiomics features, which were selected by our test-retest study at rectum cancer CT (ICC>0.8), were calculated for both CBCT and CT images in MATLAB.more » Simple scaling (z-score) and nonlinear correction methods were applied to the CBCT radiomics features. The Pearson Correlation Coefficient was calculated to analyze the correlation between radiomics features of CT and CBCT images before and after correction. Cluster analysis of mixed data (for each site, 5 CT and 5 CBCT data are randomly selected) was implemented to validate the feasibility to merge radiomics data from CBCT and CT. The consistency of clustering result and site grouping was verified by a chi-square test for different datasets respectively. Results: For simple scaling, 234 of the 253 features have correlation coefficient ρ>0.8 among which 154 features haveρ>0.9 . For radiomics data after nonlinear correction, 240 of the 253 features have ρ>0.8 among which 220 features have ρ>0.9. Cluster analysis of mixed data shows that data of four sites was almost precisely separated for simple scaling(p=1.29 * 10{sup −7}, χ{sup 2} test) and nonlinear correction (p=5.98 * 10{sup −7}, χ{sup 2} test), which is similar to the cluster result of CT data (p=4.52 * 10{sup −8}, χ{sup 2} test). Conclusion: Radiomics data from CBCT can be merged with those from CT by simple scaling or nonlinear correction for radiomics analysis.« less

  4. Predictive models reduce talent development costs in female gymnastics.

    PubMed

    Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle

    2017-04-01

    This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.

  5. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  6. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  7. Investigation of frame-to-frame back projection and feature selection algorithms for non-line-of-sight laser gated viewing

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Velten, Andreas

    2014-10-01

    In the present paper, we discuss new approaches to analyze laser gated viewing data for non-line-of-sight vision with a novel frame-to-frame back projection as well as feature selection algorithms. While first back projection approaches use time transients for each pixel, our new method has the ability to calculate the projection of imaging data on the obscured voxel space for each frame. Further, four different data analysis algorithms were studied with the aim to identify and select signals from different target positions. A slight modification of commonly used filters leads to powerful selection of local maximum values. It is demonstrated that the choice of the filter has impact on the selectivity i.e. multiple target detection as well as on the localization precision.

  8. Targeted Feature Detection for Data-Dependent Shotgun Proteomics

    PubMed Central

    2017-01-01

    Label-free quantification of shotgun LC–MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification (“FFId”), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between “internal” and “external” (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the “uncertain” feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS (www.openms.org). PMID:28673088

  9. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.

    PubMed

    Weisser, Hendrik; Choudhary, Jyoti S

    2017-08-04

    Label-free quantification of shotgun LC-MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification ("FFId"), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between "internal" and "external" (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the "uncertain" feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS ( www.openms.org ).

  10. Incorporating biological information in sparse principal component analysis with application to genomic data.

    PubMed

    Li, Ziyi; Safo, Sandra E; Long, Qi

    2017-07-11

    Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.

  11. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  12. Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.

    PubMed

    Garnavi, Rahil; Aldeen, Mohammad; Bailey, James

    2012-11-01

    This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.

  13. [Comparative Analysis of Behavior in The Open-field Test in Wild Grey Rats (Rattus norvegicus) and in Grey Rats Subjected to Prolonged Selection for Tame And Aggressive Behavior].

    PubMed

    Kozhemyakina, R V; Konoshenko, M Yu; Sakharov, D G; Smagin, D A; Markel, A L

    2016-01-01

    The aim of this work is analysis of the open-field behavior in grey rats selected for the tame and aggressive behavior in comparison with the wild grey rats. Significant influences of the rat group factor on the 13 of 19 behavioral features studied in the open-field were found. This effect, in general, depends on existence of great differences between behaviors of the wild rats from the one hand and behaviors of the tame and aggressive rats from the other. The behaviors of the rats from the last two groups are practically identical. Multidimensional analysis confirms the distinct separation in coordinates of the two main components of the wild rat behavior from the behavior of both the tame and selectively bred aggressive rats. The first main component dimension corresponds to the grade of fear, which was significantly enhanced in the wild rats. So, in spite of the equality of behavioral aggressiveness of the wild rats and the rats selected for aggression with the glove test, the behavior of selected aggressive rats in the open-field is analogous to behavior of the rats selected for tameness. Comparison of behavioral features with the hormonal stress responsiveness allowed us to conclude that the aggressive behavior of the wild and se lected for aggression rats based on different motivational and neuroendocrine processes.

  14. Medical Image Analysis by Cognitive Information Systems - a Review.

    PubMed

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis.

  15. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.

    PubMed

    Stewart, C M; Newlands, S D; Perachio, A A

    2004-12-01

    Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.

  16. Metacatalog of Planetary Surface Features for Multicriteria Evaluation of Surface Evolution: the Integrated Planetary Feature Database

    NASA Astrophysics Data System (ADS)

    Hargitai, Henrik

    2016-10-01

    We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.

  17. Selected Papers in School Finance: 1974.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC.

    Current school finance problems are discussed in three papers. The first presents an analysis of the Illinois school finance reform law, providing insights into the operation of the law and an evaluation method for examining finance laws in other states. In the second paper, the relationships between selected features of Michigan school districts…

  18. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  20. Radiomic analysis in prediction of Human Papilloma Virus status.

    PubMed

    Yu, Kaixian; Zhang, Youyi; Yu, Yang; Huang, Chao; Liu, Rongjie; Li, Tengfei; Yang, Liuqing; Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Zhu, Hongtu

    2017-12-01

    Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analysis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx cancer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status. Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radiomic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usually have smaller and simpler tumors.

  1. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  2. Spectra-first feature analysis in clinical proteomics - A case study in renal cancer.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-10-01

    In proteomics, useful signal may be unobserved or lost due to the lack of confident peptide-spectral matches. Selection of differential spectra, followed by associative peptide/protein mapping may be a complementary strategy for improving sensitivity and comprehensiveness of analysis (spectra-first paradigm). This approach is complementary to the standard approach where functional analysis is performed only on the finalized protein list assembled from identified peptides from the spectra (protein-first paradigm). Based on a case study of renal cancer, we introduce a simple spectra-binning approach, MZ-bin. We demonstrate that differential spectra feature selection using MZ-bin is class-discriminative and can trace relevant proteins via spectra associative mapping. Moreover, proteins identified in this manner are more biologically coherent than those selected directly from the finalized protein list. Analysis of constituent peptides per protein reveals high expression inconsistency, suggesting that the measured protein expressions are in fact, poor approximations of true protein levels. Moreover, analysis at the level of constituent peptides may provide higher resolution insight into the underlying biology: Via MZ-bin, we identified for the first time differential splice forms for the known renal cancer marker MAPT. We conclude that the spectra-first analysis paradigm is a complementary strategy to the traditional protein-first paradigm and can provide deeper level insight.

  3. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE

    PubMed Central

    Jamieson, Andrew R.; Giger, Maryellen L.; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    Purpose: In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput. 15, 1373–1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9, 2579–2605 (2008)]. Methods: These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier’s AUC performance. Results: In the large U.S. data set, sample high performance results include, AUC0.632+=0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+=0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+=0.90 with interval [0.847;0.919], all using the MCMC-BANN. Conclusions: Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space. PMID:20175497

  4. Identification of symptom and functional domains that fibromyalgia patients would like to see improved: a cluster analysis.

    PubMed

    Bennett, Robert M; Russell, Jon; Cappelleri, Joseph C; Bushmakin, Andrew G; Zlateva, Gergana; Sadosky, Alesia

    2010-06-28

    The purpose of this study was to determine whether some of the clinical features of fibromyalgia (FM) that patients would like to see improved aggregate into definable clusters. Seven hundred and eighty-eight patients with clinically confirmed FM and baseline pain > or =40 mm on a 100 mm visual analogue scale ranked 5 FM clinical features that the subjects would most like to see improved after treatment (one for each priority quintile) from a list of 20 developed during focus groups. For each subject, clinical features were transformed into vectors with rankings assigned values 1-5 (lowest to highest ranking). Logistic analysis was used to create a distance matrix and hierarchical cluster analysis was applied to identify cluster structure. The frequency of cluster selection was determined, and cluster importance was ranked using cluster scores derived from rankings of the clinical features. Multidimensional scaling was used to visualize and conceptualize cluster relationships. Six clinical features clusters were identified and named based on their key characteristics. In order of selection frequency, the clusters were Pain (90%; 4 clinical features), Fatigue (89%; 4 clinical features), Domestic (42%; 4 clinical features), Impairment (29%; 3 functions), Affective (21%; 3 clinical features), and Social (9%; 2 functional). The "Pain Cluster" was ranked of greatest importance by 54% of subjects, followed by Fatigue, which was given the highest ranking by 28% of subjects. Multidimensional scaling mapped these clusters to two dimensions: Status (bounded by Physical and Emotional domains), and Setting (bounded by Individual and Group interactions). Common clinical features of FM could be grouped into 6 clusters (Pain, Fatigue, Domestic, Impairment, Affective, and Social) based on patient perception of relevance to treatment. Furthermore, these 6 clusters could be charted in the 2 dimensions of Status and Setting, thus providing a unique perspective for interpretation of FM symptomatology.

  5. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Derivative component analysis for mass spectral serum proteomic profiles.

    PubMed

    Han, Henry

    2014-01-01

    As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based diagnosis. Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics. Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which can be more important than the conventional feature selection or dimension reduction. In particular, our profile biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)'s nature of generic data analysis.

  7. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.

    PubMed

    Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.

  8. Sandhill crane roost selection, human disturbance, and forage resources

    USGS Publications Warehouse

    Pearse, Aaron T.; Krapu, Gary; Brandt, David

    2017-01-01

    Sites used for roosting represent a key habitat requirement for many species of birds because availability and quality of roost sites can influence individual fitness. Birds select roost sites based on numerous factors, requirements, and motivations, and selection of roosts can be dynamic in time and space because of various ecological and environmental influences. For sandhill cranes (Antigone canadensis) at their main spring-staging area along the Platte River in south-central Nebraska, USA, past investigations of roosting cranes focused on physical channel characteristics related to perceived security as motivating roost distribution. We used 6,310 roost sites selected by 313 sandhill cranes over 5 spring migration seasons (2003–2007) to quantify resource selection functions of roost sites on the central Platte River using a discrete choice analysis. Sandhill cranes generally showed stronger selection for wider channels with shorter bank vegetation situated farther from potential human disturbance features such as roads, bridges, and dwellings. Furthermore, selection for roost sites with preferable physical characteristics (wide channels with short bank vegetation) was more resilient to nearby disturbance features than more narrow channels with taller bank vegetation. The amount of cornfields surrounding sandhill crane roost sites positively influenced relative probability of use but only for more narrow channels < 100 m and those with shorter bank vegetation. We confirmed key resource features that sandhill cranes selected at river channels along the Platte River, and after incorporating spatial variation due to human disturbance, our understanding of roost site selection was more robust, providing insights on how disturbance may interact with physical habitat features. Managers can use information on roost-site selection when developing plans to increase probability of crane use at existing roost sites and to identify new areas for potential use if existing sites become limited.

  9. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  10. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    PubMed Central

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979

  11. Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization

    PubMed Central

    Adam, Asrul; Mohd Tumari, Mohd Zaidi; Mohamad, Mohd Saberi

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. PMID:25243236

  12. A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data

    PubMed Central

    Vinaixa, Maria; Samino, Sara; Saez, Isabel; Duran, Jordi; Guinovart, Joan J.; Yanes, Oscar

    2012-01-01

    Several metabolomic software programs provide methods for peak picking, retention time alignment and quantification of metabolite features in LC/MS-based metabolomics. Statistical analysis, however, is needed in order to discover those features significantly altered between samples. By comparing the retention time and MS/MS data of a model compound to that from the altered feature of interest in the research sample, metabolites can be then unequivocally identified. This paper reports on a comprehensive overview of a workflow for statistical analysis to rank relevant metabolite features that will be selected for further MS/MS experiments. We focus on univariate data analysis applied in parallel on all detected features. Characteristics and challenges of this analysis are discussed and illustrated using four different real LC/MS untargeted metabolomic datasets. We demonstrate the influence of considering or violating mathematical assumptions on which univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data analysis such as determination of sample size, analytical variation, assumption of normality and homocedasticity, or correction for multiple testing are discussed and illustrated in the context of our four untargeted LC/MS working examples. PMID:24957762

  13. A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data.

    PubMed

    Vinaixa, Maria; Samino, Sara; Saez, Isabel; Duran, Jordi; Guinovart, Joan J; Yanes, Oscar

    2012-10-18

    Several metabolomic software programs provide methods for peak picking, retention time alignment and quantification of metabolite features in LC/MS-based metabolomics. Statistical analysis, however, is needed in order to discover those features significantly altered between samples. By comparing the retention time and MS/MS data of a model compound to that from the altered feature of interest in the research sample, metabolites can be then unequivocally identified. This paper reports on a comprehensive overview of a workflow for statistical analysis to rank relevant metabolite features that will be selected for further MS/MS experiments. We focus on univariate data analysis applied in parallel on all detected features. Characteristics and challenges of this analysis are discussed and illustrated using four different real LC/MS untargeted metabolomic datasets. We demonstrate the influence of considering or violating mathematical assumptions on which univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data analysis such as determination of sample size, analytical variation, assumption of normality and homocedasticity, or correction for multiple testing are discussed and illustrated in the context of our four untargeted LC/MS working examples.

  14. Parameter optimization of parenchymal texture analysis for prediction of false-positive recalls from screening mammography

    NASA Astrophysics Data System (ADS)

    Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2016-03-01

    This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.

  15. Enhancing the Discrimination Ability of a Gas Sensor Array Based on a Novel Feature Selection and Fusion Framework.

    PubMed

    Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia

    2018-06-12

    In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.

  16. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  17. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  18. An explorative childhood pneumonia analysis based on ultrasonic imaging texture features

    NASA Astrophysics Data System (ADS)

    Zenteno, Omar; Diaz, Kristians; Lavarello, Roberto; Zimic, Mirko; Correa, Malena; Mayta, Holger; Anticona, Cynthia; Pajuelo, Monica; Oberhelman, Richard; Checkley, William; Gilman, Robert H.; Figueroa, Dante; Castañeda, Benjamín.

    2015-12-01

    According to World Health Organization, pneumonia is the respiratory disease with the highest pediatric mortality rate accounting for 15% of all deaths of children under 5 years old worldwide. The diagnosis of pneumonia is commonly made by clinical criteria with support from ancillary studies and also laboratory findings. Chest imaging is commonly done with chest X-rays and occasionally with a chest CT scan. Lung ultrasound is a promising alternative for chest imaging; however, interpretation is subjective and requires adequate training. In the present work, a two-class classification algorithm based on four Gray-level co-occurrence matrix texture features (i.e., Contrast, Correlation, Energy and Homogeneity) extracted from lung ultrasound images from children aged between six months and five years is presented. Ultrasound data was collected using a L14-5/38 linear transducer. The data consisted of 22 positive- and 68 negative-diagnosed B-mode cine-loops selected by a medical expert and captured in the facilities of the Instituto Nacional de Salud del Niño (Lima, Peru), for a total number of 90 videos obtained from twelve children diagnosed with pneumonia. The classification capacity of each feature was explored independently and the optimal threshold was selected by a receiver operator characteristic (ROC) curve analysis. In addition, a principal component analysis was performed to evaluate the combined performance of all the features. Contrast and correlation resulted the two more significant features. The classification performance of these two features by principal components was evaluated. The results revealed 82% sensitivity, 76% specificity, 78% accuracy and 0.85 area under the ROC.

  19. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  1. Autonomous learning in gesture recognition by using lobe component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Weng, Juyang

    2007-02-01

    Gesture recognition is a new human-machine interface method implemented by pattern recognition(PR).In order to assure robot safety when gesture is used in robot control, it is required to implement the interface reliably and accurately. Similar with other PR applications, 1) feature selection (or model establishment) and 2) training from samples, affect the performance of gesture recognition largely. For 1), a simple model with 6 feature points at shoulders, elbows, and hands, is established. The gestures to be recognized are restricted to still arm gestures, and the movement of arms is not considered. These restrictions are to reduce the misrecognition, but are not so unreasonable. For 2), a new biological network method, called lobe component analysis(LCA), is used in unsupervised learning. Lobe components, corresponding to high-concentrations in probability of the neuronal input, are orientation selective cells follow Hebbian rule and lateral inhibition. Due to the advantage of LCA method for balanced learning between global and local features, large amount of samples can be used in learning efficiently.

  2. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG).

    PubMed

    Amezquita-Sanchez, Juan P; Adeli, Anahita; Adeli, Hojjat

    2016-05-15

    Mild cognitive impairment (MCI) is a cognitive disorder characterized by memory impairment, greater than expected by age. A new methodology is presented to identify MCI patients during a working memory task using MEG signals. The methodology consists of four steps: In step 1, the complete ensemble empirical mode decomposition (CEEMD) is used to decompose the MEG signal into a set of adaptive sub-bands according to its contained frequency information. In step 2, a nonlinear dynamics measure based on permutation entropy (PE) analysis is employed to analyze the sub-bands and detect features to be used for MCI detection. In step 3, an analysis of variation (ANOVA) is used for feature selection. In step 4, the enhanced probabilistic neural network (EPNN) classifier is applied to the selected features to distinguish between MCI and healthy patients. The usefulness and effectiveness of the proposed methodology are validated using the sensed MEG data obtained experimentally from 18 MCI and 19 control patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.

    2007-05-01

    Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

  4. A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.

    PubMed

    Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A

    2018-01-01

    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

  5. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  6. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  7. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE PAGES

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.; ...

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  8. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less

  9. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.

    PubMed

    Musumeci, Matías A; Lozada, Mariana; Rial, Daniela V; Mac Cormack, Walter P; Jansson, Janet K; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.

  10. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    PubMed Central

    Musumeci, Matías A.; Lozada, Mariana; Rial, Daniela V.; Mac Cormack, Walter P.; Jansson, Janet K.; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M.

    2017-01-01

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments. PMID:28397770

  11. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation

    PubMed Central

    Patterson, Brent R.; Anderson, Morgan L.; Rodgers, Arthur R.; Vander Vennen, Lucas M.; Fryxell, John M.

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism–a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors–has negative consequences for the viability of woodland caribou. PMID:29117234

  12. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    PubMed

    Newton, Erica J; Patterson, Brent R; Anderson, Morgan L; Rodgers, Arthur R; Vander Vennen, Lucas M; Fryxell, John M

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.

  13. Correlative feature analysis of FFDM images

    NASA Astrophysics Data System (ADS)

    Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene

    2008-03-01

    Identifying the corresponding image pair of a lesion is an essential step for combining information from different views of the lesion to improve the diagnostic ability of both radiologists and CAD systems. Because of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this study, we present a computerized framework that differentiates the corresponding images from different views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial radial gradient index(RGI) based segmentation and an active contour model, was initially applied to extract mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing between corresponding and non-corresponding pairs. By using a FFDM database with 124 corresponding image pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 0.8 with leave-one-out evaluation by lesion, and the feature subset, which includes distance feature, lesion size and lesion contrast, yielded an AUC of 0.86. The improvement by using multiple features was statistically significant as compared to single feature performance. (p<0.001)

  14. Classification of pre-sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses.

    PubMed

    Iqbal, Abdullah; Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul

    2010-03-01

    Images of three qualities of pre-sliced pork and Turkey hams were evaluated for colour and textural features to characterize and classify them, and to model the ham appearance grading and preference responses of a group of consumers. A total of 26 colour features and 40 textural features were extracted for analysis. Using Mahalanobis distance and feature inter-correlation analyses, two best colour [mean of S (saturation in HSV colour space), std. deviation of b*, which indicates blue to yellow in L*a*b* colour space] and three textural features [entropy of b*, contrast of H (hue of HSV colour space), entropy of R (red of RGB colour space)] for pork, and three colour (mean of R, mean of H, std. deviation of a*, which indicates green to red in L*a*b* colour space) and two textural features [contrast of B, contrast of L* (luminance or lightness in L*a*b* colour space)] for Turkey hams were selected as features with the highest discriminant power. High classification performances were reached for both types of hams (>99.5% for pork and >90.5% for Turkey) using the best selected features or combinations of them. In spite of the poor/fair agreement among ham consumers as determined by Kappa analysis (Kappa-value<0.4) for sensory grading (surface colour, colour uniformity, bitonality, texture appearance and acceptability), a dichotomous logistic regression model using the best image features was able to explain the variability of consumers' responses for all sensorial attributes with accuracies higher than 74.1% for pork hams and 83.3% for Turkey hams. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  16. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  17. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    PubMed

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  18. Morphologic Features of Magnetic Resonance Imaging as a Surrogate of Capsular Contracture in Breast Cancer Patients With Implant-based Reconstructions.

    PubMed

    Tyagi, Neelam; Sutton, Elizabeth; Hunt, Margie; Zhang, Jing; Oh, Jung Hun; Apte, Aditya; Mechalakos, James; Wilgucki, Molly; Gelb, Emily; Mehrara, Babak; Matros, Evan; Ho, Alice

    2017-02-01

    Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. Currently, no objective methods are available for assessing CC. The goal of the present study was to identify image-based surrogates of CC using magnetic resonance imaging (MRI). We analyzed a retrospective data set of 50 patients who had undergone both a diagnostic MRI scan and a plastic surgeon's evaluation of the CC score (Baker's score) within a 6-month period after mastectomy and reconstructive surgery. The MRI scans were assessed for morphologic shape features of the implant and histogram features of the pectoralis muscle. The shape features, such as roundness, eccentricity, solidity, extent, and ratio length for the implant, were compared with the Baker score. For the pectoralis muscle, the muscle width and median, skewness, and kurtosis of the intensity were compared with the Baker score. Univariate analysis (UVA) using a Wilcoxon rank-sum test and multivariate analysis with the least absolute shrinkage and selection operator logistic regression was performed to determine significant differences in these features between the patient groups categorized according to their Baker's scores. UVA showed statistically significant differences between grade 1 and grade ≥2 for morphologic shape features and histogram features, except for volume and skewness. Only eccentricity, ratio length, and volume were borderline significant in differentiating grade ≤2 and grade ≥3. Features with P<.1 on UVA were used in the multivariate least absolute shrinkage and selection operator logistic regression analysis. Multivariate analysis showed a good level of predictive power for grade 1 versus grade ≥2 CC (area under the receiver operating characteristic curve 0.78, sensitivity 0.78, and specificity 0.82) and for grade ≤2 versus grade ≥3 CC (area under the receiver operating characteristic curve 0.75, sensitivity 0.75, and specificity 0.79). The morphologic shape features described on MR images were associated with the severity of CC. MRI has the potential to further improve the diagnostic ability of the Baker score in breast cancer patients who undergo implant reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  20. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.

    PubMed

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.

  1. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  2. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  3. Support-vector-based emergent self-organising approach for emotional understanding

    NASA Astrophysics Data System (ADS)

    Nguwi, Yok-Yen; Cho, Siu-Yeung

    2010-12-01

    This study discusses the computational analysis of general emotion understanding from questionnaires methodology. The questionnaires method approaches the subject by investigating the real experience that accompanied the emotions, whereas the other laboratory approaches are generally associated with exaggerated elements. We adopted a connectionist model called support-vector-based emergent self-organising map (SVESOM) to analyse the emotion profiling from the questionnaires method. The SVESOM first identifies the important variables by giving discriminative features with high ranking. The classifier then performs the classification based on the selected features. Experimental results show that the top rank features are in line with the work of Scherer and Wallbott [(1994), 'Evidence for Universality and Cultural Variation of Differential Emotion Response Patterning', Journal of Personality and Social Psychology, 66, 310-328], which approached the emotions physiologically. While the performance measures show that using the full features for classifications can degrade the performance, the selected features provide superior results in terms of accuracy and generalisation.

  4. The effect of feature selection methods on computer-aided detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Hupse, Rianne; Karssemeijer, Nico

    2010-05-01

    In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.

  5. Automatic Selection of Order Parameters in the Analysis of Large Scale Molecular Dynamics Simulations.

    PubMed

    Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S

    2014-12-09

    Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.

  6. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  7. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  8. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.

    PubMed

    Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza

    2013-03-01

    Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS

    PubMed Central

    Li, Bi-Qing; Feng, Kai-Yan; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2012-01-01

    Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology. Although great progress has been made by employing various machine learning approaches with numerous characteristic features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest (RF) algorithm with the Minimum Redundancy Maximal Relevance (mRMR) method followed by incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility. We also included five 3D structural features to predict protein-protein interaction sites and achieved an overall accuracy of 0.672997 and MCC of 0.347977. Feature analysis showed that 3D structural features such as Depth Index (DPX) and surface curvature (SC) contributed most to the prediction of protein-protein interaction sites. It was also shown via site-specific feature analysis that the features of individual residues from PPI sites contribute most to the determination of protein-protein interaction sites. It is anticipated that our prediction method will become a useful tool for identifying PPI sites, and that the feature analysis described in this paper will provide useful insights into the mechanisms of interaction. PMID:22937126

  10. Dimensionality reduction for the quantitative evaluation of a smartphone-based Timed Up and Go test.

    PubMed

    Palmerini, Luca; Mellone, Sabato; Rocchi, Laura; Chiari, Lorenzo

    2011-01-01

    The Timed Up and Go is a clinical test to assess mobility in the elderly and in Parkinson's disease. Lately instrumented versions of the test are being considered, where inertial sensors assess motion. To improve the pervasiveness, ease of use, and cost, we consider a smartphone's accelerometer as the measurement system. Several parameters (usually highly correlated) can be computed from the signals recorded during the test. To avoid redundancy and obtain the features that are most sensitive to the locomotor performance, a dimensionality reduction was performed through principal component analysis (PCA). Forty-nine healthy subjects of different ages were tested. PCA was performed to extract new features (principal components) which are not redundant combinations of the original parameters and account for most of the data variability. They can be useful for exploratory analysis and outlier detection. Then, a reduced set of the original parameters was selected through correlation analysis with the principal components. This set could be recommended for studies based on healthy adults. The proposed procedure could be used as a first-level feature selection in classification studies (i.e. healthy-Parkinson's disease, fallers-non fallers) and could allow, in the future, a complete system for movement analysis to be incorporated in a smartphone.

  11. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  12. EFS: an ensemble feature selection tool implemented as R-package and web-application.

    PubMed

    Neumann, Ursula; Genze, Nikita; Heider, Dominik

    2017-01-01

    Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.

  13. Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine.

    PubMed

    Xu, Xiaoyi; Li, Ao; Wang, Minghui

    2015-08-01

    Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.

  14. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

    PubMed Central

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308

  15. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR.

    PubMed

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

  16. An Android malware detection system based on machine learning

    NASA Astrophysics Data System (ADS)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  17. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder

    PubMed Central

    Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063

  18. A new approach to develop computer-aided detection schemes of digital mammograms

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Qian, Wei; Pu, Jiantao; Liu, Hong; Zheng, Bin

    2015-06-01

    The purpose of this study is to develop a new global mammographic image feature analysis based computer-aided detection (CAD) scheme and evaluate its performance in detecting positive screening mammography examinations. A dataset that includes images acquired from 1896 full-field digital mammography (FFDM) screening examinations was used in this study. Among them, 812 cases were positive for cancer and 1084 were negative or benign. After segmenting the breast area, a computerized scheme was applied to compute 92 global mammographic tissue density based features on each of four mammograms of the craniocaudal (CC) and mediolateral oblique (MLO) views. After adding three existing popular risk factors (woman’s age, subjectively rated mammographic density, and family breast cancer history) into the initial feature pool, we applied a sequential forward floating selection feature selection algorithm to select relevant features from the bilateral CC and MLO view images separately. The selected CC and MLO view image features were used to train two artificial neural networks (ANNs). The results were then fused by a third ANN to build a two-stage classifier to predict the likelihood of the FFDM screening examination being positive. CAD performance was tested using a ten-fold cross-validation method. The computed area under the receiver operating characteristic curve was AUC = 0.779   ±   0.025 and the odds ratio monotonically increased from 1 to 31.55 as CAD-generated detection scores increased. The study demonstrated that this new global image feature based CAD scheme had a relatively higher discriminatory power to cue the FFDM examinations with high risk of being positive, which may provide a new CAD-cueing method to assist radiologists in reading and interpreting screening mammograms.

  19. Detection of pesticide (Cyantraniliprole) residue on grapes using hyperspectral sensing

    NASA Astrophysics Data System (ADS)

    Mohite, Jayantrao; Karale, Yogita; Pappula, Srinivasu; Shabeer, Ahammed T. P.; Sawant, S. D.; Hingmire, Sandip

    2017-05-01

    Pesticide residues in the fruits, vegetables and agricultural commodities are harmful to humans and are becoming a health concern nowadays. Detection of pesticide residues on various commodities in an open environment is a challenging task. Hyperspectral sensing is one of the recent technologies used to detect the pesticide residues. This paper addresses the problem of detection of pesticide residues of Cyantraniliprole on grapes in open fields using multi temporal hyperspectral remote sensing data. The re ectance data of 686 samples of grapes with no, single and double dose application of Cyantraniliprole has been collected by handheld spectroradiometer (MS- 720) with a wavelength ranging from 350 nm to 1052 nm. The data collection was carried out over a large feature set of 213 spectral bands during the period of March to May 2015. This large feature set may cause model over-fitting problem as well as increase the computational time, so in order to get the most relevant features, various feature selection techniques viz Principle Component Analysis (PCA), LASSO and Elastic Net regularization have been used. Using this selected features, we evaluate the performance of various classifiers such as Artificial Neural Networks (ANN), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) to classify the grape sample with no, single or double application of Cyantraniliprole. The key finding of this paper is; most of the features selected by the LASSO varies between 350-373nm and 940-990nm consistently for all days. Experimental results also shows that, by using the relevant features selected by LASSO, SVM performs better with average prediction accuracy of 91.98 % among all classifiers, for all days.

  20. Mining Feature of Data Fusion in the Classification of Beer Flavor Information Using E-Tongue and E-Nose

    PubMed Central

    Men, Hong; Shi, Yan; Fu, Songlin; Jiao, Yanan; Qiao, Yu; Liu, Jingjing

    2017-01-01

    Multi-sensor data fusion can provide more comprehensive and more accurate analysis results. However, it also brings some redundant information, which is an important issue with respect to finding a feature-mining method for intuitive and efficient analysis. This paper demonstrates a feature-mining method based on variable accumulation to find the best expression form and variables’ behavior affecting beer flavor. First, e-tongue and e-nose were used to gather the taste and olfactory information of beer, respectively. Second, principal component analysis (PCA), genetic algorithm-partial least squares (GA-PLS), and variable importance of projection (VIP) scores were applied to select feature variables of the original fusion set. Finally, the classification models based on support vector machine (SVM), random forests (RF), and extreme learning machine (ELM) were established to evaluate the efficiency of the feature-mining method. The result shows that the feature-mining method based on variable accumulation obtains the main feature affecting beer flavor information, and the best classification performance for the SVM, RF, and ELM models with 96.67%, 94.44%, and 98.33% prediction accuracy, respectively. PMID:28753917

  1. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    PubMed

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  2. Feature selection methods for big data bioinformatics: A survey from the search perspective.

    PubMed

    Wang, Lipo; Wang, Yaoli; Chang, Qing

    2016-12-01

    This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Feature selection method based on multi-fractal dimension and harmony search algorithm and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na

    2016-10-01

    Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.

  4. Model-based analysis of pattern motion processing in mouse primary visual cortex

    PubMed Central

    Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.

    2015-01-01

    Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738

  5. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach.

    PubMed

    Haque, M Muksitul; Holder, Lawrence B; Skinner, Michael K

    2015-01-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (<3 CpG / 100bp) termed CpG deserts and a number of unique DNA sequence motifs. The rat genome was annotated for these and additional relevant features. The objective of the current study was to use a machine learning computational approach to predict all potential epimutations in the genome. A number of previously identified sperm epimutations were used as training sets. A novel machine learning approach using a sequential combination of Active Learning and Imbalance Class Learner analysis was developed. The transgenerational sperm epimutation analysis identified approximately 50K individual sites with a 1 kb mean size and 3,233 regions that had a minimum of three adjacent sites with a mean size of 3.5 kb. A select number of the most relevant genomic features were identified with the low density CpG deserts being a critical genomic feature of the features selected. A similar independent analysis with transgenerational somatic cell epimutation training sets identified a smaller number of 1,503 regions of genome-wide predicted sites and differences in genomic feature contributions. The predicted genome-wide germline (sperm) epimutations were found to be distinct from the predicted somatic cell epimutations. Validation of the genome-wide germline predicted sites used two recently identified transgenerational sperm epimutation signature sets from the pesticides dichlorodiphenyltrichloroethane (DDT) and methoxychlor (MXC) exposure lineage F3 generation. Analysis of this positive validation data set showed a 100% prediction accuracy for all the DDT-MXC sperm epimutations. Observations further elucidate the genomic features associated with transgenerational germline epimutations and identify a genome-wide set of potential epimutations that can be used to facilitate identification of epigenetic diagnostics for ancestral environmental exposures and disease susceptibility.

  6. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images.

    PubMed

    Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin

    2015-01-01

    The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.

  7. Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial.

    PubMed

    Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien

    2018-01-01

    Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-corrected AUC for these 8 features is 0.939. Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed.

  8. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  9. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  10. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  11. Spectrally queued feature selection for robotic visual odometery

    NASA Astrophysics Data System (ADS)

    Pirozzo, David M.; Frederick, Philip A.; Hunt, Shawn; Theisen, Bernard; Del Rose, Mike

    2011-01-01

    Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the development of pattern recognition and decision algorithms and they have been exploring perception capabilities of numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic visual odometry. The motivation for this applied research was to develop a feasibility analysis on multi-spectrally queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to enable human like behavior in these systems has yet to be defined.

  12. A Software Tool for the Rapid Analysis of the Sintering Behavior of Particulate Bodies

    DTIC Science & Technology

    2017-11-01

    bounded by a region that the user selects via cross hairs . Future plot analysis features, such as more complicated curve fitting and modeling functions...German RM. Grain growth behavior of tungsten heavy alloys based on the master sintering curve concept. Metallurgical and Materials Transactions A

  13. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

    PubMed Central

    Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-01-01

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100

  14. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

    PubMed

    Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-11-08

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.

  15. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  16. A novel approach for dimension reduction of microarray.

    PubMed

    Aziz, Rabia; Verma, C K; Srivastava, Namita

    2017-12-01

    This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    PubMed Central

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638

  18. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  19. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  20. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

    PubMed

    Martinez, Emmanuel; Alvarez, Mario Moises; Trevino, Victor

    2010-08-01

    Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  2. Plaque echodensity and textural features are associated with histologic carotid plaque instability.

    PubMed

    Doonan, Robert J; Gorgui, Jessica; Veinot, Jean P; Lai, Chi; Kyriacou, Efthyvoulos; Corriveau, Marc M; Steinmetz, Oren K; Daskalopoulou, Stella S

    2016-09-01

    Carotid plaque echodensity and texture features predict cerebrovascular symptomatology. Our purpose was to determine the association of echodensity and textural features obtained from a digital image analysis (DIA) program with histologic features of plaque instability as well as to identify the specific morphologic characteristics of unstable plaques. Patients scheduled to undergo carotid endarterectomy were recruited and underwent carotid ultrasound imaging. DIA was performed to extract echodensity and textural features using Plaque Texture Analysis software (LifeQ Medical Ltd, Nicosia, Cyprus). Carotid plaque surgical specimens were obtained and analyzed histologically. Principal component analysis (PCA) was performed to reduce imaging variables. Logistic regression models were used to determine if PCA variables and individual imaging variables predicted histologic features of plaque instability. Image analysis data from 160 patients were analyzed. Individual imaging features of plaque echolucency and homogeneity were associated with a more unstable plaque phenotype on histology. These results were independent of age, sex, and degree of carotid stenosis. PCA reduced 39 individual imaging variables to five PCA variables. PCA1 and PCA2 were significantly associated with overall plaque instability on histology (both P = .02), whereas PCA3 did not achieve statistical significance (P = .07). DIA features of carotid plaques are associated with histologic plaque instability as assessed by multiple histologic features. Importantly, unstable plaques on histology appear more echolucent and homogeneous on ultrasound imaging. These results are independent of stenosis, suggesting that image analysis may have a role in refining the selection of patients who undergo carotid endarterectomy. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Laser confocal microscope for analysis of 3013 inner container closure weld region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rodriguez, M. J.

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for datamore » acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.« less

  4. Robust tumor morphometry in multispectral fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  5. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  6. Comparison of two feature selection methods for the separability analysis of intertidal sediments with spectrometric datasets in the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Jung, Richard; Ehlers, Manfred

    2016-10-01

    The spectral features of intertidal sediments are all influenced by the same biophysical properties, such as water, salinity, grain size or vegetation and therefore they are hard to separate by using only multispectral sensors. This could be shown by a previous study of Jung et al. (2015). A more detailed analysis of their characteristic spectral feature has to be carried out to understand the differences and similarities. Spectrometry data (i.e., hyperspectral sensors), for instance, have the opportunity to measure the reflection of the landscape as a continuous spectral pattern for each pixel of an image built from dozen to hundreds of narrow spectral bands. This reveals a high potential to measure unique spectral responses of different ecological conditions (Hennig et al., 2007). In this context, this study uses spectrometric datasets to distinguish between 14 different sediment classes obtained from a study area in the German Wadden Sea. A new feature selection method is proposed (Jeffries-Matusita distance bases feature selection; JMDFS), which uses the Euclidean distance to eliminate the wavelengths with the most similar reflectance values in an iterative process. Subsequent to each iteration, the separation capability is estimated by the Jeffries-Matusita distance (JMD). Two classes can be separated if the JMD is greater than 1.9 and if less than four wavelengths remain, no separation can be assumed. The results of the JMDFS are compared with a state-of-the-art feature selection method called ReliefF. Both methods showed the ability to improve the separation by achieving overall accuracies greater than 82%. The accuracies are 4%-13% better than the results with all wavelengths applied. The number of remaining wavelengths is very diverse and ranges from 14 to 213 of 703. The advantage of JMDFS compared with ReliefF is clearly the processing time. ReliefF needs 30 min for one temporary result. It is necessary to repeat the process several times and to average all temporary results to achieve a final result. In this study 50 iterations were carried out, which makes four days of processing. In contrast, JMDFS needs only 30 min for a final result.

  7. Selecting a digital camera for telemedicine.

    PubMed

    Patricoski, Chris; Ferguson, A Stewart

    2009-06-01

    The digital camera is an essential component of store-and-forward telemedicine (electronic consultation). There are numerous makes and models of digital cameras on the market, and selecting a suitable consumer-grade camera can be complicated. Evaluation of digital cameras includes investigating the features and analyzing image quality. Important features include the camera settings, ease of use, macro capabilities, method of image transfer, and power recharging. Consideration needs to be given to image quality, especially as it relates to color (skin tones) and detail. It is important to know the level of the photographer and the intended application. The goal is to match the characteristics of the camera with the telemedicine program requirements. In the end, selecting a digital camera is a combination of qualitative (subjective) and quantitative (objective) analysis. For the telemedicine program in Alaska in 2008, the camera evaluation and decision process resulted in a specific selection based on the criteria developed for our environment.

  8. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  9. Analysis of underlying causes of inter-expert disagreement in retinopathy of prematurity diagnosis. Application of machine learning principles.

    PubMed

    Ataer-Cansizoglu, E; Kalpathy-Cramer, J; You, S; Keck, K; Erdogmus, D; Chiang, M F

    2015-01-01

    Inter-expert variability in image-based clinical diagnosis has been demonstrated in many diseases including retinopathy of prematurity (ROP), which is a disease affecting low birth weight infants and is a major cause of childhood blindness. In order to better understand the underlying causes of variability among experts, we propose a method to quantify the variability of expert decisions and analyze the relationship between expert diagnoses and features computed from the images. Identification of these features is relevant for development of computer-based decision support systems and educational systems in ROP, and these methods may be applicable to other diseases where inter-expert variability is observed. The experiments were carried out on a dataset of 34 retinal images, each with diagnoses provided independently by 22 experts. Analysis was performed using concepts of Mutual Information (MI) and Kernel Density Estimation. A large set of structural features (a total of 66) were extracted from retinal images. Feature selection was utilized to identify the most important features that correlated to actual clinical decisions by the 22 study experts. The best three features for each observer were selected by an exhaustive search on all possible feature subsets and considering joint MI as a relevance criterion. We also compared our results with the results of Cohen's Kappa [36] as an inter-rater reliability measure. The results demonstrate that a group of observers (17 among 22) decide consistently with each other. Mean and second central moment of arteriolar tortuosity is among the reasons of disagreement between this group and the rest of the observers, meaning that the group of experts consider amount of tortuosity as well as the variation of tortuosity in the image. Given a set of image-based features, the proposed analysis method can identify critical image-based features that lead to expert agreement and disagreement in diagnosis of ROP. Although tree-based features and various statistics such as central moment are not popular in the literature, our results suggest that they are important for diagnosis.

  10. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  11. Uncovering multiple pathways to substance use: a comparison of methods for identifying population subgroups.

    PubMed

    Dierker, Lisa; Rose, Jennifer; Tan, Xianming; Li, Runze

    2010-12-01

    This paper describes and compares a selection of available modeling techniques for identifying homogeneous population subgroups in the interest of informing targeted substance use intervention. We present a nontechnical review of the common and unique features of three methods: (a) trajectory analysis, (b) functional hierarchical linear modeling (FHLM), and (c) decision tree methods. Differences among the techniques are described, including required data features, strengths and limitations in terms of the flexibility with which outcomes and predictors can be modeled, and the potential of each technique for helping to inform the selection of targets and timing of substance intervention programs.

  12. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo

    2016-12-01

    In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.

  13. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.

    PubMed

    Ni, Qianwu; Chen, Lei

    2017-01-01

    Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  15. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    NASA Astrophysics Data System (ADS)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  16. Question analysis for Indonesian comparative question

    NASA Astrophysics Data System (ADS)

    Saelan, A.; Purwarianti, A.; Widyantoro, D. H.

    2017-01-01

    Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).

  17. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks.

    PubMed

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2016-11-01

    Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient's mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

  18. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  19. High Dimensional Classification Using Features Annealed Independence Rules.

    PubMed

    Fan, Jianqing; Fan, Yingying

    2008-01-01

    Classification using high-dimensional features arises frequently in many contemporary statistical studies such as tumor classification using microarray or other high-throughput data. The impact of dimensionality on classifications is largely poorly understood. In a seminal paper, Bickel and Levina (2004) show that the Fisher discriminant performs poorly due to diverging spectra and they propose to use the independence rule to overcome the problem. We first demonstrate that even for the independence classification rule, classification using all the features can be as bad as the random guessing due to noise accumulation in estimating population centroids in high-dimensional feature space. In fact, we demonstrate further that almost all linear discriminants can perform as bad as the random guessing. Thus, it is paramountly important to select a subset of important features for high-dimensional classification, resulting in Features Annealed Independence Rules (FAIR). The conditions under which all the important features can be selected by the two-sample t-statistic are established. The choice of the optimal number of features, or equivalently, the threshold value of the test statistics are proposed based on an upper bound of the classification error. Simulation studies and real data analysis support our theoretical results and demonstrate convincingly the advantage of our new classification procedure.

  20. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  1. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    NASA Astrophysics Data System (ADS)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2017-04-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  2. STAGS Example Problems Manual

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Rankin, Charles C.

    2006-01-01

    This document summarizes the STructural Analysis of General Shells (STAGS) development effort, STAGS performance for selected demonstration problems, and STAGS application problems illustrating selected advanced features available in the STAGS Version 5.0. Each problem is discussed including selected background information and reference solutions when available. The modeling and solution approach for each problem is described and illustrated. Numerical results are presented and compared with reference solutions, test data, and/or results obtained from mesh refinement studies. These solutions provide an indication of the overall capabilities of the STAGS nonlinear finite element analysis tool and provide users with representative cases, including input files, to explore these capabilities that may then be tailored to other applications.

  3. Towards noncontact skin melanoma selection by multispectral imaging analysis.

    PubMed

    Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna

    2011-06-01

    A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the "melanoma areas" in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.

  4. Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering.

    PubMed

    Rodríguez-Sotelo, J L; Peluffo-Ordoñez, D; Cuesta-Frau, D; Castellanos-Domínguez, G

    2012-10-01

    The computer-assisted analysis of biomedical records has become an essential tool in clinical settings. However, current devices provide a growing amount of data that often exceeds the processing capacity of normal computers. As this amount of information rises, new demands for more efficient data extracting methods appear. This paper addresses the task of data mining in physiological records using a feature selection scheme. An unsupervised method based on relevance analysis is described. This scheme uses a least-squares optimization of the input feature matrix in a single iteration. The output of the algorithm is a feature weighting vector. The performance of the method was assessed using a heartbeat clustering test on real ECG records. The quantitative cluster validity measures yielded a correctly classified heartbeat rate of 98.69% (specificity), 85.88% (sensitivity) and 95.04% (general clustering performance), which is even higher than the performance achieved by other similar ECG clustering studies. The number of features was reduced on average from 100 to 18, and the temporal cost was a 43% lower than in previous ECG clustering schemes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason L. Wright; Milos Manic

    2010-05-01

    This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.

  6. A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study.

    PubMed

    AbdelRahman, Samir E; Zhang, Mingyuan; Bray, Bruce E; Kawamoto, Kensaku

    2014-05-27

    The aim of this study was to propose an analytical approach to develop high-performing predictive models for congestive heart failure (CHF) readmission using an operational dataset with incomplete records and changing data over time. Our analytical approach involves three steps: pre-processing, systematic model development, and risk factor analysis. For pre-processing, variables that were absent in >50% of records were removed. Moreover, the dataset was divided into a validation dataset and derivation datasets which were separated into three temporal subsets based on changes to the data over time. For systematic model development, using the different temporal datasets and the remaining explanatory variables, the models were developed by combining the use of various (i) statistical analyses to explore the relationships between the validation and the derivation datasets; (ii) adjustment methods for handling missing values; (iii) classifiers; (iv) feature selection methods; and (iv) discretization methods. We then selected the best derivation dataset and the models with the highest predictive performance. For risk factor analysis, factors in the highest-performing predictive models were analyzed and ranked using (i) statistical analyses of the best derivation dataset, (ii) feature rankers, and (iii) a newly developed algorithm to categorize risk factors as being strong, regular, or weak. The analysis dataset consisted of 2,787 CHF hospitalizations at University of Utah Health Care from January 2003 to June 2013. In this study, we used the complete-case analysis and mean-based imputation adjustment methods; the wrapper subset feature selection method; and four ranking strategies based on information gain, gain ratio, symmetrical uncertainty, and wrapper subset feature evaluators. The best-performing models resulted from the use of a complete-case analysis derivation dataset combined with the Class-Attribute Contingency Coefficient discretization method and a voting classifier which averaged the results of multi-nominal logistic regression and voting feature intervals classifiers. Of 42 final model risk factors, discharge disposition, discretized age, and indicators of anemia were the most significant. This model achieved a c-statistic of 86.8%. The proposed three-step analytical approach enhanced predictive model performance for CHF readmissions. It could potentially be leveraged to improve predictive model performance in other areas of clinical medicine.

  7. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening.

    PubMed

    Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J

    2016-05-03

    Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.

  8. Unbiased feature selection in learning random forests for high-dimensional data.

    PubMed

    Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi

    2015-01-01

    Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.

  9. Mutual information-based feature selection for radiomics

    NASA Astrophysics Data System (ADS)

    Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine

    2016-03-01

    Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.

  10. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  11. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  12. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands

    USDA-ARS?s Scientific Manuscript database

    Using five centimeter resolution images acquired with an unmanned aircraft system (UAS), we developed and evaluated an image processing workflow that included the integration of resolution-appropriate field sampling, feature selection, object-based image analysis, and processing approaches for UAS i...

  13. The influence of physical factors on recognizing blood cells in the computer microscopy systems of acute leukemia diagnosis

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.

    2017-01-01

    The work investigated the effect of the choice of color space component on blood cell detection based on the calculation of texture attributes of blood cells nuclei in bone marrow. The study identified the most informative color space and texture characteristics of blood cells, designed for components of these spaces. Significance ratio was introduced to assess the quality of features. We offered features that have enabled to divide lymphocytes from lymphoblasts. The selection of the features was based on the results of the data analysis.

  14. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  15. Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China.

    PubMed

    Zhai, Binxu; Chen, Jianguo

    2018-04-18

    A stacked ensemble model is developed for forecasting and analyzing the daily average concentrations of fine particulate matter (PM 2.5 ) in Beijing, China. Special feature extraction procedures, including those of simplification, polynomial, transformation and combination, are conducted before modeling to identify potentially significant features based on an exploratory data analysis. Stability feature selection and tree-based feature selection methods are applied to select important variables and evaluate the degrees of feature importance. Single models including LASSO, Adaboost, XGBoost and multi-layer perceptron optimized by the genetic algorithm (GA-MLP) are established in the level 0 space and are then integrated by support vector regression (SVR) in the level 1 space via stacked generalization. A feature importance analysis reveals that nitrogen dioxide (NO 2 ) and carbon monoxide (CO) concentrations measured from the city of Zhangjiakou are taken as the most important elements of pollution factors for forecasting PM 2.5 concentrations. Local extreme wind speeds and maximal wind speeds are considered to extend the most effects of meteorological factors to the cross-regional transportation of contaminants. Pollutants found in the cities of Zhangjiakou and Chengde have a stronger impact on air quality in Beijing than other surrounding factors. Our model evaluation shows that the ensemble model generally performs better than a single nonlinear forecasting model when applied to new data with a coefficient of determination (R 2 ) of 0.90 and a root mean squared error (RMSE) of 23.69μg/m 3 . For single pollutant grade recognition, the proposed model performs better when applied to days characterized by good air quality than when applied to days registering high levels of pollution. The overall classification accuracy level is 73.93%, with most misclassifications made among adjacent categories. The results demonstrate the interpretability and generalizability of the stacked ensemble model. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Data survey on the effect of product features on competitive advantage of selected firms in Nigeria.

    PubMed

    Olokundun, Maxwell; Iyiola, Oladele; Ibidunni, Stephen; Falola, Hezekiah; Salau, Odunayo; Amaihian, Augusta; Peter, Fred; Borishade, Taiye

    2018-06-01

    The main objective of this study was to present a data article that investigates the effect product features on firm's competitive advantage. Few studies have examined how the features of a product could help in driving the competitive advantage of a firm. Descriptive research method was used. Statistical Package for Social Sciences (SPSS 22) was engaged for analysis of one hundred and fifty (150) valid questionnaire which were completed by small business owners registered under small and medium scale enterprises development of Nigeria (SMEDAN). Stratified and simple random sampling techniques were employed; reliability and validity procedures were also confirmed. The field data set is made publicly available to enable critical or extended analysis.

  17. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

    PubMed

    Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian

    2017-10-16

    Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.

  18. Evaluating the efficacy of fully automated approaches for the selection of eye blink ICA components

    PubMed Central

    Pontifex, Matthew B.; Miskovic, Vladimir; Laszlo, Sarah

    2017-01-01

    Independent component analysis (ICA) offers a powerful approach for the isolation and removal of eye blink artifacts from EEG signals. Manual identification of the eye blink ICA component by inspection of scalp map projections, however, is prone to error, particularly when non-artifactual components exhibit topographic distributions similar to the blink. The aim of the present investigation was to determine the extent to which automated approaches for selecting eye blink related ICA components could be utilized to replace manual selection. We evaluated popular blink selection methods relying on spatial features [EyeCatch()], combined stereotypical spatial and temporal features [ADJUST()], and a novel method relying on time-series features alone [icablinkmetrics()] using both simulated and real EEG data. The results of this investigation suggest that all three methods of automatic component selection are able to accurately identify eye blink related ICA components at or above the level of trained human observers. However, icablinkmetrics(), in particular, appears to provide an effective means of automating ICA artifact rejection while at the same time eliminating human errors inevitable during manual component selection and false positive component identifications common in other automated approaches. Based upon these findings, best practices for 1) identifying artifactual components via automated means and 2) reducing the accidental removal of signal-related ICA components are discussed. PMID:28191627

  19. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1975-01-01

    Selected samples of anomalous surface features commonly associated with the various types of uranium deposits are presented and recommendations for sensor applications are given. The features studied include: epigenetic uranium ore roll type; precambrian basal conglomerate type; vein-type uranium deposits; pipe-structure or diatreme deposits; evaporitic uranium deposits. The hydrogeology of the Mosquito Range and the San Luis Valley is also examined.

  20. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  1. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    PubMed Central

    Procházka, Aleš; Schätz, Martin; Vyšata, Oldřich; Vališ, Martin

    2016-01-01

    This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction. PMID:27367687

  2. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis.

    PubMed

    Procházka, Aleš; Schätz, Martin; Vyšata, Oldřich; Vališ, Martin

    2016-06-28

    This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.

  3. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis.

    PubMed

    Cao, Longlong; Guo, Shuixia; Xue, Zhimin; Hu, Yong; Liu, Haihong; Mwansisya, Tumbwene E; Pu, Weidan; Yang, Bo; Liu, Chang; Feng, Jianfeng; Chen, Eric Y H; Liu, Zhening

    2014-02-01

    Aberrant brain functional connectivity patterns have been reported in major depressive disorder (MDD). It is unknown whether they can be used in discriminant analysis for diagnosis of MDD. In the present study we examined the efficiency of discriminant analysis of MDD by individualized computer-assisted diagnosis. Based on resting-state functional magnetic resonance imaging data, a new approach was adopted to investigate functional connectivity changes in 39 MDD patients and 37 well-matched healthy controls. By using the proposed feature selection method, we identified significant altered functional connections in patients. They were subsequently applied to our analysis as discriminant features using a support vector machine classification method. Furthermore, the relative contribution of functional connectivity was estimated. After subset selection of high-dimension features, the support vector machine classifier reached up to approximately 84% with leave-one-out training during the discrimination process. Through summarizing the classification contribution of functional connectivities, we obtained four obvious contribution modules: inferior orbitofrontal module, supramarginal gyrus module, inferior parietal lobule-posterior cingulated gyrus module and middle temporal gyrus-inferior temporal gyrus module. The experimental results demonstrated that the proposed method is effective in discriminating MDD patients from healthy controls. Functional connectivities might be useful as new biomarkers to assist clinicians in computer auxiliary diagnosis of MDD. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  4. [Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].

    PubMed

    Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao

    2014-05-01

    Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.

  5. A malware detection scheme based on mining format information.

    PubMed

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates.

  6. A Malware Detection Scheme Based on Mining Format Information

    PubMed Central

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates. PMID:24991639

  7. A Robust Shape Reconstruction Method for Facial Feature Point Detection.

    PubMed

    Tan, Shuqiu; Chen, Dongyi; Guo, Chenggang; Huang, Zhiqi

    2017-01-01

    Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  8. Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

    PubMed Central

    Doolittle-Hall, Janet M.; Cunningham Glasspoole, Danielle L.; Seaman, William T.; Webster-Cyriaque, Jennifer

    2015-01-01

    Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV), hepatitis B virus (HBV) or Merkel cell polyomavirus (MCPyV). These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats) and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures. PMID:26569308

  9. Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover

    NASA Astrophysics Data System (ADS)

    de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio

    2017-07-01

    Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.

  10. Method of generating features optimal to a dataset and classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.

    A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.

  11. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  12. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics

    PubMed Central

    Gupta, Priti; Markan, C. M.

    2014-01-01

    The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062

  13. Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex

    PubMed Central

    Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst

    2014-01-01

    Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284

  14. Using statistical text classification to identify health information technology incidents

    PubMed Central

    Chai, Kevin E K; Anthony, Stephen; Coiera, Enrico; Magrabi, Farah

    2013-01-01

    Objective To examine the feasibility of using statistical text classification to automatically identify health information technology (HIT) incidents in the USA Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database. Design We used a subset of 570 272 incidents including 1534 HIT incidents reported to MAUDE between 1 January 2008 and 1 July 2010. Text classifiers using regularized logistic regression were evaluated with both ‘balanced’ (50% HIT) and ‘stratified’ (0.297% HIT) datasets for training, validation, and testing. Dataset preparation, feature extraction, feature selection, cross-validation, classification, performance evaluation, and error analysis were performed iteratively to further improve the classifiers. Feature-selection techniques such as removing short words and stop words, stemming, lemmatization, and principal component analysis were examined. Measurements κ statistic, F1 score, precision and recall. Results Classification performance was similar on both the stratified (0.954 F1 score) and balanced (0.995 F1 score) datasets. Stemming was the most effective technique, reducing the feature set size to 79% while maintaining comparable performance. Training with balanced datasets improved recall (0.989) but reduced precision (0.165). Conclusions Statistical text classification appears to be a feasible method for identifying HIT reports within large databases of incidents. Automated identification should enable more HIT problems to be detected, analyzed, and addressed in a timely manner. Semi-supervised learning may be necessary when applying machine learning to big data analysis of patient safety incidents and requires further investigation. PMID:23666777

  15. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.

    PubMed

    Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.

  16. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

    PubMed Central

    Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546

  17. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  18. SU-E-J-256: Predicting Metastasis-Free Survival of Rectal Cancer Patients Treated with Neoadjuvant Chemo-Radiotherapy by Data-Mining of CT Texture Features of Primary Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wang, J; Shen, L

    Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less

  19. SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Aristophanous, M; Akhtari, M

    Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less

  20. Volumetric data analysis using Morse-Smale complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, V; Pascucci, V

    2005-10-13

    The 3D Morse-Smale complex is a fundamental topological construct that partitions the domain of a real-valued function into regions having uniform gradient flow behavior. In this paper, we consider the construction and selective presentation of cells of the Morse-Smale complex and their use in the analysis and visualization of scientific datasets. We take advantage of the fact that cells of different dimension often characterize different types of features present in the data. For example, critical points pinpoint changes in topology by showing where components of the level sets are created, destroyed or modified in genus. Edges of the Morse-Smale complexmore » extract filament-like features that are not explicitly modeled in the original data. Interactive selection and rendering of portions of the Morse-Smale complex introduces fundamental data management challenges due to the unstructured nature of the complex even for structured inputs. We describe a data structure that stores the Morse-Smale complex and allows efficient selective traversal of regions of interest. Finally, we illustrate the practical use of this approach by applying it to cryo-electron microscopy data of protein molecules.« less

  1. Human attention filters for single colors.

    PubMed

    Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George

    2016-10-25

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.

  2. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less

  3. Elemental Analysis of Beryllium Samples Using a Microzond-EGP-10 Unit

    NASA Astrophysics Data System (ADS)

    Buzoverya, M. E.; Karpov, I. A.; Gorodnov, A. A.; Shishpor, I. V.; Kireycheva, V. I.

    2017-12-01

    Results concerning the structural and elemental analysis of beryllium samples obtained via different technologies using a Microzond-EGP-10 unit with the help of the PIXE and RBS methods are presented. As a result, the overall chemical composition and the nature of inclusions were determined. The mapping method made it possible to reveal the structural features of beryllium samples: to select the grains of the main substance having different size and chemical composition, to visualize the interfaces between the regions of different composition, and to describe the features of the distribution of impurities in the samples.

  4. Diagnostic analysis of liver B ultrasonic texture features based on LM neural network

    NASA Astrophysics Data System (ADS)

    Chi, Qingyun; Hua, Hu; Liu, Menglin; Jiang, Xiuying

    2017-03-01

    In this study, B ultrasound images of 124 benign and malignant patients were randomly selected as the study objects. The B ultrasound images of the liver were treated by enhanced de-noising. By constructing the gray level co-occurrence matrix which reflects the information of each angle, Principal Component Analysis of 22 texture features were extracted and combined with LM neural network for diagnosis and classification. Experimental results show that this method is a rapid and effective diagnostic method for liver imaging, which provides a quantitative basis for clinical diagnosis of liver diseases.

  5. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    PubMed Central

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  6. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Pattern recognition and image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Eastwood, DeLyle

    1999-12-01

    Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.

  8. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  9. Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images

    PubMed Central

    Bang, Jae Won; Choi, Jong-Suk; Park, Kang Ryoung

    2013-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have been used in various applications, including human–computer interfaces, diagnosis of brain diseases, and measurement of cognitive status. However, EEG signals can be contaminated with noise caused by user's head movements. Therefore, we propose a new method that combines an EEG acquisition device and a frontal viewing camera to isolate and exclude the sections of EEG data containing these noises. This method is novel in the following three ways. First, we compare the accuracies of detecting head movements based on the features of EEG signals in the frequency and time domains and on the motion features of images captured by the frontal viewing camera. Second, the features of EEG signals in the frequency domain and the motion features captured by the frontal viewing camera are selected as optimal ones. The dimension reduction of the features and feature selection are performed using linear discriminant analysis. Third, the combined features are used as inputs to support vector machine (SVM), which improves the accuracy in detecting head movements. The experimental results show that the proposed method can detect head movements with an average error rate of approximately 3.22%, which is smaller than that of other methods. PMID:23669713

  10. Max-AUC Feature Selection in Computer-Aided Detection of Polyps in CT Colonography

    PubMed Central

    Xu, Jian-Wu; Suzuki, Kenji

    2014-01-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level. PMID:24608058

  11. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    PubMed

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  12. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  13. VARSEDIG: an algorithm for morphometric characters selection and statistical validation in morphological taxonomy.

    PubMed

    Guisande, Cástor; Vari, Richard P; Heine, Jürgen; García-Roselló, Emilio; González-Dacosta, Jacinto; Perez-Schofield, Baltasar J García; González-Vilas, Luis; Pelayo-Villamil, Patricia

    2016-09-12

    We present and discuss VARSEDIG, an algorithm which identifies the morphometric features that significantly discriminate two taxa and validates the morphological distinctness between them via a Monte-Carlo test. VARSEDIG is freely available as a function of the RWizard application PlotsR (http://www.ipez.es/RWizard) and as R package on CRAN. The variables selected by VARSEDIG with the overlap method were very similar to those selected by logistic regression and discriminant analysis, but overcomes some shortcomings of these methods. VARSEDIG is, therefore, a good alternative by comparison to current classical classification methods for identifying morphometric features that significantly discriminate a taxon and for validating its morphological distinctness from other taxa. As a demonstration of the potential of VARSEDIG for this purpose, we analyze morphological discrimination among some species of the Neotropical freshwater family Characidae.

  14. Effect of feature-selective attention on neuronal responses in macaque area MT

    PubMed Central

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  15. Effect of feature-selective attention on neuronal responses in macaque area MT.

    PubMed

    Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A

    2012-03-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).

  16. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  17. Remote Sensing Observations of Thunderstorm Features in Latvia

    NASA Astrophysics Data System (ADS)

    Avotniece, Zanita; Briede, Agrita; Klavins, Maris; Aniskevich, Svetlana

    2017-12-01

    Thunderstorms are the most hazardous meteorological phenomena in Latvia in the summer season, and the assessment of their characteristics is essential for the development of an effective national climate and weather prediction service. However, the complex nature of convective processes sets specific limitations to their observation, analysis and forecasting. Therefore, the aim of this study is to analyse thunderstorm features associated with severe thunderstorms observed in weather radar and satellite data in Latvia over the period 2006-2015. The obtained results confirm the applicability of the selected thunderstorm features for thunderstorm nowcasting and analysis in Latvia. The most frequent features observed on days with thunderstorm were maximum radar reflectivities exceeding 50 dBZ and the occurrence of overshooting tops and tilted updrafts, while the occurrence of gravity waves, V-shaped storm structures and small ice particles have been found to be useful indicators of increased thunderstorm severity potential.

  18. A comparative analysis of image features between weave embroidered Thangka and piles embroidered Thangka

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Wang, Weilan

    2018-04-01

    Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.

  19. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  20. Military personnel recognition system using texture, colour, and SURF features

    NASA Astrophysics Data System (ADS)

    Irhebhude, Martins E.; Edirisinghe, Eran A.

    2014-06-01

    This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.

  1. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  2. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Niaf, Emilie; Rouvière, Olivier; Mège-Lechevallier, Florence; Bratan, Flavie; Lartizien, Carole

    2012-06-01

    This study evaluated a computer-assisted diagnosis (CADx) system for determining a likelihood measure of prostate cancer presence in the peripheral zone (PZ) based on multiparametric magnetic resonance (MR) imaging, including T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI at 1.5 T. Based on a feature set derived from grey-level images, including first-order statistics, Haralick features, gradient features, semi-quantitative and quantitative (pharmacokinetic modelling) dynamic parameters, four kinds of classifiers were trained and compared : nonlinear support vector machine (SVM), linear discriminant analysis, k-nearest neighbours and naïve Bayes classifiers. A set of feature selection methods based on t-test, mutual information and minimum-redundancy-maximum-relevancy criteria were also compared. The aim was to discriminate between the relevant features as well as to create an efficient classifier using these features. The diagnostic performances of these different CADx schemes were evaluated based on a receiver operating characteristic (ROC) curve analysis. The evaluation database consisted of 30 sets of multiparametric MR images acquired from radical prostatectomy patients. Using histologic sections as the gold standard, both cancer and nonmalignant (but suspicious) tissues were annotated in consensus on all MR images by two radiologists, a histopathologist and a researcher. Benign tissue regions of interest (ROIs) were also delineated in the remaining prostate PZ. This resulted in a series of 42 cancer ROIs, 49 benign but suspicious ROIs and 124 nonsuspicious benign ROIs. From the outputs of all evaluated feature selection methods on the test bench, a restrictive set of about 15 highly informative features coming from all MR sequences was discriminated, thus confirming the validity of the multiparametric approach. Quantitative evaluation of the diagnostic performance yielded a maximal area under the ROC curve (AUC) of 0.89 (0.81-0.94) for the discrimination of the malignant versus nonmalignant tissues and 0.82 (0.73-0.90) for the discrimination of the malignant versus suspicious tissues when combining the t-test feature selection approach with a SVM classifier. A preliminary comparison showed that the optimal CADx scheme mimicked, in terms of AUC, the human experts in differentiating malignant from suspicious tissues, thus demonstrating its potential for assisting cancer identification in the PZ.

  3. Social and Abnormal Psychology Textbooks: An Objective Analysis.

    ERIC Educational Resources Information Center

    Christopher, Andrew N.; Griggs, Richard A.; Hagans, Chad L.

    2000-01-01

    Provides feature and content analyses of 14 social and 17 abnormal psychology full-length textbooks from 1995-98 that are available for undergraduate psychology courses. Provides instructors of these courses a means for more informed text selection. (CMK)

  4. TELEVISION ADVERTISING OF SELECTED MEDICINAL PRODUCTS IN POLAND AND IN THE UNITED STATES - A COMPARATIVE ANALYSIS OF SELECTED TELEVISION COMMERCIALS.

    PubMed

    Wiśniewska, Ewa; Czerw, Aleksandra; Makowska, Marta; Fronczak, Adam

    2016-07-01

    The aim of the analysis was to establish the differences between television commercials of OTC drugs broadcast in Poland and in the U.S. The study covered 100 commercials of medicinal products of various producers applied to treat a variety of symptoms and diseases. The analysis demonstrated that there are both similarities and differences. The differences concerned e.g., spot length, the time of placement of a brand name and the diversity of advertising slogans. The most significant similarities concerned applied manipulation techniques, locations featured in commercials and the choice of actors.

  5. Lattice Independent Component Analysis for Mobile Robot Localization

    NASA Astrophysics Data System (ADS)

    Villaverde, Ivan; Fernandez-Gauna, Borja; Zulueta, Ekaitz

    This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot's acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).

  6. Mutual information criterion for feature selection with application to classification of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Diamant, Idit; Shalhon, Moran; Goldberger, Jacob; Greenspan, Hayit

    2016-03-01

    Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection based on mutual information (MI) criterion for automatic classification of microcalcifications. We explored the MI based feature selection for various texture features. The proposed method was evaluated on a standardized digital database for screening mammography (DDSM). Experimental results demonstrate the effectiveness and the advantage of using the MI-based feature selection to obtain the most relevant features for the task and thus to provide for improved performance as compared to using all features.

  7. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle.

    PubMed

    Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  9. "Combing" through Representations of Black Girls' Hair in African American Children's Literature

    ERIC Educational Resources Information Center

    Brooks, Wanda M.; McNair, Jonda C.

    2015-01-01

    In this article, we share findings from a content analysis of six picturebooks about hair. The picturebooks selected feature Black female protagonists and are written by African American females. Our content analysis examines the ways in which Black hair is theorized and represented to children (from diverse backgrounds) very early on in their…

  10. Spectral characteristics and feature selection of satellite remote sensing data for climate and anthropogenic changes assessment in Bucharest area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Tautan, Marina; Miclos, Sorin; Cristescu, Luminita; Carstea, Elfrida; Baschir, Laurentiu

    2010-05-01

    Urban systems play a vital role in social and economic development in all countries. Their environmental changes can be investigated on different spatial and temporal scales. Urban and peri-urban environment dynamics is of great interest for future planning and decision making as well as in frame of local and regional changes. Changes in urban land cover include changes in biotic diversity, actual and potential primary productivity, soil quality, runoff, and sedimentation rates, and cannot be well understood without the knowledge of land use change that drives them. The study focuses on the assessment of environmental features changes for Bucharest metropolitan area, Romania by satellite remote sensing and in-situ monitoring data. Rational feature selection from the varieties of spectral channels in the optical wavelengths of electromagnetic spectrum (VIS and NIR) is very important for effective analysis and information extraction of remote sensing data. Based on comprehensively analyses of the spectral characteristics of remote sensing data is possibly to derive environmental changes in urban areas. The information quantity contained in a band is an important parameter in evaluating the band. The deviation and entropy are often used to show information amount. Feature selection is one of the most important steps in recognition and classification of remote sensing images. Therefore, it is necessary to select features before classification. The optimal features are those that can be used to distinguish objects easily and correctly. Three factors—the information quantity of bands, the correlation between bands and the spectral characteristic (e.g. absorption specialty) of classified objects in test area Bucharest have been considered in our study. As, the spectral characteristic of an object is influenced by many factors, being difficult to define optimal feature parameters to distinguish all the objects in a whole area, a method of multi-level feature selection was suggested. On the basis of analyzing the information quantity of bands, correlation between different bands, spectral absorption characteristics of objects and object separability in bands, a fundamental method of optimum band selection and feature extraction from remote sensing data was discussed. Spectral signatures of different terrain features have been used to extract structural patterns aiming to separate surface units and to classify the general categories. The synergetic analysis and interpretation of the different satellite images (LANDSAT: TM, ETM; MODIS, IKONOS) acquired over a period of more than 20 years reveals significant aspects regarding impacts of climate and anthropogenic changes on urban/periurban environment. It was delimited residential zones of industrial zones which are very often a source of pollution. An important role has urban green cover assessment. Have been emphasized the particularities of the functional zones from different points of view: architectural, streets and urban surface traffic, some components of urban infrastructure as well as habitat quality. The growth of Bucharest urban area in Romania has been a result of a rapid process of industrialization, and also of the increase of urban population. Information on the spatial pattern and temporal dynamics of land cover and land use of urban areas is critical to address a wide range of practical problems relating to urban regeneration, urban sustainability and rational planning policy.

  11. Variable selection for marginal longitudinal generalized linear models.

    PubMed

    Cantoni, Eva; Flemming, Joanna Mills; Ronchetti, Elvezio

    2005-06-01

    Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).

  12. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  13. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  14. Low-Dimensional Feature Representation for Instrument Identification

    NASA Astrophysics Data System (ADS)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  15. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  16. Enhancing the Performance of LibSVM Classifier by Kernel F-Score Feature Selection

    NASA Astrophysics Data System (ADS)

    Sarojini, Balakrishnan; Ramaraj, Narayanasamy; Nickolas, Savarimuthu

    Medical Data mining is the search for relationships and patterns within the medical datasets that could provide useful knowledge for effective clinical decisions. The inclusion of irrelevant, redundant and noisy features in the process model results in poor predictive accuracy. Much research work in data mining has gone into improving the predictive accuracy of the classifiers by applying the techniques of feature selection. Feature selection in medical data mining is appreciable as the diagnosis of the disease could be done in this patient-care activity with minimum number of significant features. The objective of this work is to show that selecting the more significant features would improve the performance of the classifier. We empirically evaluate the classification effectiveness of LibSVM classifier on the reduced feature subset of diabetes dataset. The evaluations suggest that the feature subset selected improves the predictive accuracy of the classifier and reduce false negatives and false positives.

  17. Comparative analysis of feature extraction methods in satellite imagery

    NASA Astrophysics Data System (ADS)

    Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad

    2017-10-01

    Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.

  18. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  19. Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.

    PubMed

    Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse

    2017-01-01

    Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.

  20. Classification Influence of Features on Given Emotions and Its Application in Feature Selection

    NASA Astrophysics Data System (ADS)

    Xing, Yin; Chen, Chuang; Liu, Li-Long

    2018-04-01

    In order to solve the problem that there is a large amount of redundant data in high-dimensional speech emotion features, we analyze deeply the extracted speech emotion features and select better features. Firstly, a given emotion is classified by each feature. Secondly, the recognition rate is ranked in descending order. Then, the optimal threshold of features is determined by rate criterion. Finally, the better features are obtained. When applied in Berlin and Chinese emotional data set, the experimental results show that the feature selection method outperforms the other traditional methods.

  1. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    PubMed Central

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng

    2017-01-01

    This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412

  2. Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations

    PubMed Central

    2012-01-01

    Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent test data than a classifier trained using features selected by a statistical p-value-based filter, which is currently the most popular approach for constructing predictive models in GWAS. Conclusions Greedy RLS is the first known implementation of a machine learning based method with the capability to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over 400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/. PMID:22551170

  3. Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis.

    PubMed

    Lakhman, Yulia; Veeraraghavan, Harini; Chaim, Joshua; Feier, Diana; Goldman, Debra A; Moskowitz, Chaya S; Nougaret, Stephanie; Sosa, Ramon E; Vargas, Hebert Alberto; Soslow, Robert A; Abu-Rustum, Nadeem R; Hricak, Hedvig; Sala, Evis

    2017-07-01

    To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA). This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM. Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79). Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible. • Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.

  4. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  5. Feature Grouping and Selection Over an Undirected Graph.

    PubMed

    Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping

    2012-01-01

    High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.

  6. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition

    PubMed Central

    Norman-Haignere, Sam

    2015-01-01

    SUMMARY The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles (“components”) whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. PMID:26687225

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huixian; Wacker, Daniel; Mileni, Mauro

    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and - in the case of {kappa}-opioid receptor ({kappa}-OR) - dysphoria and psychotomimesis. Here we report the crystal structure of the human {kappa}-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 {angstrom} resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human {kappa}-OR. Modelling of other important {kappa}-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpenemore » agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for {kappa}-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human {kappa}-OR.« less

  8. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy G; McDermott, Josh H

    2015-12-16

    The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles ("components") whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival

    PubMed Central

    Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M

    2016-01-01

    Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan–Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Results: Kaplan–Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. PMID:27319577

  10. Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M

    2016-07-04

    The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T 1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Heterogeneity measures computed on the post-contrast pre-operative T 1 weighted MR images of patients with GBM are predictors of survival. Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.

  11. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence.

    PubMed

    Li, Sui-Xian

    2018-05-07

    Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.

  12. Molecular population genetics of the insulin/TOR signal transduction pathway: a network-level analysis in Drosophila melanogaster.

    PubMed

    Alvarez-Ponce, David; Guirao-Rico, Sara; Orengo, Dorcas J; Segarra, Carmen; Rozas, Julio; Aguadé, Montserrat

    2012-01-01

    The IT-insulin/target of rapamycin (TOR)-signal transduction pathway is a relatively well-characterized pathway that plays a central role in fundamental biological processes. Network-level analyses of DNA divergence in Drosophila and vertebrates have revealed a clear gradient in the levels of purifying selection along this pathway, with the downstream genes being the most constrained. Remarkably, this feature does not result from factors known to affect selective constraint such as gene expression, codon bias, protein length, and connectivity. The present work aims to establish whether the selective constraint gradient detected along the IT pathway at the between-species level can also be observed at a shorter time scale. With this purpose, we have surveyed DNA polymorphism in Drosophila melanogaster and divergence from D. simulans along the IT pathway. Our network-level analysis shows that DNA polymorphism exhibits the same polarity in the strength of purifying selection as previously detected at the divergence level. This equivalent feature detected both within species and between closely and distantly related species points to the action of a general mechanism, whose action is neither organism specific nor evolutionary time dependent. The detected polarity would be, therefore, intrinsic to the IT pathway architecture and function.

  13. Delay Differential Equation Models of Normal and Diseased Electrocardiograms

    NASA Astrophysics Data System (ADS)

    Lainscsek, Claudia; Sejnowski, Terrence J.

    Time series analysis with nonlinear delay differential equations (DDEs) is a powerful tool since it reveals spectral as well as nonlinear properties of the underlying dynamical system. Here global DDE models are used to analyze electrocardiography recordings (ECGs) in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. To capture distinguishing features of the different data types the number of terms and delays in the model as well as the order of nonlinearity of the DDE model have to be selected. The DDE structure selection is done in a supervised way by selecting the DDE that best separates different data types. We analyzed 24 h of data from 15 young healthy subjects in normal sinus rhythm (NSR) of 15 congestive heart failure (CHF) patients as well as of 15 subjects suffering from atrial fibrillation (AF) selected from the Physionet database. For the analysis presented here we used 5 min non-overlapping data windows on the raw data without any artifact removal. For classification performance we used the Cohen Kappa coefficient computed directly from the confusion matrix. The overall classification performance of the three groups was around 72-99 % on the 5 min windows for the different approaches. For 2 h data windows the classification for all three groups was above 95%.

  14. Chemometric Analysis of Gas Chromatography – Mass Spectrometry Data using Fast Retention Time Alignment via a Total Ion Current Shift Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeau, Jeremy S.; Wright, Bob W.; Synovec, Robert E.

    2010-04-15

    A critical comparison of methods for correcting severely retention time shifted gas chromatography-mass spectrometry (GC-MS) data is presented. The method reported herein is an adaptation to the Piecewise Alignment Algorithm to quickly align severely shifted one-dimensional (1D) total ion current (TIC) data, then applying these shifts to broadly align all mass channels throughout the separation, referred to as a TIC shift function (SF). The maximum shift varied from (-) 5 s in the beginning of the chromatographic separation to (+) 20 s toward the end of the separation, equivalent to a maximum shift of over 5 peak widths. Implementing themore » TIC shift function (TIC SF) prior to Fisher Ratio (F-Ratio) feature selection and then principal component analysis (PCA) was found to be a viable approach to classify complex chromatograms, that in this study were obtained from GC-MS separations of three gasoline samples serving as complex test mixtures, referred to as types C, M and S. The reported alignment algorithm via the TIC SF approach corrects for large dynamic shifting in the data as well as subtle peak-to-peak shifts. The benefits of the overall TIC SF alignment and feature selection approach were quantified using the degree-of-class separation (DCS) metric of the PCA scores plots using the type C and M samples, since they were the most similar, and thus the most challenging samples to properly classify. The DCS values showed an increase from an initial value of essentially zero for the unaligned GC-TIC data to a value of 7.9 following alignment; however, the DCS was unchanged by feature selection using F-Ratios for the GC-TIC data. The full mass spectral data provided an increase to a final DCS of 13.7 after alignment and two-dimensional (2D) F-Ratio feature selection.« less

  15. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  16. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    PubMed

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  17. Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention.

    PubMed

    Yago, Elena; Duarte, Audrey; Wong, Ting; Barceló, Francisco; Knight, Robert T

    2004-12-01

    Single-unit, event-related potential (ERP), and neuroimaging studies have implicated the prefrontal cortex (PFC) in top-down control of attention and working memory. We conducted an experiment in patients with unilateral PFC damage (n = 8) to assess the temporal kinetics of PFC-extrastriate interactions during visual attention. Subjects alternated attention between the left and the right hemifields in successive runs while they detected target stimuli embedded in streams of repetitive task-irrelevant stimuli (standards). The design enabled us to examine tonic (spatial selection) and phasic (feature selection) PFC-extrastriate interactions. PFC damage impaired performance in the visual field contralateral to lesions, as manifested by both larger reaction times and error rates. Assessment of the extrastriate P1 ERP revealed that the PFC exerts a tonic (spatial selection) excitatory input to the ipsilateral extrastriate cortex as early as 100 msec post stimulus delivery. The PFC exerts a second phasic (feature selection) excitatory extrastriate modulation from 180 to 300 msec, as evidenced by reductions in selection negativity after damage. Finally, reductions of the N2 ERP to target stimuli supports the notion that the PFC exerts a third phasic (target selection) signal necessary for successful template matching during postselection analysis of target features. The results provide electrophysiological evidence of three distinct tonic and phasic PFC inputs to the extrastriate cortex in the initial few hundred milliseconds of stimulus processing. Damage to this network appears to underlie the pervasive deficits in attention observed in patients with prefrontal lesions.

  18. Natural image statistics and low-complexity feature selection.

    PubMed

    Vasconcelos, Manuela; Vasconcelos, Nuno

    2009-02-01

    Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

  19. Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification.

    PubMed

    Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-07-01

    This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.

  20. Effective traffic features selection algorithm for cyber-attacks samples

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  1. Relevance popularity: A term event model based feature selection scheme for text classification.

    PubMed

    Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao

    2017-01-01

    Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.

  2. Hybrid feature selection for supporting lightweight intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  3. Classification of epileptic EEG signals based on simple random sampling and sequential feature selection.

    PubMed

    Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui

    2016-06-01

    Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.

  4. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    PubMed

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  5. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  6. Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ochilov, S.; Alam, M. S.; Bal, A.

    2006-05-01

    Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.

  7. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents

    PubMed Central

    Colomer Granero, Adrián; Fuentes-Hurtado, Félix; Naranjo Ornedo, Valery; Guixeres Provinciale, Jaime; Ausín, Jose M.; Alcañiz Raya, Mariano

    2016-01-01

    This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of them the ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and Random Forest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing. PMID:27471462

  8. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents.

    PubMed

    Colomer Granero, Adrián; Fuentes-Hurtado, Félix; Naranjo Ornedo, Valery; Guixeres Provinciale, Jaime; Ausín, Jose M; Alcañiz Raya, Mariano

    2016-01-01

    This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of them the ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and Random Forest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing.

  9. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  10. Joint L2,1 Norm and Fisher Discrimination Constrained Feature Selection for Rational Synthesis of Microporous Aluminophosphates.

    PubMed

    Qi, Miao; Wang, Ting; Yi, Yugen; Gao, Na; Kong, Jun; Wang, Jianzhong

    2017-04-01

    Feature selection has been regarded as an effective tool to help researchers understand the generating process of data. For mining the synthesis mechanism of microporous AlPOs, this paper proposes a novel feature selection method by joint l 2,1 norm and Fisher discrimination constraints (JNFDC). In order to obtain more effective feature subset, the proposed method can be achieved in two steps. The first step is to rank the features according to sparse and discriminative constraints. The second step is to establish predictive model with the ranked features, and select the most significant features in the light of the contribution of improving the predictive accuracy. To the best of our knowledge, JNFDC is the first work which employs the sparse representation theory to explore the synthesis mechanism of six kinds of pore rings. Numerical simulations demonstrate that our proposed method can select significant features affecting the specified structural property and improve the predictive accuracy. Moreover, comparison results show that JNFDC can obtain better predictive performances than some other state-of-the-art feature selection methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A new time-frequency method for identification and classification of ball bearing faults

    NASA Astrophysics Data System (ADS)

    Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel

    2017-06-01

    In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.

  12. Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach

    NASA Astrophysics Data System (ADS)

    Lopes, Fabrício M.; de Oliveira, Evaldo A.; Cesar, Roberto M.

    An important problem in the bioinformatics field is to understand how genes are regulated and interact through gene networks. This knowledge can be helpful for many applications, such as disease treatment design and drugs creation purposes. For this reason, it is very important to uncover the functional relationship among genes and then to construct the gene regulatory network (GRN) from temporal expression data. However, this task usually involves data with a large number of variables and small number of observations. In this way, there is a strong motivation to use pattern recognition and dimensionality reduction approaches. In particular, feature selection is specially important in order to select the most important predictor genes that can explain some phenomena associated with the target genes. This work presents a first study about the sensibility of entropy methods regarding the entropy functional form, applied to the problem of topology recovery of GRNs. The generalized entropy proposed by Tsallis is used to study this sensibility. The inference process is based on a feature selection approach, which is applied to simulated temporal expression data generated by an artificial gene network (AGN) model. The inferred GRNs are validated in terms of global network measures. Some interesting conclusions can be drawn from the experimental results, as reported for the first time in the present paper.

  13. Human attention filters for single colors

    PubMed Central

    Sun, Peng; Chubb, Charles; Wright, Charles E.; Sperling, George

    2016-01-01

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid—the center of gravity—of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty. PMID:27791040

  14. Classifying Human Voices by Using Hybrid SFX Time-Series Preprocessing and Ensemble Feature Selection

    PubMed Central

    Wong, Raymond

    2013-01-01

    Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this uniqueness, voice classification has found useful applications in classifying speakers' gender, mother tongue or ethnicity (accent), emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method named Statistical Feature Extraction (SFX) for extracting important features in training a classification model, based on piecewise transformation treating an audio waveform as a time-series. Using SFX we can faithfully remodel statistical characteristics of the time-series; together with spectral analysis, a substantial amount of features are extracted in combination. An ensemble is utilized in selecting only the influential features to be used in classification model induction. We focus on the comparison of effects of various popular data mining algorithms on multiple datasets. Our experiment consists of classification tests over four typical categories of human voice data, namely, Female and Male, Emotional Speech, Speaker Identification, and Language Recognition. The experiments yield encouraging results supporting the fact that heuristically choosing significant features from both time and frequency domains indeed produces better performance in voice classification than traditional signal processing techniques alone, like wavelets and LPC-to-CC. PMID:24288684

  15. Classification of Microarray Data Using Kernel Fuzzy Inference System

    PubMed Central

    Kumar Rath, Santanu

    2014-01-01

    The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function. PMID:27433543

  16. Investigating a memory-based account of negative priming: support for selection-feature mismatch.

    PubMed

    MacDonald, P A; Joordens, S

    2000-08-01

    Using typical and modified negative priming tasks, the selection-feature mismatch account of negative priming was tested. In the modified task, participants performed selections on the basis of a semantic feature (e.g., referent size). This procedure has been shown to enhance negative priming (P. A. MacDonald, S. Joordens, & K. N. Seergobin, 1999). Across 3 experiments, negative priming occurred only when the repeated item mismatched in terms of the feature used as the basis for selections. When the repeated item was congruent on the selection feature across the prime and probe displays, positive priming arose. This pattern of results appeared in both the ignored- and the attended-repetition conditions. Negative priming does not result from previously ignoring an item. These findings strongly support the selection-feature mismatch account of negative priming and refute both the distractor inhibition and the episodic-retrieval explanations.

  17. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach

    PubMed Central

    Gavião Neto, Wilson P.; Roveri, Maria Isabel; Oliveira, Wagner R.

    2017-01-01

    Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Methods Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). Results The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. Discussion The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent. PMID:28265506

  18. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach.

    PubMed

    Onodera, Andrea N; Gavião Neto, Wilson P; Roveri, Maria Isabel; Oliveira, Wagner R; Sacco, Isabel Cn

    2017-01-01

    Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent.

  19. An Analysis of Document Category Prediction Responses to Classifier Model Parameter Treatment Permutations within the Software Design Patterns Subject Domain

    ERIC Educational Resources Information Center

    Pankau, Brian L.

    2009-01-01

    This empirical study evaluates the document category prediction effectiveness of Naive Bayes (NB) and K-Nearest Neighbor (KNN) classifier treatments built from different feature selection and machine learning settings and trained and tested against textual corpora of 2300 Gang-Of-Four (GOF) design pattern documents. Analysis of the experiment's…

  20. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  1. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder.

    PubMed

    Khodayari-Rostamabad, Ahmad; Reilly, James P; Hasey, Gary M; de Bruin, Hubert; Maccrimmon, Duncan J

    2013-10-01

    The problem of identifying, in advance, the most effective treatment agent for various psychiatric conditions remains an elusive goal. To address this challenge, we investigate the performance of the proposed machine learning (ML) methodology (based on the pre-treatment electroencephalogram (EEG)) for prediction of response to treatment with a selective serotonin reuptake inhibitor (SSRI) medication in subjects suffering from major depressive disorder (MDD). A relatively small number of most discriminating features are selected from a large group of candidate features extracted from the subject's pre-treatment EEG, using a machine learning procedure for feature selection. The selected features are fed into a classifier, which was realized as a mixture of factor analysis (MFA) model, whose output is the predicted response in the form of a likelihood value. This likelihood indicates the extent to which the subject belongs to the responder vs. non-responder classes. The overall method was evaluated using a "leave-n-out" randomized permutation cross-validation procedure. A list of discriminating EEG biomarkers (features) was found. The specificity of the proposed method is 80.9% while sensitivity is 94.9%, for an overall prediction accuracy of 87.9%. There is a 98.76% confidence that the estimated prediction rate is within the interval [75%, 100%]. These results indicate that the proposed ML method holds considerable promise in predicting the efficacy of SSRI antidepressant therapy for MDD, based on a simple and cost-effective pre-treatment EEG. The proposed approach offers the potential to improve the treatment of major depression and to reduce health care costs. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Exploring the color feature power for psoriasis risk stratification and classification: A data mining paradigm.

    PubMed

    Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S

    2015-10-01

    A large percentage of dermatologist׳s decision in psoriasis disease assessment is based on color. The current computer-aided diagnosis systems for psoriasis risk stratification and classification lack the vigor of color paradigm. The paper presents an automated psoriasis computer-aided diagnosis (pCAD) system for classification of psoriasis skin images into psoriatic lesion and healthy skin, which solves the two major challenges: (i) fulfills the color feature requirements and (ii) selects the powerful dominant color features while retaining high classification accuracy. Fourteen color spaces are discovered for psoriasis disease analysis leading to 86 color features. The pCAD system is implemented in a support vector-based machine learning framework where the offline image data set is used for computing machine learning offline color machine learning parameters. These are then used for transformation of the online color features to predict the class labels for healthy vs. diseased cases. The above paradigm uses principal component analysis for color feature selection of dominant features, keeping the original color feature unaltered. Using the cross-validation protocol, the above machine learning protocol is compared against the standalone grayscale features with 60 features and against the combined grayscale and color feature set of 146. Using a fixed data size of 540 images with equal number of healthy and diseased, 10 fold cross-validation protocol, and SVM of polynomial kernel of type two, pCAD system shows an accuracy of 99.94% with sensitivity and specificity of 99.93% and 99.96%. Using a varying data size protocol, the mean classification accuracies for color, grayscale, and combined scenarios are: 92.85%, 93.83% and 93.99%, respectively. The reliability of the system in these three scenarios are: 94.42%, 97.39% and 96.00%, respectively. We conclude that pCAD system using color space alone is compatible to grayscale space or combined color and grayscale spaces. We validated our pCAD system against facial color databases and the results are consistent in accuracy and reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.

    PubMed

    Gurbaxani, Brian M; Jones, James F; Goertzel, Benjamin N; Maloney, Elizabeth M

    2006-04-01

    To provide a mathematical introduction to the Wichita (KS, USA) clinical dataset, which is all of the nongenetic data (no microarray or single nucleotide polymorphism data) from the 2-day clinical evaluation, and show the preliminary findings and limitations, of popular, matrix algebra-based data mining techniques. An initial matrix of 440 variables by 227 human subjects was reduced to 183 variables by 164 subjects. Variables were excluded that strongly correlated with chronic fatigue syndrome (CFS) case classification by design (for example, the multidimensional fatigue inventory [MFI] data), that were otherwise self reporting in nature and also tended to correlate strongly with CFS classification, or were sparse or nonvarying between case and control. Subjects were excluded if they did not clearly fall into well-defined CFS classifications, had comorbid depression with melancholic features, or other medical or psychiatric exclusions. The popular data mining techniques, principle components analysis (PCA) and linear discriminant analysis (LDA), were used to determine how well the data separated into groups. Two different feature selection methods helped identify the most discriminating parameters. Although purely biological features (variables) were found to separate CFS cases from controls, including many allostatic load and sleep-related variables, most parameters were not statistically significant individually. However, biological correlates of CFS, such as heart rate and heart rate variability, require further investigation. Feature selection of a limited number of variables from the purely biological dataset produced better separation between groups than a PCA of the entire dataset. Feature selection highlighted the importance of many of the allostatic load variables studied in more detail by Maloney and colleagues in this issue [1] , as well as some sleep-related variables. Nonetheless, matrix linear algebra-based data mining approaches appeared to be of limited utility when compared with more sophisticated nonlinear analyses on richer data types, such as those found in Maloney and colleagues [1] and Goertzel and colleagues [2] in this issue.

  4. Feature Selection for Ridge Regression with Provable Guarantees.

    PubMed

    Paul, Saurabh; Drineas, Petros

    2016-04-01

    We introduce single-set spectral sparsification as a deterministic sampling-based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world data sets; a subset of TechTC-300 data sets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.

  5. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  6. [Discriminant analysis to predict the clinical diagnosis of primary immunodeficiencies: a preliminary report].

    PubMed

    Murata, Chiharu; Ramírez, Ana Belén; Ramírez, Guadalupe; Cruz, Alonso; Morales, José Luis; Lugo-Reyes, Saul Oswaldo

    2015-01-01

    The features in a clinical history from a patient with suspected primary immunodeficiency (PID) direct the differential diagnosis through pattern recognition. PIDs are a heterogeneous group of more than 250 congenital diseases with increased susceptibility to infection, inflammation, autoimmunity, allergy and malignancy. Linear discriminant analysis (LDA) is a multivariate supervised classification method to sort objects of study into groups by finding linear combinations of a number of variables. To identify the features that best explain membership of pediatric PID patients to a group of defect or disease. An analytic cross-sectional study was done with a pre-existing database with clinical and laboratory records from 168 patients with PID, followed at the National Institute of Pediatrics during 1991-2012, it was used to build linear discriminant models that would explain membership of each patient to the different group defects and to the most prevalent PIDs in our registry. After a preliminary run only 30 features were included (4 demographic, 10 clinical, 10 laboratory, 6 germs), with which the training models were developed through a stepwise regression algorithm. We compared the automatic feature selection with a selection made by a human expert, and then assessed the diagnostic usefulness of the resulting models (sensitivity, specificity, prediction accuracy and kappa coefficient), with 95% confidence intervals. The models incorporated 6 to 14 features to explain membership of PID patients to the five most abundant defect groups (combined, antibody, well-defined, dysregulation and phagocytosis), and to the four most prevalent PID diseases (X-linked agammaglobulinemia, chronic granulomatous disease, common variable immunodeficiency and ataxiatelangiectasia). In practically all cases of feature selection the machine outperformed the human expert. Diagnosis prediction using the equations created had a global accuracy of 83 to 94%, with sensitivity of 60 to 100%, specificity of 83 to 95% and kappa coefficient of 0.37 to 0.76. In general, the selection of features has clinical plausibility, and the practical advantage of utilizing only clinical attributes, infecting germs and routine lab results (blood cell counts and serum immunoglobulins). The performance of the model as a diagnostic tool was acceptable. The study's main limitations are a limited sample size and a lack of cross validation. This is only the first step in the construction of a machine learning system, with a wider approach that includes a larger database and different methodologies, to assist the clinical diagnosis of primary immunodeficiencies.

  7. A New Direction of Cancer Classification: Positive Effect of Low-Ranking MicroRNAs.

    PubMed

    Li, Feifei; Piao, Minghao; Piao, Yongjun; Li, Meijing; Ryu, Keun Ho

    2014-10-01

    Many studies based on microRNA (miRNA) expression profiles showed a new aspect of cancer classification. Because one characteristic of miRNA expression data is the high dimensionality, feature selection methods have been used to facilitate dimensionality reduction. The feature selection methods have one shortcoming thus far: they just consider the problem of where feature to class is 1:1 or n:1. However, because one miRNA may influence more than one type of cancer, human miRNA is considered to be ranked low in traditional feature selection methods and are removed most of the time. In view of the limitation of the miRNA number, low-ranking miRNAs are also important to cancer classification. We considered both high- and low-ranking features to cover all problems (1:1, n:1, 1:n, and m:n) in cancer classification. First, we used the correlation-based feature selection method to select the high-ranking miRNAs, and chose the support vector machine, Bayes network, decision tree, k-nearest-neighbor, and logistic classifier to construct cancer classification. Then, we chose Chi-square test, information gain, gain ratio, and Pearson's correlation feature selection methods to build the m:n feature subset, and used the selected miRNAs to determine cancer classification. The low-ranking miRNA expression profiles achieved higher classification accuracy compared with just using high-ranking miRNAs in traditional feature selection methods. Our results demonstrate that the m:n feature subset made a positive impression of low-ranking miRNAs in cancer classification.

  8. Seminal quality prediction using data mining methods.

    PubMed

    Sahoo, Anoop J; Kumar, Yugal

    2014-01-01

    Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.

  9. Color model comparative analysis for breast cancer diagnosis using H and E stained images

    NASA Astrophysics Data System (ADS)

    Li, Xingyu; Plataniotis, Konstantinos N.

    2015-03-01

    Digital cancer diagnosis is a research realm where signal processing techniques are used to analyze and to classify color histopathology images. Different from grayscale image analysis of magnetic resonance imaging or X-ray, colors in histopathology images convey large amount of histological information and thus play significant role in cancer diagnosis. Though color information is widely used in histopathology works, as today, there is few study on color model selections for feature extraction in cancer diagnosis schemes. This paper addresses the problem of color space selection for digital cancer classification using H and E stained images, and investigates the effectiveness of various color models (RGB, HSV, CIE L*a*b*, and stain-dependent H and E decomposition model) in breast cancer diagnosis. Particularly, we build a diagnosis framework as a comparison benchmark and take specific concerns of medical decision systems into account in evaluation. The evaluation methodologies include feature discriminate power evaluation and final diagnosis performance comparison. Experimentation on a publicly accessible histopathology image set suggests that the H and E decomposition model outperforms other assessed color spaces. For reasons behind various performance of color spaces, our analysis via mutual information estimation demonstrates that color components in the H and E model are less dependent, and thus most feature discriminate power is collected in one channel instead of spreading out among channels in other color spaces.

  10. Evidence from Social Service Enhancement Projects: Selected Cases from Norway's HUSK Project.

    PubMed

    Johannessen, Asbjorn; Eide, Solveig Botnen

    2015-01-01

    Through this article the authors describe the social service context of the HUSK (The University Research Program to Support Selected Municipal Social Service Offices) projects and briefly describe 10 of the 50 projects funded throughout the country. The welfare state context for the cases and the criteria for case selection are also provided. The 10 cases are organized into three categories that feature the role of dialogue, educational innovation, and service innovation. These cases provide the foundation for the analysis and implications located in the subsequent articles of the special issue.

  11. Automated detection of pulmonary nodules in CT images with support vector machines

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  12. Analysis of A Drug Target-based Classification System using Molecular Descriptors.

    PubMed

    Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin

    2016-01-01

    Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.

  13. Effects of changing canopy directional reflectance on feature selection

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Oliver, R. E.; Kilpela, O. E.

    1973-01-01

    The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.

  14. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  15. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  16. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  17. Toward literature-based feature selection for diagnostic classification: a meta-analysis of resting-state fMRI in depression.

    PubMed

    Sundermann, Benedikt; Olde Lütke Beverborg, Mona; Pfleiderer, Bettina

    2014-01-01

    Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD, primarily to serve as feature selection for multivariate pattern analysis techniques (MVPA). Thirty two studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components including the precuneus and neighboring posterior cingulate cortices associated with self-referential processing and the subgenual anterior cingulate and neighboring medial frontal cortices) with lateral prefrontal areas related to externally-directed cognition. Other areas of hyperactivity/hyperconnectivity include the left lateral parietal cortex, right hippocampus and right cerebellum whereas hypoactivity/hypoconnectivity was observed mainly in the left temporal cortex, the insula, precuneus, superior frontal gyrus, lentiform nucleus and thalamus. Results are made available in two different data formats to be used as spatial hypotheses in future studies, particularly for diagnostic classification by MVPA.

  18. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data.

    PubMed

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos

    2017-04-13

    Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.

  19. Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes

    PubMed Central

    Dzialak, Matthew R.; Olson, Chad V.; Harju, Seth M.; Webb, Stephen L.; Mudd, James P.; Winstead, Jeffrey B.; Hayden-Wing, L.D.

    2011-01-01

    Background Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. Methodology/Principal Findings We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. Conclusions/Significance Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments. PMID:22022587

  20. Comparative analyses of structural features and scaffold diversity for purchasable compound libraries.

    PubMed

    Shang, Jun; Sun, Huiyong; Liu, Hui; Chen, Fu; Tian, Sheng; Pan, Peichen; Li, Dan; Kong, Dexin; Hou, Tingjun

    2017-04-21

    Large purchasable screening libraries of small molecules afforded by commercial vendors are indispensable sources for virtual screening (VS). Selecting an optimal screening library for a specific VS campaign is quite important to improve the success rates and avoid wasting resources in later experimental phases. Analysis of the structural features and molecular diversity for different screening libraries can provide valuable information to the decision making process when selecting screening libraries for VS. In this study, the structural features and scaffold diversity of eleven purchasable screening libraries and Traditional Chinese Medicine Compound Database (TCMCD) were analyzed and compared. Their scaffold diversity represented by the Murcko frameworks and Level 1 scaffolds was characterized by the scaffold counts and cumulative scaffold frequency plots, and visualized by Tree Maps and SAR Maps. The analysis demonstrates that, based on the standardized subsets with similar molecular weight distributions, Chembridge, ChemicalBlock, Mucle, TCMCD and VitasM are more structurally diverse than the others. Compared with all purchasable screening libraries, TCMCD has the highest structural complexity indeed but more conservative molecular scaffolds. Moreover, we found that some representative scaffolds were important components of drug candidates against different drug targets, such as kinases and guanosine-binding protein coupled receptors, and therefore the molecules containing pharmacologically important scaffolds found in screening libraries might be potential inhibitors against the relevant targets. This study may provide valuable perspective on which purchasable compound libraries are better for you to screen. Graphical abstract Selecting diverse compound libraries with scaffold analyses.

  1. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors.

    PubMed

    Hemmateenejad, Bahram; Yazdani, Mahdieh

    2009-02-16

    Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.

  2. Joint Feature Selection and Classification for Multilabel Learning.

    PubMed

    Huang, Jun; Li, Guorong; Huang, Qingming; Wu, Xindong

    2018-03-01

    Multilabel learning deals with examples having multiple class labels simultaneously. It has been applied to a variety of applications, such as text categorization and image annotation. A large number of algorithms have been proposed for multilabel learning, most of which concentrate on multilabel classification problems and only a few of them are feature selection algorithms. Current multilabel classification models are mainly built on a single data representation composed of all the features which are shared by all the class labels. Since each class label might be decided by some specific features of its own, and the problems of classification and feature selection are often addressed independently, in this paper, we propose a novel method which can perform joint feature selection and classification for multilabel learning, named JFSC. Different from many existing methods, JFSC learns both shared features and label-specific features by considering pairwise label correlations, and builds the multilabel classifier on the learned low-dimensional data representations simultaneously. A comparative study with state-of-the-art approaches manifests a competitive performance of our proposed method both in classification and feature selection for multilabel learning.

  3. A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease

    NASA Astrophysics Data System (ADS)

    Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas

    2017-08-01

    The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.

  4. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.

    PubMed

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali

    2009-12-01

    Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.

  5. Automatic sleep scoring: a search for an optimal combination of measures.

    PubMed

    Krakovská, Anna; Mezeiová, Kristína

    2011-09-01

    The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  7. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  8. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  9. Criteria-based evaluation of group 3 level memory telefacsimile equipment for interlibrary loan.

    PubMed Central

    Bennett, V M; Wood, M S; Malcom, D L

    1990-01-01

    The Interlibrary Loan, Document Delivery, and Union List Task Force of the Health Sciences Libraries Consortium (HSLC)--with nineteen libraries located in Philadelphia, Pittsburgh, and Hershey, Pennsylvania, and Delaware--accepted the charge of evaluating and recommending for purchase telefacsimile hardware to further interlibrary loan among HSLC members. To allow a thorough and scientific evaluation of group 3 level telefacsimile equipment, the task force identified ninety-six hardware features, which were grouped into nine broad criteria. These features formed the basis of a weighted analysis that identified three final candidates, with one model recommended to the HSLC board. This article details each of the criteria and discusses features in terms of library applications. The evaluation grid developed in the weighted analysis process should aid librarians charged with the selection of level 3 telefacsimile equipment. PMID:2328361

  10. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  11. Multi-level gene/MiRNA feature selection using deep belief nets and active learning.

    PubMed

    Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M

    2014-01-01

    Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].

  12. TH-E-BRF-05: Comparison of Survival-Time Prediction Models After Radiotherapy for High-Grade Glioma Patients Based On Clinical and DVH Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; Haga, A; Igaki, H

    Purpose: Although many outcome prediction models based on dose-volume information have been proposed, it is well known that the prognosis may be affected also by multiple clinical factors. The purpose of this study is to predict the survival time after radiotherapy for high-grade glioma patients based on features including clinical and dose-volume histogram (DVH) information. Methods: A total of 35 patients with high-grade glioma (oligodendroglioma: 2, anaplastic astrocytoma: 3, glioblastoma: 30) were selected in this study. All patients were treated with prescribed dose of 30–80 Gy after surgical resection or biopsy from 2006 to 2013 at The University of Tokyomore » Hospital. All cases were randomly separated into training dataset (30 cases) and test dataset (5 cases). The survival time after radiotherapy was predicted based on a multiple linear regression analysis and artificial neural network (ANN) by using 204 candidate features. The candidate features included the 12 clinical features (tumor location, extent of surgical resection, treatment duration of radiotherapy, etc.), and the 192 DVH features (maximum dose, minimum dose, D95, V60, etc.). The effective features for the prediction were selected according to a step-wise method by using 30 training cases. The prediction accuracy was evaluated by a coefficient of determination (R{sup 2}) between the predicted and actual survival time for the training and test dataset. Results: In the multiple regression analysis, the value of R{sup 2} between the predicted and actual survival time was 0.460 for the training dataset and 0.375 for the test dataset. On the other hand, in the ANN analysis, the value of R{sup 2} was 0.806 for the training dataset and 0.811 for the test dataset. Conclusion: Although a large number of patients would be needed for more accurate and robust prediction, our preliminary Result showed the potential to predict the outcome in the patients with high-grade glioma. This work was partly supported by the JSPS Core-to-Core Program(No. 23003) and Grant-in-aid from the JSPS Fellows.« less

  13. Topic modeling for cluster analysis of large biological and medical datasets

    PubMed Central

    2014-01-01

    Background The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. Results In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Conclusion Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting that topic model-based methods could provide an analytic advancement in the analysis of large biological or medical datasets. PMID:25350106

  14. Topic modeling for cluster analysis of large biological and medical datasets.

    PubMed

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting that topic model-based methods could provide an analytic advancement in the analysis of large biological or medical datasets.

  15. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    An, Le; Adeli, Ehsan; Liu, Mingxia; Zhang, Jun; Lee, Seong-Whan; Shen, Dinggang

    2017-03-01

    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals.

  16. Variable importance in nonlinear kernels (VINK): classification of digitized histopathology.

    PubMed

    Ginsburg, Shoshana; Ali, Sahirzeeshan; Lee, George; Basavanhally, Ajay; Madabhushi, Anant

    2013-01-01

    Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs). Due to the curse of dimensionality, building classifiers with large numbers of features requires feature selection (which may require a large training set) or dimensionality reduction (DR). DR methods map the original high-dimensional features in terms of eigenvectors and eigenvalues, which limits the potential for feature transparency or interpretability. Although methods exist for variable selection and ranking on embeddings obtained via linear DR schemes (e.g., principal components analysis (PCA)), similar methods do not yet exist for nonlinear DR (NLDR) methods. In this work we present a simple yet elegant method for approximating the mapping between the data in the original feature space and the transformed data in the kernel PCA (KPCA) embedding space; this mapping provides the basis for quantification of variable importance in nonlinear kernels (VINK). We show how VINK can be implemented in conjunction with the popular Isomap and Laplacian eigenmap algorithms. VINK is evaluated in the contexts of three different problems in digital pathology: (1) predicting five year PSA failure following radical prostatectomy, (2) predicting Oncotype DX recurrence risk scores for ER+ breast cancers, and (3) distinguishing good and poor outcome p16+ oropharyngeal tumors. We demonstrate that subsets of features identified by VINK provide similar or better classification or regression performance compared to the original high dimensional feature sets.

  17. Regular Topographic Patterning of Karst Depressions Suggests Landscape Self-Organization

    NASA Astrophysics Data System (ADS)

    Quintero, C.; Cohen, M. J.

    2017-12-01

    Thousands of wetland depressions that are commonly host to cypress domes dot the sub-tropical limestone landscape of South Florida. The origin of these depression features has been the topic of debate. Here we build upon the work of previous surveyors of this landscape to analyze the morphology and spatial distribution of depressions on the Big Cypress landscape. We took advantage of the emergence and availability of high resolution Light Direction and Ranging (LiDAR) technology and ArcMap GIS software to analyze the structure and regularity of landscape features with methods unavailable to past surveyors. Six 2.25 km2 LiDAR plots within the preserve were selected for remote analysis and one depression feature within each plot was selected for more intensive sediment and water depth surveying. Depression features on the Big Cypress landscape were found to show strong evidence of regular spatial patterning. Periodicity, a feature of regularly patterned landscapes, is apparent in both Variograms and Radial Spectrum Analyses. Size class distributions of the identified features indicate constrained feature sizes while Average Nearest Neighbor analyses support the inference of dispersed features with non-random spacing. The presence of regular patterning on this landscape strongly implies biotic reinforcement of spatial structure by way of the scale dependent feedback. In characterizing the structure of this wetland landscape we add to the growing body of work dedicated to documenting how water, life and geology may interact to shape the natural landscapes we see today.

  18. An improved wrapper-based feature selection method for machinery fault diagnosis

    PubMed Central

    2017-01-01

    A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks. PMID:29261689

  19. Asymmetric bagging and feature selection for activities prediction of drug molecules.

    PubMed

    Li, Guo-Zheng; Meng, Hao-Hua; Lu, Wen-Cong; Yang, Jack Y; Yang, Mary Qu

    2008-05-28

    Activities of drug molecules can be predicted by QSAR (quantitative structure activity relationship) models, which overcomes the disadvantages of high cost and long cycle by employing the traditional experimental method. With the fact that the number of drug molecules with positive activity is rather fewer than that of negatives, it is important to predict molecular activities considering such an unbalanced situation. Here, asymmetric bagging and feature selection are introduced into the problem and asymmetric bagging of support vector machines (asBagging) is proposed on predicting drug activities to treat the unbalanced problem. At the same time, the features extracted from the structures of drug molecules affect prediction accuracy of QSAR models. Therefore, a novel algorithm named PRIFEAB is proposed, which applies an embedded feature selection method to remove redundant and irrelevant features for asBagging. Numerical experimental results on a data set of molecular activities show that asBagging improve the AUC and sensitivity values of molecular activities and PRIFEAB with feature selection further helps to improve the prediction ability. Asymmetric bagging can help to improve prediction accuracy of activities of drug molecules, which can be furthermore improved by performing feature selection to select relevant features from the drug molecules data sets.

  20. Selection of quantum chemical descriptors by chemometric methods in the study of antioxidant activity of flavonoid compounds

    NASA Astrophysics Data System (ADS)

    Weber, K. C.; Honório, K. M.; da Silva, S. L.; Mercadante, R.; da Silva, A. B. F.

    In the present study, the aim was to select electronic properties responsible for free radical scavenging ability of a set of 25 flavonoid compounds employing chemometric methods. Electronic parameters were calculated using the AM1 semiempirical method, and chemometric methods (principal component analysis, hierarchical cluster analysis, and k-nearest neighbor) were used with the aim to build models able to find relationships between electronic features and the antioxidant activity presented by the compounds studied. According to these models, four electronic variables can be considered important to discriminate more and less antioxidant flavonoid compounds: polarizability (α), charge at carbon 3 (QC3), total charge at substituent 5 (QS5), and total charge at substituent 3' (QS3'). The features found as being responsible for the antioxidant activity of the flavonoid compounds studied are consistent with previous results found in the literature. The results obtained can also bring improvements in the search for better antioxidant flavonoid compounds.

  1. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  2. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  3. CCD reflectance spectra of selected asteroids. I - Presentation and data analysis considerations

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Mcfadden, Lucy A.

    1992-01-01

    Narrowband reflectance spectra have been acquired which contribute to the library of asteroid data in the visible and near-IR spectral regions. The spectra support the existence of aqueous alteration products on asteroids located in the outer part of the main asteroid belt out to at least 4 AU. No evidence for features similar to the spectral features of ordinary chondrite meteorites was found in the spectra of asteroids located near the 3:1 Kirkwood Gap chaotic zone.

  4. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  5. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals

    PubMed Central

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-01-01

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox. PMID:27827831

  6. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals.

    PubMed

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-11-02

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox.

  7. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  8. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  9. The impact of feature selection on one and two-class classification performance for plant microRNAs.

    PubMed

    Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  10. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.

    PubMed

    Wong, Gerard; Leckie, Christopher; Kowalczyk, Adam

    2012-01-15

    Feature selection is a key concept in machine learning for microarray datasets, where features represented by probesets are typically several orders of magnitude larger than the available sample size. Computational tractability is a key challenge for feature selection algorithms in handling very high-dimensional datasets beyond a hundred thousand features, such as in datasets produced on single nucleotide polymorphism microarrays. In this article, we present a novel feature set reduction approach that enables scalable feature selection on datasets with hundreds of thousands of features and beyond. Our approach enables more efficient handling of higher resolution datasets to achieve better disease subtype classification of samples for potentially more accurate diagnosis and prognosis, which allows clinicians to make more informed decisions in regards to patient treatment options. We applied our feature set reduction approach to several publicly available cancer single nucleotide polymorphism (SNP) array datasets and evaluated its performance in terms of its multiclass predictive classification accuracy over different cancer subtypes, its speedup in execution as well as its scalability with respect to sample size and array resolution. Feature Set Reduction (FSR) was able to reduce the dimensions of an SNP array dataset by more than two orders of magnitude while achieving at least equal, and in most cases superior predictive classification performance over that achieved on features selected by existing feature selection methods alone. An examination of the biological relevance of frequently selected features from FSR-reduced feature sets revealed strong enrichment in association with cancer. FSR was implemented in MATLAB R2010b and is available at http://ww2.cs.mu.oz.au/~gwong/FSR.

  11. Selective processing of multiple features in the human brain: effects of feature type and salience.

    PubMed

    McGinnis, E Menton; Keil, Andreas

    2011-02-09

    Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.

  12. Feature selection for the classification of traced neurons.

    PubMed

    López-Cabrera, José D; Lorenzo-Ginori, Juan V

    2018-06-01

    The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  14. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  15. The duality of temporal encoding – the intrinsic and extrinsic representation of time

    PubMed Central

    Golan, Ronen; Zakay, Dan

    2015-01-01

    While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources. PMID:26379604

  16. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  17. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  18. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    PubMed

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  19. A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis.

    PubMed

    Rodríguez-Arias, Miquel Angel; Rodó, Xavier

    2004-03-01

    Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.

  20. Interictal epileptiform discharge characteristics underlying expert interrater agreement.

    PubMed

    Bagheri, Elham; Dauwels, Justin; Dean, Brian C; Waters, Chad G; Westover, M Brandon; Halford, Jonathan J

    2017-10-01

    The presence of interictal epileptiform discharges (IED) in the electroencephalogram (EEG) is a key finding in the medical workup of a patient with suspected epilepsy. However, inter-rater agreement (IRA) regarding the presence of IED is imperfect, leading to incorrect and delayed diagnoses. An improved understanding of which IED attributes mediate expert IRA might help in developing automatic methods for IED detection able to emulate the abilities of experts. Therefore, using a set of IED scored by a large number of experts, we set out to determine which attributes of IED predict expert agreement regarding the presence of IED. IED were annotated on a 5-point scale by 18 clinical neurophysiologists within 200 30-s EEG segments from recordings of 200 patients. 5538 signal analysis features were extracted from the waveforms, including wavelet coefficients, morphological features, signal energy, nonlinear energy operator response, electrode location, and spectrogram features. Feature selection was performed by applying elastic net regression and support vector regression (SVR) was applied to predict expert opinion, with and without the feature selection procedure and with and without several types of signal normalization. Multiple types of features were useful for predicting expert annotations, but particular types of wavelet features performed best. Local EEG normalization also enhanced best model performance. As the size of the group of EEGers used to train the models was increased, the performance of the models leveled off at a group size of around 11. The features that best predict inter-rater agreement among experts regarding the presence of IED are wavelet features, using locally standardized EEG. Our models for predicting expert opinion based on EEGer's scores perform best with a large group of EEGers (more than 10). By examining a large group of EEG signal analysis features we found that wavelet features with certain wavelet basis functions performed best to identify IEDs. Local normalization also improves predictability, suggesting the importance of IED morphology over amplitude-based features. Although most IED detection studies in the past have used opinion from three or fewer experts, our study suggests a "wisdom of the crowd" effect, such that pooling over a larger number of expert opinions produces a better correlation between expert opinion and objectively quantifiable features of the EEG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

Top