Sample records for feature vector matching

  1. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  2. Word-level recognition of multifont Arabic text using a feature vector matching approach

    NASA Astrophysics Data System (ADS)

    Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III

    1996-03-01

    Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.

  3. a Robust Descriptor Based on Spatial and Frequency Structural Information for Visible and Thermal Infrared Image Matching

    NASA Astrophysics Data System (ADS)

    Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.

    2017-09-01

    Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.

  4. A short feature vector for image matching: The Log-Polar Magnitude feature descriptor

    PubMed Central

    Hast, Anders; Wählby, Carolina; Sintorn, Ida-Maria

    2017-01-01

    The choice of an optimal feature detector-descriptor combination for image matching often depends on the application and the image type. In this paper, we propose the Log-Polar Magnitude feature descriptor—a rotation, scale, and illumination invariant descriptor that achieves comparable performance to SIFT on a large variety of image registration problems but with much shorter feature vectors. The descriptor is based on the Log-Polar Transform followed by a Fourier Transform and selection of the magnitude spectrum components. Selecting different frequency components allows optimizing for image patterns specific for a particular application. In addition, by relying only on coordinates of the found features and (optionally) feature sizes our descriptor is completely detector independent. We propose 48- or 56-long feature vectors that potentially can be shortened even further depending on the application. Shorter feature vectors result in better memory usage and faster matching. This combined with the fact that the descriptor does not require a time-consuming feature orientation estimation (the rotation invariance is achieved solely by using the magnitude spectrum of the Log-Polar Transform) makes it particularly attractive to applications with limited hardware capacity. Evaluation is performed on the standard Oxford dataset and two different microscopy datasets; one with fluorescence and one with transmission electron microscopy images. Our method performs better than SURF and comparable to SIFT on the Oxford dataset, and better than SIFT on both microscopy datasets indicating that it is particularly useful in applications with microscopy images. PMID:29190737

  5. Ranging through Gabor logons-a consistent, hierarchical approach.

    PubMed

    Chang, C; Chatterjee, S

    1993-01-01

    In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.

  6. Orientation Modeling for Amateur Cameras by Matching Image Line Features and Building Vector Data

    NASA Astrophysics Data System (ADS)

    Hung, C. H.; Chang, W. C.; Chen, L. C.

    2016-06-01

    With the popularity of geospatial applications, database updating is getting important due to the environmental changes over time. Imagery provides a lower cost and efficient way to update the database. Three dimensional objects can be measured by space intersection using conjugate image points and orientation parameters of cameras. However, precise orientation parameters of light amateur cameras are not always available due to their costliness and heaviness of precision GPS and IMU. To automatize data updating, the correspondence of object vector data and image may be built to improve the accuracy of direct georeferencing. This study contains four major parts, (1) back-projection of object vector data, (2) extraction of image feature lines, (3) object-image feature line matching, and (4) line-based orientation modeling. In order to construct the correspondence of features between an image and a building model, the building vector features were back-projected onto the image using the initial camera orientation from GPS and IMU. Image line features were extracted from the imagery. Afterwards, the matching procedure was done by assessing the similarity between the extracted image features and the back-projected ones. Then, the fourth part utilized line features in orientation modeling. The line-based orientation modeling was performed by the integration of line parametric equations into collinearity condition equations. The experiment data included images with 0.06 m resolution acquired by Canon EOS Mark 5D II camera on a Microdrones MD4-1000 UAV. Experimental results indicate that 2.1 pixel accuracy may be reached, which is equivalent to 0.12 m in the object space.

  7. MBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching.

    PubMed

    Su, Mingzhe; Ma, Yan; Zhang, Xiangfen; Wang, Yan; Zhang, Yuping

    2017-01-01

    The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.

  8. MBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching

    PubMed Central

    Su, Mingzhe; Ma, Yan; Zhang, Xiangfen; Wang, Yan; Zhang, Yuping

    2017-01-01

    The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed. PMID:28542537

  9. Robust image matching via ORB feature and VFC for mismatch removal

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Fu, Wenxing; Fang, Bin; Hu, Fangyu; Quan, Siwen; Ma, Jie

    2018-03-01

    Image matching is at the base of many image processing and computer vision problems, such as object recognition or structure from motion. Current methods rely on good feature descriptors and mismatch removal strategies for detection and matching. In this paper, we proposed a robust image match approach based on ORB feature and VFC for mismatch removal. ORB (Oriented FAST and Rotated BRIEF) is an outstanding feature, it has the same performance as SIFT with lower cost. VFC (Vector Field Consensus) is a state-of-the-art mismatch removing method. The experiment results demonstrate that our method is efficient and robust.

  10. Tele-Autonomous control involving contact. Final Report Thesis; [object localization

    NASA Technical Reports Server (NTRS)

    Shao, Lejun; Volz, Richard A.; Conway, Lynn; Walker, Michael W.

    1990-01-01

    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed.

  11. Accurate shade image matching by using a smartphone camera.

    PubMed

    Tam, Weng-Kong; Lee, Hsi-Jian

    2017-04-01

    Dental shade matching by using digital images may be feasible when suitable color features are properly manipulated. Separating the color features into feature spaces facilitates favorable matching. We propose using support vector machines (SVM), which are outstanding classifiers, in shade classification. A total of 1300 shade tab images were captured using a smartphone camera with auto-mode settings and no flash. The images were shot at angled distances of 14-20cm from a shade guide at a clinic equipped with light tubes that produced a 4000K color temperature. The Group 1 samples comprised 1040 tab images, for which the shade guide was randomly positioned in the clinic, and the Group 2 samples comprised 260 tab images, for which the shade guide had a fixed position in the clinic. Rectangular content was cropped manually on each shade tab image and further divided into 10×2 blocks. The color features extracted from the blocks were described using a feature vector. The feature vectors in each group underwent SVM training and classification by using the "leave-one-out" strategy. The top one and three accuracies of Group 1 were 0.86 and 0.98, respectively, and those of Group 2 were 0.97 and 1.00, respectively. This study provides a feasible technique for dental shade classification that uses the camera of a mobile device. The findings reveal that the proposed SVM classification might outperform the shade-matching results of previous studies that have performed similarity measurements of ΔE levels or used an S, a*, b* feature set. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. n-SIFT: n-dimensional scale invariant feature transform.

    PubMed

    Cheung, Warren; Hamarneh, Ghassan

    2009-09-01

    We propose the n-dimensional scale invariant feature transform (n-SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method's performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invariant features. We apply the features to images of arbitrary dimensionality through the use of hyperspherical coordinates for gradients and multidimensional histograms to create the feature vectors. We analyze the performance of a fully automated multimodal medical image matching technique based on these features, and successfully apply the technique to determine accurate feature point correspondence between pairs of 3-D MRI images and dynamic 3D + time CT data.

  13. An improved feature extraction algorithm based on KAZE for multi-spectral image

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  14. Discrimination of malignant lymphomas and leukemia using Radon transform based-higher order spectra

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Celenk, Mehmet; Bejai, Prashanth

    2006-03-01

    A new algorithm that can be used to automatically recognize and classify malignant lymphomas and leukemia is proposed in this paper. The algorithm utilizes the morphological watersheds to obtain boundaries of cells from cell images and isolate them from the surrounding background. The areas of cells are extracted from cell images after background subtraction. The Radon transform and higher-order spectra (HOS) analysis are utilized as an image processing tool to generate class feature vectors of different type cells and to extract testing cells' feature vectors. The testing cells' feature vectors are then compared with the known class feature vectors for a possible match by computing the Euclidean distances. The cell in question is classified as belonging to one of the existing cell classes in the least Euclidean distance sense.

  15. Gene/protein name recognition based on support vector machine using dictionary as features.

    PubMed

    Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi

    2005-01-01

    Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.

  16. Integrating image quality in 2nu-SVM biometric match score fusion.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2007-10-01

    This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.

  17. Evaluation of Image Segmentation and Object Recognition Algorithms for Image Parsing

    DTIC Science & Technology

    2013-09-01

    generation of the features from the key points. OpenCV uses Euclidean distance to match the key points and has the option to use Manhattan distance...feature vector includes polarity and intensity information. Final step is matching the key points. In OpenCV , Euclidean distance or Manhattan...the code below is one way and OpenCV offers the function radiusMatch (a pair must have a distance less than a given maximum distance). OpenCV’s

  18. Cross-modal face recognition using multi-matcher face scores

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2015-05-01

    The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.

  19. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  20. A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities

    NASA Astrophysics Data System (ADS)

    Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.

    2017-12-01

    The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.

  1. A Space Affine Matching Approach to fMRI Time Series Analysis.

    PubMed

    Chen, Liang; Zhang, Weishi; Liu, Hongbo; Feng, Shigang; Chen, C L Philip; Wang, Huili

    2016-07-01

    For fMRI time series analysis, an important challenge is to overcome the potential delay between hemodynamic response signal and cognitive stimuli signal, namely the same frequency but different phase (SFDP) problem. In this paper, a novel space affine matching feature is presented by introducing the time domain and frequency domain features. The time domain feature is used to discern different stimuli, while the frequency domain feature to eliminate the delay. And then we propose a space affine matching (SAM) algorithm to match fMRI time series by our affine feature, in which a normal vector is estimated using gradient descent to explore the time series matching optimally. The experimental results illustrate that the SAM algorithm is insensitive to the delay between the hemodynamic response signal and the cognitive stimuli signal. Our approach significantly outperforms GLM method while there exists the delay. The approach can help us solve the SFDP problem in fMRI time series matching and thus of great promise to reveal brain dynamics.

  2. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  3. Evaluating conflation methods using uncertainty modeling

    NASA Astrophysics Data System (ADS)

    Doucette, Peter; Dolloff, John; Canavosio-Zuzelski, Roberto; Lenihan, Michael; Motsko, Dennis

    2013-05-01

    The classic problem of computer-assisted conflation involves the matching of individual features (e.g., point, polyline, or polygon vectors) as stored in a geographic information system (GIS), between two different sets (layers) of features. The classical goal of conflation is the transfer of feature metadata (attributes) from one layer to another. The age of free public and open source geospatial feature data has significantly increased the opportunity to conflate such data to create enhanced products. There are currently several spatial conflation tools in the marketplace with varying degrees of automation. An ability to evaluate conflation tool performance quantitatively is of operational value, although manual truthing of matched features is laborious and costly. In this paper, we present a novel methodology that uses spatial uncertainty modeling to simulate realistic feature layers to streamline evaluation of feature matching performance for conflation methods. Performance results are compiled for DCGIS street centerline features.

  4. Classification VIA Information-Theoretic Fusion of Vector-Magnetic and Acoustic Sensor Data

    DTIC Science & Technology

    2007-04-01

    10) where tBsBtBsBtBsBtsB zzyyxx, . (11) The operation in (10) may be viewed as a vector matched- filter on to estimate )(tB CPARv . In summary...choosing to maximize the classification information in Y are described in Section 3.2. A 3.2. Maximum mutual information ( MMI ) features We begin with a...review of several desirable properties of features that maximize a mutual information ( MMI ) criterion. Then we review a particular algorithm [2

  5. Gun bore flaw image matching based on improved SIFT descriptor

    NASA Astrophysics Data System (ADS)

    Zeng, Luan; Xiong, Wei; Zhai, You

    2013-01-01

    In order to increase the operation speed and matching ability of SIFT algorithm, the SIFT descriptor and matching strategy are improved. First, a method of constructing feature descriptor based on sector area is proposed. By computing the gradients histogram of location bins which are parted into 6 sector areas, a descriptor with 48 dimensions is constituted. It can reduce the dimension of feature vector and decrease the complexity of structuring descriptor. Second, it introduce a strategy that partitions the circular region into 6 identical sector areas starting from the dominate orientation. Consequently, the computational complexity is reduced due to cancellation of rotation operation for the area. The experimental results indicate that comparing with the OpenCV SIFT arithmetic, the average matching speed of the new method increase by about 55.86%. The matching veracity can be increased even under some variation of view point, illumination, rotation, scale and out of focus. The new method got satisfied results in gun bore flaw image matching. Keywords: Metrology, Flaw image matching, Gun bore, Feature descriptor

  6. Sentence alignment using feed forward neural network.

    PubMed

    Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo

    2006-12-01

    Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature.

  7. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  8. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  9. Matching forensic sketches to mug shot photos.

    PubMed

    Klare, Brendan F; Li, Zhifeng; Jain, Anil K

    2011-03-01

    The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.

  10. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  11. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  12. 3D reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.

    2010-03-01

    The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.

  13. A graph lattice approach to maintaining and learning dense collections of subgraphs as image features.

    PubMed

    Saund, Eric

    2013-10-01

    Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.

  14. Toward semantic-based retrieval of visual information: a model-based approach

    NASA Astrophysics Data System (ADS)

    Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman

    2002-07-01

    This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.

  15. Sorted Index Numbers for Privacy Preserving Face Recognition

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Hatzinakos, Dimitrios

    2009-12-01

    This paper presents a novel approach for changeable and privacy preserving face recognition. We first introduce a new method of biometric matching using the sorted index numbers (SINs) of feature vectors. Since it is impossible to recover any of the exact values of the original features, the transformation from original features to the SIN vectors is noninvertible. To address the irrevocable nature of biometric signals whilst obtaining stronger privacy protection, a random projection-based method is employed in conjunction with the SIN approach to generate changeable and privacy preserving biometric templates. The effectiveness of the proposed method is demonstrated on a large generic data set, which contains images from several well-known face databases. Extensive experimentation shows that the proposed solution may improve the recognition accuracy.

  16. Automated vector selection of SIVQ and parallel computing integration MATLAB™: Innovations supporting large-scale and high-throughput image analysis studies.

    PubMed

    Cheng, Jerome; Hipp, Jason; Monaco, James; Lucas, David R; Madabhushi, Anant; Balis, Ulysses J

    2011-01-01

    Spatially invariant vector quantization (SIVQ) is a texture and color-based image matching algorithm that queries the image space through the use of ring vectors. In prior studies, the selection of one or more optimal vectors for a particular feature of interest required a manual process, with the user initially stochastically selecting candidate vectors and subsequently testing them upon other regions of the image to verify the vector's sensitivity and specificity properties (typically by reviewing a resultant heat map). In carrying out the prior efforts, the SIVQ algorithm was noted to exhibit highly scalable computational properties, where each region of analysis can take place independently of others, making a compelling case for the exploration of its deployment on high-throughput computing platforms, with the hypothesis that such an exercise will result in performance gains that scale linearly with increasing processor count. An automated process was developed for the selection of optimal ring vectors to serve as the predicate matching operator in defining histopathological features of interest. Briefly, candidate vectors were generated from every possible coordinate origin within a user-defined vector selection area (VSA) and subsequently compared against user-identified positive and negative "ground truth" regions on the same image. Each vector from the VSA was assessed for its goodness-of-fit to both the positive and negative areas via the use of the receiver operating characteristic (ROC) transfer function, with each assessment resulting in an associated area-under-the-curve (AUC) figure of merit. Use of the above-mentioned automated vector selection process was demonstrated in two cases of use: First, to identify malignant colonic epithelium, and second, to identify soft tissue sarcoma. For both examples, a very satisfactory optimized vector was identified, as defined by the AUC metric. Finally, as an additional effort directed towards attaining high-throughput capability for the SIVQ algorithm, we demonstrated the successful incorporation of it with the MATrix LABoratory (MATLAB™) application interface. The SIVQ algorithm is suitable for automated vector selection settings and high throughput computation.

  17. Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching.

    PubMed

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-03-10

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.

  18. Sensor-Based Auto-Focusing System Using Multi-Scale Feature Extraction and Phase Correlation Matching

    PubMed Central

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-01-01

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645

  19. Feature extraction and descriptor calculation methods for automatic georeferencing of Philippines' first microsatellite imagery

    NASA Astrophysics Data System (ADS)

    Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.

    2017-10-01

    The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.

  20. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  1. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  2. MatchingLand, geospatial data testbed for the assessment of matching methods.

    PubMed

    Xavier, Emerson M A; Ariza-López, Francisco J; Ureña-Cámara, Manuel A

    2017-12-05

    This article presents datasets prepared with the aim of helping the evaluation of geospatial matching methods for vector data. These datasets were built up from mapping data produced by official Spanish mapping agencies. The testbed supplied encompasses the three geometry types: point, line and area. Initial datasets were submitted to geometric transformations in order to generate synthetic datasets. These transformations represent factors that might influence the performance of geospatial matching methods, like the morphology of linear or areal features, systematic transformations, and random disturbance over initial data. We call our 11 GiB benchmark data 'MatchingLand' and we hope it can be useful for the geographic information science research community.

  3. Seamless image stitching by homography refinement and structure deformation using optimal seam pair detection

    NASA Astrophysics Data System (ADS)

    Lee, Daeho; Lee, Seohyung

    2017-11-01

    We propose an image stitching method that can remove ghost effects and realign the structure misalignments that occur in common image stitching methods. To reduce the artifacts caused by different parallaxes, an optimal seam pair is selected by comparing the cross correlations from multiple seams detected by variable cost weights. Along the optimal seam pair, a histogram of oriented gradients is calculated, and feature points for matching are detected. The homography is refined using the matching points, and the remaining misalignment is eliminated using the propagation of deformation vectors calculated from matching points. In multiband blending, the overlapping regions are determined from a distance between the matching points to remove overlapping artifacts. The experimental results show that the proposed method more robustly eliminates misalignments and overlapping artifacts than the existing method that uses single seam detection and gradient features.

  4. A Novel Recommendation System to Match College Events and Groups to Students

    NASA Astrophysics Data System (ADS)

    Qazanfari, K.; Youssef, A.; Keane, K.; Nelson, J.

    2017-10-01

    With the recent increase in data online, discovering meaningful opportunities can be time-consuming and complicated for many individuals. To overcome this data overload challenge, we present a novel text-content-based recommender system as a valuable tool to predict user interests. To that end, we develop a specific procedure to create user models and item feature-vectors, where items are described in free text. The user model is generated by soliciting from a user a few keywords and expanding those keywords into a list of weighted near-synonyms. The item feature-vectors are generated from the textual descriptions of the items, using modified tf-idf values of the users’ keywords and their near-synonyms. Once the users are modeled and the items are abstracted into feature vectors, the system returns the maximum-similarity items as recommendations to that user. Our experimental evaluation shows that our method of creating the user models and item feature-vectors resulted in higher precision and accuracy in comparison to well-known feature-vector-generating methods like Glove and Word2Vec. It also shows that stemming and the use of a modified version of tf-idf increase the accuracy and precision by 2% and 3%, respectively, compared to non-stemming and the standard tf-idf definition. Moreover, the evaluation results show that updating the user model from usage histories improves the precision and accuracy of the system. This recommender system has been developed as part of the Agnes application, which runs on iOS and Android platforms and is accessible through the Agnes website.

  5. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    NASA Astrophysics Data System (ADS)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  6. A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects

    PubMed Central

    Keefer, Michael C.; Frey, Sharon E.; Elizaga, Marnie; Metch, Barbara; De Rosa, Stephen C.; Barroso, Paulo F.; Tomaras, Georgia; Cardinali, Massimo; Goepfert, Paul; Kalichman, Artur; Philippon, Valérie; McElrath, M. Juliana; Jin, Xia; Ferrari, Guido; Defawe, Olivier D.; Mazzara, Gail P.; Montefiori, David; Pensiero, Michael; Panicali, Dennis L.; Corey, Lawrence

    2011-01-01

    We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (109 pfu/2ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 [51.9%] of participants post-4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce an HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination. PMID:21216311

  7. Open-source sea ice drift algorithm for Sentinel-1 SAR imagery using a combination of feature-tracking and pattern-matching

    NASA Astrophysics Data System (ADS)

    Muckenhuber, Stefan; Sandven, Stein

    2017-04-01

    An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that provides small to medium scale drift adjustments and normalised cross correlation values as quality measure. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A recommended parameter set for the algorithm has been found using a representative image pair over Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering 400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory. For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering an area from 81° N to 83.5° N and 12° E to 27° E, have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.

  8. Robust Observation Detection for Single Object Tracking: Deterministic and Probabilistic Patch-Based Approaches

    PubMed Central

    Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill

    2012-01-01

    In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226

  9. Enhancing clinical concept extraction with distributional semantics

    PubMed Central

    Cohen, Trevor; Wu, Stephen; Gonzalez, Graciela

    2011-01-01

    Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinical narratives has contributed to the development and refinement of concept extraction methods. However, as the annotation process is labor-intensive, training data are necessarily limited in the concepts and concept patterns covered, which impacts the performance of supervised machine learning applications trained with these data. This paper proposes an approach to minimize this limitation by combining supervised machine learning with empirical learning of semantic relatedness from the distribution of the relevant words in additional unannotated text. The approach uses a sequential discriminative classifier (Conditional Random Fields) to extract the mentions of medical problems, treatments and tests from clinical narratives. It takes advantage of all Medline abstracts indexed as being of the publication type “clinical trials” to estimate the relatedness between words in the i2b2/VA training and testing corpora. In addition to the traditional features such as dictionary matching, pattern matching and part-of-speech tags, we also used as a feature words that appear in similar contexts to the word in question (that is, words that have a similar vector representation measured with the commonly used cosine metric, where vector representations are derived using methods of distributional semantics). To the best of our knowledge, this is the first effort exploring the use of distributional semantics, the semantics derived empirically from unannotated text often using vector space models, for a sequence classification task such as concept extraction. Therefore, we first experimented with different sliding window models and found the model with parameters that led to best performance in a preliminary sequence labeling task. The evaluation of this approach, performed against the i2b2/VA concept extraction corpus, showed that incorporating features based on the distribution of words across a large unannotated corpus significantly aids concept extraction. Compared to a supervised-only approach as a baseline, the micro-averaged f-measure for exact match increased from 80.3% to 82.3% and the micro-averaged f-measure based on inexact match increased from 89.7% to 91.3%. These improvements are highly significant according to the bootstrap resampling method and also considering the performance of other systems. Thus, distributional semantic features significantly improve the performance of concept extraction from clinical narratives by taking advantage of word distribution information obtained from unannotated data. PMID:22085698

  10. Fuzzy similarity measures for ultrasound tissue characterization

    NASA Astrophysics Data System (ADS)

    Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.

    1995-03-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.

  11. A novel framework for feature extraction in multi-sensor action potential sorting.

    PubMed

    Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran

    2015-09-30

    Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2008-08-01

    This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

  13. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  14. Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras.

    PubMed

    Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh

    2008-04-01

    This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.

  15. Integration of low level and ontology derived features for automatic weapon recognition and identification

    NASA Astrophysics Data System (ADS)

    Sirakov, Nikolay M.; Suh, Sang; Attardo, Salvatore

    2011-06-01

    This paper presents a further step of a research toward the development of a quick and accurate weapons identification methodology and system. A basic stage of this methodology is the automatic acquisition and updating of weapons ontology as a source of deriving high level weapons information. The present paper outlines the main ideas used to approach the goal. In the next stage, a clustering approach is suggested on the base of hierarchy of concepts. An inherent slot of every node of the proposed ontology is a low level features vector (LLFV), which facilitates the search through the ontology. Part of the LLFV is the information about the object's parts. To partition an object a new approach is presented capable of defining the objects concavities used to mark the end points of weapon parts, considered as convexities. Further an existing matching approach is optimized to determine whether an ontological object matches the objects from an input image. Objects from derived ontological clusters will be considered for the matching process. Image resizing is studied and applied to decrease the runtime of the matching approach and investigate its rotational and scaling invariance. Set of experiments are preformed to validate the theoretical concepts.

  16. StruLocPred: structure-based protein subcellular localisation prediction using multi-class support vector machine.

    PubMed

    Zhou, Wengang; Dickerson, Julie A

    2012-01-01

    Knowledge of protein subcellular locations can help decipher a protein's biological function. This work proposes new features: sequence-based: Hybrid Amino Acid Pair (HAAP) and two structure-based: Secondary Structural Element Composition (SSEC) and solvent accessibility state frequency. A multi-class Support Vector Machine is developed to predict the locations. Testing on two established data sets yields better prediction accuracies than the best available systems. Comparisons with existing methods show comparable results to ESLPred2. When StruLocPred is applied to the entire Arabidopsis proteome, over 77% of proteins with known locations match the prediction results. An implementation of this system is at http://wgzhou.ece. iastate.edu/StruLocPred/.

  17. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    PubMed

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  18. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Zhao, T; Green, O

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC)more » for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.« less

  19. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    PubMed

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  20. Improving Large-Scale Image Retrieval Through Robust Aggregation of Local Descriptors.

    PubMed

    Husain, Syed Sameed; Bober, Miroslaw

    2017-09-01

    Visual search and image retrieval underpin numerous applications, however the task is still challenging predominantly due to the variability of object appearance and ever increasing size of the databases, often exceeding billions of images. Prior art methods rely on aggregation of local scale-invariant descriptors, such as SIFT, via mechanisms including Bag of Visual Words (BoW), Vector of Locally Aggregated Descriptors (VLAD) and Fisher Vectors (FV). However, their performance is still short of what is required. This paper presents a novel method for deriving a compact and distinctive representation of image content called Robust Visual Descriptor with Whitening (RVD-W). It significantly advances the state of the art and delivers world-class performance. In our approach local descriptors are rank-assigned to multiple clusters. Residual vectors are then computed in each cluster, normalized using a direction-preserving normalization function and aggregated based on the neighborhood rank. Importantly, the residual vectors are de-correlated and whitened in each cluster before aggregation, leading to a balanced energy distribution in each dimension and significantly improved performance. We also propose a new post-PCA normalization approach which improves separability between the matching and non-matching global descriptors. This new normalization benefits not only our RVD-W descriptor but also improves existing approaches based on FV and VLAD aggregation. Furthermore, we show that the aggregation framework developed using hand-crafted SIFT features also performs exceptionally well with Convolutional Neural Network (CNN) based features. The RVD-W pipeline outperforms state-of-the-art global descriptors on both the Holidays and Oxford datasets. On the large scale datasets, Holidays1M and Oxford1M, SIFT-based RVD-W representation obtains a mAP of 45.1 and 35.1 percent, while CNN-based RVD-W achieve a mAP of 63.5 and 44.8 percent, all yielding superior performance to the state-of-the-art.

  1. An accelerated image matching technique for UAV orthoimage registration

    NASA Astrophysics Data System (ADS)

    Tsai, Chung-Hsien; Lin, Yu-Ching

    2017-06-01

    Using an Unmanned Aerial Vehicle (UAV) drone with an attached non-metric camera has become a popular low-cost approach for collecting geospatial data. A well-georeferenced orthoimage is a fundamental product for geomatics professionals. To achieve high positioning accuracy of orthoimages, precise sensor position and orientation data, or a number of ground control points (GCPs), are often required. Alternatively, image registration is a solution for improving the accuracy of a UAV orthoimage, as long as a historical reference image is available. This study proposes a registration scheme, including an Accelerated Binary Robust Invariant Scalable Keypoints (ABRISK) algorithm and spatial analysis of corresponding control points for image registration. To determine a match between two input images, feature descriptors from one image are compared with those from another image. A "Sorting Ring" is used to filter out uncorrected feature pairs as early as possible in the stage of matching feature points, to speed up the matching process. The results demonstrate that the proposed ABRISK approach outperforms the vector-based Scale Invariant Feature Transform (SIFT) approach where radiometric variations exist. ABRISK is 19.2 times and 312 times faster than SIFT for image sizes of 1000 × 1000 pixels and 4000 × 4000 pixels, respectively. ABRISK is 4.7 times faster than Binary Robust Invariant Scalable Keypoints (BRISK). Furthermore, the positional accuracy of the UAV orthoimage after applying the proposed image registration scheme is improved by an average of root mean square error (RMSE) of 2.58 m for six test orthoimages whose spatial resolutions vary from 6.7 cm to 10.7 cm.

  2. Fall Detection Using Smartphone Audio Features.

    PubMed

    Cheffena, Michael

    2016-07-01

    An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.

  3. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    PubMed

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  4. Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response

    PubMed Central

    Wang, David B.; Dayton, Robert D.; Zweig, Richard M.; Klein, Ronald L.

    2010-01-01

    Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of two weeks. Specific decreases in messages for dopamine related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression. PMID:20346943

  5. Knee Joint Vibration Signal Analysis with Matching Pursuit Decomposition and Dynamic Weighted Classifier Fusion

    PubMed Central

    Cai, Suxian; Yang, Shanshan; Zheng, Fang; Lu, Meng; Wu, Yunfeng; Krishnan, Sridhar

    2013-01-01

    Analysis of knee joint vibration (VAG) signals can provide quantitative indices for detection of knee joint pathology at an early stage. In addition to the statistical features developed in the related previous studies, we extracted two separable features, that is, the number of atoms derived from the wavelet matching pursuit decomposition and the number of significant signal turns detected with the fixed threshold in the time domain. To perform a better classification over the data set of 89 VAG signals, we applied a novel classifier fusion system based on the dynamic weighted fusion (DWF) method to ameliorate the classification performance. For comparison, a single leastsquares support vector machine (LS-SVM) and the Bagging ensemble were used for the classification task as well. The results in terms of overall accuracy in percentage and area under the receiver operating characteristic curve obtained with the DWF-based classifier fusion method reached 88.76% and 0.9515, respectively, which demonstrated the effectiveness and superiority of the DWF method with two distinct features for the VAG signal analysis. PMID:23573175

  6. Aerial images visual localization on a vector map using color-texture segmentation

    NASA Astrophysics Data System (ADS)

    Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.

    2018-04-01

    In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.

  7. Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.

    PubMed

    Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M

    2012-05-01

    A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.

  8. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.

    PubMed

    Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas

    2012-05-01

    Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.

  9. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  10. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  11. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  12. Data mining and visualization of average images in a digital hand atlas

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Gertych, Arkadiusz; Liu, Brent J.; Huang, H. K.

    2005-04-01

    We have collected a digital hand atlas containing digitized left hand radiographs of normally developed children grouped accordingly by age, sex, and race. A set of features stored in a database reflecting patient's stage of skeletal development has been calculated by automatic image processing procedures. This paper addresses a new concept, "average" image in the digital hand atlas. The "average" reference image in the digital atlas is selected for each of the groups of normal developed children with the best representative skeletal maturity based on bony features. A data mining procedure was designed and applied to find the average image through average feature vector matching. It also provides a temporary solution for the missing feature problem through polynomial regression. As more cases are added to the digital hand atlas, it can grow to provide clinicians accurate reference images to aid the bone age assessment process.

  13. Detecting objects in radiographs for homeland security

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  14. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  15. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team 1998

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available under the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  16. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available un- der the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching an@ vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  17. Corruption of genomic databases with anomalous sequence.

    PubMed

    Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L

    1992-06-11

    We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%.

  18. Relevance popularity: A term event model based feature selection scheme for text classification.

    PubMed

    Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao

    2017-01-01

    Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.

  19. GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing

    NASA Astrophysics Data System (ADS)

    Johl, John T.; Baker, Nick C.

    1988-10-01

    The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.

  20. Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch

    NASA Astrophysics Data System (ADS)

    König, Friedrich; Wong, Franco N. C.

    2004-03-01

    Under extended phase-matching conditions, the first frequency derivative of the wave-vector mismatch is zero and the phase-matching bandwidth is greatly increased. We present extensive three-wave mixing measurements of the wave-vector mismatch and obtain improved Sellmeier equations for KTiOPO4. We observed a type-II extended phase-matching bandwidth of 100 nm for second-harmonic generation in periodically poled KTiOPO4, centered at the fundamental wavelength of 1584 nm. Applications in quantum entanglement and frequency metrology are discussed.

  1. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  2. A feature selection approach towards progressive vector transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Miao, Ru; Song, Jia; Feng, Min

    2017-09-01

    WebGIS has been applied for visualizing and sharing geospatial information popularly over the Internet. In order to improve the efficiency of the client applications, the web-based progressive vector transmission approach is proposed. Important features should be selected and transferred firstly, and the methods for measuring the importance of features should be further considered in the progressive transmission. However, studies on progressive transmission for large-volume vector data have mostly focused on map generalization in the field of cartography, but rarely discussed on the selection of geographic features quantitatively. This paper applies information theory for measuring the feature importance of vector maps. A measurement model for the amount of information of vector features is defined based upon the amount of information for dealing with feature selection issues. The measurement model involves geometry factor, spatial distribution factor and thematic attribute factor. Moreover, a real-time transport protocol (RTP)-based progressive transmission method is then presented to improve the transmission of vector data. To clearly demonstrate the essential methodology and key techniques, a prototype for web-based progressive vector transmission is presented, and an experiment of progressive selection and transmission for vector features is conducted. The experimental results indicate that our approach clearly improves the performance and end-user experience of delivering and manipulating large vector data over the Internet.

  3. A fast image matching algorithm based on key points

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng

    2014-05-01

    Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction strategy is adopted to discard false matched point pairs further; and (4) Affine transformation model is introduced to correct coordinate difference between real-time image and reference image. This resulted in the matching of the two images. SPOT5 Remote sensing images captured at different date and airborne images captured with different flight attitude were used to test the performance of the method from matching accuracy, operation time and ability to overcome rotation. Results show the effectiveness of the approach.

  4. A Spatial Division Clustering Method and Low Dimensional Feature Extraction Technique Based Indoor Positioning System

    PubMed Central

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-01

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470

  5. Fast metabolite identification with Input Output Kernel Regression.

    PubMed

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-06-15

    An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Fast metabolite identification with Input Output Kernel Regression

    PubMed Central

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-01-01

    Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628

  7. Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Winett, Sheila G.

    1990-01-01

    Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…

  8. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  9. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography

    NASA Astrophysics Data System (ADS)

    Pevný, Tomáš; Filler, Tomáš; Bas, Patrick

    This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to "preserve" the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.

  10. Harvesting geographic features from heterogeneous raster maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi

    2010-11-01

    Raster maps offer a great deal of geospatial information and are easily accessible compared to other geospatial data. However, harvesting geographic features locked in heterogeneous raster maps to obtain the geospatial information is challenging. This is because of the varying image quality of raster maps (e.g., scanned maps with poor image quality and computer-generated maps with good image quality), the overlapping geographic features in maps, and the typical lack of metadata (e.g., map geocoordinates, map source, and original vector data). Previous work on map processing is typically limited to a specific type of map and often relies on intensive manual work. In contrast, this thesis investigates a general approach that does not rely on any prior knowledge and requires minimal user effort to process heterogeneous raster maps. This approach includes automatic and supervised techniques to process raster maps for separating individual layers of geographic features from the maps and recognizing geographic features in the separated layers (i.e., detecting road intersections, generating and vectorizing road geometry, and recognizing text labels). The automatic technique eliminates user intervention by exploiting common map properties of how road lines and text labels are drawn in raster maps. For example, the road lines are elongated linear objects and the characters are small connected-objects. The supervised technique utilizes labels of road and text areas to handle complex raster maps, or maps with poor image quality, and can process a variety of raster maps with minimal user input. The results show that the general approach can handle raster maps with varying map complexity, color usage, and image quality. By matching extracted road intersections to another geospatial dataset, we can identify the geocoordinates of a raster map and further align the raster map, separated feature layers from the map, and recognized features from the layers with the geospatial dataset. The road vectorization and text recognition results outperform state-of-art commercial products, and with considerably less user input. The approach in this thesis allows us to make use of the geospatial information of heterogeneous maps locked in raster format.

  11. Tiled vector data model for the geographical features of symbolized maps.

    PubMed

    Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang

    2017-01-01

    Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.

  12. An efficient indexing scheme for binary feature based biometric database

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Sana, A.; Mehrotra, H.; Hwang, C. Jinshong

    2007-04-01

    The paper proposes an efficient indexing scheme for binary feature template using B+ tree. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The binarized approximation coefficient at second level is divided into four quadrants of equal size and Hamming distance (HD) for each quadrant with respect to sample template of all ones is measured. This HD value of each quadrant is used to generate upper and lower range values which are inserted into B+ tree. The nodes of tree at first level contain the lower and upper range values generated from HD of first quadrant. Similarly, lower and upper range values for the three quadrants are stored in the second, third and fourth level respectively. Finally leaf node contains the set of identifiers. At the time of identification, the test image is used to generate HD for four quadrants. Then the B+ tree is traversed based on the value of HD at every node and terminates to leaf nodes with set of identifiers. The feature vector for each identifier is retrieved from the particular bin of secondary memory and matched with test feature template to get top matches. The proposed scheme is implemented on ear biometric database collected at IIT Kanpur. The system is giving an overall accuracy of 95.8% at penetration rate of 34%.

  13. Feature Vector Construction Method for IRIS Recognition

    NASA Astrophysics Data System (ADS)

    Odinokikh, G.; Fartukov, A.; Korobkin, M.; Yoo, J.

    2017-05-01

    One of the basic stages of iris recognition pipeline is iris feature vector construction procedure. The procedure represents the extraction of iris texture information relevant to its subsequent comparison. Thorough investigation of feature vectors obtained from iris showed that not all the vector elements are equally relevant. There are two characteristics which determine the vector element utility: fragility and discriminability. Conventional iris feature extraction methods consider the concept of fragility as the feature vector instability without respect to the nature of such instability appearance. This work separates sources of the instability into natural and encodinginduced which helps deeply investigate each source of instability independently. According to the separation concept, a novel approach of iris feature vector construction is proposed. The approach consists of two steps: iris feature extraction using Gabor filtering with optimal parameters and quantization with separated preliminary optimized fragility thresholds. The proposed method has been tested on two different datasets of iris images captured under changing environmental conditions. The testing results show that the proposed method surpasses all the methods considered as a prior art by recognition accuracy on both datasets.

  14. 3D palmprint data fast acquisition and recognition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2014-11-01

    This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.

  15. Learned Compact Local Feature Descriptor for Tls-Based Geodetic Monitoring of Natural Outdoor Scenes

    NASA Astrophysics Data System (ADS)

    Gojcic, Z.; Zhou, C.; Wieser, A.

    2018-05-01

    The advantages of terrestrial laser scanning (TLS) for geodetic monitoring of man-made and natural objects are not yet fully exploited. Herein we address one of the open challenges by proposing feature-based methods for identification of corresponding points in point clouds of two or more epochs. We propose a learned compact feature descriptor tailored for point clouds of natural outdoor scenes obtained using TLS. We evaluate our method both on a benchmark data set and on a specially acquired outdoor dataset resembling a simplified monitoring scenario where we successfully estimate 3D displacement vectors of a rock that has been displaced between the scans. We show that the proposed descriptor has the capacity to generalize to unseen data and achieves state-of-the-art performance while being time efficient at the matching step due the low dimension.

  16. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    PubMed

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  17. Deep features for efficient multi-biometric recognition with face and ear images

    NASA Astrophysics Data System (ADS)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  18. Validating simple dynamical simulations of the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Forbes, Michael McNeil; Sharma, Rishi

    2014-10-01

    We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.

  19. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images.

    PubMed

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-07-01

    Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

  20. Unconstrained and contactless hand geometry biometrics.

    PubMed

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier

    2011-01-01

    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.

  1. Unconstrained and Contactless Hand Geometry Biometrics

    PubMed Central

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier

    2011-01-01

    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices. PMID:22346634

  2. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  3. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  4. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  5. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOEpatents

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  6. Principal components colour display of ERTS imagery

    NASA Technical Reports Server (NTRS)

    Taylor, M. M.

    1974-01-01

    In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.

  7. Rotation invariants of vector fields from orthogonal moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Kostková, Jitka; Flusser, Jan

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  8. Rotation invariants of vector fields from orthogonal moments

    DOE PAGES

    Yang, Bo; Kostková, Jitka; Flusser, Jan; ...

    2017-09-11

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  9. Lamb wave based damage detection using Matching Pursuit and Support Vector Machine classifier

    NASA Astrophysics Data System (ADS)

    Agarwal, Sushant; Mitra, Mira

    2014-03-01

    In this paper, the suitability of using Matching Pursuit (MP) and Support Vector Machine (SVM) for damage detection using Lamb wave response of thin aluminium plate is explored. Lamb wave response of thin aluminium plate with or without damage is simulated using finite element. Simulations are carried out at different frequencies for various kinds of damage. The procedure is divided into two parts - signal processing and machine learning. Firstly, MP is used for denoising and to maintain the sparsity of the dataset. In this study, MP is extended by using a combination of time-frequency functions as the dictionary and is deployed in two stages. Selection of a particular type of atoms lead to extraction of important features while maintaining the sparsity of the waveform. The resultant waveform is then passed as input data for SVM classifier. SVM is used to detect the location of the potential damage from the reduced data. The study demonstrates that SVM is a robust classifier in presence of noise and more efficient as compared to Artificial Neural Network (ANN). Out-of-sample data is used for the validation of the trained and tested classifier. Trained classifiers are found successful in detection of the damage with more than 95% detection rate.

  10. Method for the reduction of image content redundancy in large image databases

    DOEpatents

    Tobin, Kenneth William; Karnowski, Thomas P.

    2010-03-02

    A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.

  11. Hybrid generative-discriminative approach to age-invariant face recognition

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad; Shafique, Tamoor

    2018-03-01

    Age-invariant face recognition is still a challenging research problem due to the complex aging process involving types of facial tissues, skin, fat, muscles, and bones. Most of the related studies that have addressed the aging problem are focused on generative representation (aging simulation) or discriminative representation (feature-based approaches). Designing an appropriate hybrid approach taking into account both the generative and discriminative representations for age-invariant face recognition remains an open problem. We perform a hybrid matching to achieve robustness to aging variations. This approach automatically segments the eyes, nose-bridge, and mouth regions, which are relatively less sensitive to aging variations compared with the rest of the facial regions that are age-sensitive. The aging variations of age-sensitive facial parts are compensated using a demographic-aware generative model based on a bridged denoising autoencoder. The age-insensitive facial parts are represented by pixel average vector-based local binary patterns. Deep convolutional neural networks are used to extract relative features of age-sensitive and age-insensitive facial parts. Finally, the feature vectors of age-sensitive and age-insensitive facial parts are fused to achieve the recognition results. Extensive experimental results on morphological face database II (MORPH II), face and gesture recognition network (FG-NET), and Verification Subset of cross-age celebrity dataset (CACD-VS) demonstrate the effectiveness of the proposed method for age-invariant face recognition well.

  12. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis.

    PubMed

    Cao, Longlong; Guo, Shuixia; Xue, Zhimin; Hu, Yong; Liu, Haihong; Mwansisya, Tumbwene E; Pu, Weidan; Yang, Bo; Liu, Chang; Feng, Jianfeng; Chen, Eric Y H; Liu, Zhening

    2014-02-01

    Aberrant brain functional connectivity patterns have been reported in major depressive disorder (MDD). It is unknown whether they can be used in discriminant analysis for diagnosis of MDD. In the present study we examined the efficiency of discriminant analysis of MDD by individualized computer-assisted diagnosis. Based on resting-state functional magnetic resonance imaging data, a new approach was adopted to investigate functional connectivity changes in 39 MDD patients and 37 well-matched healthy controls. By using the proposed feature selection method, we identified significant altered functional connections in patients. They were subsequently applied to our analysis as discriminant features using a support vector machine classification method. Furthermore, the relative contribution of functional connectivity was estimated. After subset selection of high-dimension features, the support vector machine classifier reached up to approximately 84% with leave-one-out training during the discrimination process. Through summarizing the classification contribution of functional connectivities, we obtained four obvious contribution modules: inferior orbitofrontal module, supramarginal gyrus module, inferior parietal lobule-posterior cingulated gyrus module and middle temporal gyrus-inferior temporal gyrus module. The experimental results demonstrated that the proposed method is effective in discriminating MDD patients from healthy controls. Functional connectivities might be useful as new biomarkers to assist clinicians in computer auxiliary diagnosis of MDD. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  13. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  14. HHsvm: fast and accurate classification of profile–profile matches identified by HHsearch

    PubMed Central

    Dlakić, Mensur

    2009-01-01

    Motivation: Recently developed profile–profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. Results: Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile–profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database. Availability: Programs and scripts implementing the methods described in this manuscript are freely available from http://hhsvm.dlakiclab.org/. Contact: mdlakic@montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19773335

  15. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  16. Defining functional groups based on running kinematics using Self-Organizing Maps and Support Vector Machines.

    PubMed

    Hoerzer, Stefan; von Tscharner, Vinzenz; Jacob, Christian; Nigg, Benno M

    2015-07-16

    A functional group is a collection of individuals who react in a similar way to a specific intervention/product such as a sport shoe. Matching footwear features to a functional group can possibly enhance footwear-related comfort, improve running performance, and decrease the risk of movement-related injuries. To match footwear features to a functional group, one has to first define the different groups using their distinctive movement patterns. Therefore, the main objective of this study was to propose and apply a methodological approach to define functional groups with different movement patterns using Self-Organizing Maps and Support Vector Machines. Further study objectives were to identify differences in age, gender and footwear-related comfort preferences between the functional groups. Kinematic data and subjective comfort preferences of 88 subjects (16-76 years; 45 m/43 f) were analysed. Eight functional groups with distinctive movement patterns were defined. The findings revealed that most of the groups differed in age or gender. Certain functional groups differed in their comfort preferences and, therefore, had group-specific footwear requirements to enhance footwear-related comfort. Some of the groups, which had group-specific footwear requirements, did not show any differences in age or gender. This is important because when defining functional groups simply using common grouping criteria like age or gender, certain functional groups with group-specific movement patterns and footwear requirements might not be detected. This emphasises the power of the proposed pattern recognition approach to automatically define groups by their distinctive movement patterns in order to be able to address their group-specific product requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  18. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  19. Computer-aided diagnosis of cavernous malformations in brain MR images.

    PubMed

    Wang, Huiquan; Ahmed, S Nizam; Mandal, Mrinal

    2018-06-01

    Cavernous malformation or cavernoma is one of the most common epileptogenic lesions. It is a type of brain vessel abnormality that can cause serious symptoms such as seizures, intracerebral hemorrhage, and various neurological disorders. Manual detection of cavernomas by physicians in a large set of brain MRI slices is a time-consuming and labor-intensive task and often delays diagnosis. In this paper, we propose a computer-aided diagnosis (CAD) system for cavernomas based on T2-weighted axial plane MRI image analysis. The proposed technique first extracts the brain area based on atlas registration and active contour model, and then performs template matching to obtain candidate cavernoma regions. Texture, the histogram of oriented gradients and local binary pattern features of each candidate region are calculated, and principal component analysis is applied to reduce the feature dimensionality. Support vector machines (SVMs) are finally used to classify each region into cavernoma or non-cavernoma so that most of the false positives (obtained by template matching) are eliminated. The performance of the proposed CAD system is evaluated and experimental results show that it provides superior performance in cavernoma detection compared to existing techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Recognition of Indian Sign Language in Live Video

    NASA Astrophysics Data System (ADS)

    Singha, Joyeeta; Das, Karen

    2013-05-01

    Sign Language Recognition has emerged as one of the important area of research in Computer Vision. The difficulty faced by the researchers is that the instances of signs vary with both motion and appearance. Thus, in this paper a novel approach for recognizing various alphabets of Indian Sign Language is proposed where continuous video sequences of the signs have been considered. The proposed system comprises of three stages: Preprocessing stage, Feature Extraction and Classification. Preprocessing stage includes skin filtering, histogram matching. Eigen values and Eigen Vectors were considered for feature extraction stage and finally Eigen value weighted Euclidean distance is used to recognize the sign. It deals with bare hands, thus allowing the user to interact with the system in natural way. We have considered 24 different alphabets in the video sequences and attained a success rate of 96.25%.

  1. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    PubMed

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  2. Oversampling the Minority Class in the Feature Space.

    PubMed

    Perez-Ortiz, Maria; Gutierrez, Pedro Antonio; Tino, Peter; Hervas-Martinez, Cesar

    2016-09-01

    The imbalanced nature of some real-world data is one of the current challenges for machine learning researchers. One common approach oversamples the minority class through convex combination of its patterns. We explore the general idea of synthetic oversampling in the feature space induced by a kernel function (as opposed to input space). If the kernel function matches the underlying problem, the classes will be linearly separable and synthetically generated patterns will lie on the minority class region. Since the feature space is not directly accessible, we use the empirical feature space (EFS) (a Euclidean space isomorphic to the feature space) for oversampling purposes. The proposed method is framed in the context of support vector machines, where the imbalanced data sets can pose a serious hindrance. The idea is investigated in three scenarios: 1) oversampling in the full and reduced-rank EFSs; 2) a kernel learning technique maximizing the data class separation to study the influence of the feature space structure (implicitly defined by the kernel function); and 3) a unified framework for preferential oversampling that spans some of the previous approaches in the literature. We support our investigation with extensive experiments over 50 imbalanced data sets.

  3. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  4. Automatic detection and recognition of traffic signs in stereo images based on features and probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian

    2008-04-01

    Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.

  5. A vector matching method for analysing logic Petri nets

    NASA Astrophysics Data System (ADS)

    Du, YuYue; Qi, Liang; Zhou, MengChu

    2011-11-01

    Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.

  6. Correlated Topic Vector for Scene Classification.

    PubMed

    Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang

    2017-07-01

    Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.

  7. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  8. Local Kernel for Brains Classification in Schizophrenia

    NASA Astrophysics Data System (ADS)

    Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.

    In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.

  9. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  10. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  11. Viral Vectors for Gene Delivery to the Central Nervous System

    PubMed Central

    Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude

    2011-01-01

    The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604

  12. Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

    NASA Astrophysics Data System (ADS)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing

    2014-12-01

    Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.

  13. Automatically tracking neurons in a moving and deforming brain

    PubMed Central

    Nguyen, Jeffrey P.; Linder, Ashley N.; Plummer, George S.; Shaevitz, Joshua W.

    2017-01-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches. PMID:28545068

  14. Automatically tracking neurons in a moving and deforming brain.

    PubMed

    Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M

    2017-05-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  15. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  16. Automated detection and localization of bowhead whale sounds in the presence of seismic airgun surveys.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Blackwell, Susanna B; Greene, Charles R; Nations, Christopher S; McDonald, Trent L; Macrander, A Michael

    2012-05-01

    An automated procedure has been developed for detecting and localizing frequency-modulated bowhead whale sounds in the presence of seismic airgun surveys. The procedure was applied to four years of data, collected from over 30 directional autonomous recording packages deployed over a 280 km span of continental shelf in the Alaskan Beaufort Sea. The procedure has six sequential stages that begin by extracting 25-element feature vectors from spectrograms of potential call candidates. Two cascaded neural networks then classify some feature vectors as bowhead calls, and the procedure then matches calls between recorders to triangulate locations. To train the networks, manual analysts flagged 219 471 bowhead call examples from 2008 and 2009. Manual analyses were also used to identify 1.17 million transient signals that were not whale calls. The network output thresholds were adjusted to reject 20% of whale calls in the training data. Validation runs using 2007 and 2010 data found that the procedure missed 30%-40% of manually detected calls. Furthermore, 20%-40% of the sounds flagged as calls are not present in the manual analyses; however, these extra detections incorporate legitimate whale calls overlooked by human analysts. Both manual and automated methods produce similar spatial and temporal call distributions.

  17. Tensor manifold-based extreme learning machine for 2.5-D face recognition

    NASA Astrophysics Data System (ADS)

    Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin

    2018-01-01

    We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.

  18. Breaking the polar-nonpolar division in solvation free energy prediction.

    PubMed

    Wang, Bao; Wang, Chengzhang; Wu, Kedi; Wei, Guo-Wei

    2018-02-05

    Implicit solvent models divide solvation free energies into polar and nonpolar additive contributions, whereas polar and nonpolar interactions are inseparable and nonadditive. We present a feature functional theory (FFT) framework to break this ad hoc division. The essential ideas of FFT are as follows: (i) representability assumption: there exists a microscopic feature vector that can uniquely characterize and distinguish one molecule from another; (ii) feature-function relationship assumption: the macroscopic features, including solvation free energy, of a molecule is a functional of microscopic feature vectors; and (iii) similarity assumption: molecules with similar microscopic features have similar macroscopic properties, such as solvation free energies. Based on these assumptions, solvation free energy prediction is carried out in the following protocol. First, we construct a molecular microscopic feature vector that is efficient in characterizing the solvation process using quantum mechanics and Poisson-Boltzmann theory. Microscopic feature vectors are combined with macroscopic features, that is, physical observable, to form extended feature vectors. Additionally, we partition a solvation dataset into queries according to molecular compositions. Moreover, for each target molecule, we adopt a machine learning algorithm for its nearest neighbor search, based on the selected microscopic feature vectors. Finally, from the extended feature vectors of obtained nearest neighbors, we construct a functional of solvation free energy, which is employed to predict the solvation free energy of the target molecule. The proposed FFT model has been extensively validated via a large dataset of 668 molecules. The leave-one-out test gives an optimal root-mean-square error (RMSE) of 1.05 kcal/mol. FFT predictions of SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/mol, respectively. Using a test set of 94 molecules and its associated training set, the present approach was carefully compared with a classic solvation model based on weighted solvent accessible surface area. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  20. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos.

    PubMed

    Moghaddasi, Hanie; Nourian, Saeed

    2016-06-01

    Heart disease is the major cause of death as well as a leading cause of disability in the developed countries. Mitral Regurgitation (MR) is a common heart disease which does not cause symptoms until its end stage. Therefore, early diagnosis of the disease is of crucial importance in the treatment process. Echocardiography is a common method of diagnosis in the severity of MR. Hence, a method which is based on echocardiography videos, image processing techniques and artificial intelligence could be helpful for clinicians, especially in borderline cases. In this paper, we introduce novel features to detect micro-patterns of echocardiography images in order to determine the severity of MR. Extensive Local Binary Pattern (ELBP) and Extensive Volume Local Binary Pattern (EVLBP) are presented as image descriptors which include details from different viewpoints of the heart in feature vectors. Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Template Matching techniques are used as classifiers to determine the severity of MR based on textural descriptors. The SVM classifier with Extensive Uniform Local Binary Pattern (ELBPU) and Extensive Volume Local Binary Pattern (EVLBP) have the best accuracy with 99.52%, 99.38%, 99.31% and 99.59%, respectively, for the detection of Normal, Mild MR, Moderate MR and Severe MR subjects among echocardiography videos. The proposed method achieves 99.38% sensitivity and 99.63% specificity for the detection of the severity of MR and normal subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Discrimination thresholds of normal and anomalous trichromats: Model of senescent changes in ocular media density on the Cambridge Colour Test

    PubMed Central

    Shinomori, Keizo; Panorgias, Athanasios; Werner, John S.

    2017-01-01

    Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits. PMID:26974943

  2. Automated matching of supine and prone colonic polyps based on PCA and SVMs

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Van Uitert, Robert L.; Summers, Ronald M.

    2008-03-01

    Computed tomographic colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. In current practice, a patient will be scanned twice during the CTC examination - once supine and once prone. In order to assist the radiologists in evaluating colon polyp candidates in both scans, we expect the computer aided detection (CAD) system can provide not only the locations of suspicious polyps, but also the possible matched pairs of polyps in two scans. In this paper, we propose a new automated matching method based on the extracted features of polyps by using principal component analysis (PCA) and Support Vector Machines (SVMs). Our dataset comes from the 104 CT scans of 52 patients with supine and prone positions collected from three medical centers. From it we constructed two groups of matched polyp candidates according to the size of true polyps: group A contains 12 true polyp pairs (> 9 mm) and 454 false pairs; group B contains 24 true polyp pairs (6-9 mm) and 514 false pairs. By using PCA, we reduced the dimensions of original data (with 157 attributes) to 30 dimensions. We did leave-one-patient-out test on the two groups of data. ROC analysis shows that it is easier to match bigger polyps than that of smaller polyps. On group A data, when false alarm probability is 0.18, the sensitivity of SVM achieves 0.83 which shows that automated matching of polyp candidates is practicable for clinical applications.

  3. Neural-network-based system for recognition of partially occluded shapes and patterns

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Amarasinghe, S. K.; Suganthan, P. N.

    1996-10-01

    The purpose of this paper is to demonstrate how a structural matching approach can be used to perfonn effective rotational invariant fingerprint identification. In this approach, each of the exiracted features is correlated with Live of its nearest neighbouring features to form a local feature gmup for a first-stage matching. After that, the feature with the highest match is used as a central feature whereby all the other features are correlated to form a global feature group for a second.stage matching. The correlation between the features is in terms of distance and relative angle. This approach actually make the matching method rotational invariant A substantial amount of testing was carried out and it shows that this matching technique is capable of matching the four basic fingerprint patterns with an average matching time of4 seconds on a 66Mhz, 486 DX personal computer.

  4. Cellular neural network-based hybrid approach toward automatic image registration

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar

    2013-01-01

    Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.

  5. Finding Your Literature Match - A Physics Literature Recommender System

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin; Kurtz, Michael

    2010-03-01

    A recommender system is a filtering algorithm that helps you find the right match by offering suggestions based on your choices and information you have provided. A latent factor model is a successful approach. Here an item is characterized by a vector describing to what extent a product is described by each of N categories, and a person is characterized by an ``interest'' vector, based on explicit or implicit feedback by this user. The recommender system assigns ratings to new items and suggests items this user might be interested in. Here we present results of a recommender system designed to find recent literature of interest to people working in the field of solid state physics. Since we do not have explicit feedback, our user vector consists of (implicit) ``usage.'' Using a system of N keywords we construct normalized keyword vectors for articles based on the keywords of that article and its bibliography. The normalized ``interest'' vector is created by calculating the normalized frequency of keyword occurrence in the papers cited by the papers read.

  6. Content based image retrieval using local binary pattern operator and data mining techniques.

    PubMed

    Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan

    2015-01-01

    Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.

  7. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    PubMed

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  8. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    PubMed

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  9. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  10. Advanced Techniques for Scene Analysis

    DTIC Science & Technology

    2010-06-01

    robustness prefers a bigger intergration window to handle larger motions. The advantage of pyramidal implementation is that, while each motion vector dL...labeled SAR images. Now the previous algorithm leads to a more dedicated classifier for the particular target; however, our algorithm trades generality for...accuracy is traded for generality. 7.3.2 I-RELIEF Feature weighting transforms the original feature vector x into a new feature vector x′ by assigning each

  11. repRNA: a web server for generating various feature vectors of RNA sequences.

    PubMed

    Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen

    2016-02-01

    With the rapid growth of RNA sequences generated in the postgenomic age, it is highly desired to develop a flexible method that can generate various kinds of vectors to represent these sequences by focusing on their different features. This is because nearly all the existing machine-learning methods, such as SVM (support vector machine) and KNN (k-nearest neighbor), can only handle vectors but not sequences. To meet the increasing demands and speed up the genome analyses, we have developed a new web server, called "representations of RNA sequences" (repRNA). Compared with the existing methods, repRNA is much more comprehensive, flexible and powerful, as reflected by the following facts: (1) it can generate 11 different modes of feature vectors for users to choose according to their investigation purposes; (2) it allows users to select the features from 22 built-in physicochemical properties and even those defined by users' own; (3) the resultant feature vectors and the secondary structures of the corresponding RNA sequences can be visualized. The repRNA web server is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repRNA/ .

  12. Neural network-based multiple robot simultaneous localization and mapping.

    PubMed

    Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard

    2011-12-01

    In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.

  13. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  14. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  15. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.

  16. Application of a VLSI vector quantization processor to real-time speech coding

    NASA Technical Reports Server (NTRS)

    Davidson, G.; Gersho, A.

    1986-01-01

    Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.

  17. T-ray relevant frequencies for osteosarcoma classification

    NASA Astrophysics Data System (ADS)

    Withayachumnankul, W.; Ferguson, B.; Rainsford, T.; Findlay, D.; Mickan, S. P.; Abbott, D.

    2006-01-01

    We investigate the classification of the T-ray response of normal human bone cells and human osteosarcoma cells, grown in culture. Given the magnitude and phase responses within a reliable spectral range as features for input vectors, a trained support vector machine can correctly classify the two cell types to some extent. Performance of the support vector machine is deteriorated by the curse of dimensionality, resulting from the comparatively large number of features in the input vectors. Feature subset selection methods are used to select only an optimal number of relevant features for inputs. As a result, an improvement in generalization performance is attainable, and the selected frequencies can be used for further describing different mechanisms of the cells, responding to T-rays. We demonstrate a consistent classification accuracy of 89.6%, while the only one fifth of the original features are retained in the data set.

  18. About the composition of self-relevance: Conjunctions not features are bound to the self.

    PubMed

    Schäfer, Sarah; Frings, Christian; Wentura, Dirk

    2016-06-01

    Sui and colleagues (Journal of Experimental Psychology: Human Perception and Performance, 38, 1105-1117, 2012) introduced a matching paradigm to investigate prioritized processing of instructed self-relevance. They arbitrarily assigned simple geometric shapes to the participant and two other persons. Subsequently, the task was to judge whether label-shape pairings matched or not. The authors found a remarkable self-prioritization effect, that is, for matching self-related trials verification was very fast and accurate in comparison to the non-matching conditions. We analyzed whether single features or feature conjunctions are tagged to the self. In particular, we assigned colored shapes to the labels and included partial-matching trials (i.e., trials in which only one feature matched the label, whereas the other feature did not match the label). If single features are tagged to the self, partial matches would result in interference, whereas they should elicit the same data pattern as non-matching trials if only feature conjunctions are tagged to the self. Our data suggest the latter; only feature conjunctions are tagged to the self and are processed in a prioritized manner. This result emphasizes the functionality of self-relevance as a selection mechanism.

  19. The covariance matrix for the solution vector of an equality-constrained least-squares problem

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1976-01-01

    Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'

  20. Recognizing human activities using appearance metric feature and kinematics feature

    NASA Astrophysics Data System (ADS)

    Qian, Huimin; Zhou, Jun; Lu, Xinbiao; Wu, Xinye

    2017-05-01

    The problem of automatically recognizing human activities from videos through the fusion of the two most important cues, appearance metric feature and kinematics feature, is considered. And a system of two-dimensional (2-D) Poisson equations is introduced to extract the more discriminative appearance metric feature. Specifically, the moving human blobs are first detected out from the video by background subtraction technique to form a binary image sequence, from which the appearance feature designated as the motion accumulation image and the kinematics feature termed as centroid instantaneous velocity are extracted. Second, 2-D discrete Poisson equations are employed to reinterpret the motion accumulation image to produce a more differentiated Poisson silhouette image, from which the appearance feature vector is created through the dimension reduction technique called bidirectional 2-D principal component analysis, considering the balance between classification accuracy and time consumption. Finally, a cascaded classifier based on the nearest neighbor classifier and two directed acyclic graph support vector machine classifiers, integrated with the fusion of the appearance feature vector and centroid instantaneous velocity vector, is applied to recognize the human activities. Experimental results on the open databases and a homemade one confirm the recognition performance of the proposed algorithm.

  1. [A research on real-time ventricular QRS classification methods for single-chip-microcomputers].

    PubMed

    Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J

    1997-05-01

    Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.

  2. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  4. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    NASA Astrophysics Data System (ADS)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  5. Understanding user intents in online health forums.

    PubMed

    Zhang, Thomas; Cho, Jason H D; Zhai, Chengxiang

    2015-07-01

    Online health forums provide a convenient way for patients to obtain medical information and connect with physicians and peers outside of clinical settings. However, large quantities of unstructured and diversified content generated on these forums make it difficult for users to digest and extract useful information. Understanding user intents would enable forums to find and recommend relevant information to users by filtering out threads that do not match particular intents. In this paper, we derive a taxonomy of intents to capture user information needs in online health forums and propose novel pattern-based features for use with a multiclass support vector machine (SVM) classifier to classify original thread posts according to their underlying intents. Since no dataset existed for this task, we employ three annotators to manually label a dataset of 1192 HealthBoards posts spanning four forum topics. Experimental results show that a SVM using pattern-based features is highly capable of identifying user intents in forum posts, reaching a maximum precision of 75%, and that a SVM-based hierarchical classifier using both pattern and word features outperforms its SVM counterpart that uses only word features. Furthermore, comparable classification performance can be achieved by training and testing on posts from different forum topics.

  6. Score level fusion scheme based on adaptive local Gabor features for face-iris-fingerprint multimodal biometric

    NASA Astrophysics Data System (ADS)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Chen, Ying

    2014-05-01

    A multimodal biometric system has been considered a promising technique to overcome the defects of unimodal biometric systems. We have introduced a fusion scheme to gain a better understanding and fusion method for a face-iris-fingerprint multimodal biometric system. In our case, we use particle swarm optimization to train a set of adaptive Gabor filters in order to achieve the proper Gabor basic functions for each modality. For a closer analysis of texture information, two different local Gabor features for each modality are produced by the corresponding Gabor coefficients. Next, all matching scores of the two Gabor features for each modality are projected to a single-scalar score via a trained, supported, vector regression model for a final decision. A large-scale dataset is formed to validate the proposed scheme using the Facial Recognition Technology database-fafb and CASIA-V3-Interval together with FVC2004-DB2a datasets. The experimental results demonstrate that as well as achieving further powerful local Gabor features of multimodalities and obtaining better recognition performance by their fusion strategy, our architecture also outperforms some state-of-the-art individual methods and other fusion approaches for face-iris-fingerprint multimodal biometric systems.

  7. VecScreen_plus_taxonomy: imposing a tax(onomy) increase on vector contamination screening.

    PubMed

    Schäffer, Alejandro A; Nawrocki, Eric P; Choi, Yoon; Kitts, Paul A; Karsch-Mizrachi, Ilene; McVeigh, Richard

    2018-03-01

    Nucleic acid sequences in public databases should not contain vector contamination, but many sequences in GenBank do (or did) contain vectors. The National Center for Biotechnology Information uses the program VecScreen to screen submitted sequences for contamination. Additional tools are needed to distinguish true-positive (contamination) from false-positive (not contamination) VecScreen matches. A principal reason for false-positive VecScreen matches is that the sequence and the matching vector subsequence originate from closely related or identical organisms (for example, both originate in Escherichia coli). We collected information on the taxonomy of sources of vector segments in the UniVec database used by VecScreen. We used that information in two overlapping software pipelines for retrospective analysis of contamination in GenBank and for prospective analysis of contamination in new sequence submissions. Using the retrospective pipeline, we identified and corrected over 8000 contaminated sequences in the nonredundant nucleotide database. The prospective analysis pipeline has been in production use since April 2017 to evaluate some new GenBank submissions. Data on the sources of UniVec entries were included in release 10.0 (ftp://ftp.ncbi.nih.gov/pub/UniVec/). The main software is freely available at https://github.com/aaschaffer/vecscreen_plus_taxonomy. aschaffe@helix.nih.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  8. Classification and Recognition of Tomb Information in Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Gu, M.; Lyu, S.; Hou, M.; Ma, S.; Gao, Z.; Bai, S.; Zhou, P.

    2018-04-01

    There are a large number of materials with important historical information in ancient tombs. However, in many cases, these substances could become obscure and indistinguishable by human naked eye or true colour camera. In order to classify and identify materials in ancient tomb effectively, this paper applied hyperspectral imaging technology to archaeological research of ancient tomb in Shanxi province. Firstly, the feature bands including the main information at the bottom of the ancient tomb are selected by the Principal Component Analysis (PCA) transformation to realize the data dimension. Then, the image classification was performed using Support Vector Machine (SVM) based on feature bands. Finally, the material at the bottom of ancient tomb is identified by spectral analysis and spectral matching. The results show that SVM based on feature bands can not only ensure the classification accuracy, but also shorten the data processing time and improve the classification efficiency. In the material identification, it is found that the same matter identified in the visible light is actually two different substances. This research result provides a new reference and research idea for archaeological work.

  9. Mining patterns in persistent surveillance systems with smart query and visual analytics

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.; Shirkhodaie, Amir

    2013-05-01

    In Persistent Surveillance Systems (PSS) the ability to detect and characterize events geospatially help take pre-emptive steps to counter adversary's actions. Interactive Visual Analytic (VA) model offers this platform for pattern investigation and reasoning to comprehend and/or predict such occurrences. The need for identifying and offsetting these threats requires collecting information from diverse sources, which brings with it increasingly abstract data. These abstract semantic data have a degree of inherent uncertainty and imprecision, and require a method for their filtration before being processed further. In this paper, we have introduced an approach based on Vector Space Modeling (VSM) technique for classification of spatiotemporal sequential patterns of group activities. The feature vectors consist of an array of attributes extracted from generated sensors semantic annotated messages. To facilitate proper similarity matching and detection of time-varying spatiotemporal patterns, a Temporal-Dynamic Time Warping (DTW) method with Gaussian Mixture Model (GMM) for Expectation Maximization (EM) is introduced. DTW is intended for detection of event patterns from neighborhood-proximity semantic frames derived from established ontology. GMM with EM, on the other hand, is employed as a Bayesian probabilistic model to estimated probability of events associated with a detected spatiotemporal pattern. In this paper, we present a new visual analytic tool for testing and evaluation group activities detected under this control scheme. Experimental results demonstrate the effectiveness of proposed approach for discovery and matching of subsequences within sequentially generated patterns space of our experiments.

  10. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    PubMed

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.

  12. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  13. The optional selection of micro-motion feature based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing

    2017-11-01

    Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).

  14. Integrated Computational System for Aerodynamic Steering and Visualization

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    In February of 1994, an effort from the Fluid Dynamics and Information Sciences Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace Company and Stanford University was initiated to develop, demonstrate, validate and disseminate automated software for numerical aerodynamic simulation. The goal of the initiative was to develop a tri-discipline approach encompassing CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve the utility of CFD in the design cycle. This approach would then be represented through an intelligent computational system which could accept an engineer's definition of a problem and construct an optimal and reliable CFD solution. Stanford University's role focused on developing technologies that advance visualization capabilities for analysis of CFD data, extract specific flow features useful for the design process, and compare CFD data with experimental data. During the years 1995-1997, Stanford University focused on developing techniques in the area of tensor visualization and flow feature extraction. Software libraries were created enabling feature extraction and exploration of tensor fields. As a proof of concept, a prototype system called the Integrated Computational System (ICS) was developed to demonstrate CFD design cycle. The current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will (1) briefly review the technologies developed during 1995-1997 (2) describe current technologies in the area of comparison techniques, (4) describe the theory of our new method researched during the grant year (5) summarize a few of the results and finally (6) discuss work within the last 6 months that are direct extensions from the grant.

  15. A new orientation relationship between cementite and austenite and coexistence of pseudo-primary and secondary dislocations in the habit plane

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Zhang, Wen-Zheng

    2018-01-01

    A new orientation relationship (OR) is found between Widmanstätten cementite precipitates and the austenite matrix in a 1.3C-14Mn steel. The associated habit plane (HP) and the dislocations in the HP have been investigated with transmission electron microscopy. The HP is parallel to ? in cementite, and it is parallel to ? in austenite. Three groups of interfacial dislocations are observed in the HP, with limited quantitative experimental data. The line directions, the spacing and the Burgers vectors of two sets of dislocations have been calculated based on a misfit analysis, which combines the CSL/DSC/O-lattice theories, row matching and good matching site (GMS) mappings. The calculated results are in reasonable agreement with the experimental results. The dislocations 'Coarse 1' and 'Fine 1' are in the same direction as the matching rows, i.e. ?. 'Coarse 1' dislocations are secondary dislocations with a Burgers vector of ?, and 'Fine 1' dislocations are pseudo-primary dislocations with a plausible Burgers vector of ?. The reason why the fraction of the new OR is much less than that of the dominant Pitsch OR has been discussed in terms of the degree of matching in the HPs.

  16. A rapid approach for automated comparison of independently derived stream networks

    USGS Publications Warehouse

    Stanislawski, Larry V.; Buttenfield, Barbara P.; Doumbouya, Ariel T.

    2015-01-01

    This paper presents an improved coefficient of line correspondence (CLC) metric for automatically assessing the similarity of two different sets of linear features. Elevation-derived channels at 1:24,000 scale (24K) are generated from a weighted flow-accumulation model and compared to 24K National Hydrography Dataset (NHD) flowlines. The CLC process conflates two vector datasets through a raster line-density differencing approach that is faster and more reliable than earlier methods. Methods are tested on 30 subbasins distributed across different terrain and climate conditions of the conterminous United States. CLC values for the 30 subbasins indicate 44–83% of the features match between the two datasets, with the majority of the mismatching features comprised of first-order features. Relatively lower CLC values result from subbasins with less than about 1.5 degrees of slope. The primary difference between the two datasets may be explained by different data capture criteria. First-order, headwater tributaries derived from the flow-accumulation model are captured more comprehensively through drainage area and terrain conditions, whereas capture of headwater features in the NHD is cartographically constrained by tributary length. The addition of missing headwaters to the NHD, as guided by the elevation-derived channels, can substantially improve the scientific value of the NHD.

  17. Region-based automatic building and forest change detection on Cartosat-1 stereo imagery

    NASA Astrophysics Data System (ADS)

    Tian, J.; Reinartz, P.; d'Angelo, P.; Ehlers, M.

    2013-05-01

    In this paper a novel region-based method is proposed for change detection using space borne panchromatic Cartosat-1 stereo imagery. In the first step, Digital Surface Models (DSMs) from two dates are generated by semi-global matching. The geometric lateral resolution of the DSMs is 5 m × 5 m and the height accuracy is in the range of approximately 3 m (RMSE). In the second step, mean-shift segmentation is applied on the orthorectified images of two dates to obtain initial regions. A region intersection following a merging strategy is proposed to get minimum change regions and multi-level change vectors are extracted for these regions. Finally change detection is achieved by combining these features with weighted change vector analysis. The result evaluations demonstrate that the applied DSM generation method is well suited for Cartosat-1 imagery, and the extracted height values can largely improve the change detection accuracy, moreover it is shown that the proposed change detection method can be used robustly for both forest and industrial areas.

  18. Embedded 3D shape measurement system based on a novel spatio-temporal coding method

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Tian, Jindong; Tian, Yong; Li, Dong

    2016-11-01

    Structured light measurement has been wildly used since 1970s in industrial component detection, reverse engineering, 3D molding, robot navigation, medical and many other fields. In order to satisfy the demand for high speed, high precision and high resolution 3-D measurement for embedded system, a new patterns combining binary and gray coding principle in space are designed and projected onto the object surface orderly. Each pixel corresponds to the designed sequence of gray values in time - domain, which is treated as a feature vector. The unique gray vector is then dimensionally reduced to a scalar which could be used as characteristic information for binocular matching. In this method, the number of projected structured light patterns is reduced, and the time-consuming phase unwrapping in traditional phase shift methods is avoided. This algorithm is eventually implemented on DM3730 embedded system for 3-D measuring, which consists of an ARM and a DSP core and has a strong capability of digital signal processing. Experimental results demonstrated the feasibility of the proposed method.

  19. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi

    PubMed Central

    Watanabe, Colin; Cuellar, Trinna L.; Haley, Benjamin

    2016-01-01

    ABSTRACT Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  20. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  1. Research on bearing fault diagnosis of large machinery based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2018-04-01

    To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.

  2. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  3. Locally connected neural network with improved feature vector

    NASA Technical Reports Server (NTRS)

    Thomas, Tyson (Inventor)

    2004-01-01

    A pattern recognizer which uses neuromorphs with a fixed amount of energy that is distributed among the elements. The distribution of the energy is used to form a histogram which is used as a feature vector.

  4. Approaches for Language Identification in Mismatched Environments

    DTIC Science & Technology

    2016-09-08

    different i-vector systems are considered, which differ in their feature extraction mechanism. The first, which we refer to as the standard i-vector, or...both conversational telephone speech and narrowband broadcast speech. Multiple experiments are conducted to assess the performance of the system in...bottleneck features using i-vectors. The proposed system results in a 30% improvement over the baseline result. Index Terms: language identification

  5. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD), differs from conventional measures and is created to account for both changes of spectral direction and spectral magnitude in a unified fashion. The ATD measure is particularly suitable for differentiating urban targets such as roads and building rooftops. The curvilinear image provides estimates of the width and orientation of potential road segments. Road vectors derived from OpenStreetMap are then conflated to image road features by applying junction matching and intermediate point matching, followed by refinement with mean-shift clustering and morphological processing to produce a road mask with piecewise width estimates. The proposed approach is tested on a set of challenging, large, and diverse image data sets and the performance accuracy is assessed. The method is effective for road detection and width estimation of roads, even in challenging scenarios when extensive occlusion occurs.

  6. A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments

    PubMed Central

    Herrera, Pedro Javier; Pajares, Gonzalo; Guijarro, Maria; Ruz, José J.; Cruz, Jesús M.; Montes, Fernando

    2009-01-01

    This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. PMID:22303134

  7. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  8. Research on intrusion detection based on Kohonen network and support vector machine

    NASA Astrophysics Data System (ADS)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  9. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  10. Infrared and visible images registration with adaptable local-global feature integration for rail inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying

    2017-12-01

    Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.

  11. Applying spectral unmixing and support vector machine to airborne hyperspectral imagery for detecting giant reed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...

  12. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  13. Object recognition of real targets using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, D. A.

    2017-12-01

    In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).

  14. Realistic neurons can compute the operations needed by quantum probability theory and other vector symbolic architectures.

    PubMed

    Stewart, Terrence C; Eliasmith, Chris

    2013-06-01

    Quantum probability (QP) theory can be seen as a type of vector symbolic architecture (VSA): mental states are vectors storing structured information and manipulated using algebraic operations. Furthermore, the operations needed by QP match those in other VSAs. This allows existing biologically realistic neural models to be adapted to provide a mechanistic explanation of the cognitive phenomena described in the target article by Pothos & Busemeyer (P&B).

  15. Millimeter Wave Generation by Relativistic Electron Beams.

    DTIC Science & Technology

    1984-12-01

    frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper

  16. The Design of a Templated C++ Small Vector Class for Numerical Computing

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2000-01-01

    We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.

  17. Matching algorithm of missile tail flame based on back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  18. Modeling the probability distribution of positional errors incurred by residential address geocoding.

    PubMed

    Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard

    2007-01-10

    The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  19. Multilevel image recognition using discriminative patches and kernel covariance descriptor

    NASA Astrophysics Data System (ADS)

    Lu, Le; Yao, Jianhua; Turkbey, Evrim; Summers, Ronald M.

    2014-03-01

    Computer-aided diagnosis of medical images has emerged as an important tool to objectively improve the performance, accuracy and consistency for clinical workflow. To computerize the medical image diagnostic recognition problem, there are three fundamental problems: where to look (i.e., where is the region of interest from the whole image/volume), image feature description/encoding, and similarity metrics for classification or matching. In this paper, we exploit the motivation, implementation and performance evaluation of task-driven iterative, discriminative image patch mining; covariance matrix based descriptor via intensity, gradient and spatial layout; and log-Euclidean distance kernel for support vector machine, to address these three aspects respectively. To cope with often visually ambiguous image patterns for the region of interest in medical diagnosis, discovery of multilabel selective discriminative patches is desired. Covariance of several image statistics summarizes their second order interactions within an image patch and is proved as an effective image descriptor, with low dimensionality compared with joint statistics and fast computation regardless of the patch size. We extensively evaluate two extended Gaussian kernels using affine-invariant Riemannian metric or log-Euclidean metric with support vector machines (SVM), on two medical image classification problems of degenerative disc disease (DDD) detection on cortical shell unwrapped CT maps and colitis detection on CT key images. The proposed approach is validated with promising quantitative results on these challenging tasks. Our experimental findings and discussion also unveil some interesting insights on the covariance feature composition with or without spatial layout for classification and retrieval, and different kernel constructions for SVM. This will also shed some light on future work using covariance feature and kernel classification for medical image analysis.

  20. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    NASA Astrophysics Data System (ADS)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  1. Poor textural image tie point matching via graph theory

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang

    2017-07-01

    Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.

  2. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  3. Fuzzy based finger vein recognition with rotation invariant feature matching

    NASA Astrophysics Data System (ADS)

    Ezhilmaran, D.; Joseph, Rose Bindu

    2017-11-01

    Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.

  4. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  5. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    PubMed

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  6. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  7. Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine.

    PubMed

    Wahba, Maram A; Ashour, Amira S; Napoleon, Sameh A; Abd Elnaby, Mustafa M; Guo, Yanhui

    2017-12-01

    Basal cell carcinoma is one of the most common malignant skin lesions. Automated lesion identification and classification using image processing techniques is highly required to reduce the diagnosis errors. In this study, a novel technique is applied to classify skin lesion images into two classes, namely the malignant Basal cell carcinoma and the benign nevus. A hybrid combination of bi-dimensional empirical mode decomposition and gray-level difference method features is proposed after hair removal. The combined features are further classified using quadratic support vector machine (Q-SVM). The proposed system has achieved outstanding performance of 100% accuracy, sensitivity and specificity compared to other support vector machine procedures as well as with different extracted features. Basal Cell Carcinoma is effectively classified using Q-SVM with the proposed combined features.

  8. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    PubMed

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  9. Large Electroweak Corrections to Vector-Boson Scattering at the Large Hadron Collider.

    PubMed

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu

    2017-06-30

    For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all nonresonant and off-shell contributions, to the electroweak process pp→μ^{+}ν_{μ}e^{+}ν_{e}jj and is fully differential. We find surprisingly large corrections, reaching -16% for the fiducial cross section, as an intrinsic feature of the vector-boson-scattering processes. We elucidate the origin of these large electroweak corrections upon using the double-pole approximation and the effective vector-boson approximation along with leading-logarithmic corrections.

  10. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback.

    PubMed

    Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C

    2007-01-01

    A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.

  11. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.

    PubMed

    Lee, David; Park, Sang-Hoon; Lee, Sang-Goog

    2017-10-07

    In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.

  12. Shape based segmentation of MRIs of the bones in the knee using phase and intensity information

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien

    2007-03-01

    The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.

  13. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    PubMed

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-05-21

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    PubMed Central

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  15. Good match exploration for infrared face recognition

    NASA Astrophysics Data System (ADS)

    Yang, Changcai; Zhou, Huabing; Sun, Sheng; Liu, Renfeng; Zhao, Ji; Ma, Jiayi

    2014-11-01

    Establishing good feature correspondence is a critical prerequisite and a challenging task for infrared (IR) face recognition. Recent studies revealed that the scale invariant feature transform (SIFT) descriptor outperforms other local descriptors for feature matching. However, it only uses local appearance information for matching, and hence inevitably leads to a number of false matches. To address this issue, this paper explores global structure information (GSI) among SIFT correspondences, and proposes a new method SIFT-GSI for good match exploration. This is achieved by fitting a smooth mapping function for the underlying correct matches, which involves softassign and deterministic annealing. Quantitative comparisons with state-of-the-art methods on a publicly available IR human face database demonstrate that SIFT-GSI significantly outperforms other methods for feature matching, and hence it is able to improve the reliability of IR face recognition systems.

  16. Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aguanno, G.; Mattiucci, N.; C. M. Bowden Facility, Building 7804, RDECOM, Redstone Arsenal, Alabama 35898

    2010-01-15

    We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play anmore » essential role.« less

  17. A Language-Independent Approach to Automatic Text Difficulty Assessment for Second-Language Learners

    DTIC Science & Technology

    2013-08-01

    best-suited for regression. Our baseline uses z-normalized shallow length features and TF -LOG weighted vectors on bag-of-words for Arabic, Dari...length features and TF -LOG weighted vectors on bag-of-words for Arabic, Dari, English and Pashto. We compare Support Vector Machines and the Margin...football, whereas they are much less common in documents about opera). We used TF -LOG weighted word frequencies on bag-of-words for each document

  18. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  19. Contextual Multi-armed Bandits under Feature Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Seyoung; Nam, Jun Hyun; Mo, Sangwoo

    We study contextual multi-armed bandit problems under linear realizability on rewards and uncertainty (or noise) on features. For the case of identical noise on features across actions, we propose an algorithm, coined NLinRel, having O(T⁷/₈(log(dT)+K√d)) regret bound for T rounds, K actions, and d-dimensional feature vectors. Next, for the case of non-identical noise, we observe that popular linear hypotheses including NLinRel are impossible to achieve such sub-linear regret. Instead, under assumption of Gaussian feature vectors, we prove that a greedy algorithm has O(T²/₃√log d)regret bound with respect to the optimal linear hypothesis. Utilizing our theoretical understanding on the Gaussian case,more » we also design a practical variant of NLinRel, coined Universal-NLinRel, for arbitrary feature distributions. It first runs NLinRel for finding the ‘true’ coefficient vector using feature uncertainties and then adjust it to minimize its regret using the statistical feature information. We justify the performance of Universal-NLinRel on both synthetic and real-world datasets.« less

  20. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  1. Iris recognition using possibilistic fuzzy matching on local features.

    PubMed

    Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang

    2012-02-01

    In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.

  2. FOCUSR: Feature Oriented Correspondence using Spectral Regularization–A Method for Precise Surface Matching

    PubMed Central

    Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida

    2013-01-01

    Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776

  3. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  4. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    PubMed Central

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660

  5. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  6. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.

    PubMed

    Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong

    2018-05-11

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.

  7. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN

    PubMed Central

    Cheng, Gang; Chen, Xihui

    2018-01-01

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671

  8. Feature extraction through parallel Probabilistic Principal Component Analysis for heart disease diagnosis

    NASA Astrophysics Data System (ADS)

    Shah, Syed Muhammad Saqlain; Batool, Safeera; Khan, Imran; Ashraf, Muhammad Usman; Abbas, Syed Hussnain; Hussain, Syed Adnan

    2017-09-01

    Automatic diagnosis of human diseases are mostly achieved through decision support systems. The performance of these systems is mainly dependent on the selection of the most relevant features. This becomes harder when the dataset contains missing values for the different features. Probabilistic Principal Component Analysis (PPCA) has reputation to deal with the problem of missing values of attributes. This research presents a methodology which uses the results of medical tests as input, extracts a reduced dimensional feature subset and provides diagnosis of heart disease. The proposed methodology extracts high impact features in new projection by using Probabilistic Principal Component Analysis (PPCA). PPCA extracts projection vectors which contribute in highest covariance and these projection vectors are used to reduce feature dimension. The selection of projection vectors is done through Parallel Analysis (PA). The feature subset with the reduced dimension is provided to radial basis function (RBF) kernel based Support Vector Machines (SVM). The RBF based SVM serves the purpose of classification into two categories i.e., Heart Patient (HP) and Normal Subject (NS). The proposed methodology is evaluated through accuracy, specificity and sensitivity over the three datasets of UCI i.e., Cleveland, Switzerland and Hungarian. The statistical results achieved through the proposed technique are presented in comparison to the existing research showing its impact. The proposed technique achieved an accuracy of 82.18%, 85.82% and 91.30% for Cleveland, Hungarian and Switzerland dataset respectively.

  9. Reduced isothermal feature set for long wave infrared (LWIR) face recognition

    NASA Astrophysics Data System (ADS)

    Donoso, Ramiro; San Martín, Cesar; Hermosilla, Gabriel

    2017-06-01

    In this paper, we introduce a new concept in the thermal face recognition area: isothermal features. This consists of a feature vector built from a thermal signature that depends on the emission of the skin of the person and its temperature. A thermal signature is the appearance of the face to infrared sensors and is unique to each person. The infrared face is decomposed into isothermal regions that present the thermal features of the face. Each isothermal region is modeled as circles within a center representing the pixel of the image, and the feature vector is composed of a maximum radius of the circles at the isothermal region. This feature vector corresponds to the thermal signature of a person. The face recognition process is built using a modification of the Expectation Maximization (EM) algorithm in conjunction with a proposed probabilistic index to the classification process. Results obtained using an infrared database are compared with typical state-of-the-art techniques showing better performance, especially in uncontrolled acquisition conditions scenarios.

  10. The RNA Newton polytope and learnability of energy parameters.

    PubMed

    Forouzmand, Elmirasadat; Chitsaz, Hamidreza

    2013-07-01

    Computational RNA structure prediction is a mature important problem that has received a new wave of attention with the discovery of regulatory non-coding RNAs and the advent of high-throughput transcriptome sequencing. Despite nearly two score years of research on RNA secondary structure and RNA-RNA interaction prediction, the accuracy of the state-of-the-art algorithms are still far from satisfactory. So far, researchers have proposed increasingly complex energy models and improved parameter estimation methods, experimental and/or computational, in anticipation of endowing their methods with enough power to solve the problem. The output has disappointingly been only modest improvements, not matching the expectations. Even recent massively featured machine learning approaches were not able to break the barrier. Why is that? The first step toward high-accuracy structure prediction is to pick an energy model that is inherently capable of predicting each and every one of known structures to date. In this article, we introduce the notion of learnability of the parameters of an energy model as a measure of such an inherent capability. We say that the parameters of an energy model are learnable iff there exists at least one set of such parameters that renders every known RNA structure to date the minimum free energy structure. We derive a necessary condition for the learnability and give a dynamic programming algorithm to assess it. Our algorithm computes the convex hull of the feature vectors of all feasible structures in the ensemble of a given input sequence. Interestingly, that convex hull coincides with the Newton polytope of the partition function as a polynomial in energy parameters. To the best of our knowledge, this is the first approach toward computing the RNA Newton polytope and a systematic assessment of the inherent capabilities of an energy model. The worst case complexity of our algorithm is exponential in the number of features. However, dimensionality reduction techniques can provide approximate solutions to avoid the curse of dimensionality. We demonstrated the application of our theory to a simple energy model consisting of a weighted count of A-U, C-G and G-U base pairs. Our results show that this simple energy model satisfies the necessary condition for more than half of the input unpseudoknotted sequence-structure pairs (55%) chosen from the RNA STRAND v2.0 database and severely violates the condition for ~ 13%, which provide a set of hard cases that require further investigation. From 1350 RNA strands, the observed 3D feature vector for 749 strands is on the surface of the computed polytope. For 289 RNA strands, the observed feature vector is not on the boundary of the polytope but its distance from the boundary is not more than one. A distance of one essentially means one base pair difference between the observed structure and the closest point on the boundary of the polytope, which need not be the feature vector of a structure. For 171 sequences, this distance is larger than two, and for only 11 sequences, this distance is larger than five. The source code is available on http://compbio.cs.wayne.edu/software/rna-newton-polytope.

  11. Higher-order fluctuation-dissipation relations in plasma physics: Binary Coulomb systems

    NASA Astrophysics Data System (ADS)

    Golden, Kenneth I.

    2018-05-01

    A recent approach that led to compact frequency domain formulations of the cubic and quartic fluctuation-dissipation theorems (FDTs) for the classical one-component plasma (OCP) [Golden and Heath, J. Stat. Phys. 162, 199 (2016), 10.1007/s10955-015-1395-6] is generalized to accommodate binary ionic mixtures. Paralleling the procedure followed for the OCP, the basic premise underlying the present approach is that a (k ,ω ) 4-vector rotational symmetry, known to be a pivotal feature in the frequency domain architectures of the linear and quadratic fluctuation-dissipation relations for a variety of Coulomb plasmas [Golden et al., J. Stat. Phys. 6, 87 (1972), 10.1007/BF01023681; J. Stat. Phys. 29, 281 (1982), 10.1007/BF01020787; Golden, Phys. Rev. E 59, 228 (1999), 10.1103/PhysRevE.59.228], is expected to be a pivotal feature of the frequency domain architectures of the higher-order members of the FDT hierarchy. On this premise, each member, in its most tractable form, connects a single (p +1 )-point dynamical structure function to a linear combination of (p +1 )-order p density response functions; by definition, such a combination must also remain invariant under rotation of their (k1,ω1) ,(k2,ω2) ,...,(kp,ωp) , (k1+k2+⋯+kp,ω1+ω2+⋯+ωp) 4-vector arguments. Assigned to each 4-vector is a species index that corotates in lock step. Consistency is assured by matching the static limits of the resulting frequency domain cubic and quartic FDTs to their exact static counterparts independently derived in the present work via a conventional time-independent perturbation expansion of the Liouville distribution function in its macrocanonical form. The proposed procedure entirely circumvents the daunting issues of entangled Liouville space paths and nested Poisson brackets that one would encounter if one attempted to use the conventional time-dependent perturbation-theoretic Kubo approach to establish the frequency domain FDTs beyond quadratic order.

  12. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  13. Feature selection gait-based gender classification under different circumstances

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  14. Features of Brazilian spotted fever in two different endemic areas in Brazil.

    PubMed

    Angerami, Rodrigo N; Câmara, Milena; Pacola, Márcia R; Rezende, Regina C M; Duarte, Raquel M R; Nascimento, Elvira M M; Colombo, Silvia; Santos, Fabiana C P; Leite, Ruth M; Katz, Gizelda; Silva, Luiz J

    2012-12-01

    Brazilian spotted fever (BSF) caused by Rickettsia rickettsii is the most important rickettsiosis and the only reportable tick-borne disease in Brazil. In Brazil, the hard tick Amblyomma cajennense is the most important BSF vector; however, in São Paulo State, A. aureolatum was also recognized as a vector species in remaining Atlantic forest areas near the metropolitan area of São Paulo city. We analyzed clinical and epidemiological features of BSF cases from two distinct areas where A. cajennense (Area 1) and A. aureolatum (Area 2) are the incriminated vectors. The clinical features demonstrate the same severity pattern of BSF in both endemic areas. Differences in seasonality, patient characteristics (median age and gender), and epidemiological risk factors (animals host contact and vegetation characteristics) were observed and possibly could be attributed to the characteristics of each vector and their typical biological cycle (hosts and environment). Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. The geographical vector in distribution of genetic diversity for Clonorchis sinensis.

    PubMed

    Solodovnik, Daria A; Tatonova, Yulia V; Burkovskaya, Polina V

    2018-01-01

    Clonorchis sinensis, the causative agent of clonorchiasis, is one of the most important parasites that inhabit countries of East and Southeast Asia. In this study, we validated the existence of a geographical vector for C. sinensis using the partial cox1 mtDNA gene, which includes a conserved region. The samples of parasite were divided into groups corresponding to three river basins, and the size of the conserved region had a strong tendency to increase from the northernmost to the southernmost samples. This indicates the availability of the geographical vector in distribution of genetic diversity. A vector is a quantity that is characterized by magnitude and direction. Geographical vector obtained in cox1 gene of C. sinensis has both these features. The reasons for the occurrence of this feature, including the influence of intermediate and definitive hosts on vector formation, and the possibility of its use for clonorchiasis monitoring are discussed. Graphical abstract ᅟ.

  16. A novel image registration approach via combining local features and geometric invariants

    PubMed Central

    Lu, Yan; Gao, Kun; Zhang, Tinghua; Xu, Tingfa

    2018-01-01

    Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points. PMID:29293595

  17. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  18. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease

    PubMed Central

    Plant, Claudia; Teipel, Stefan J.; Oswald, Annahita; Böhm, Christian; Meindl, Thomas; Mourao-Miranda, Janaina; Bokde, Arun W.; Hampel, Harald; Ewers, Michael

    2010-01-01

    Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimer's disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three different classifiers including support vector machine (SVM), Bayes statistics, and voting feature intervals (VFI) to derive a quantitative index of pattern matching for the prediction of the conversion from MCI to AD. MRI was collected in 32 AD patients, 24 MCI subjects and 18 healthy controls (HC). Nine out of 24 MCI subjects converted to AD after an average follow-up interval of 2.5 years. Using feature selection algorithms, brain regions showing the highest accuracy for the discrimination between AD and HC were identified, reaching a classification accuracy of up to 92%. The extracted AD clusters were used as a search region to extract those brain areas that are predictive of conversion to AD within MCI subjects. The most predictive brain areas included the anterior cingulate gyrus and orbitofrontal cortex. The best prediction accuracy, which was cross-validated via train-and-test, was 75% for the prediction of the conversion from MCI to AD. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD. PMID:19961938

  19. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  20. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  1. Phonon Transport at the Interfaces of Vertically Stacked Graphene and Hexagonal Boron Nitride Heterostructures

    DOE PAGES

    Yan, Zhequan; Chen, Liang; Yoon, Mina; ...

    2016-01-12

    Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less

  2. Viral vector-based influenza vaccines

    PubMed Central

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  3. Viral vector-based influenza vaccines.

    PubMed

    de Vries, Rory D; Rimmelzwaan, Guus F

    2016-11-01

    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.

  4. Balancing aggregation and smoothing errors in inverse models

    DOE PAGES

    Turner, A. J.; Jacob, D. J.

    2015-06-30

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less

  5. Balancing aggregation and smoothing errors in inverse models

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.

    2015-01-01

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.

  6. Balancing aggregation and smoothing errors in inverse models

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.

    2015-06-01

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.

  7. Feature Matching of Historical Images Based on Geometry of Quadrilaterals

    NASA Astrophysics Data System (ADS)

    Maiwald, F.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F.

    2018-05-01

    This contribution shows an approach to match historical images from the photo library of the Saxon State and University Library Dresden (SLUB) in the context of a historical three-dimensional city model of Dresden. In comparison to recent images, historical photography provides diverse factors which make an automatical image analysis (feature detection, feature matching and relative orientation of images) difficult. Due to e.g. film grain, dust particles or the digitalization process, historical images are often covered by noise interfering with the image signal needed for a robust feature matching. The presented approach uses quadrilaterals in image space as these are commonly available in man-made structures and façade images (windows, stones, claddings). It is explained how to generally detect quadrilaterals in images. Consequently, the properties of the quadrilaterals as well as the relationship to neighbouring quadrilaterals are used for the description and matching of feature points. The results show that most of the matches are robust and correct but still small in numbers.

  8. Detection of distorted frames in retinal video-sequences via machine learning

    NASA Astrophysics Data System (ADS)

    Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.

    2017-07-01

    This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.

  9. Person Authentication Using Learned Parameters of Lifting Wavelet Filters

    NASA Astrophysics Data System (ADS)

    Niijima, Koichi

    2006-10-01

    This paper proposes a method for identifying persons by the use of the lifting wavelet parameters learned by kurtosis-minimization. Our learning method uses desirable properties of kurtosis and wavelet coefficients of a facial image. Exploiting these properties, the lifting parameters are trained so as to minimize the kurtosis of lifting wavelet coefficients computed for the facial image. Since this minimization problem is an ill-posed problem, it is solved by the aid of Tikhonov's regularization method. Our learning algorithm is applied to each of the faces to be identified to generate its feature vector whose components consist of the learned parameters. The constructed feature vectors are memorized together with the corresponding faces in a feature vectors database. Person authentication is performed by comparing the feature vector of a query face with those stored in the database. In numerical experiments, the lifting parameters are trained for each of the neutral faces of 132 persons (74 males and 58 females) in the AR face database. Person authentication is executed by using the smile and anger faces of the same persons in the database.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less

  11. On the use of INS to improve Feature Matching

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.

    2014-11-01

    The continuous technological improvement of mobile devices opens the frontiers of Mobile Mapping systems to very compact systems, i.e. a smartphone or a tablet. This motivates the development of efficient 3D reconstruction techniques based on the sensors typically embedded in such devices, i.e. imaging sensors, GPS and Inertial Navigation System (INS). Such methods usually exploits photogrammetry techniques (structure from motion) to provide an estimation of the geometry of the scene. Actually, 3D reconstruction techniques (e.g. structure from motion) rely on use of features properly matched in different images to compute the 3D positions of objects by means of triangulation. Hence, correct feature matching is of fundamental importance to ensure good quality 3D reconstructions. Matching methods are based on the appearance of features, that can change as a consequence of variations of camera position and orientation, and environment illumination. For this reason, several methods have been developed in recent years in order to provide feature descriptors robust (ideally invariant) to such variations, e.g. Scale-Invariant Feature Transform (SIFT), Affine SIFT, Hessian affine and Harris affine detectors, Maximally Stable Extremal Regions (MSER). This work deals with the integration of information provided by the INS in the feature matching procedure: a previously developed navigation algorithm is used to constantly estimate the device position and orientation. Then, such information is exploited to estimate the transformation of feature regions between two camera views. This allows to compare regions from different images but associated to the same feature as seen by the same point of view, hence significantly easing the comparison of feature characteristics and, consequently, improving matching. SIFT-like descriptors are used in order to ensure good matching results in presence of illumination variations and to compensate the approximations related to the estimation process.

  12. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    PubMed

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Seminal quality prediction using data mining methods.

    PubMed

    Sahoo, Anoop J; Kumar, Yugal

    2014-01-01

    Now-a-days, some new classes of diseases have come into existences which are known as lifestyle diseases. The main reasons behind these diseases are changes in the lifestyle of people such as alcohol drinking, smoking, food habits etc. After going through the various lifestyle diseases, it has been found that the fertility rates (sperm quantity) in men has considerably been decreasing in last two decades. Lifestyle factors as well as environmental factors are mainly responsible for the change in the semen quality. The objective of this paper is to identify the lifestyle and environmental features that affects the seminal quality and also fertility rate in man using data mining methods. The five artificial intelligence techniques such as Multilayer perceptron (MLP), Decision Tree (DT), Navie Bayes (Kernel), Support vector machine+Particle swarm optimization (SVM+PSO) and Support vector machine (SVM) have been applied on fertility dataset to evaluate the seminal quality and also to predict the person is either normal or having altered fertility rate. While the eight feature selection techniques such as support vector machine (SVM), neural network (NN), evolutionary logistic regression (LR), support vector machine plus particle swarm optimization (SVM+PSO), principle component analysis (PCA), chi-square test, correlation and T-test methods have been used to identify more relevant features which affect the seminal quality. These techniques are applied on fertility dataset which contains 100 instances with nine attribute with two classes. The experimental result shows that SVM+PSO provides higher accuracy and area under curve (AUC) rate (94% & 0.932) among multi-layer perceptron (MLP) (92% & 0.728), Support Vector Machines (91% & 0.758), Navie Bayes (Kernel) (89% & 0.850) and Decision Tree (89% & 0.735) for some of the seminal parameters. This paper also focuses on the feature selection process i.e. how to select the features which are more important for prediction of fertility rate. In this paper, eight feature selection methods are applied on fertility dataset to find out a set of good features. The investigational results shows that childish diseases (0.079) and high fever features (0.057) has less impact on fertility rate while age (0.8685), season (0.843), surgical intervention (0.7683), alcohol consumption (0.5992), smoking habit (0.575), number of hours spent on setting (0.4366) and accident (0.5973) features have more impact. It is also observed that feature selection methods increase the accuracy of above mentioned techniques (multilayer perceptron 92%, support vector machine 91%, SVM+PSO 94%, Navie Bayes (Kernel) 89% and decision tree 89%) as compared to without feature selection methods (multilayer perceptron 86%, support vector machine 86%, SVM+PSO 85%, Navie Bayes (Kernel) 83% and decision tree 84%) which shows the applicability of feature selection methods in prediction. This paper lightens the application of artificial techniques in medical domain. From this paper, it can be concluded that data mining methods can be used to predict a person with or without disease based on environmental and lifestyle parameters/features rather than undergoing various medical test. In this paper, five data mining techniques are used to predict the fertility rate and among which SVM+PSO provide more accurate results than support vector machine and decision tree.

  14. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  15. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    NASA Astrophysics Data System (ADS)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p < 0.05) and odds ratio was 4.60 with a 95% confidence interval of [3.16, 6.70]. Study demonstrated that this new LPP-based feature regeneration approach enabled to produce an optimal feature vector and yield improved performance in assisting to predict risk of women having breast cancer detected in the next subsequent mammography screening.

  16. a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization

    NASA Astrophysics Data System (ADS)

    Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.

    2017-07-01

    Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  17. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.

  18. A novel approach for fire recognition using hybrid features and manifold learning-based classifier

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng

    2018-03-01

    Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.

  19. A novel method for extraction of neural response from single channel cochlear implant auditory evoked potentials.

    PubMed

    Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz

    2017-02-01

    Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  1. Multi-Sensor Registration of Earth Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).

  2. Research on sparse feature matching of improved RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangsi; Zhao, Xian

    2018-04-01

    In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.

  3. A support vector machine designed to identify breasts at high risk using multi-probe generated REIS signals: a preliminary assessment

    NASA Astrophysics Data System (ADS)

    Gur, David; Zheng, Bin; Lederman, Dror; Dhurjaty, Sreeram; Sumkin, Jules; Zuley, Margarita

    2010-02-01

    A new resonance-frequency based electronic impedance spectroscopy (REIS) system with multi-probes, including one central probe and six external probes that are designed to contact the breast skin in a circular form with a radius of 60 millimeters to the central ("nipple") probe, has been assembled and installed in our breast imaging facility. We are conducting a prospective clinical study to test the performance of this REIS system in identifying younger women (< 50 years old) at higher risk for having or developing breast cancer. In this preliminary analysis, we selected a subset of 100 examinations. Among these, 50 examinations were recommended for a biopsy due to detection of a highly suspicious breast lesion and 50 were determined negative during mammography screening. REIS output signal sweeps that we used to compute an initial feature included both amplitude and phase information representing differences between corresponding (matched) EIS signal values acquired from the left and right breasts. A genetic algorithm was applied to reduce the feature set and optimize a support vector machine (SVM) to classify the REIS examinations into "biopsy recommended" and "non-biopsy" recommended groups. Using the leave-one-case-out testing method, the classification performance as measured by the area under the receiver operating characteristic (ROC) curve was 0.816 +/- 0.042. This pilot analysis suggests that the new multi-probe-based REIS system could potentially be used as a risk stratification tool to identify pre-screened young women who are at higher risk of having or developing breast cancer.

  4. Latent fingerprint matching.

    PubMed

    Jain, Anil K; Feng, Jianjiang

    2011-01-01

    Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

  5. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.

    PubMed

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-07

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  6. The evolution of heart gene delivery vectors.

    PubMed

    Wasala, Nalinda B; Shin, Jin-Hong; Duan, Dongsheng

    2011-10-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.

  7. The evolution of heart gene delivery vectors

    PubMed Central

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  8. Medical Image Retrieval Using Multi-Texton Assignment.

    PubMed

    Tang, Qiling; Yang, Jirong; Xia, Xianfu

    2018-02-01

    In this paper, we present a multi-texton representation method for medical image retrieval, which utilizes the locality constraint to encode each filter bank response within its local-coordinate system consisting of the k nearest neighbors in texton dictionary and subsequently employs spatial pyramid matching technique to implement feature vector representation. Comparison with the traditional nearest neighbor assignment followed by texton histogram statistics method, our strategies reduce the quantization errors in mapping process and add information about the spatial layout of texton distributions and, thus, increase the descriptive power of the image representation. We investigate the effects of different parameters on system performance in order to choose the appropriate ones for our datasets and carry out experiments on the IRMA-2009 medical collection and the mammographic patch dataset. The extensive experimental results demonstrate that the proposed method has superior performance.

  9. Using a Relational Database to Index Infectious Disease Information

    PubMed Central

    Brown, Jay A.

    2010-01-01

    Mapping medical knowledge into a relational database became possible with the availability of personal computers and user-friendly database software in the early 1990s. To create a database of medical knowledge, the domain expert works like a mapmaker to first outline the domain and then add the details, starting with the most prominent features. The resulting “intelligent database” can support the decisions of healthcare professionals. The intelligent database described in this article contains profiles of 275 infectious diseases. Users can query the database for all diseases matching one or more specific criteria (symptom, endemic region of the world, or epidemiological factor). Epidemiological factors include sources (patients, water, soil, or animals), routes of entry, and insect vectors. Medical and public health professionals could use such a database as a decision-support software tool. PMID:20623018

  10. Face recognition algorithm using extended vector quantization histogram features.

    PubMed

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  11. An Integrated Ransac and Graph Based Mismatch Elimination Approach for Wide-Baseline Image Matching

    NASA Astrophysics Data System (ADS)

    Hasheminasab, M.; Ebadi, H.; Sedaghat, A.

    2015-12-01

    In this paper we propose an integrated approach in order to increase the precision of feature point matching. Many different algorithms have been developed as to optimizing the short-baseline image matching while because of illumination differences and viewpoints changes, wide-baseline image matching is so difficult to handle. Fortunately, the recent developments in the automatic extraction of local invariant features make wide-baseline image matching possible. The matching algorithms which are based on local feature similarity principle, using feature descriptor as to establish correspondence between feature point sets. To date, the most remarkable descriptor is the scale-invariant feature transform (SIFT) descriptor , which is invariant to image rotation and scale, and it remains robust across a substantial range of affine distortion, presence of noise, and changes in illumination. The epipolar constraint based on RANSAC (random sample consensus) method is a conventional model for mismatch elimination, particularly in computer vision. Because only the distance from the epipolar line is considered, there are a few false matches in the selected matching results based on epipolar geometry and RANSAC. Aguilariu et al. proposed Graph Transformation Matching (GTM) algorithm to remove outliers which has some difficulties when the mismatched points surrounded by the same local neighbor structure. In this study to overcome these limitations, which mentioned above, a new three step matching scheme is presented where the SIFT algorithm is used to obtain initial corresponding point sets. In the second step, in order to reduce the outliers, RANSAC algorithm is applied. Finally, to remove the remained mismatches, based on the adjacent K-NN graph, the GTM is implemented. Four different close range image datasets with changes in viewpoint are utilized to evaluate the performance of the proposed method and the experimental results indicate its robustness and capability.

  12. Robust Feature Matching in Terrestrial Image Sequences

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Ghuffar, S.

    2018-04-01

    From the last decade, the feature detection, description and matching techniques are most commonly exploited in various photogrammetric and computer vision applications, which includes: 3D reconstruction of scenes, image stitching for panoramic creation, image classification, or object recognition etc. However, in terrestrial imagery of urban scenes contains various issues, which include duplicate and identical structures (i.e. repeated windows and doors) that cause the problem in feature matching phase and ultimately lead to failure of results specially in case of camera pose and scene structure estimation. In this paper, we will address the issue related to ambiguous feature matching in urban environment due to repeating patterns.

  13. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  14. Real-Time Visual Tracking through Fusion Features

    PubMed Central

    Ruan, Yang; Wei, Zhenzhong

    2016-01-01

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951

  15. Robust object matching for persistent tracking with heterogeneous features.

    PubMed

    Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying

    2007-05-01

    This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.

  16. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  17. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  18. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  19. Features extraction in anterior and posterior cruciate ligaments analysis.

    PubMed

    Zarychta, P

    2015-12-01

    The main aim of this research is finding the feature vectors of the anterior and posterior cruciate ligaments (ACL and PCL). These feature vectors have to clearly define the ligaments structure and make it easier to diagnose them. Extraction of feature vectors is obtained by analysis of both anterior and posterior cruciate ligaments. This procedure is performed after the extraction process of both ligaments. In the first stage in order to reduce the area of analysis a region of interest including cruciate ligaments (CL) is outlined in order to reduce the area of analysis. In this case, the fuzzy C-means algorithm with median modification helping to reduce blurred edges has been implemented. After finding the region of interest (ROI), the fuzzy connectedness procedure is performed. This procedure permits to extract the anterior and posterior cruciate ligament structures. In the last stage, on the basis of the extracted anterior and posterior cruciate ligament structures, 3-dimensional models of the anterior and posterior cruciate ligament are built and the feature vectors created. This methodology has been implemented in MATLAB and tested on clinical T1-weighted magnetic resonance imaging (MRI) slices of the knee joint. The 3D display is based on the Visualization Toolkit (VTK). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  1. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    DOE PAGES

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; ...

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less

  2. Predicting protein amidation sites by orchestrating amino acid sequence features

    NASA Astrophysics Data System (ADS)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  3. On combining multi-normalization and ancillary measures for the optimal score level fusion of fingerprint and voice biometrics

    NASA Astrophysics Data System (ADS)

    Mohammed Anzar, Sharafudeen Thaha; Sathidevi, Puthumangalathu Savithri

    2014-12-01

    In this paper, we have considered the utility of multi-normalization and ancillary measures, for the optimal score level fusion of fingerprint and voice biometrics. An efficient matching score preprocessing technique based on multi-normalization is employed for improving the performance of the multimodal system, under various noise conditions. Ancillary measures derived from the feature space and the score space are used in addition to the matching score vectors, for weighing the modalities, based on their relative degradation. Reliability (dispersion) and the separability (inter-/intra-class distance and d-prime statistics) measures under various noise conditions are estimated from the individual modalities, during the training/validation stage. The `best integration weights' are then computed by algebraically combining these measures using the weighted sum rule. The computed integration weights are then optimized against the recognition accuracy using techniques such as grid search, genetic algorithm and particle swarm optimization. The experimental results show that, the proposed biometric solution leads to considerable improvement in the recognition performance even under low signal-to-noise ratio (SNR) conditions and reduces the false acceptance rate (FAR) and false rejection rate (FRR), making the system useful for security as well as forensic applications.

  4. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  5. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    PubMed

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  6. Uniform competency-based local feature extraction for remote sensing images

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Mohammadi, Nazila

    2018-01-01

    Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.

  7. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  8. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  9. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  10. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  11. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  12. Genetic therapy for beta-thalassemia: from the bench to the bedside.

    PubMed

    Arumugam, Paritha; Malik, Punam

    2010-01-01

    Beta-thalassemia is a genetic disorder with mutations in the β-globin gene that reduce or abolish β-globin protein production. Patients with β-thalassemia major (Cooley's anemia) become severely anemic by 6 to 18 months of age, and are transfusion dependent for life, while those with thalassemia intermedia, a less-severe form of thalassemia, are intermittently or rarely transfused. An allogeneically matched bone marrow transplant is curative, although it is restricted to those with matched donors. Gene therapy holds the promise of "fixing" one's own bone marrow cells by transferring the normal β-globin or γ-globin gene into hematopoietic stem cells (HSCs) to permanently produce normal red blood cells. Requirements for effective gene transfer for the treatment of β-thalassemia are regulated, erythroid-specific, consistent, and high-level β-globin or γ-globin expression. Gamma retroviral vectors have had great success with immune-deficiency disorders, but due to vector-associated limitations, they have limited utility in hemoglobinopathies. Lentivirus vectors, on the other hand, have now been shown in several studies to correct mouse and animal models of thalassemia. The immediate challenges of the field as it moves toward clinical trials are to optimize gene transfer and engraftment of a high proportion of genetically modified HSCs and to minimize the adverse consequences that can result from random integration of vectors into the genome by improving current vector design or developing novel vectors. This article discusses the current state of the art in gene therapy for β-thalassemia and some of the challenges it faces in human trials.

  13. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  14. Assessing the use of multiple sources in student essays.

    PubMed

    Hastings, Peter; Hughes, Simon; Magliano, Joseph P; Goldman, Susan R; Lawless, Kimberly

    2012-09-01

    The present study explored different approaches for automatically scoring student essays that were written on the basis of multiple texts. Specifically, these approaches were developed to classify whether or not important elements of the texts were present in the essays. The first was a simple pattern-matching approach called "multi-word" that allowed for flexible matching of words and phrases in the sentences. The second technique was latent semantic analysis (LSA), which was used to compare student sentences to original source sentences using its high-dimensional vector-based representation. Finally, the third was a machine-learning technique, support vector machines, which learned a classification scheme from the corpus. The results of the study suggested that the LSA-based system was superior for detecting the presence of explicit content from the texts, but the multi-word pattern-matching approach was better for detecting inferences outside or across texts. These results suggest that the best approach for analyzing essays of this nature should draw upon multiple natural language processing approaches.

  15. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  17. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  18. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.

    PubMed

    Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong

    2009-07-01

    A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.

  19. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

    NASA Astrophysics Data System (ADS)

    Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2011-12-01

    Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.

  20. Semantic Building FAÇADE Segmentation from Airborne Oblique Images

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Nex, F.; Yang, M. Y.

    2018-05-01

    With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  1. Role of color memory in successive color constancy.

    PubMed

    Ling, Yazhu; Hurlbert, Anya

    2008-06-01

    We investigate color constancy for real 2D paper samples using a successive matching paradigm in which the observer memorizes a reference surface color under neutral illumination and after a temporal interval selects a matching test surface under the same or different illumination. We find significant effects of the illumination, reference surface, and their interaction on the matching error. We characterize the matching error in the absence of illumination change as the "pure color memory shift" and introduce a new index for successive color constancy that compares this shift against the matching error under changing illumination. The index also incorporates the vector direction of the matching errors in chromaticity space, unlike the traditional constancy index. With this index, we find that color constancy is nearly perfect.

  2. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less

  3. N -loop running should be combined with N -loop matching

    NASA Astrophysics Data System (ADS)

    Braathen, Johannes; Goodsell, Mark D.; Krauss, Manuel E.; Opferkuch, Toby; Staub, Florian

    2018-01-01

    We investigate the high-scale behavior of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalization group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behavior, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N -loop RGEs, a matching should even be performed at N -loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilization of the electroweak vacuum at high energies, in contrast to results in the literature.

  4. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  5. Coupled binary embedding for large-scale image retrieval.

    PubMed

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  6. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Wang, Lun; Liao, T. Warren

    2015-10-01

    Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.

  7. Feature selection using probabilistic prediction of support vector regression.

    PubMed

    Yang, Jian-Bo; Ong, Chong-Jin

    2011-06-01

    This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.

  8. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  9. Competing features influence children's attention to number.

    PubMed

    Chan, Jenny Yun-Chen; Mazzocco, Michèle M M

    2017-04-01

    Spontaneous focus on numerosity (SFON), an attentional process that some consider distinct from number knowledge, predicts later mathematical skills. Here we assessed the "spontaneity" and malleability of SFON using a picture-matching task. We asked children to view a target picture and to choose which of four other pictures matched the target. We tested whether attention to number (defined as number-based matches) was affected by (a) age, (b) the presence of very noticeable (or salient) features among alternative match choices, and (c) the examiner's use of motor actions to emphasize numerosity. Although adults attended to number more frequently than did preschoolers, the salience of competing features affected responses to number in both age groups. Specifically, number-based matches were more likely when alternative choices matched the target on features of low versus high salience (e.g., the relative location within a picture frame vs. color). In addition, adults' attention to number was more frequent if their first exposure to number-based matches occurred with alternative choices that matched the target on low salience features. This order by salience interaction was not observed among children. Simply observing motor actions that emphasized number (i.e., tapping stimuli) did not enhance children's attention to number. The results extend previous findings on SFON and provide evidence for the contextual influences on, and malleability of, attention to number. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data.

    PubMed

    Wang, Yanming; Zhou, Yawen; Wang, Huijuan; Cui, Jin; Nguchu, Benedictor Alexander; Zhang, Xufei; Qiu, Bensheng; Wang, Xiaoxiao; Zhu, Mingwang

    2018-05-21

    The aim of this study was to automatically detect focal cortical dysplasia (FCD) lesions in patients with extratemporal lobe epilepsy by relying on diffusion tensor imaging (DTI) and T2-weighted magnetic resonance imaging (MRI) data. We implemented an automated classifier using voxel-based multimodal features to identify gray and white matter abnormalities of FCD in patient cohorts. In addition to the commonly used T2-weighted image intensity feature, DTI-based features were also utilized. A Gaussian processes for machine learning (GPML) classifier was tested on 12 patients with FCD (8 with histologically confirmed FCD) scanned at 1.5 T and cross-validated using a leave-one-out strategy. Moreover, we compared the multimodal GPML paradigm's performance with that of single modal GPML and classical support vector machine (SVM). Our results demonstrated that the GPML performance on DTI-based features (mean AUC = 0.63) matches with the GPML performance on T2-weighted image intensity feature (mean AUC = 0.64). More promisingly, GPML yielded significantly improved performance (mean AUC = 0.76) when applying DTI-based features to multimodal paradigm. Based on the results, it can also be clearly stated that the proposed GPML strategy performed better and is robust to unbalanced dataset contrary to SVM that performed poorly (AUC = 0.69). Therefore, the GPML paradigm using multimodal MRI data containing DTI modality has promising result towards detection of the FCD lesions and provides an effective direction for future researches. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  12. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  13. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.; Ng, L.C.

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less

  14. Iris Matching Based on Personalized Weight Map.

    PubMed

    Dong, Wenbo; Sun, Zhenan; Tan, Tieniu

    2011-09-01

    Iris recognition typically involves three steps, namely, iris image preprocessing, feature extraction, and feature matching. The first two steps of iris recognition have been well studied, but the last step is less addressed. Each human iris has its unique visual pattern and local image features also vary from region to region, which leads to significant differences in robustness and distinctiveness among the feature codes derived from different iris regions. However, most state-of-the-art iris recognition methods use a uniform matching strategy, where features extracted from different regions of the same person or the same region for different individuals are considered to be equally important. This paper proposes a personalized iris matching strategy using a class-specific weight map learned from the training images of the same iris class. The weight map can be updated online during the iris recognition procedure when the successfully recognized iris images are regarded as the new training data. The weight map reflects the robustness of an encoding algorithm on different iris regions by assigning an appropriate weight to each feature code for iris matching. Such a weight map trained by sufficient iris templates is convergent and robust against various noise. Extensive and comprehensive experiments demonstrate that the proposed personalized iris matching strategy achieves much better iris recognition performance than uniform strategies, especially for poor quality iris images.

  15. Feature generation using genetic programming with application to fault classification.

    PubMed

    Guo, Hong; Jack, Lindsay B; Nandi, Asoke K

    2005-02-01

    One of the major challenges in pattern recognition problems is the feature extraction process which derives new features from existing features, or directly from raw data in order to reduce the cost of computation during the classification process, while improving classifier efficiency. Most current feature extraction techniques transform the original pattern vector into a new vector with increased discrimination capability but lower dimensionality. This is conducted within a predefined feature space, and thus, has limited searching power. Genetic programming (GP) can generate new features from the original dataset without prior knowledge of the probabilistic distribution. In this paper, a GP-based approach is developed for feature extraction from raw vibration data recorded from a rotating machine with six different conditions. The created features are then used as the inputs to a neural classifier for the identification of six bearing conditions. Experimental results demonstrate the ability of GP to discover autimatically the different bearing conditions using features expressed in the form of nonlinear functions. Furthermore, four sets of results--using GP extracted features with artificial neural networks (ANN) and support vector machines (SVM), as well as traditional features with ANN and SVM--have been obtained. This GP-based approach is used for bearing fault classification for the first time and exhibits superior searching power over other techniques. Additionaly, it significantly reduces the time for computation compared with genetic algorithm (GA), therefore, makes a more practical realization of the solution.

  16. Method of assessing the state of a rolling bearing based on the relative compensation distance of multiple-domain features and locally linear embedding

    NASA Astrophysics Data System (ADS)

    Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.

    2017-03-01

    To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.

  17. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    NASA Astrophysics Data System (ADS)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  18. Context-dependent logo matching and recognition.

    PubMed

    Sahbi, Hichem; Ballan, Lamberto; Serra, Giuseppe; Del Bimbo, Alberto

    2013-03-01

    We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.

  19. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.

  20. Quantized Overcomplete Expansions: Analysis, Synthesis and Algorithms

    DTIC Science & Technology

    1995-07-01

    would be in the spirit of the Lempel - Ziv algorithm . The decoder would have to be aware of changes in the dictionary, but depending on the nature of the...37 3.4 A General Vector Compression Algorithm Based on Frames : : : : : : : : : : 40 ii 3.4.1 Design Considerations...x3.3. Along with exploring general properties of matching pursuit, we are interested in its application to compressing data vectors in RN. A general

  1. Coordination analysis of players' distribution in football using cross-correlation and vector coding techniques.

    PubMed

    Moura, Felipe Arruda; van Emmerik, Richard E A; Santana, Juliana Exel; Martins, Luiz Eduardo Barreto; Barros, Ricardo Machado Leite de; Cunha, Sergio Augusto

    2016-12-01

    The purpose of this study was to investigate the coordination between teams spread during football matches using cross-correlation and vector coding techniques. Using a video-based tracking system, we obtained the trajectories of 257 players during 10 matches. Team spread was calculated as functions of time. For a general coordination description, we calculated the cross-correlation between the signals. Vector coding was used to identify the coordination patterns between teams during offensive sequences that ended in shots on goal or defensive tackles. Cross-correlation showed that opponent teams have a tendency to present in-phase coordination, with a short time lag. During offensive sequences, vector coding results showed that, although in-phase coordination dominated, other patterns were observed. We verified that during the early stages, offensive sequences ending in shots on goal present greater anti-phase and attacking team phase periods, compared to sequences ending in tackles. Results suggest that the attacking team may seek to present a contrary behaviour of its opponent (or may lead the adversary behaviour) in the beginning of the attacking play, regarding to the distribution strategy, to increase the chances of a shot on goal. The techniques allowed detecting the coordination patterns between teams, providing additional information about football dynamics and players' interaction.

  2. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  3. An Improved Image Matching Method Based on Surf Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.

    2018-04-01

    Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.

  4. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations

    PubMed Central

    2016-01-01

    Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140

  5. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  6. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    PubMed

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.

  7. Design of analytical failure detection using secondary observers

    NASA Technical Reports Server (NTRS)

    Sisar, M.

    1982-01-01

    The problem of designing analytical failure-detection systems (FDS) for sensors and actuators, using observers, is addressed. The use of observers in FDS is related to the examination of the n-dimensional observer error vector which carries the necessary information on possible failures. The problem is that in practical systems, in which only some of the components of the state vector are measured, one has access only to the m-dimensional observer-output error vector, with m or = to n. In order to cope with these cases, a secondary observer is synthesized to reconstruct the entire observer-error vector from the observer output error vector. This approach leads toward the design of highly sensitive and reliable FDS, with the possibility of obtaining a unique fingerprint for every possible failure. In order to keep the observer's (or Kalman filter) false-alarm rate under a certain specified value, it is necessary to have an acceptable matching between the observer (or Kalman filter) models and the system parameters. A previously developed adaptive observer algorithm is used to maintain the desired system-observer model matching, despite initial mismatching or system parameter variations. Conditions for convergence for the adaptive process are obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors, while accurate and fast parameter identification, in both deterministic and stochastic cases, is obtained.

  8. Asymmetries and three-dimensional features of vestibular cross-coupled stimuli illuminated through modeling

    PubMed Central

    Holly, Jan E.; Masood, M. Arjumand; Bhandari, Chiran S.

    2017-01-01

    Head movements during sustained rotation can cause angular cross-coupling which leads to tumbling illusions. Even though angular vectors predict equal magnitude illusions for head movements in opposite directions, the magnitudes of the illusions are often surprisingly asymmetric, such as during leftward versus rightward yaw while horizontal in a centrifuge. This paper presents a comprehensive investigation of the angular-linear stimulus combinations from eight different published papers in which asymmetries were found. Interactions between all angular and linear vectors, including gravity, are taken into account to model the three-dimensional consequences of the stimuli. Three main results followed. First, for every pair of head yaw movements, an asymmetry was found in the stimulus itself when considered in a fully three-dimensional manner, and the direction of the asymmetry matched the subjectively reported magnitude asymmetry. Second, for pitch and roll head movements for which motion sickness was measured, the stimulus was found symmetric in every case except one, and motion sickness generally aligned with other factors such as the existence of a head rest. Third, three-dimensional modeling predicted subjective inconsistency in the direction of perceived rotation when linear and angular components were oppositely-directed, and predicted surplus illusory rotation in the direction of head movement. PMID:27814310

  9. Feature instructions improve face-matching accuracy

    PubMed Central

    Bindemann, Markus

    2018-01-01

    Identity comparisons of photographs of unfamiliar faces are prone to error but important for applied settings, such as person identification at passport control. Finding techniques to improve face-matching accuracy is therefore an important contemporary research topic. This study investigated whether matching accuracy can be improved by instruction to attend to specific facial features. Experiment 1 showed that instruction to attend to the eyebrows enhanced matching accuracy for optimized same-day same-race face pairs but not for other-race faces. By contrast, accuracy was unaffected by instruction to attend to the eyes, and declined with instruction to attend to ears. Experiment 2 replicated the eyebrow-instruction improvement with a different set of same-race faces, comprising both optimized same-day and more challenging different-day face pairs. These findings suggest that instruction to attend to specific features can enhance face-matching accuracy, but feature selection is crucial and generalization across face sets may be limited. PMID:29543822

  10. Research on three-dimensional reconstruction method based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlin; Wang, Zhihui; Wang, Minjun

    2018-03-01

    As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.

  11. Effective traffic features selection algorithm for cyber-attacks samples

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  12. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  13. Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification.

    PubMed

    Wen, Zaidao; Hou, Zaidao; Jiao, Licheng

    2017-11-01

    Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.

  14. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  15. Hepatic CT image query using Gabor features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange

    2004-07-01

    A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.

  16. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    NASA Technical Reports Server (NTRS)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  17. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.

    PubMed

    Luo, Jia; Huang, Hongxin; Matsui, Yoshinori; Toyoda, Haruyoshi; Inoue, Takashi; Bai, Jian

    2015-04-06

    Optical vortex (OV) beams have null-intensity singular points, and the intensities in the region surrounding the singular point are quite low. This low intensity region influences the position detection accuracy of phase singular point, especially for high-order OV beam. In this paper, we propose a new method for solving this problem, called the phase-slope-combining correlation matching method. A Shack-Hartmann wavefront sensor (SH-WFS) is used to measure phase slope vectors at lenslet positions of the SH-WFS. Several phase slope vectors are combined into one to reduce the influence of low-intensity regions around the singular point, and the combined phase slope vectors are used to determine the OV position with the aid of correlation matching with a pre-calculated database. Experimental results showed that the proposed method works with high accuracy, even when detecting an OV beam with a topological charge larger than six. The estimated precision was about 0.15 in units of lenslet size when detecting an OV beam with a topological charge of up to 20.

  18. Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morningstar, C.J.; Shigemitsu, J.

    1999-05-01

    The temporal and spatial components of the heavy-light vector current and the spatial components of the axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations of {ital B} and {ital D} mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated using the nonrelativistic (NRQCD) formulation and the light quarks are described by the tadpole-improved clover action. The light quarks are treated as massless. Our currents include relativistic and discretization corrections through O({alpha}{sub s}/M,a{alpha}{submore » s}), where {ital M} is the heavy-quark mass, {ital a} is the lattice spacing, and {alpha}{sub s} is the QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector current, mixing between several lattice operators is encountered at one-loop order, and O(a{alpha}{sub s}) dimension-four improvement terms are identified. {copyright} {ital 1999} {ital The American Physical Society}« less

  19. Population rate dynamics and multineuron firing patterns in sensory cortex

    PubMed Central

    Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.

    2012-01-01

    Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704

  20. Improved Feature Matching for Mobile Devices with IMU.

    PubMed

    Masiero, Andrea; Vettore, Antonio

    2016-08-05

    Thanks to the recent diffusion of low-cost high-resolution digital cameras and to the development of mostly automated procedures for image-based 3D reconstruction, the popularity of photogrammetry for environment surveys is constantly increasing in the last years. Automatic feature matching is an important step in order to successfully complete the photogrammetric 3D reconstruction: this step is the fundamental basis for the subsequent estimation of the geometry of the scene. This paper reconsiders the feature matching problem when dealing with smart mobile devices (e.g., when using the standard camera embedded in a smartphone as imaging sensor). More specifically, this paper aims at exploiting the information on camera movements provided by the inertial navigation system (INS) in order to make the feature matching step more robust and, possibly, computationally more efficient. First, a revised version of the affine scale-invariant feature transform (ASIFT) is considered: this version reduces the computational complexity of the original ASIFT, while still ensuring an increase of correct feature matches with respect to the SIFT. Furthermore, a new two-step procedure for the estimation of the essential matrix E (and the camera pose) is proposed in order to increase its estimation robustness and computational efficiency.

  1. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  2. CNN universal machine as classificaton platform: an art-like clustering algorithm.

    PubMed

    Bálya, David

    2003-12-01

    Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.

  3. Controllable Edge Feature Sharpening for Dental Applications

    PubMed Central

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376

  4. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  5. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  6. Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter's atmosphere from Voyager 1 images

    NASA Astrophysics Data System (ADS)

    Beebe, R. F.; Ingersoll, A. P.; Hunt, G. E.; Mitchell, J. L.; Muller, J.-P.

    1980-01-01

    Voyager 1 narrow-angle images were used to obtain displacements of features down to 100 to 200 km in size over intervals of 10 hours. A global map of velocity vectors and longitudinally averaged zonal wind vectors as functions of the latitude, is presented and discussed

  7. Development of nonhuman adenoviruses as vaccine vectors

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508

  8. Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor.

    PubMed

    Saravanan, Vijayakumar; Gautham, Namasivayam

    2015-10-01

    Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.

  9. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  10. Efficient Iris Recognition Based on Optimal Subfeature Selection and Weighted Subregion Fusion

    PubMed Central

    Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, andMMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity. PMID:24683317

  11. Efficient iris recognition based on optimal subfeature selection and weighted subregion fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; He, Fei; Wang, Hongye; Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, and MMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity.

  12. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  13. Alignment and bit extraction for secure fingerprint biometrics

    NASA Astrophysics Data System (ADS)

    Nagar, A.; Rane, S.; Vetro, A.

    2010-01-01

    Security of biometric templates stored in a system is important because a stolen template can compromise system security as well as user privacy. Therefore, a number of secure biometrics schemes have been proposed that facilitate matching of feature templates without the need for a stored biometric sample. However, most of these schemes suffer from poor matching performance owing to the difficulty of designing biometric features that remain robust over repeated biometric measurements. This paper describes a scheme to extract binary features from fingerprints using minutia points and fingerprint ridges. The features are amenable to direct matching based on binary Hamming distance, but are especially suitable for use in secure biometric cryptosystems that use standard error correcting codes. Given all binary features, a method for retaining only the most discriminable features is presented which improves the Genuine Accept Rate (GAR) from 82% to 90% at a False Accept Rate (FAR) of 0.1% on a well-known public database. Additionally, incorporating singular points such as a core or delta feature is shown to improve the matching tradeoff.

  14. Efficient enumeration of monocyclic chemical graphs with given path frequencies

    PubMed Central

    2014-01-01

    Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135

  15. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  16. Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations

    PubMed Central

    Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir

    2004-01-01

    Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns. PMID:15603586

  17. Diagnostic methodology for incipient system disturbance based on a neural wavelet approach

    NASA Astrophysics Data System (ADS)

    Won, In-Ho

    Since incipient system disturbances are easily mixed up with other events or noise sources, the signal from the system disturbance can be neglected or identified as noise. Thus, as available knowledge and information is obtained incompletely or inexactly from the measurements; an exploration into the use of artificial intelligence (AI) tools to overcome these uncertainties and limitations was done. A methodology integrating the feature extraction efficiency of the wavelet transform with the classification capabilities of neural networks is developed for signal classification in the context of detecting incipient system disturbances. The synergistic effects of wavelets and neural networks present more strength and less weakness than either technique taken alone. A wavelet feature extractor is developed to form concise feature vectors for neural network inputs. The feature vectors are calculated from wavelet coefficients to reduce redundancy and computational expense. During this procedure, the statistical features based on the fractal concept to the wavelet coefficients play a role as crucial key in the wavelet feature extractor. To verify the proposed methodology, two applications are investigated and successfully tested. The first involves pump cavitation detection using dynamic pressure sensor. The second pertains to incipient pump cavitation detection using signals obtained from a current sensor. Also, through comparisons between three proposed feature vectors and with statistical techniques, it is shown that the variance feature extractor provides a better approach in the performed applications.

  18. Topological features of vector vortex beams perturbed with uniformly polarized light

    PubMed Central

    D’Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams. PMID:28079134

  19. Topological features of vector vortex beams perturbed with uniformly polarized light

    NASA Astrophysics Data System (ADS)

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  20. Topological features of vector vortex beams perturbed with uniformly polarized light.

    PubMed

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-12

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell's equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  1. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  2. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm

    PubMed Central

    Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2017-01-01

    This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772

  3. Communications and control for electric power systems: Power flow classification for static security assessment

    NASA Technical Reports Server (NTRS)

    Niebur, D.; Germond, A.

    1993-01-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  4. Adaptive Hybrid Picture Coding. Volume 2.

    DTIC Science & Technology

    1985-02-01

    ooo5 V.a Measurement Vector ..eho..............57 V.b Size Variable o .entroi* Vector .......... .- 59 V * c Shape Vector .Ř 0-60o oe 6 I V~d...the Program for the Adaptive Line of Sight Method .i.. 18.. o ... .... .... 1 B Details of the Feature Vector FormationProgram .. o ...oo..-....- .122 C ...shape recognition is analogous to recognition of curves in space. Therefore, well known concepts and theorems from differential geometry can be 34 . o

  5. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

    PubMed

    Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K

    2018-04-01

    This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

  6. Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.

    PubMed

    Youji Feng; Lixin Fan; Yihong Wu

    2016-01-01

    The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.

  7. NASA's GMAO Atmospheric Motion Vectors Simulator: Description and Application to the MISTiC Winds Concept

    NASA Technical Reports Server (NTRS)

    Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki

    2018-01-01

    An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of 12 satellites (4 orbital planes). In addition, one of the main expected impacts of the MISTiC Winds concept is the ability to derive water vapor feature tracking AMVs below 500-400 hPa, an unique feature among the water vapor AMVs derived from the current Earth observing system.

  8. Emotion recognition based on multiple order features using fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Liu, Deyin; Qi, Lin

    2017-07-01

    In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.

  9. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  10. The non-parametric Parzen's window in stereo vision matching.

    PubMed

    Pajares, G; de la Cruz, J

    2002-01-01

    This paper presents an approach to the local stereovision matching problem using edge segments as features with four attributes. From these attributes we compute a matching probability between pairs of features of the stereo images. A correspondence is said true when such a probability is maximum. We introduce a nonparametric strategy based on Parzen's window (1962) to estimate a probability density function (PDF) which is used to obtain the matching probability. This is the main finding of the paper. A comparative analysis of other recent matching methods is included to show that this finding can be justified theoretically. A generalization of the proposed method is made in order to give guidelines about its use with the similarity constraint and also in different environments where other features and attributes are more suitable.

  11. Decision support framework for Parkinson's disease based on novel handwriting markers.

    PubMed

    Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos

    2015-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder which impairs motor skills, speech, and other functions such as behavior, mood, and cognitive processes. One of the most typical clinical hallmarks of PD is handwriting deterioration, usually the first manifestation of PD. The aim of this study is twofold: (a) to find a subset of handwriting features suitable for identifying subjects with PD and (b) to build a predictive model to efficiently diagnose PD. We collected handwriting samples from 37 medicated PD patients and 38 age- and sex-matched controls. The handwriting samples were collected during seven tasks such as writing a syllable, word, or sentence. Every sample was used to extract the handwriting measures. In addition to conventional kinematic and spatio-temporal handwriting measures, we also computed novel handwriting measures based on entropy, signal energy, and empirical mode decomposition of the handwriting signals. The selected features were fed to the support vector machine classifier with radial Gaussian kernel for automated diagnosis. The accuracy of the classification of PD was as high as 88.13%, with the highest values of sensitivity and specificity equal to 89.47% and 91.89%, respectively. Handwriting may be a valuable marker as a diagnostic and screening tool.

  12. Automated diagnosis of Alzheimer's disease with multi-atlas based whole brain segmentations

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Tang, Xiaoying

    2017-03-01

    Voxel-based analysis is widely used in quantitative analysis of structural brain magnetic resonance imaging (MRI) and automated disease detection, such as Alzheimer's disease (AD). However, noise at the voxel level may cause low sensitivity to AD-induced structural abnormalities. This can be addressed with the use of a whole brain structural segmentation approach which greatly reduces the dimension of features (the number of voxels). In this paper, we propose an automatic AD diagnosis system that combines such whole brain segmen- tations with advanced machine learning methods. We used a multi-atlas segmentation technique to parcellate T1-weighted images into 54 distinct brain regions and extract their structural volumes to serve as the features for principal-component-analysis-based dimension reduction and support-vector-machine-based classification. The relationship between the number of retained principal components (PCs) and the diagnosis accuracy was systematically evaluated, in a leave-one-out fashion, based on 28 AD subjects and 23 age-matched healthy subjects. Our approach yielded pretty good classification results with 96.08% overall accuracy being achieved using the three foremost PCs. In addition, our approach yielded 96.43% specificity, 100% sensitivity, and 0.9891 area under the receiver operating characteristic curve.

  13. Adaptive track scheduling to optimize concurrency and vectorization in GeantV

    DOE PAGES

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...

    2015-05-22

    The GeantV project is focused on the R&D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The modelmore » has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. Lastly, this work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results.« less

  14. A Visualization Case Study of Feature Vector and Stemmer Effects on TREC Topic-document Subsets.

    ERIC Educational Resources Information Center

    Rorvig, Mark T.; Sullivan, Terry; Oyarce, Guillermo

    1998-01-01

    Demonstrates a method of visual analysis which takes advantage of the pooling technique of topic-document set creation in the TREC collection. Describes the procedures used to create the initial visual fields, and their respective treatments as vectors without stemming and vectors with stemming; discusses results of these treatments and…

  15. Network-level accident-mapping: Distance based pattern matching using artificial neural network.

    PubMed

    Deka, Lipika; Quddus, Mohammed

    2014-04-01

    The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that the accuracy is much better than other methods. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  17. Evaluation and recognition of skin images with aging by support vector machine

    NASA Astrophysics Data System (ADS)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  18. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  19. Morphological Features in Children with Autism Spectrum Disorders: A Matched Case-Control Study

    ERIC Educational Resources Information Center

    Ozgen, Heval; Hellemann, Gerhard S.; Stellato, Rebecca K.; Lahuis, Bertine; van Daalen, Emma; Staal, Wouter G.; Rozendal, Marije; Hennekam, Raoul C.; Beemer, Frits A.; van Engeland, Herman

    2011-01-01

    This study was designed to examine morphological features in a large group of children with autism spectrum disorder versus normal controls. Amongst 421 patients and 1,007 controls, 224 matched pairs were created. Prevalence rates and odds ratios were analyzed by conditional regression analysis, McNemar test or paired t-test matched pairs.…

  20. 75 FR 48395 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Proposed Rule Change The Exchange proposes to adopt changes to its crossing mechanisms to adopt an auto... proposal is to add step-up-and-match functionality (the ``auto-match feature'') to both mechanisms for an...-side order specifies the auction start price. With the auto-match feature, the contra-side order will...

  1. Comparison of EEG-Features and Classification Methods for Motor Imagery in Patients with Disorders of Consciousness

    PubMed Central

    Höller, Yvonne; Bergmann, Jürgen; Thomschewski, Aljoscha; Kronbichler, Martin; Höller, Peter; Crone, Julia S.; Schmid, Elisabeth V.; Butz, Kevin; Nardone, Raffaele; Trinka, Eugen

    2013-01-01

    Current research aims at identifying voluntary brain activation in patients who are behaviorally diagnosed as being unconscious, but are able to perform commands by modulating their brain activity patterns. This involves machine learning techniques and feature extraction methods such as applied in brain computer interfaces. In this study, we try to answer the question if features/classification methods which show advantages in healthy participants are also accurate when applied to data of patients with disorders of consciousness. A sample of healthy participants (N = 22), patients in a minimally conscious state (MCS; N = 5), and with unresponsive wakefulness syndrome (UWS; N = 9) was examined with a motor imagery task which involved imagery of moving both hands and an instruction to hold both hands firm. We extracted a set of 20 features from the electroencephalogram and used linear discriminant analysis, k-nearest neighbor classification, and support vector machines (SVM) as classification methods. In healthy participants, the best classification accuracies were seen with coherences (mean = .79; range = .53−.94) and power spectra (mean = .69; range = .40−.85). The coherence patterns in healthy participants did not match the expectation of central modulated -rhythm. Instead, coherence involved mainly frontal regions. In healthy participants, the best classification tool was SVM. Five patients had at least one feature-classifier outcome with p0.05 (none of which were coherence or power spectra), though none remained significant after false-discovery rate correction for multiple comparisons. The present work suggests the use of coherences in patients with disorders of consciousness because they show high reliability among healthy subjects and patient groups. However, feature extraction and classification is a challenging task in unresponsive patients because there is no ground truth to validate the results. PMID:24282545

  2. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm.

    PubMed

    Heidari, Morteza; Khuzani, Abolfazl Zargari; Hollingsworth, Alan B; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2018-01-30

    In order to automatically identify a set of effective mammographic image features and build an optimal breast cancer risk stratification model, this study aims to investigate advantages of applying a machine learning approach embedded with a locally preserving projection (LPP) based feature combination and regeneration algorithm to predict short-term breast cancer risk. A dataset involving negative mammograms acquired from 500 women was assembled. This dataset was divided into two age-matched classes of 250 high risk cases in which cancer was detected in the next subsequent mammography screening and 250 low risk cases, which remained negative. First, a computer-aided image processing scheme was applied to segment fibro-glandular tissue depicted on mammograms and initially compute 44 features related to the bilateral asymmetry of mammographic tissue density distribution between left and right breasts. Next, a multi-feature fusion based machine learning classifier was built to predict the risk of cancer detection in the next mammography screening. A leave-one-case-out (LOCO) cross-validation method was applied to train and test the machine learning classifier embedded with a LLP algorithm, which generated a new operational vector with 4 features using a maximal variance approach in each LOCO process. Results showed a 9.7% increase in risk prediction accuracy when using this LPP-embedded machine learning approach. An increased trend of adjusted odds ratios was also detected in which odds ratios increased from 1.0 to 11.2. This study demonstrated that applying the LPP algorithm effectively reduced feature dimensionality, and yielded higher and potentially more robust performance in predicting short-term breast cancer risk.

  3. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm

    NASA Astrophysics Data System (ADS)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Hollingsworth, Alan B.; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2018-02-01

    In order to automatically identify a set of effective mammographic image features and build an optimal breast cancer risk stratification model, this study aims to investigate advantages of applying a machine learning approach embedded with a locally preserving projection (LPP) based feature combination and regeneration algorithm to predict short-term breast cancer risk. A dataset involving negative mammograms acquired from 500 women was assembled. This dataset was divided into two age-matched classes of 250 high risk cases in which cancer was detected in the next subsequent mammography screening and 250 low risk cases, which remained negative. First, a computer-aided image processing scheme was applied to segment fibro-glandular tissue depicted on mammograms and initially compute 44 features related to the bilateral asymmetry of mammographic tissue density distribution between left and right breasts. Next, a multi-feature fusion based machine learning classifier was built to predict the risk of cancer detection in the next mammography screening. A leave-one-case-out (LOCO) cross-validation method was applied to train and test the machine learning classifier embedded with a LLP algorithm, which generated a new operational vector with 4 features using a maximal variance approach in each LOCO process. Results showed a 9.7% increase in risk prediction accuracy when using this LPP-embedded machine learning approach. An increased trend of adjusted odds ratios was also detected in which odds ratios increased from 1.0 to 11.2. This study demonstrated that applying the LPP algorithm effectively reduced feature dimensionality, and yielded higher and potentially more robust performance in predicting short-term breast cancer risk.

  4. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand

    PubMed Central

    Harrington, Laura C.; Fleisher, Andrew; Ruiz-Moreno, Diego; Vermeylen, Francoise; Wa, Chrystal V.; Poulson, Rebecca L.; Edman, John D.; Clark, John M.; Jones, James W.; Kitthawee, Sangvorn; Scott, Thomas W.

    2014-01-01

    Background Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles. Methodology and principal findings We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces. Conclusion and significance High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control. PMID:25102306

  5. Research of facial feature extraction based on MMC

    NASA Astrophysics Data System (ADS)

    Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun

    2017-07-01

    Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.

  6. xiSPEC: web-based visualization, analysis and sharing of proteomics data.

    PubMed

    Kolbowski, Lars; Combe, Colin; Rappsilber, Juri

    2018-05-08

    We present xiSPEC, a standard compliant, next-generation web-based spectrum viewer for visualizing, analyzing and sharing mass spectrometry data. Peptide-spectrum matches from standard proteomics and cross-linking experiments are supported. xiSPEC is to date the only browser-based tool supporting the standardized file formats mzML and mzIdentML defined by the proteomics standards initiative. Users can either upload data directly or select files from the PRIDE data repository as input. xiSPEC allows users to save and share their datasets publicly or password protected for providing access to collaborators or readers and reviewers of manuscripts. The identification table features advanced interaction controls and spectra are presented in three interconnected views: (i) annotated mass spectrum, (ii) peptide sequence fragmentation key and (iii) quality control error plots of matched fragments. Highlighting or selecting data points in any view is represented in all other views. Views are interactive scalable vector graphic elements, which can be exported, e.g. for use in publication. xiSPEC allows for re-annotation of spectra for easy hypothesis testing by modifying input data. xiSPEC is freely accessible at http://spectrumviewer.org and the source code is openly available on https://github.com/Rappsilber-Laboratory/xiSPEC.

  7. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    PubMed Central

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979

  8. Automated Image Registration Using Morphological Region of Interest Feature Extraction

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2005-01-01

    With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.

  9. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    PubMed

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  10. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  11. Estimating normal mixture parameters from the distribution of a reduced feature vector

    NASA Technical Reports Server (NTRS)

    Guseman, L. F.; Peters, B. C., Jr.; Swasdee, M.

    1976-01-01

    A FORTRAN computer program was written and tested. The measurements consisted of 1000 randomly chosen vectors representing 1, 2, 3, 7, and 10 subclasses in equal portions. In the first experiment, the vectors are computed from the input means and covariances. In the second experiment, the vectors are 16 channel measurements. The starting covariances were constructed as if there were no correlation between separate passes. The biases obtained from each run are listed.

  12. An easy game for frauds? Effects of professional experience and time pressure on passport-matching performance.

    PubMed

    Wirth, Benedikt Emanuel; Carbon, Claus-Christian

    2017-06-01

    Despite extensive research on unfamiliar face matching, little is known about factors that might affect matching performance in real-life scenarios. We conducted 2 experiments to investigate the effects of several such factors on unfamiliar face-matching performance in a passport-check scenario. In Experiment 1, we assessed the effect of professional experience on passport-matching performance. The matching performance of 96 German Federal Police officers working at Munich Airport was compared with that of 48 novices without specific face-matching experience. Police officers significantly outperformed novices, but nevertheless missed a high ratio of frauds. Moreover, the effects of manipulating specific facial features (with paraphernalia like glasses and jewelry, distinctive features like moles and scars, and hairstyle) and of variations in the physical distance between the faces being matched were investigated. Whereas manipulation of physical distance did not have a significant effect, manipulations of facial features impaired matching performance. In Experiment 2, passport-matching performance was assessed in relation to time constraints. Novices matched passports either without time constraints, or under a local time limit (which is typically used in laboratory studies), or under a global time limit (which usually occurs during real-life border controls). Time pressure (especially the global time limit) significantly impaired matching performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Adding localization information in a fingerprint binary feature vector representation

    NASA Astrophysics Data System (ADS)

    Bringer, Julien; Despiegel, Vincent; Favre, Mélanie

    2011-06-01

    At BTAS'10, a new framework to transform a fingerprint minutiae template into a binary feature vector of fixed length is described. A fingerprint is characterized by its similarity with a fixed number set of representative local minutiae vicinities. This approach by representative leads to a fixed length binary representation, and, as the approach is local, it enables to deal with local distortions that may occur between two acquisitions. We extend this construction to incorporate additional information in the binary vector, in particular on localization of the vicinities. We explore the use of position and orientation information. The performance improvement is promising for utilization into fast identification algorithms or into privacy protection algorithms.

  14. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  15. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  16. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed

    2018-01-01

    The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  18. Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model

    NASA Astrophysics Data System (ADS)

    Damayanti, A.; Werdiningsih, I.

    2018-03-01

    The brain is the organ that coordinates all the activities that occur in our bodies. Small abnormalities in the brain will affect body activity. Tumor of the brain is a mass formed a result of cell growth not normal and unbridled in the brain. MRI is a non-invasive medical test that is useful for doctors in diagnosing and treating medical conditions. The process of classification of brain tumor can provide the right decision and correct treatment and right on the process of treatment of brain tumor. In this study, the classification process performed to determine the type of brain tumor disease, namely Alzheimer’s, Glioma, Carcinoma and normal, using energy coefficient and ANFIS. Process stages in the classification of images of MR brain are the extraction of a feature, reduction of a feature, and process of classification. The result of feature extraction is a vector approximation of each wavelet decomposition level. The feature reduction is a process of reducing the feature by using the energy coefficients of the vector approximation. The feature reduction result for energy coefficient of 100 per feature is 1 x 52 pixels. This vector will be the input on the classification using ANFIS with Fuzzy C-Means and FLVQ clustering process and LM back-propagation. Percentage of success rate of MR brain images recognition using ANFIS-FLVQ, ANFIS, and LM back-propagation was obtained at 100%.

  19. Invariant object recognition based on the generalized discrete radon transform

    NASA Astrophysics Data System (ADS)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  20. Comparative study of palm print authentication system using geometric features

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajeev, Srijith; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometrics, particularly palm print authentication has been a stimulating research area due to its abundance of features. Stable features and effective matching are the most crucial steps for an authentication system. In conventional palm print authentication systems, matching is based on flexion creases, friction ridges, and minutiae points. Currently, contactless palm print imaging is an emerging technology. However, they tend to involve fluctuations in the image quality and texture loss due to factors such as varying illumination conditions, occlusions, noise, pose, and ghosting. These variations decrease the performance of the authentication systems. Furthermore, real-time palm print authentication in large databases continue to be a challenging task. In order to effectively solve these problems, features which are invariant to these anomalies are required. This paper proposes a robust palm print matching framework by making a comparative study of different local geometric features such as Difference-of-Gaussian, Hessian, Hessian-Laplace, Harris-Laplace, and Multiscale Harris for feature detection. These detectors are coupled with Scale Invariant Feature Transformation (SIFT) descriptor to describe the identified features. Additionally, a two-stage refinement process is carried out to obtain the best stable matches. Computer simulations demonstrate that the accuracy of the system has increased effectively with an EER of 0.86% when Harris-Laplace detector is used on IITD database.

  1. A new feature constituting approach to detection of vocal fold pathology

    NASA Astrophysics Data System (ADS)

    Hariharan, M.; Polat, Kemal; Yaacob, Sazali

    2014-08-01

    In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.

  2. Feature-based attention is functionally distinct from relation-based attention: The double dissociation between color-based capture and color-relation-based capture of attention.

    PubMed

    Du, Feng; Jiao, Jun

    2016-04-01

    The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  4. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.

    PubMed

    Ogden, Nick H; Lindsay, L Robbin

    2016-08-01

    There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. A diagram for evaluating multiple aspects of model performance in simulating vector fields

    NASA Astrophysics Data System (ADS)

    Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong

    2016-12-01

    Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.

  6. Labeled Graph Kernel for Behavior Analysis.

    PubMed

    Zhao, Ruiqi; Martinez, Aleix M

    2016-08-01

    Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data.

  7. MANCOVA for one way classification with homogeneity of regression coefficient vectors

    NASA Astrophysics Data System (ADS)

    Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.

    2017-11-01

    The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.

  8. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  9. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  10. Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou's Pseudo amino acid composition.

    PubMed

    Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao

    2012-05-01

    Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.

  11. Real-time object-to-features vectorisation via Siamese neural networks

    NASA Astrophysics Data System (ADS)

    Fedorenko, Fedor; Usilin, Sergey

    2017-03-01

    Object-to-features vectorisation is a hard problem to solve for objects that can be hard to distinguish. Siamese and Triplet neural networks are one of the more recent tools used for such task. However, most networks used are very deep networks that prove to be hard to compute in the Internet of Things setting. In this paper, a computationally efficient neural network is proposed for real-time object-to-features vectorisation into a Euclidean metric space. We use L2 distance to reflect feature vector similarity during both training and testing. In this way, feature vectors we develop can be easily classified using K-Nearest Neighbours classifier. Such approach can be used to train networks to vectorise such "problematic" objects like images of human faces, keypoint image patches, like keypoints on Arctic maps and surrounding marine areas.

  12. A comparison of linear approaches to filter out environmental effects in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Deraemaeker, A.; Worden, K.

    2018-05-01

    This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases.

  13. Wurfelspiel-based training data methods for ATR

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-09-01

    A data object is constructed from a P by M Wurfelspiel matrix W by choosing an entry from each column to construct a sequence A0A1"AM-1. Each of the PM possibilities are designed to correspond to the same category according to some chosen measure. This matrix could encode many types of data. (1) Musical fragments, all of which evoke sadness; each column entry is a 4 beat sequence with a chosen A0A1A2 thus 16 beats long (W is P by 3). (2) Paintings, all of which evoke happiness; each column entry is a layer and a given A0A1A2 is a painting constructed using these layers (W is P by 3). (3) abstract feature vectors corresponding to action potentials evoked from a biological cell's exposure to a toxin. The action potential is divided into four relevant regions and each column entry represents the feature vector of a region. A given A0A1A2 is then an abstraction of the excitable cell's output (W is P by 4). (4) abstract feature vectors corresponding to an object such as a face or vehicle. The object is divided into four categories each assigned an abstract feature vector with the resulting concatenation an abstract representation of the object (W is P by 4). All of the examples above correspond to one particular measure (sad music, happy paintings, an introduced toxin, an object to recognize)and hence, when a Wurfelspiel matrix is constructed, relevant training information for recognition is encoded that can be used in many algorithms. The focus of this paper is on the application of these ideas to automatic target recognition (ATR). In addition, we discuss a larger biologically based model of temporal cortex polymodal sensor fusion which can use the feature vectors extracted from the ATR Wurfelspiel data.

  14. Sparse Reconstruction of Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP)

    NASA Astrophysics Data System (ADS)

    Saadat, S. A.; Safari, A.; Needell, D.

    2016-06-01

    The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.

  15. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  16. A blur-invariant local feature for motion blurred image matching

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Aoki, Terumasa

    2017-07-01

    Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching

  17. Self-Similar Spin Images for Point Cloud Matching

    NASA Astrophysics Data System (ADS)

    Pulido, Daniel

    The rapid growth of Light Detection And Ranging (Lidar) technologies that collect, process, and disseminate 3D point clouds have allowed for increasingly accurate spatial modeling and analysis of the real world. Lidar sensors can generate massive 3D point clouds of a collection area that provide highly detailed spatial and radiometric information. However, a Lidar collection can be expensive and time consuming. Simultaneously, the growth of crowdsourced Web 2.0 data (e.g., Flickr, OpenStreetMap) have provided researchers with a wealth of freely available data sources that cover a variety of geographic areas. Crowdsourced data can be of varying quality and density. In addition, since it is typically not collected as part of a dedicated experiment but rather volunteered, when and where the data is collected is arbitrary. The integration of these two sources of geoinformation can provide researchers the ability to generate products and derive intelligence that mitigate their respective disadvantages and combine their advantages. Therefore, this research will address the problem of fusing two point clouds from potentially different sources. Specifically, we will consider two problems: scale matching and feature matching. Scale matching consists of computing feature metrics of each point cloud and analyzing their distributions to determine scale differences. Feature matching consists of defining local descriptors that are invariant to common dataset distortions (e.g., rotation and translation). Additionally, after matching the point clouds they can be registered and processed further (e.g., change detection). The objective of this research is to develop novel methods to fuse and enhance two point clouds from potentially disparate sources (e.g., Lidar and crowdsourced Web 2.0 datasets). The scope of this research is to investigate both scale and feature matching between two point clouds. The specific focus of this research will be in developing a novel local descriptor based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  18. Pairwise Sequence Alignment Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  19. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  20. Finding an appropriate equation to measure similarity between binary vectors: case studies on Indonesian and Japanese herbal medicines.

    PubMed

    Wijaya, Sony Hartono; Afendi, Farit Mochamad; Batubara, Irmanida; Darusman, Latifah K; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2016-12-07

    The binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results. In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively. The selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.

  1. Novel methods for parameter-based analysis of myocardial tissue in MR images

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Behrens, S.; Kuehnel, C.; Oeltze, S.; Konrad, O.; Peitgen, H.-O.

    2007-03-01

    The analysis of myocardial tissue with contrast-enhanced MR yields multiple parameters, which can be used to classify the examined tissue. Perfusion images are often distorted by motion, while late enhancement images are acquired with a different size and resolution. Therefore, it is common to reduce the analysis to a visual inspection, or to the examination of parameters related to the 17-segment-model proposed by the American Heart Association (AHA). As this simplification comes along with a considerable loss of information, our purpose is to provide methods for a more accurate analysis regarding topological and functional tissue features. In order to achieve this, we implemented registration methods for the motion correction of the perfusion sequence and the matching of the late enhancement information onto the perfusion image and vice versa. For the motion corrected perfusion sequence, vector images containing the voxel enhancement curves' semi-quantitative parameters are derived. The resulting vector images are combined with the late enhancement information and form the basis for the tissue examination. For the exploration of data we propose different modes: the inspection of the enhancement curves and parameter distribution in areas automatically segmented using the late enhancement information, the inspection of regions segmented in parameter space by user defined threshold intervals and the topological comparison of regions segmented with different settings. Results showed a more accurate detection of distorted regions in comparison to the AHA-model-based evaluation.

  2. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    NASA Astrophysics Data System (ADS)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  3. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  4. Thermal-depth matching in dynamic scene based on affine projection and feature registration

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang

    2018-03-01

    This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.

  5. Evaluation of sequential images for photogrammetrically point determination

    NASA Astrophysics Data System (ADS)

    Kowalczyk, M.

    2011-12-01

    Close range photogrammetry encounters many problems with reconstruction of objects three-dimensional shape. Relative orientation parameters of taken photos makes usually key role leading to right solution of this problem. Automation of technology process is hardly performed due to recorded scene complexity and configuration of camera positions. This configuration makes the process of joining photos into one set usually impossible automatically. Application of camcorder is the solution widely proposed in literature for support in 3D models creation. Main advantages of this tool are connected with large number of recorded images and camera positions. Exterior orientation changes barely between two neighboring frames. Those features of film sequence gives possibilities for creating models with basic algorithms, working faster and more robust, than with remotely taken photos. The first part of this paper presents results of experiments determining interior orientation parameters of some sets of frames, presenting three-dimensional test field. This section describes calibration repeatability of film frames taken from camcorder. It is important due to stability of interior camera geometric parameters. Parametric model of systematical errors was applied for correcting images. Afterwards a short film of the same test field had been taken for determination of check points group. This part has been done for controlling purposes of camera application in measurement tasks. Finally there are presented some results of experiments which compare determination of recorded object points in 3D space. In common digital photogrammetry, where separate photos are used, first levels of image pyramids are taken to connect with feature based matching. This complicated process creates a lot of emergencies, which can produce false detections of image similarities. In case of digital film camera, authors of publications avoid this dangerous step, going straightly to area based matching, aiming high degree of similarity for two corresponding film frames. First approximation, in establishing connections between photos, comes from whole image distance. This image distance method can work with more than just two dimensions of translation vector. Scale and angles are also used for improving image matching. This operation creates more similar looking frames where corresponding characteristic points lays close to each other. Procedure searching for pairs of points works faster and more accurately, because analyzed areas can be reduced. Another proposed solution comes from image created by adding differences between particular frames, gives more rough results, but works much faster than standard matching.

  6. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    DTIC Science & Technology

    2014-03-27

    and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

  7. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  8. Production of non viral DNA vectors.

    PubMed

    Schleef, Martin; Blaesen, Markus; Schmeer, Marco; Baier, Ruth; Marie, Corinne; Dickson, George; Scherman, Daniel

    2010-12-01

    After some decades of research, development and first clinical approaches to use DNA vectors in gene therapy, cell therapy and DNA vaccination, the requirements for the pharmaceutical manufacturing of gene vectors has improved significantly step by step. Even the expression level and specificity of non viral DNA vectors were significantly modified and followed the success of viral vectors. The strict separation of "viral" and "non viral" gene transfer are historic borders between scientist and we will show that both fields together are able to allow the next step towards successful prevention and therapy. Here we summarize the features of producing and modifying these non-viral gene vectors to ensure the required quality to modify cells and to treat human and animals.

  9. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  10. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  11. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  12. CYBER-205 Devectorizer

    NASA Technical Reports Server (NTRS)

    Lakeotes, Christopher D.

    1990-01-01

    DEVECT (CYBER-205 Devectorizer) is CYBER-205 FORTRAN source-language-preprocessor computer program reducing vector statements to standard FORTRAN. In addition, DEVECT has many other standard and optional features simplifying conversion of vector-processor programs for CYBER 200 to other computers. Written in FORTRAN IV.

  13. Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa

    2018-07-01

    Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  15. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  16. Context-Aware Local Binary Feature Learning for Face Recognition.

    PubMed

    Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2018-05-01

    In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich

    We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less

  18. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  19. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  20. Haptic exploration of fingertip-sized geometric features using a multimodal tactile sensor

    NASA Astrophysics Data System (ADS)

    Ponce Wong, Ruben D.; Hellman, Randall B.; Santos, Veronica J.

    2014-06-01

    Haptic perception remains a grand challenge for artificial hands. Dexterous manipulators could be enhanced by "haptic intelligence" that enables identification of objects and their features via touch alone. Haptic perception of local shape would be useful when vision is obstructed or when proprioceptive feedback is inadequate, as observed in this study. In this work, a robot hand outfitted with a deformable, bladder-type, multimodal tactile sensor was used to replay four human-inspired haptic "exploratory procedures" on fingertip-sized geometric features. The geometric features varied by type (bump, pit), curvature (planar, conical, spherical), and footprint dimension (1.25 - 20 mm). Tactile signals generated by active fingertip motions were used to extract key parameters for use as inputs to supervised learning models. A support vector classifier estimated order of curvature while support vector regression models estimated footprint dimension once curvature had been estimated. A distal-proximal stroke (along the long axis of the finger) enabled estimation of order of curvature with an accuracy of 97%. Best-performing, curvature-specific, support vector regression models yielded R2 values of at least 0.95. While a radial-ulnar stroke (along the short axis of the finger) was most helpful for estimating feature type and size for planar features, a rolling motion was most helpful for conical and spherical features. The ability to haptically perceive local shape could be used to advance robot autonomy and provide haptic feedback to human teleoperators of devices ranging from bomb defusal robots to neuroprostheses.

  1. Automatic orientation and 3D modelling from markerless rock art imagery

    NASA Astrophysics Data System (ADS)

    Lerma, J. L.; Navarro, S.; Cabrelles, M.; Seguí, A. E.; Hernández, D.

    2013-02-01

    This paper investigates the use of two detectors and descriptors on image pyramids for automatic image orientation and generation of 3D models. The detectors and descriptors replace manual measurements and are used to detect, extract and match features across multiple imagery. The Scale-Invariant Feature Transform (SIFT) and the Speeded Up Robust Features (SURF) will be assessed based on speed, number of features, matched features, and precision in image and object space depending on the adopted hierarchical matching scheme. The influence of applying in addition Area Based Matching (ABM) with normalised cross-correlation (NCC) and least squares matching (LSM) is also investigated. The pipeline makes use of photogrammetric and computer vision algorithms aiming minimum interaction and maximum accuracy from a calibrated camera. Both the exterior orientation parameters and the 3D coordinates in object space are sequentially estimated combining relative orientation, single space resection and bundle adjustment. The fully automatic image-based pipeline presented herein to automate the image orientation step of a sequence of terrestrial markerless imagery is compared with manual bundle block adjustment and terrestrial laser scanning (TLS) which serves as ground truth. The benefits of applying ABM after FBM will be assessed both in image and object space for the 3D modelling of a complex rock art shelter.

  2. False match elimination for face recognition based on SIFT algorithm

    NASA Astrophysics Data System (ADS)

    Gu, Xuyuan; Shi, Ping; Shao, Meide

    2011-06-01

    The SIFT (Scale Invariant Feature Transform) is a well known algorithm used to detect and describe local features in images. It is invariant to image scale, rotation and robust to the noise and illumination. In this paper, a novel method used for face recognition based on SIFT is proposed, which combines the optimization of SIFT, mutual matching and Progressive Sample Consensus (PROSAC) together and can eliminate the false matches of face recognition effectively. Experiments on ORL face database show that many false matches can be eliminated and better recognition rate is achieved.

  3. Assaying the Stability and Inactivation of AAV Serotype 1 Vectors

    PubMed Central

    Howard, Douglas B.; Harvey, Brandon K.

    2017-01-01

    Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze–thaw cycles, the resulting transduction efficiency became variable at 60–120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments. PMID:28192678

  4. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  5. A novel approach for dimension reduction of microarray.

    PubMed

    Aziz, Rabia; Verma, C K; Srivastava, Namita

    2017-12-01

    This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Automated thematic mapping and change detection of ERTS-A images. [farmlands, cities, and mountain identification in Utah, Washington, Arizona, and California

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.

  7. Arrows as anchors: An analysis of the material features of electric field vector arrows

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Price, Edward

    2014-12-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  8. Comparison of organs' shapes with geometric and Zernike 3D moments.

    PubMed

    Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D

    2013-09-01

    The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenton, O; Valdes, G; Yin, L

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. Themore » calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.« less

  10. Fixed-pattern noise correction method based on improved moment matching for a TDI CMOS image sensor.

    PubMed

    Xu, Jiangtao; Nie, Huafeng; Nie, Kaiming; Jin, Weimin

    2017-09-01

    In this paper, an improved moment matching method based on a spatial correlation filter (SCF) and bilateral filter (BF) is proposed to correct the fixed-pattern noise (FPN) of a time-delay-integration CMOS image sensor (TDI-CIS). First, the values of row FPN (RFPN) and column FPN (CFPN) are estimated and added to the original image through SCF and BF, respectively. Then the filtered image will be processed by an improved moment matching method with a moving window. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination, the standard deviation of row mean vector (SDRMV) decreases from 5.6761 LSB to 0.1948 LSB, while the standard deviation of the column mean vector (SDCMV) decreases from 15.2005 LSB to 13.1949LSB. In addition, for different images captured by different TDI-CISs, the average decrease of SDRMV and SDCMV is 5.4922/2.0357 LSB, respectively. Comparative experimental results indicate that the proposed method can effectively correct the FPNs of different TDI-CISs while maintaining image details without any auxiliary equipment.

  11. A Subdivision-Based Representation for Vector Image Editing.

    PubMed

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  12. Suicide Note Sentiment Classification: A Supervised Approach Augmented by Web Data

    PubMed Central

    Xu, Yan; Wang, Yue; Liu, Jiahua; Tu, Zhuowen; Sun, Jian-Tao; Tsujii, Junichi; Chang, Eric

    2012-01-01

    Objective: To create a sentiment classification system for the Fifth i2b2/VA Challenge Track 2, which can identify thirteen subjective categories and two objective categories. Design: We developed a hybrid system using Support Vector Machine (SVM) classifiers with augmented training data from the Internet. Our system consists of three types of classification-based systems: the first system uses spanning n-gram features for subjective categories, the second one uses bag-of-n-gram features for objective categories, and the third one uses pattern matching for infrequent or subtle emotion categories. The spanning n-gram features are selected by a feature selection algorithm that leverages emotional corpus from weblogs. Special normalization of objective sentences is generalized with shallow parsing and external web knowledge. We utilize three sources of web data: the weblog of LiveJournal which helps to improve the feature selection, the eBay List which assists in special normalization of information and instructions categories, and the suicide project web which provides unlabeled data with similar properties as suicide notes. Measurements: The performance is evaluated by the overall micro-averaged precision, recall and F-measure. Result: Our system achieved an overall micro-averaged F-measure of 0.59. Happiness_peacefulness had the highest F-measure of 0.81. We were ranked as the second best out of 26 competing teams. Conclusion: Our results indicated that classifying fine-grained sentiments at sentence level is a non-trivial task. It is effective to divide categories into different groups according to their semantic properties. In addition, our system performance benefits from external knowledge extracted from publically available web data of other purposes; performance can be further enhanced when more training data is available. PMID:22879758

  13. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  14. A FPGA-based architecture for real-time image matching

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo

    2013-10-01

    Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.

  15. A time-frequency classifier for human gait recognition

    NASA Astrophysics Data System (ADS)

    Mobasseri, Bijan G.; Amin, Moeness G.

    2009-05-01

    Radar has established itself as an effective all-weather, day or night sensor. Radar signals can penetrate walls and provide information on moving targets. Recently, radar has been used as an effective biometric sensor for classification of gait. The return from a coherent radar system contains a frequency offset in the carrier frequency, known as the Doppler Effect. The movements of arms and legs give rise to micro Doppler which can be clearly detailed in the time-frequency domain using traditional or modern time-frequency signal representation. In this paper we propose a gait classifier based on subspace learning using principal components analysis(PCA). The training set consists of feature vectors defined as either time or frequency snapshots taken from the spectrogram of radar backscatter. We show that gait signature is captured effectively in feature vectors. Feature vectors are then used in training a minimum distance classifier based on Mahalanobis distance metric. Results show that gait classification with high accuracy and short observation window is achievable using the proposed classifier.

  16. Method and system for the diagnosis of disease using retinal image content and an archive of diagnosed human patient data

    DOEpatents

    Tobin, Kenneth W; Karnowski, Thomas P; Chaum, Edward

    2013-08-06

    A method for diagnosing diseases having retinal manifestations including retinal pathologies includes the steps of providing a CBIR system including an archive of stored digital retinal photography images and diagnosed patient data corresponding to the retinal photography images, the stored images each indexed in a CBIR database using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the stored images. A query image of the retina of a patient is obtained. Using image processing, regions or structures in the query image are identified. The regions or structures are then described using the plurality of feature vectors. At least one relevant stored image from the archive based on similarity to the regions or structures is retrieved, and an eye disease or a disease having retinal manifestations in the patient is diagnosed based on the diagnosed patient data associated with the relevant stored image(s).

  17. Predicting Protein-Protein Interactions by Combing Various Sequence-Derived.

    PubMed

    Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao

    2011-09-20

    Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.

  18. Sound Processing Features for Speaker-Dependent and Phrase-Independent Emotion Recognition in Berlin Database

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Christos Nikolaos; Vovoli, Eftichia

    An emotion recognition framework based on sound processing could improve services in human-computer interaction. Various quantitative speech features obtained from sound processing of acting speech were tested, as to whether they are sufficient or not to discriminate between seven emotions. Multilayered perceptrons were trained to classify gender and emotions on the basis of a 24-input vector, which provide information about the prosody of the speaker over the entire sentence using statistics of sound features. Several experiments were performed and the results were presented analytically. Emotion recognition was successful when speakers and utterances were “known” to the classifier. However, severe misclassifications occurred during the utterance-independent framework. At least, the proposed feature vector achieved promising results for utterance-independent recognition of high- and low-arousal emotions.

  19. Bearing performance degradation assessment based on time-frequency code features and SOM network

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-04-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.

  20. Classification of Alzheimer's disease patients with hippocampal shape wrapper-based feature selection and support vector machine

    NASA Astrophysics Data System (ADS)

    Young, Jonathan; Ridgway, Gerard; Leung, Kelvin; Ourselin, Sebastien

    2012-02-01

    It is well known that hippocampal atrophy is a marker of the onset of Alzheimer's disease (AD) and as a result hippocampal volumetry has been used in a number of studies to provide early diagnosis of AD and predict conversion of mild cognitive impairment patients to AD. However, rates of atrophy are not uniform across the hippocampus making shape analysis a potentially more accurate biomarker. This study studies the hippocampi from 226 healthy controls, 148 AD patients and 330 MCI patients obtained from T1 weighted structural MRI images from the ADNI database. The hippocampi are anatomically segmented using the MAPS multi-atlas segmentation method, and the resulting binary images are then processed with SPHARM software to decompose their shapes as a weighted sum of spherical harmonic basis functions. The resulting parameterizations are then used as feature vectors in Support Vector Machine (SVM) classification. A wrapper based feature selection method was used as this considers the utility of features in discriminating classes in combination, fully exploiting the multivariate nature of the data and optimizing the selected set of features for the type of classifier that is used. The leave-one-out cross validated accuracy obtained on training data is 88.6% for classifying AD vs controls and 74% for classifying MCI-converters vs MCI-stable with very compact feature sets, showing that this is a highly promising method. There is currently a considerable fall in accuracy on unseen data indicating that the feature selection is sensitive to the data used, however feature ensemble methods may overcome this.

  1. The Lenz Vector and Orbital Analog Computers

    ERIC Educational Resources Information Center

    Harter, W. G.

    1976-01-01

    Describes a single geometrical diagram based on the Lenz vector which shows the qualitative and quantitative features of all three types of Coulomb orbits. Explains the use of a simple analog computer with an overhead projector to demonstrate many of these effects. (Author/CP)

  2. Score-level fusion of two-dimensional and three-dimensional palmprint for personal recognition systems

    NASA Astrophysics Data System (ADS)

    Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab

    2017-01-01

    Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.

  3. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    PubMed

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. © 2016 Wiley Periodicals, Inc.

  4. Low-resolution expression recognition based on central oblique average CS-LBP with adaptive threshold

    NASA Astrophysics Data System (ADS)

    Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong

    2017-11-01

    In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.

  5. Biomorphic networks: approach to invariant feature extraction and segmentation for ATR

    NASA Astrophysics Data System (ADS)

    Baek, Andrew; Farhat, Nabil H.

    1998-10-01

    Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.

  6. Cross-Service Investigation of Geographical Information Systems

    DTIC Science & Technology

    2004-03-01

    Figure 8 illustrates the combined layers. Information for the layers is stored in a database format. The two types of storage are vector and...raster models. In a vector model, the image and information are stored as geometric objects such as points, lines, or polygons. In a raster model...DNCs are a vector -based digital database with selected maritime significant physical features from hydrographic charts. Layers within the DNC are data

  7. Digging for knowledge

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Jenkins, Jeffrey; Hsu, Charles; Goehl, Steve; Miao, Liden; Cader, Masud; Benachenhou, Dalila

    2009-04-01

    The "smile of a mother" is always recognized, whenever and wherever. But why is my PC always dumb and unable to recognize me or my needs, whoever or whatever? This paper postulates that such a 6 W's query and search system needs matching storage. Such a lament will soon be mended with a smarter PC, or a smarter Google engine, a network computer, working in the field of data retrieval, feature extraction, reduction, and knowledge precipitation. Specifically, the strategy of modern information storage and retrieval shall work like our brains, which are constantly overwhelmed by 5 pairs of identical tapes taken by eyes, ears, etc. 5 high fidelity sensors generate 5 pairs of high definition tapes which produce the seeing and hearing etc. in our perception. This amounts to 10 tapes recorded in a non-abridged fashion. How can we store and retrieve them when we need to? We must reduce the redundancy, enhancing the signal noise ratio, and fusing invariant features using a simple set of mathematical operations to write according to the union and read by the intersection in the higher dimensional vector space. For example, (see paper for equation) where the query must be phrased in terms of the union of imprecise or partial set of 6w's denoted by the union of lower case w's. The upper case W's are the archival storage of a primer tree. A simplified humanistic representation may be called the 6W space (who, what, where, when, why, how), also referred to as the Newspaper geometry. It seems like mapping the 6W to the 3W (World Wide Web) is becoming relatively easier. It may thus become efficient and robust by rapidly digging for knowledge through the set operations of union, writing, and intersection, reading, upon the design of 6 W query searching engine matched efficiently by the 6W vector index databases. In fact, Newspaper 6D geometry may be reduced furthermore by PCA (Principal Component Analysis) eigenvector mathematics and mapped into the 2D causality space comprised of the causes (What, How, Why) and the effects (Where, When and Who). If this hypothesis of brain strategy were true, one must then develop a 6W query language to support a 6Wordered set storage of linkage pointers in high D space. In other words, one can easily map the basic 1st Gen. Google Web, 1-D statistical PageRanking databases, to a nested 6W tree where each branch of sub-6-W is stemming from the prime 6 W tree, using a system of automated text mining assisted by syntactic semantics to discern the properties of the 6W for that query. Goehl et al. has demonstrated previously that such is doable, but one may need more tools to support the knowledge extraction and automated feature reduction. In this paper, we have set out to demonstrate lossless down sampling using the 2nd Gen wavelet transform, the so-called "1-D Cartesian lifting processing of Swelden" adopted by JPEG 2000. "The loss of statistics, if any (including PageRanking and 1-D lifting), is the loss of geometry insights," such as 2-D vector time series, video, whose 1-D lifting Cartesian product will loss the diagonal changes insights.

  8. Prediction task guided representation learning of medical codes in EHR.

    PubMed

    Cui, Liwen; Xie, Xiaolei; Shen, Zuojun

    2018-06-18

    There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.

  9. An alternative design for a sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    A new design for a Sparse Distributed Memory, called the selected-coordinate design, is described. As in the original design, there are a large number of memory locations, each of which may be activated by many different addresses (binary vectors) in a very large address space. Each memory location is defined by specifying ten selected coordinates (bit positions in the address vectors) and a set of corresponding assigned values, consisting of one bit for each selected coordinate. A memory location is activated by an address if, for all ten of the locations's selected coordinates, the corresponding bits in the address vector match the respective assigned value bits, regardless of the other bits in the address vector. Some comparative memory capacity and signal-to-noise ratio estimates for the both the new and original designs are given. A few possible hardware embodiments of the new design are described.

  10. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  11. Aspects of QCD current algebra on a null plane

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Hobbs, T. J.

    2016-09-01

    Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.

  12. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  13. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  14. Indonesian name matching using machine learning supervised approach

    NASA Astrophysics Data System (ADS)

    Alifikri, Mohamad; Arif Bijaksana, Moch.

    2018-03-01

    Most existing name matching methods are developed for English language and so they cover the characteristics of this language. Up to this moment, there is no specific one has been designed and implemented for Indonesian names. The purpose of this thesis is to develop Indonesian name matching dataset as a contribution to academic research and to propose suitable feature set by utilizing combination of context of name strings and its permute-winkler score. Machine learning classification algorithms is taken as the method for performing name matching. Based on the experiments, by using tuned Random Forest algorithm and proposed features, there is an improvement of matching performance by approximately 1.7% and it is able to reduce until 70% misclassification result of the state of the arts methods. This improving performance makes the matching system more effective and reduces the risk of misclassified matches.

  15. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    PubMed Central

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246

  16. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    PubMed

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  17. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  18. a Preliminary Work on Layout Slam for Reconstruction of Indoor Corridor Environments

    NASA Astrophysics Data System (ADS)

    Baligh Jahromi, A.; Sohn, G.; Shahbazi, M.; Kang, J.

    2017-09-01

    We propose a real time indoor corridor layout estimation method based on visual Simultaneous Localization and Mapping (SLAM). The proposed method adopts the Manhattan World Assumption at indoor spaces and uses the detected single image straight line segments and their corresponding orthogonal vanishing points to improve the feature matching scheme in the adopted visual SLAM system. Using the proposed real time indoor corridor layout estimation method, the system is able to build an online sparse map of structural corner point features. The challenges presented by abrupt camera rotation in the 3D space are successfully handled through matching vanishing directions of consecutive video frames on the Gaussian sphere. Using the single image based indoor layout features for initializing the system, permitted the proposed method to perform real time layout estimation and camera localization in indoor corridor areas. For layout structural corner points matching, we adopted features which are invariant under scale, translation, and rotation. We proposed a new feature matching cost function which considers both local and global context information. The cost function consists of a unary term, which measures pixel to pixel orientation differences of the matched corners, and a binary term, which measures the amount of angle differences between directly connected layout corner features. We have performed the experiments on real scenes at York University campus buildings and the available RAWSEEDS dataset. The incoming results depict that the proposed method robustly performs along with producing very limited position and orientation errors.

  19. Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest

    PubMed Central

    Ma, Suliang; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan

    2018-01-01

    Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods. PMID:29659548

  20. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.

    PubMed

    Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D

    2006-01-01

    This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.

  1. Sea ice type dynamics in the Arctic based on Sentinel-1 Data

    NASA Astrophysics Data System (ADS)

    Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won

    2017-04-01

    Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR imagery and more accurate automatic classification. In addition, the map of four ice types calculated using the texture features from one SAR image is propagated forward using the sea ice drift vectors. The propagated ice type is compared with ice type derived from the next image. The comparison identifies changes in ice type which occurred during drift and allows to reduce uncertainties in sea ice type calculation.

  2. Robust and efficient method for matching features in omnidirectional images

    NASA Astrophysics Data System (ADS)

    Zhu, Qinyi; Zhang, Zhijiang; Zeng, Dan

    2018-04-01

    Binary descriptors have been widely used in many real-time applications due to their efficiency. These descriptors are commonly designed for perspective images but perform poorly on omnidirectional images, which are severely distorted. To address this issue, this paper proposes tangent plane BRIEF (TPBRIEF) and adapted log polar grid-based motion statistics (ALPGMS). TPBRIEF projects keypoints to a unit sphere and applies the fixed test set in BRIEF descriptor on the tangent plane of the unit sphere. The fixed test set is then backprojected onto the original distorted images to construct the distortion invariant descriptor. TPBRIEF directly enables keypoint detecting and feature describing on original distorted images, whereas other approaches correct the distortion through image resampling, which introduces artifacts and adds time cost. With ALPGMS, omnidirectional images are divided into circular arches named adapted log polar grids. Whether a match is true or false is then determined by simply thresholding the match numbers in a grid pair where the two matched points located. Experiments show that TPBRIEF greatly improves the feature matching accuracy and ALPGMS robustly removes wrong matches. Our proposed method outperforms the state-of-the-art methods.

  3. Template match using local feature with view invariance

    NASA Astrophysics Data System (ADS)

    Lu, Cen; Zhou, Gang

    2013-10-01

    Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.

  4. Robust Point Set Matching for Partial Face Recognition.

    PubMed

    Weng, Renliang; Lu, Jiwen; Tan, Yap-Peng

    2016-03-01

    Over the past three decades, a number of face recognition methods have been proposed in computer vision, and most of them use holistic face images for person identification. In many real-world scenarios especially some unconstrained environments, human faces might be occluded by other objects, and it is difficult to obtain fully holistic face images for recognition. To address this, we propose a new partial face recognition approach to recognize persons of interest from their partial faces. Given a pair of gallery image and probe face patch, we first detect keypoints and extract their local textural features. Then, we propose a robust point set matching method to discriminatively match these two extracted local feature sets, where both the textural information and geometrical information of local features are explicitly used for matching simultaneously. Finally, the similarity of two faces is converted as the distance between these two aligned feature sets. Experimental results on four public face data sets show the effectiveness of the proposed approach.

  5. Recognition and Classification of Road Condition on the Basis of Friction Force by Using a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuhito; Katsura, Seiichiro

    A person operating a mobile robot in a remote environment receives realistic visual feedback about the condition of the road on which the robot is moving. The categorization of the road condition is necessary to evaluate the conditions for safe and comfortable driving. For this purpose, the mobile robot should be capable of recognizing and classifying the condition of the road surfaces. This paper proposes a method for recognizing the type of road surfaces on the basis of the friction between the mobile robot and the road surfaces. This friction is estimated by a disturbance observer, and a support vector machine is used to classify the surfaces. The support vector machine identifies the type of the road surface using feature vector, which is determined using the arithmetic average and variance derived from the torque values. Further, these feature vectors are mapped onto a higher dimensional space by using a kernel function. The validity of the proposed method is confirmed by experimental results.

  6. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  7. Breast Cancer Detection with Reduced Feature Set.

    PubMed

    Mert, Ahmet; Kılıç, Niyazi; Bilgili, Erdem; Akan, Aydin

    2015-01-01

    This paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%-40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity.

  8. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching

    PubMed Central

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi

    2015-01-01

    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263

  9. Users’ Manual and Validation of the Automated Grading System (AGS): Improving the Quality of Intelligence Summaries Using Feedback from an Unsupervised Model of Semantics

    DTIC Science & Technology

    2012-12-01

    trajectories in space, and are therefore very highly similar, and a cosine of 0 indicates that the two vectors are unrelated. The vector of a good summary...topic. The effectiveness of the AGS’s ability to automatically grade student assignment is completely dependent on a good match between this corpus...students to summarise “User Documents” that focused on fishing, then a good corpus would contain documents about the various types of fishing

  10. Automatic Generation of Caricatures with Multiple Expressions Using Transformative Approach

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Hung; Lai, Chien-An

    The proliferation of digital cameras has changed the way we create and share photos. Novel forms of photo composition and reproduction have surfaced in recent years. In this paper, we present an automatic caricature generation system using transformative approaches. By combing facial feature detection, image segmentation and image warping/morphing techniques, the system is able to generate stylized caricature using only one reference image. When more than one reference sample are available, the system can either choose the best fit based on shape matching, or synthesize a composite style using polymorph technique. The system can also produce multiple expressions by controlling a subset of MPEG-4 facial animation parameters (FAP). Finally, to enable flexible manipulation of the synthetic caricature, we also investigate issues such as color quantization and raster-to-vector conversion. A major strength of our method is that the synthesized caricature bears a higher degree of resemblance to the real person than traditional component-based approaches.

  11. A Coarse-to-Fine Geometric Scale-Invariant Feature Transform for Large Size High Resolution Satellite Image Registration

    PubMed Central

    Chang, Xueli; Du, Siliang; Li, Yingying; Fang, Shenghui

    2018-01-01

    Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy. PMID:29702589

  12. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  13. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  14. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  15. Multi-color space threshold segmentation and self-learning k-NN algorithm for surge test EUT status identification

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Liu, Gui-xiong

    2016-09-01

    The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm ( k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z '. The training set T z increased to T z+1 by T z ' if T z ' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.

  16. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  17. Whatever you do, don't look at the...: Evaluating guidance by an exclusionary attentional template.

    PubMed

    Beck, Valerie M; Luck, Steven J; Hollingworth, Andrew

    2018-04-01

    People can use a target template consisting of one or more features to guide attention and gaze to matching objects in a search array. But can we also use feature information to guide attention away from known irrelevant items? Some studies found a benefit from foreknowledge of a distractor feature, whereas others found a cost. Importantly, previous work has largely relied on end-of-trial manual responses; it is unclear how feature-guided avoidance might unfold as candidate objects are inspected. In the current experiments, participants were cued with a distractor feature to avoid, then performed a visual search task while eye movements were recorded. Participants initially fixated a to-be-avoided object more frequently than predicted by chance, but they also demonstrated avoidance of cue-matching objects later in the trial. When provided more time between cue stimulus and search array, participants continued to be initially captured by a cued-color item. Furthermore, avoidance of cue-matching objects later in the trial was not contingent on initial capture by a cue-matching object. These results suggest that the conflicting findings in previous negative-cue experiments may be explained by a mixture of two independent processes: initial attentional capture by memory-matching items and later avoidance of known irrelevant items. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  19. Target objects defined by a conjunction of colour and shape can be selected independently and in parallel.

    PubMed

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2017-11-01

    It is generally assumed that during search for targets defined by a feature conjunction, attention is allocated sequentially to individual objects. We tested this hypothesis by tracking the time course of attentional processing biases with the N2pc component in tasks where observers searched for two targets defined by a colour/shape conjunction. In Experiment 1, two displays presented in rapid succession (100 ms or 10 ms SOA) each contained a target and a colour-matching or shape-matching distractor on opposite sides. Target objects in both displays elicited N2pc components of similar size that overlapped in time when the SOA was 10 ms, suggesting that attention was allocated in parallel to both targets. Analogous results were found in Experiment 2, where targets and partially matching distractors were both accompanied by an object without target-matching features. Colour-matching and shape-matching distractors also elicited N2pc components, and the target N2pc was initially identical to the sum of the two distractor N2pcs, suggesting that the initial phase of attentional object selection was guided independently by feature templates for target colour and shape. Beyond 230 ms after display onset, the target N2pc became superadditive, indicating that attentional selection processes now started to be sensitive to the presence of feature conjunctions. Results show that independent attentional selection processes can be activated in parallel by two target objects in situations where these objects are defined by a feature conjunction.

  20. QWT: Retrospective and New Applications

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei

    Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.

Top