Sample records for feature-specific task set

  1. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  2. All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors.

    PubMed

    Grubert, Anna; Eimer, Martin

    2016-08-01

    To study whether top-down attentional control processes can be set simultaneously for different visual features, we employed a spatial cueing procedure to measure behavioral and electrophysiological markers of task-set contingent attentional capture during search for targets defined by 1 or 2 possible colors (one-color and two-color tasks). Search arrays were preceded by spatially nonpredictive color singleton cues. Behavioral spatial cueing effects indicative of attentional capture were elicited only by target-matching but not by distractor-color cues. However, when search displays contained 1 target-color and 1 distractor-color object among gray nontargets, N2pc components were triggered not only by target-color but also by distractor-color cues both in the one-color and two-color task, demonstrating that task-set nonmatching items attracted attention. When search displays contained 6 items in 6 different colors, so that participants had to adopt a fully feature-specific task set, the N2pc to distractor-color cues was eliminated in both tasks, indicating that nonmatching items were now successfully excluded from attentional processing. These results demonstrate that when observers adopt a feature-specific search mode, attentional task sets can be configured flexibly for multiple features within the same dimension, resulting in the rapid allocation of attention to task-set matching objects only. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. The Roles of Feature-Specific Task Set and Bottom-Up Salience in Attentional Capture: An ERP Study

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Press, Clare; Sauter, Disa

    2009-01-01

    We investigated the roles of top-down task set and bottom-up stimulus salience for feature-specific attentional capture. Spatially nonpredictive cues preceded search arrays that included a color-defined target. For target-color singleton cues, behavioral spatial cueing effects were accompanied by cue-induced N2pc components, indicative of…

  4. Contingent attentional capture across multiple feature dimensions in a temporal search task.

    PubMed

    Ito, Motohiro; Kawahara, Jun I

    2016-01-01

    The present study examined whether attention can be flexibly controlled to monitor two different feature dimensions (shape and color) in a temporal search task. Specifically, we investigated the occurrence of contingent attentional capture (i.e., interference from task-relevant distractors) and resulting set reconfiguration (i.e., enhancement of single task-relevant set). If observers can restrict searches to a specific value for each relevant feature dimension independently, the capture and reconfiguration effect should only occur when the single relevant distractor in each dimension appears. Participants identified a target letter surrounded by a non-green square or a non-square green frame. The results revealed contingent attentional capture, as target identification accuracy was lower when the distractor contained a target-defining feature than when it contained a nontarget feature. Resulting set reconfiguration was also obtained in that accuracy was superior when the current target's feature (e.g., shape) corresponded to the defining feature of the present distractor (shape) than when the current target's feature did not match the distractor's feature (color). This enhancement was not due to perceptual priming. The present study demonstrated that the principles of contingent attentional capture and resulting set reconfiguration held even when multiple target feature dimensions were monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. What top-down task sets do for us: an ERP study on the benefits of advance preparation in visual search.

    PubMed

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-12-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.

  6. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    PubMed

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  7. Information based universal feature extraction

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad; Brause, Rüdiger

    2015-02-01

    In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.

  8. The interaction of feature and space based orienting within the attention set.

    PubMed

    Lim, Ahnate; Sinnett, Scott

    2014-01-01

    The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.

  9. WND-CHARM: Multi-purpose image classification using compound image transforms

    PubMed Central

    Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.

    2008-01-01

    We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301

  10. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training

    PubMed Central

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777

  11. The interaction of feature and space based orienting within the attention set

    PubMed Central

    Lim, Ahnate; Sinnett, Scott

    2014-01-01

    The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682

  12. How to switch on and switch off semantic priming effects for natural and artifactual categories: activation processes in category memory depend on focusing specific feature dimensions.

    PubMed

    Bermeitinger, Christina; Wentura, Dirk; Frings, Christian

    2011-06-01

    "Semantic priming" refers to the phenomenon that people react faster to target words preceded by semantically related rather than semantically unrelated words. We wondered whether momentary mind sets modulate semantic priming for natural versus artifactual categories. We interspersed a category priming task with a second task that required participants to react to either the perceptual or action features of simple geometric shapes. Focusing on perceptual features enhanced semantic priming effects for natural categories, whereas focusing on action features enhanced semantic priming effects for artifactual categories. In fact, significant priming effects emerged only for those categories thought to rely on the features activated by the second task. This result suggests that (a) priming effects depend on momentary mind set and (b) features can be weighted flexibly in concept representations; it is also further evidence for sensory-functional accounts of concept and category representation.

  13. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  14. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.

    PubMed

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.

  15. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers

    PubMed Central

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829

  16. On the Automaticity of the Evaluative Priming Effect in the Valent/Non-Valent Categorization Task

    PubMed Central

    Spruyt, Adriaan; Tibboel, Helen

    2015-01-01

    It has previously been argued (a) that automatic evaluative stimulus processing is critically dependent upon feature-specific attention allocation and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In line with both claims, research conducted at our lab revealed that the evaluative priming effect replicates in the valent/non-valent categorization task. This research was criticized, however, because non-automatic, strategic processes may have contributed to the emergence of this effect. We now report the results of a replication study in which the operation of non-automatic, strategic processes was controlled for. A clear-cut evaluative priming effect emerged, thus supporting initial claims concerning feature-specific attention allocation and dimensional overlap. PMID:25803444

  17. On the automaticity of the evaluative priming effect in the valent/non-valent categorization task.

    PubMed

    Spruyt, Adriaan; Tibboel, Helen

    2015-01-01

    It has previously been argued (a) that automatic evaluative stimulus processing is critically dependent upon feature-specific attention allocation and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In line with both claims, research conducted at our lab revealed that the evaluative priming effect replicates in the valent/non-valent categorization task. This research was criticized, however, because non-automatic, strategic processes may have contributed to the emergence of this effect. We now report the results of a replication study in which the operation of non-automatic, strategic processes was controlled for. A clear-cut evaluative priming effect emerged, thus supporting initial claims concerning feature-specific attention allocation and dimensional overlap.

  18. The Emergent Executive: A Dynamic Field Theory of the Development of Executive Function

    PubMed Central

    Buss, Aaron T.; Spencer, John P.

    2015-01-01

    A dynamic neural field (DNF) model is presented which provides a process-based account of behavior and developmental change in a key task used to probe the early development of executive function—the Dimensional Change Card Sort (DCCS) task. In the DCCS, children must flexibly switch from sorting cards either by shape or color to sorting by the other dimension. Typically, 3-year-olds, but not 4-year-olds, lack the flexibility to do so and perseverate on the first set of rules when instructed to switch. In the DNF model, rule-use and behavioral flexibility come about through a form of dimensional attention which modulates activity within different cortical fields tuned to specific feature dimensions. In particular, we capture developmental change by increasing the strength of excitatory and inhibitory neural interactions in the dimensional attention system as well as refining the connectivity between this system and the feature-specific cortical fields. Note that although this enables the model to effectively switch tasks, the dimensional attention system does not ‘know’ the details of task-specific performance. Rather, correct performance emerges as a property of system-wide neural interactions. We show how this captures children's behavior in quantitative detail across 12 versions of the DCCS task. Moreover, we successfully test a set of novel predictions with 3-year-old children from a version of the task not explained by other theories. PMID:24818836

  19. An Italian battery for the assessment of semantic memory disorders.

    PubMed

    Catricalà, Eleonora; Della Rosa, Pasquale A; Ginex, Valeria; Mussetti, Zoe; Plebani, Valentina; Cappa, Stefano F

    2013-06-01

    We report the construction and standardization of a new comprehensive battery of tests for the assessment of semantic memory disorders. The battery is constructed on a common set of 48 stimuli, belonging to both living and non-living categories, rigidly controlled for several confounding variables, and is based on an empirically derived corpus of semantic features. It includes six tasks, in order to assess semantic memory through different modalities of input and output: two naming tasks, one with colored pictures and the other in response to an oral description, a word-picture matching task, a picture sorting task, a free generation of features task and a sentence verification task. Normative data on 106 Italian subjects pooled across homogenous subgroups for age, sex and education are reported. The new battery allows an in-depth investigation of category-specific disorders and of progressive semantic memory deficits at features level, overcoming some of the limitations of existing tests.

  20. Do different perceptual task sets modulate electrophysiological correlates of masked visuomotor priming? Attention to shape and color put to the test.

    PubMed

    Zovko, Monika; Kiefer, Markus

    2013-02-01

    According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.

  1. Single-Word Recognition Need Not Depend on Single-Word Features: Narrative Coherence Counteracts Effects of Single-Word Features that Lexical Decision Emphasizes.

    PubMed

    Teng, Dan W; Wallot, Sebastian; Kelty-Stephen, Damian G

    2016-12-01

    Research on reading comprehension of connected text emphasizes reliance on single-word features that organize a stable, mental lexicon of words and that speed or slow the recognition of each new word. However, the time needed to recognize a word might not actually be as fixed as previous research indicates, and the stability of the mental lexicon may change with task demands. The present study explores the effects of narrative coherence in self-paced story reading to single-word feature effects in lexical decision. We presented single strings of letters to 24 participants, in both lexical decision and self-paced story reading. Both tasks included the same words composing a set of adjective-noun pairs. Reading times revealed that the tasks, and the order of the presentation of the tasks, changed and/or eliminated familiar effects of single-word features. Specifically, experiencing the lexical-decision task first gradually emphasized the role of single-word features, and experiencing the self-paced story-reading task afterwards counteracted the effect of single-word features. We discuss the implications that task-dependence and narrative coherence might have for the organization of the mental lexicon. Future work will need to consider what architectures suit the apparent flexibility with which task can accentuate or diminish effects of single-word features.

  2. Decoding task-based attentional modulation during face categorization.

    PubMed

    Chiu, Yu-Chin; Esterman, Michael; Han, Yuefeng; Rosen, Heather; Yantis, Steven

    2011-05-01

    Attention is a neurocognitive mechanism that selects task-relevant sensory or mnemonic information to achieve current behavioral goals. Attentional modulation of cortical activity has been observed when attention is directed to specific locations, features, or objects. However, little is known about how high-level categorization task set modulates perceptual representations. In the current study, observers categorized faces by gender (male vs. female) or race (Asian vs. White). Each face was perceptually ambiguous in both dimensions, such that categorization of one dimension demanded selective attention to task-relevant information within the face. We used multivoxel pattern classification to show that task-specific modulations evoke reliably distinct spatial patterns of activity within three face-selective cortical regions (right fusiform face area and bilateral occipital face areas). This result suggests that patterns of activity in these regions reflect not only stimulus-specific (i.e., faces vs. houses) responses but also task-specific (i.e., race vs. gender) attentional modulation. Furthermore, exploratory whole-brain multivoxel pattern classification (using a searchlight procedure) revealed a network of dorsal fronto-parietal regions (left middle frontal gyrus and left inferior and superior parietal lobule) that also exhibit distinct patterns for the two task sets, suggesting that these regions may represent abstract goals during high-level categorization tasks.

  3. The approach to engineering tasks composition on knowledge portals

    NASA Astrophysics Data System (ADS)

    Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya

    2017-08-01

    The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.

  4. Mental sets in conduct problem youth with psychopathic features: entity versus incremental theories of intelligence.

    PubMed

    Salekin, Randall T; Lester, Whitney S; Sellers, Mary-Kate

    2012-08-01

    The purpose of the current study was to examine the effect of a motivational intervention on conduct problem youth with psychopathic features. Specifically, the current study examined conduct problem youths' mental set (or theory) regarding intelligence (entity vs. incremental) upon task performance. We assessed 36 juvenile offenders with psychopathic features and tested whether providing them with two different messages regarding intelligence would affect their functioning on a task related to academic performance. The study employed a MANOVA design with two motivational conditions and three outcomes including fluency, flexibility, and originality. Results showed that youth with psychopathic features who were given a message that intelligence grows over time, were more fluent and flexible than youth who were informed that intelligence is static. There were no significant differences between the groups in terms of originality. The implications of these findings are discussed including the possible benefits of interventions for adolescent offenders with conduct problems and psychopathic features. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  5. Automatic Identification of Messages Related to Adverse Drug Reactions from Online User Reviews using Feature-based Classification.

    PubMed

    Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie

    2014-11-01

    User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.

  6. Learner, Patient, and Supervisor Features Are Associated With Different Types of Cognitive Load During Procedural Skills Training: Implications for Teaching and Instructional Design.

    PubMed

    Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S

    2017-11-01

    Cognitive load theory, focusing on limits of the working memory, is relevant to medical education; however, factors associated with cognitive load during procedural skills training are not well characterized. The authors sought to determine how features of learners, patients/tasks, settings, and supervisors were associated with three types of cognitive load among learners performing a specific procedure, colonoscopy, to identify implications for procedural teaching. Data were collected through an electronically administered survey sent to 1,061 U.S. gastroenterology fellows during the 2014-2015 academic year; 477 (45.0%) participated. Participants completed the survey immediately following a colonoscopy. Using multivariable linear regression analyses, the authors identified sets of features associated with intrinsic, extraneous, and germane loads. Features associated with intrinsic load included learners (prior experience and year in training negatively associated, fatigue positively associated) and patient/tasks (procedural complexity positively associated, better patient tolerance negatively associated). Features associated with extraneous load included learners (fatigue positively associated), setting (queue order positively associated), and supervisors (supervisor engagement and confidence negatively associated). Only one feature, supervisor engagement, was (positively) associated with germane load. These data support practical recommendations for teaching procedural skills through the lens of cognitive load theory. To optimize intrinsic load, level of experience and competence of learners should be balanced with procedural complexity; part-task approaches and scaffolding may be beneficial. To reduce extraneous load, teachers should remain engaged, and factors within the procedural setting that may interfere with learning should be minimized. To optimize germane load, teachers should remain engaged.

  7. The precedence of topological change over top-down attention in masked priming.

    PubMed

    Huang, Yan; Zhou, Tiangang; Chen, Lin

    2011-10-14

    Recent data indicate that unconscious masked priming can be mediated by top-down attentional set, so that priming effects of congruence between a masked prime and a subsequent probe vanish when the congruence ceases to be task relevant. Here, we show that, while the attentional set determines masked priming for color and orientation features, it does not fully determine priming based on the topological properties of stimuli. Specifically, across a series of different choice-RT tasks, we find that topological congruence between prime and probe stimuli affects RTs for the probes even when other stimulus information (e.g., color or orientation) is required for the response, whereas congruence priming effects of color or orientation occur only when these features are response relevant. Our results suggest that changes in topological properties take precedence over task-directed top-down attentional modulation in masked priming.

  8. 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets.

    PubMed

    Jiang, Jun; Wu, Yao; Huang, Meiyan; Yang, Wei; Chen, Wufan; Feng, Qianjin

    2013-01-01

    Brain tumor segmentation is a clinical requirement for brain tumor diagnosis and radiotherapy planning. Automating this process is a challenging task due to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this paper, we propose a method to construct a graph by learning the population- and patient-specific feature sets of multimodal magnetic resonance (MR) images and by utilizing the graph-cut to achieve a final segmentation. The probabilities of each pixel that belongs to the foreground (tumor) and the background are estimated by global and custom classifiers that are trained through learning population- and patient-specific feature sets, respectively. The proposed method is evaluated using 23 glioma image sequences, and the segmentation results are compared with other approaches. The encouraging evaluation results obtained, i.e., DSC (84.5%), Jaccard (74.1%), sensitivity (87.2%), and specificity (83.1%), show that the proposed method can effectively make use of both population- and patient-specific information. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Computer-Mediated Communication in English for Specific Purposes: A Case Study with Computer Science Students at Universiti Teknologi Malaysia

    ERIC Educational Resources Information Center

    Shamsudin, Sarimah; Nesi, Hilary

    2006-01-01

    This paper will describe an ESP approach to the design and implementation of computer-mediated communication (CMC) tasks for computer science students at Universiti Teknologi Malaysia, and discuss the effectiveness of the chat feature of Windows NetMeeting as a tool for developing specified language skills. CMC tasks were set within a programme of…

  10. Richer concepts are better remembered: number of features effects in free recall

    PubMed Central

    Hargreaves, Ian S.; Pexman, Penny M.; Johnson, Jeremy C.; Zdrazilova, Lenka

    2012-01-01

    Many models of memory build in a term for encoding variability, the observation that there can be variability in the richness or extensiveness of processing at encoding, and that this variability has consequences for retrieval. In four experiments, we tested the expectation that encoding variability could be driven by the properties of the to-be-remembered item. Specifically, that concepts associated with more semantic features would be better remembered than concepts associated with fewer semantic features. Using feature listing norms we selected sets of items for which people tend to list higher numbers of features (high NoF) and items for which people tend to list lower numbers of features (low NoF). Results showed more accurate free recall for high NoF concepts than for low NoF concepts in expected memory tasks (Experiments 1–3) and also in an unexpected memory task (Experiment 4). This effect was not the result of associative chaining between study items (Experiment 3), and can be attributed to the amount of item-specific processing that occurs at study (Experiment 4). These results provide evidence that stimulus-specific differences in processing at encoding have consequences for explicit memory retrieval. PMID:22514526

  11. Task-specific image partitioning.

    PubMed

    Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D

    2013-02-01

    Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.

  12. Task representation in individual and joint settings

    PubMed Central

    Prinz, Wolfgang

    2015-01-01

    This paper outlines a framework for task representation and discusses applications to interference tasks in individual and joint settings. The framework is derived from the Theory of Event Coding (TEC). This theory regards task sets as transient assemblies of event codes in which stimulus and response codes interact and shape each other in particular ways. On the one hand, stimulus and response codes compete with each other within their respective subsets (horizontal interactions). On the other hand, stimulus and response code cooperate with each other (vertical interactions). Code interactions instantiating competition and cooperation apply to two time scales: on-line performance (i.e., doing the task) and off-line implementation (i.e., setting the task). Interference arises when stimulus and response codes overlap in features that are irrelevant for stimulus identification, but relevant for response selection. To resolve this dilemma, the feature profiles of event codes may become restructured in various ways. The framework is applied to three kinds of interference paradigms. Special emphasis is given to joint settings where tasks are shared between two participants. Major conclusions derived from these applications include: (1) Response competition is the chief driver of interference. Likewise, different modes of response competition give rise to different patterns of interference; (2) The type of features in which stimulus and response codes overlap is also a crucial factor. Different types of such features give likewise rise to different patterns of interference; and (3) Task sets for joint settings conflate intraindividual conflicts between responses (what), with interindividual conflicts between responding agents (whom). Features of response codes may, therefore, not only address responses, but also responding agents (both physically and socially). PMID:26029085

  13. Visual affective classification by combining visual and text features.

    PubMed

    Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming

    2017-01-01

    Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.

  14. Visual affective classification by combining visual and text features

    PubMed Central

    Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming

    2017-01-01

    Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566

  15. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.

    PubMed

    Pasolli, Edoardo; Truong, Duy Tin; Malik, Faizan; Waldron, Levi; Segata, Nicola

    2016-07-01

    Shotgun metagenomic analysis of the human associated microbiome provides a rich set of microbial features for prediction and biomarker discovery in the context of human diseases and health conditions. However, the use of such high-resolution microbial features presents new challenges, and validated computational tools for learning tasks are lacking. Moreover, classification rules have scarcely been validated in independent studies, posing questions about the generality and generalization of disease-predictive models across cohorts. In this paper, we comprehensively assess approaches to metagenomics-based prediction tasks and for quantitative assessment of the strength of potential microbiome-phenotype associations. We develop a computational framework for prediction tasks using quantitative microbiome profiles, including species-level relative abundances and presence of strain-specific markers. A comprehensive meta-analysis, with particular emphasis on generalization across cohorts, was performed in a collection of 2424 publicly available metagenomic samples from eight large-scale studies. Cross-validation revealed good disease-prediction capabilities, which were in general improved by feature selection and use of strain-specific markers instead of species-level taxonomic abundance. In cross-study analysis, models transferred between studies were in some cases less accurate than models tested by within-study cross-validation. Interestingly, the addition of healthy (control) samples from other studies to training sets improved disease prediction capabilities. Some microbial species (most notably Streptococcus anginosus) seem to characterize general dysbiotic states of the microbiome rather than connections with a specific disease. Our results in modelling features of the "healthy" microbiome can be considered a first step toward defining general microbial dysbiosis. The software framework, microbiome profiles, and metadata for thousands of samples are publicly available at http://segatalab.cibio.unitn.it/tools/metaml.

  16. Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.

    PubMed

    Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie

    2016-12-01

    An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.

  17. Activation of context-specific attentional control sets by exogenous allocation of visual attention to the context?

    PubMed

    Gottschalk, Caroline; Fischer, Rico

    2017-03-01

    Different contexts with high versus low conflict frequencies require a specific attentional control involvement, i.e., strong attentional control for high conflict contexts and less attentional control for low conflict contexts. While it is assumed that the corresponding control set can be activated upon stimulus presentation at the respective context (e.g., upper versus lower location), the actual features that trigger control set activation are to date not described. Here, we ask whether the perceptual priming of the location context by an abrupt onset of irrelevant stimuli is sufficient in activating the context-specific attentional control set. For example, the mere onset of a stimulus might disambiguate the relevant location context and thus, serve as a low-level perceptual trigger mechanism that activates the context-specific attentional control set. In Experiment 1 and 2, the onsets of task-relevant and task-irrelevant (distracter) stimuli were manipulated at each context location to compete for triggering the activation of the appropriate control set. In Experiment 3, a prior training session enabled distracter stimuli to establish contextual control associations of their own before entering the test session. Results consistently showed that the mere onset of a task-irrelevant stimulus (with or without a context-control association) is not sufficient to activate the context-associated attentional control set by disambiguating the relevant context location. Instead, we argue that the identification of the relevant stimulus at the respective context is a precondition to trigger the activation of the context-associated attentional control set.

  18. Multiplicative Multitask Feature Learning

    PubMed Central

    Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu

    2016-01-01

    We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735

  19. Is performance in task-cuing experiments mediated by task set selection or associative compound retrieval?

    PubMed

    Forrest, Charlotte L D; Monsell, Stephen; McLaren, Ian P L

    2014-07-01

    Task-cuing experiments are usually intended to explore control of task set. But when small stimulus sets are used, they plausibly afford learning of the response associated with a combination of cue and stimulus, without reference to tasks. In 3 experiments we presented the typical trials of a task-cuing experiment: a cue (colored shape) followed, after a short or long interval, by a digit to which 1 of 2 responses was required. In a tasks condition, participants were (as usual) directed to interpret the cue as an instruction to perform either an odd/even or a high/low classification task. In a cue + stimulus → response (CSR) condition, to induce learning of mappings between cue-stimulus compound and response, participants were, in Experiment 1, given standard task instructions and additionally encouraged to learn the CSR mappings; in Experiment 2, informed of all the CSR mappings and asked to learn them, without standard task instructions; in Experiment 3, required to learn the mappings by trial and error. The effects of a task switch, response congruence, preparation, and transfer to a new set of stimuli differed substantially between the conditions in ways indicative of classification according to task rules in the tasks condition, and retrieval of responses specific to stimulus-cue combinations in the CSR conditions. Qualitative features of the latter could be captured by an associative learning network. Hence associatively based compound retrieval can serve as the basis for performance with a small stimulus set. But when organization by tasks is apparent, control via task set selection is the natural and efficient strategy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Deep learning based classification of breast tumors with shear-wave elastography.

    PubMed

    Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong

    2016-12-01

    This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse.

    PubMed

    Garrard, Peter; Rentoumi, Vassiliki; Gesierich, Benno; Miller, Bruce; Gorno-Tempini, Maria Luisa

    2014-06-01

    Advances in automatic text classification have been necessitated by the rapid increase in the availability of digital documents. Machine learning (ML) algorithms can 'learn' from data: for instance a ML system can be trained on a set of features derived from written texts belonging to known categories, and learn to distinguish between them. Such a trained system can then be used to classify unseen texts. In this paper, we explore the potential of the technique to classify transcribed speech samples along clinical dimensions, using vocabulary data alone. We report the accuracy with which two related ML algorithms [naive Bayes Gaussian (NBG) and naive Bayes multinomial (NBM)] categorized picture descriptions produced by: 32 semantic dementia (SD) patients versus 10 healthy, age-matched controls; and SD patients with left- (n = 21) versus right-predominant (n = 11) patterns of temporal lobe atrophy. We used information gain (IG) to identify the vocabulary features that were most informative to each of these two distinctions. In the SD versus control classification task, both algorithms achieved accuracies of greater than 90%. In the right- versus left-temporal lobe predominant classification, NBM achieved a high level of accuracy (88%), but this was achieved by both NBM and NBG when the features used in the training set were restricted to those with high values of IG. The most informative features for the patient versus control task were low frequency content words, generic terms and components of metanarrative statements. For the right versus left task the number of informative lexical features was too small to support any specific inferences. An enriched feature set, including values derived from Quantitative Production Analysis (QPA) may shed further light on this little understood distinction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  3. Inhibition, interference, and conflict in task switching.

    PubMed

    Costa, Russell E; Friedrich, Frances J

    2012-12-01

    The role of inhibition in the task-switching process has received increased empirical and theoretical attention in the literature on cognitive control. Many accounts have suggested that inhibition occurs when a conflict must be resolved-for example, when a target stimulus contains features of more than one task. In the two experiments reported here, we used variants of backward inhibition, or N - 2 repetition, designs to examine (1) whether inhibition occurs in the absence of conflict at the stimulus or response level, (2) when in the task-switching process such inhibition may occur, and (3) the potential consequences of inhibition. In Experiment 1, we demonstrate that neither stimulus- nor response-level conflict is necessary for inhibition to occur, while the results of Experiment 2 suggest that inhibition may be associated with a reduction of proactive interference (PI) from a previously performed task. Evidence of inhibition and the reduction of PI both occurred at the task-set level. However, inhibition of specific stimulus values can also occur, but this is clearly separable from task-set inhibition. Both experiments also provided evidence that task-set inhibition can be applied at the time of the new task cue, as opposed to at the onset of the target or at the response stage of the trial. Taken together, the results from these experiments provide insight into when and where in the task-switching process inhibition may occur, as well as into the potential functional benefits that inhibition of task sets may provide.

  4. A framework for feature extraction from hospital medical data with applications in risk prediction.

    PubMed

    Tran, Truyen; Luo, Wei; Phung, Dinh; Gupta, Sunil; Rana, Santu; Kennedy, Richard Lee; Larkins, Ann; Venkatesh, Svetha

    2014-12-30

    Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema. The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines generated from the Elixhauser comorbidities. Hospital medical records was transformed to event sequences, to which filters were applied to extract feature sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts defined on non-overlapping data-collection periods. For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records, outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings (5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD-baseline: 0.60 (95% CI: 0.57, 0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes-baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69); mental disorders-baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia-baseline: 0.61 (0.59, 0.63), auto-extracted: 0.70 (0.67, 0.72). The advantages of auto-extracted standard features from complex medical records, in a disease and task agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons. Such feature sets have potential to form the foundation of complex automated analytic tasks.

  5. Specific features of goal setting in road traffic safety

    NASA Astrophysics Data System (ADS)

    Kolesov, V. I.; Danilov, O. F.; Petrov, A. I.

    2017-10-01

    Road traffic safety (RTS) management is inherently a branch of cybernetics and therefore requires clear formalization of the task. The paper aims at identification of the specific features of goal setting in RTS management under the system approach. The paper presents the results of cybernetic modeling of the cause-to-effect mechanism of a road traffic accident (RTA); in here, the mechanism itself is viewed as a complex system. A designed management goal function is focused on minimizing the difficulty in achieving the target goal. Optimization of the target goal has been performed using the Lagrange principle. The created working algorithms have passed the soft testing. The key role of the obtained solution in the tactical and strategic RTS management is considered. The dynamics of the management effectiveness indicator has been analyzed based on the ten-year statistics for Russia.

  6. Challenges in discriminating profanity from hate speech

    NASA Astrophysics Data System (ADS)

    Malmasi, Shervin; Zampieri, Marcos

    2018-03-01

    In this study, we approach the problem of distinguishing general profanity from hate speech in social media, something which has not been widely considered. Using a new dataset annotated specifically for this task, we employ supervised classification along with a set of features that includes ?-grams, skip-grams and clustering-based word representations. We apply approaches based on single classifiers as well as more advanced ensemble classifiers and stacked generalisation, achieving the best result of ? accuracy for this 3-class classification task. Analysis of the results reveals that discriminating hate speech and profanity is not a simple task, which may require features that capture a deeper understanding of the text not always possible with surface ?-grams. The variability of gold labels in the annotated data, due to differences in the subjective adjudications of the annotators, is also an issue. Other directions for future work are discussed.

  7. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  8. Semantic memory: a feature-based analysis and new norms for Italian.

    PubMed

    Montefinese, Maria; Ambrosini, Ettore; Fairfield, Beth; Mammarella, Nicola

    2013-06-01

    Semantic norms for properties produced by native speakers are valuable tools for researchers interested in the structure of semantic memory and in category-specific semantic deficits in individuals following brain damage. The aims of this study were threefold. First, we sought to extend existing semantic norms by adopting an empirical approach to category (Exp. 1) and concept (Exp. 2) selection, in order to obtain a more representative set of semantic memory features. Second, we extensively outlined a new set of semantic production norms collected from Italian native speakers for 120 artifactual and natural basic-level concepts, using numerous measures and statistics following a feature-listing task (Exp. 3b). Finally, we aimed to create a new publicly accessible database, since only a few existing databases are publicly available online.

  9. A dimension reduction strategy for improving the efficiency of computer-aided detection for CT colonography

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong

    2013-02-01

    Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.

  10. Radial sets: interactive visual analysis of large overlapping sets.

    PubMed

    Alsallakh, Bilal; Aigner, Wolfgang; Miksch, Silvia; Hauser, Helwig

    2013-12-01

    In many applications, data tables contain multi-valued attributes that often store the memberships of the table entities to multiple sets such as which languages a person masters, which skills an applicant documents, or which features a product comes with. With a growing number of entities, the resulting element-set membership matrix becomes very rich of information about how these sets overlap. Many analysis tasks targeted at set-typed data are concerned with these overlaps as salient features of such data. This paper presents Radial Sets, a novel visual technique to analyze set memberships for a large number of elements. Our technique uses frequency-based representations to enable quickly finding and analyzing different kinds of overlaps between the sets, and relating these overlaps to other attributes of the table entities. Furthermore, it enables various interactions to select elements of interest, find out if they are over-represented in specific sets or overlaps, and if they exhibit a different distribution for a specific attribute compared to the rest of the elements. These interactions allow formulating highly-expressive visual queries on the elements in terms of their set memberships and attribute values. As we demonstrate via two usage scenarios, Radial Sets enable revealing and analyzing a multitude of overlapping patterns between large sets, beyond the limits of state-of-the-art techniques.

  11. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    PubMed

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  12. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  13. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.

    PubMed

    Rios, Anthony; Kavuluru, Ramakanth

    2017-11-01

    The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task. Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are on the ordinal scale. Specifically, we present our entries (methods and results) in the N-GRID shared task in predicting research domain criteria (RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) from psychiatric notes. We propose a novel convolutional neural network (CNN) model designed to handle ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal loss function, a CNN, and conventional feature engineering (wide features) into a single model which is learned end-to-end. Given interpretability is an important concern with nonlinear models, we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to identify important words that lead to instance specific predictions. Our best model entered into the shared task placed third among 24 teams and scored a macro mean absolute error (MMAE) based normalized score (100·(1-MMAE)) of 83.86. Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with the winning shared task entry. Applying LIME to model predictions, we demonstrate the feasibility of instance specific prediction interpretation by identifying words that led to a particular decision. In this paper, we present a method that successfully uses wide features and an ordinal loss function applied to convolutional neural networks for ordinal text classification specifically in predicting psychiatric symptom severity scores. Our approach leads to excellent performance on the N-GRID shared task and is also amenable to interpretability using existing model-agnostic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. MUSIC-Expected maximization gaussian mixture methodology for clustering and detection of task-related neuronal firing rates.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2017-01-15

    Researchers often rely on simple methods to identify involvement of neurons in a particular motor task. The historical approach has been to inspect large groups of neurons and subjectively separate neurons into groups based on the expertise of the investigator. In cases where neuron populations are small it is reasonable to inspect these neuronal recordings and their firing rates carefully to avoid data omissions. In this paper, a new methodology is presented for automatic objective classification of neurons recorded in association with behavioral tasks into groups. By identifying characteristics of neurons in a particular group, the investigator can then identify functional classes of neurons based on their relationship to the task. The methodology is based on integration of a multiple signal classification (MUSIC) algorithm to extract relevant features from the firing rate and an expectation-maximization Gaussian mixture algorithm (EM-GMM) to cluster the extracted features. The methodology is capable of identifying and clustering similar firing rate profiles automatically based on specific signal features. An empirical wavelet transform (EWT) was used to validate the features found in the MUSIC pseudospectrum and the resulting signal features captured by the methodology. Additionally, this methodology was used to inspect behavioral elements of neurons to physiologically validate the model. This methodology was tested using a set of data collected from awake behaving non-human primates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Task probability and report of feature information: what you know about what you 'see' depends on what you expect to need.

    PubMed

    Pilling, Michael; Gellatly, Angus

    2013-07-01

    We investigated the influence of dimensional set on report of object feature information using an immediate memory probe task. Participants viewed displays containing up to 36 coloured geometric shapes which were presented for several hundred milliseconds before one item was abruptly occluded by a probe. A cue presented simultaneously with the probe instructed participants to report either about the colour or shape of the probe item. A dimensional set towards the colour or shape of the presented items was induced by manipulating task probability - the relative probability with which the two feature dimensions required report. This was done across two participant groups: One group was given trials where there was a higher report probability of colour, the other a higher report probability of shape. Two experiments showed that features were reported most accurately when they were of high task probability, though in both cases the effect was largely driven by the colour dimension. Importantly the task probability effect did not interact with display set size. This is interpreted as tentative evidence that this manipulation influences feature processing in a global manner and at a stage prior to visual short term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Comparing supervised learning techniques on the task of physical activity recognition.

    PubMed

    Dalton, A; OLaighin, G

    2013-01-01

    The objective of this study was to compare the performance of base-level and meta-level classifiers on the task of physical activity recognition. Five wireless kinematic sensors were attached to each subject (n = 25) while they completed a range of basic physical activities in a controlled laboratory setting. Subjects were then asked to carry out similar self-annotated physical activities in a random order and in an unsupervised environment. A combination of time-domain and frequency-domain features were extracted from the sensor data including the first four central moments, zero-crossing rate, average magnitude, sensor cross-correlation, sensor auto-correlation, spectral entropy and dominant frequency components. A reduced feature set was generated using a wrapper subset evaluation technique with a linear forward search and this feature set was employed for classifier comparison. The meta-level classifier AdaBoostM1 with C4.5 Graft as its base-level classifier achieved an overall accuracy of 95%. Equal sized datasets of subject independent data and subject dependent data were used to train this classifier and high recognition rates could be achieved without the need for user specific training. Furthermore, it was found that an accuracy of 88% could be achieved using data from the ankle and wrist sensors only.

  17. Cross-Modal Retrieval With CNN Visual Features: A New Baseline.

    PubMed

    Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng

    2017-02-01

    Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.

  18. Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification

    PubMed Central

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-01-01

    Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605

  19. Attention please: evaluative priming effects in a valent/non-valent categorisation task (reply to Werner & Rothermund, 2013).

    PubMed

    Spruyt, Adriaan

    2014-04-01

    It has previously been argued (a) that automatic evaluative stimulus processing is dependent upon feature-specific attention allocation (FSAA) and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In opposition to these claims, Werner and Rothermund (2013) recently reported that they were unable to replicate the evaluative priming effect in a valent/non-valent categorisation task. In this manuscript, I report the results of a conceptual replication of the studies by Werner and Rothermund (2013). A clear-cut evaluative priming effect was found, thus supporting the initial claims about FSAA and dimensional overlap. An explanation for these divergent findings is discussed.

  20. Non-negative Matrix Factorization and Co-clustering: A Promising Tool for Multi-tasks Bearing Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Shen, Fei; Chen, Chao; Yan, Ruqiang

    2017-05-01

    Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.

  1. A comparative study for chest radiograph image retrieval using binary texture and deep learning classification.

    PubMed

    Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit

    2015-08-01

    In this work various approaches are investigated for X-ray image retrieval and specifically chest pathology retrieval. Given a query image taken from a data set of 443 images, the objective is to rank images according to similarity. Different features, including binary features, texture features, and deep learning (CNN) features are examined. In addition, two approaches are investigated for the retrieval task. One approach is based on the distance of image descriptors using the above features (hereon termed the "descriptor"-based approach); the second approach ("classification"-based approach) is based on a probability descriptor, generated by a pair-wise classification of each two classes (pathologies) and their decision values using an SVM classifier. Best results are achieved using deep learning features in a classification scheme.

  2. Task set induces dynamic reallocation of resources in visual short-term memory.

    PubMed

    Sheremata, Summer L; Shomstein, Sarah

    2017-08-01

    Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.

  3. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2012-10-01

    The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.

  4. A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF)

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng

    2005-04-01

    Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.

  5. Preparatory neural activity predicts performance on a conflict task.

    PubMed

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  6. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  7. Losing face: impaired discrimination of featural and configural information in the mouth region of an inverted face.

    PubMed

    Tanaka, James W; Kaiser, Martha D; Hagen, Simen; Pierce, Lara J

    2014-05-01

    Given that all faces share the same set of features-two eyes, a nose, and a mouth-that are arranged in similar configuration, recognition of a specific face must depend on our ability to discern subtle differences in its featural and configural properties. An enduring question in the face-processing literature is whether featural or configural information plays a larger role in the recognition process. To address this question, the face dimensions task was designed, in which the featural and configural properties in the upper (eye) and lower (mouth) regions of a face were parametrically and independently manipulated. In a same-different task, two faces were sequentially presented and tested in their upright or in their inverted orientation. Inversion disrupted the perception of featural size (Exp. 1), featural shape (Exp. 2), and configural changes in the mouth region, but it had relatively little effect on the discrimination of featural size and shape and configural differences in the eye region. Inversion had little effect on the perception of information in the top and bottom halves of houses (Exp. 3), suggesting that the lower-half impairment was specific to faces. Spatial cueing to the mouth region eliminated the inversion effect (Exp. 4), suggesting that participants have a bias to attend to the eye region of an inverted face. The collective findings from these experiments suggest that inversion does not differentially impair featural or configural face perceptions, but rather impairs the perception of information in the mouth region of the face.

  8. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick; Kriegeskorte, Nikolaus

    2017-02-01

    Studies of the primate visual system have begun to test a wide range of complex computational object-vision models. Realistic models have many parameters, which in practice cannot be fitted using the limited amounts of brain-activity data typically available. Task performance optimization (e.g. using backpropagation to train neural networks) provides major constraints for fitting parameters and discovering nonlinear representational features appropriate for the task (e.g. object classification). Model representations can be compared to brain representations in terms of the representational dissimilarities they predict for an image set. This method, called representational similarity analysis (RSA), enables us to test the representational feature space as is (fixed RSA) or to fit a linear transformation that mixes the nonlinear model features so as to best explain a cortical area's representational space (mixed RSA). Like voxel/population-receptive-field modelling, mixed RSA uses a training set (different stimuli) to fit one weight per model feature and response channel (voxels here), so as to best predict the response profile across images for each response channel. We analysed response patterns elicited by natural images, which were measured with functional magnetic resonance imaging (fMRI). We found that early visual areas were best accounted for by shallow models, such as a Gabor wavelet pyramid (GWP). The GWP model performed similarly with and without mixing, suggesting that the original features already approximated the representational space, obviating the need for mixing. However, a higher ventral-stream visual representation (lateral occipital region) was best explained by the higher layers of a deep convolutional network and mixing of its feature set was essential for this model to explain the representation. We suspect that mixing was essential because the convolutional network had been trained to discriminate a set of 1000 categories, whose frequencies in the training set did not match their frequencies in natural experience or their behavioural importance. The latter factors might determine the representational prominence of semantic dimensions in higher-level ventral-stream areas. Our results demonstrate the benefits of testing both the specific representational hypothesis expressed by a model's original feature space and the hypothesis space generated by linear transformations of that feature space.

  9. Incidental Learning of S-R Contingencies in the Masked Prime Task

    ERIC Educational Resources Information Center

    Schlaghecken, Friederike; Blagrove, Elisabeth; Maylor, Elizabeth A.

    2007-01-01

    Subliminal motor priming effects in the masked prime paradigm can only be obtained when primes are part of the task set. In 2 experiments, the authors investigated whether the relevant task set feature needs to be explicitly instructed or could be extracted automatically in an incidental learning paradigm. Primes and targets were symmetrical…

  10. The neuropsychology of the schizo-obsessive subtype of schizophrenia: a new analysis.

    PubMed

    Patel, D D; Laws, K R; Padhi, A; Farrow, J M; Mukhopadhaya, K; Krishnaiah, R; Fineberg, N A

    2010-06-01

    Interest in the neuro-cognitive profile of patients with schizophrenia and co-morbid obsessive compulsive disorder (schizo-OCD) is rising in response to reports of high co-morbidity rates. Whereas schizophrenia has been associated with global impairment in a wide range of neuro-cognitive domains, OCD is associated with specific deficits featuring impaired performance on tasks of motor and cognitive inhibition involving frontostriatal neuro-circuitry. We compared cognitive function using the CANTAB battery in patients with schizo-OCD (n=12) and a schizophrenia group without OCD symptoms (n=16). The groups were matched for IQ, gender, age, medication, and duration of illness. The schizo-OCD patients made significantly more errors on a task of attentional set-shifting (ID-ED set-shift task). By contrast, no significant differences emerged on the Stockings of Cambridge task, the Cambridge Gamble Task or the Affective Go/NoGo tasks. No correlation emerged between ID-ED performance and severity of schizophrenia, OCD or depressive symptoms, consistent with neurocognitive impairment holding trait rather than state-marker status. Schizo-obsessives also exhibited a trend toward more motor tics emphasizing a neurological contribution to the disorder.ConclusionOur findings reveal a more severe attentional set-shifting deficit and neurological abnormality that may be fundamental to the neuro-cognitive profile of schizo-OCD. The clinical implications of these impairments merit further exploration in larger studies.

  11. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    PubMed

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.

  12. Identifying a "default" visual search mode with operant conditioning.

    PubMed

    Kawahara, Jun-ichiro

    2010-09-01

    The presence of a singleton in a task-irrelevant domain can impair visual search. This impairment, known as the attentional capture depends on the set of participants. When narrowly searching for a specific feature (the feature search mode), only matching stimuli capture attention. When searching broadly (the singleton detection mode), any oddball captures attention. The present study examined which strategy represents the "default" mode using an operant conditioning approach in which participants were trained, in the absence of explicit instructions, to search for a target in an ambiguous context in which one of two modes was available. The results revealed that participants behaviorally adopted the singleton detection as the default mode but reported using the feature search mode. Conscious strategies did not eliminate capture. These results challenge the view that a conscious set always modulates capture, suggesting that the visual system tends to rely on stimulus salience to deploy attention.

  13. Emotional task management: neural correlates of switching between affective and non-affective task-sets

    PubMed Central

    Reeck, Crystal

    2015-01-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features. PMID:25552571

  14. Biologically inspired emotion recognition from speech

    NASA Astrophysics Data System (ADS)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  15. A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy.

    PubMed

    Karamzadeh, Nader; Amyot, Franck; Kenney, Kimbra; Anderson, Afrouz; Chowdhry, Fatima; Dashtestani, Hadis; Wassermann, Eric M; Chernomordik, Victor; Boccara, Claude; Wegman, Edward; Diaz-Arrastia, Ramon; Gandjbakhche, Amir H

    2016-11-01

    We have explored the potential prefrontal hemodynamic biomarkers to characterize subjects with Traumatic Brain Injury (TBI) by employing the multivariate machine learning approach and introducing a novel task-related hemodynamic response detection followed by a heuristic search for optimum set of hemodynamic features. To achieve this goal, the hemodynamic response from a group of 31 healthy controls and 30 chronic TBI subjects were recorded as they performed a complexity task. To determine the optimum hemodynamic features, we considered 11 features and their combinations in characterizing TBI subjects. We investigated the significance of the features by utilizing a machine learning classification algorithm to score all the possible combinations of features according to their predictive power. The identified optimum feature elements resulted in classification accuracy, sensitivity, and specificity of 85%, 85%, and 84%, respectively. Classification improvement was achieved for TBI subject classification through feature combination. It signified the major advantage of the multivariate analysis over the commonly used univariate analysis suggesting that the features that are individually irrelevant in characterizing the data may become relevant when used in combination. We also conducted a spatio-temporal classification to identify regions within the prefrontal cortex (PFC) that contribute in distinguishing between TBI and healthy subjects. As expected, Brodmann areas (BA) 10 within the PFC were isolated as the region that healthy subjects (unlike subjects with TBI), showed major hemodynamic activity in response to the High Complexity task. Overall, our results indicate that identified temporal and spatio-temporal features from PFC's hemodynamic activity are promising biomarkers in classifying subjects with TBI.

  16. Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification

    NASA Astrophysics Data System (ADS)

    He, Zhi; Liu, Lin

    2016-11-01

    Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.

  17. Post-conflict slowing after incongruent stimuli: from general to conflict-specific.

    PubMed

    Rey-Mermet, Alodie; Meier, Beat

    2017-05-01

    Encountering a cognitive conflict not only slows current performance, but it can also affect subsequent performance, in particular when the conflict is induced with bivalent stimuli (i.e., stimuli with relevant features for two different tasks) or with incongruent trials (i.e., stimuli with relevant features for two response alternatives). The post-conflict slowing following bivalent stimuli, called "bivalency effect", affects all subsequent stimuli, irrespective of whether the subsequent stimuli share relevant features with the conflict stimuli. To date, it is unknown whether the conflict induced by incongruent stimuli results in a similar post-conflict slowing. To investigate this, we performed six experiments in which participants switched between two tasks. In one task, incongruent stimuli appeared occasionally; in the other task, stimuli shared no feature with the incongruent trials. The results showed an initial performance slowing that affected all tasks after incongruent trials. On further trials, however, the slowing only affected the task sharing features with the conflict stimuli. Therefore, the post-conflict slowing following incongruent stimuli is first general and then becomes conflict-specific across trials. These findings are discussed within current task switching and cognitive control accounts.

  18. Multi-task feature learning by using trace norm regularization

    NASA Astrophysics Data System (ADS)

    Jiangmei, Zhang; Binfeng, Yu; Haibo, Ji; Wang, Kunpeng

    2017-11-01

    Multi-task learning can extract the correlation of multiple related machine learning problems to improve performance. This paper considers applying the multi-task learning method to learn a single task. We propose a new learning approach, which employs the mixture of expert model to divide a learning task into several related sub-tasks, and then uses the trace norm regularization to extract common feature representation of these sub-tasks. A nonlinear extension of this approach by using kernel is also provided. Experiments conducted on both simulated and real data sets demonstrate the advantage of the proposed approach.

  19. All for one but not one for all: how multiple number representations are recruited in one numerical task.

    PubMed

    Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus

    2008-01-02

    Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.

  20. Is Set Shifting Really Impaired in Trait Anxiety? Only When Switching Away from an Effortfully Established Task Set

    PubMed Central

    Gustavson, Daniel E.; Altamirano, Lee J.; Johnson, Daniel P.; Whisman, Mark A.; Miyake, Akira

    2016-01-01

    The current study investigated whether trait anxiety was systematically related to task-set shifting performance, using a task-switching paradigm in which one task was more attentionally demanding than the other. Specifically, taking advantage of a well-established phenomenon known as asymmetric switch costs, we tested the hypothesis that the association between trait anxiety and task-set shifting is most clearly observed when individuals must switch away from a more attentionally demanding task for which it was necessary to effortfully establish an appropriate task set. Ninety-one young adults completed an asymmetric switching task and trait-level mood questionnaires. Results indicated that higher levels of trait anxiety were systematically associated with greater asymmetry in reaction-time (RT) switch costs. Specifically, the RT costs for switching from the more attentionally demanding task to the less demanding task were significantly greater with higher levels of trait anxiety, whereas the RT costs for switching in the opposite direction were not significantly associated with trait anxiety levels. Further analyses indicated that these associations were not attributable to comorbid dysphoria or worry. These results suggest that levels of trait anxiety may not be related to general set-shifting ability per se, but, rather, that anxiety-specific effects may primarily be restricted to when one must efficiently switch away from (or let go of) an effortfully established task set. PMID:27429194

  1. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals

    PubMed Central

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-01

    The electroencephalogram (EEG) signal represents a subject’s specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems. PMID:29364848

  2. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.

    PubMed

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-24

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.

  3. On the generality of the displaywide contingent orienting hypothesis: can a visual onset capture attention without top-down control settings for displaywide onset?

    PubMed

    Yeh, Su-Ling; Liao, Hsin-I

    2010-10-01

    The contingent orienting hypothesis (Folk, Remington, & Johnston, 1992) states that attentional capture is contingent on top-down control settings induced by task demands. Past studies supporting this hypothesis have identified three kinds of top-down control settings: for target-specific features, for the strategy to search for a singleton, and for visual features in the target display as a whole. Previously, we have found stimulus-driven capture by onset that was not contingent on the first two kinds of settings (Yeh & Liao, 2008). The current study aims to test the third kind: the displaywide contingent orienting hypothesis (Gibson & Kelsey, 1998). Specifically, we ask whether an onset stimulus can still capture attention in the spatial cueing paradigm when attentional control settings for the displaywide onset of the target are excluded by making all letters in the target display emerge from placeholders. Results show that a preceding uninformative onset cue still captured attention to its location in a stimulus-driven fashion, whereas a color cue captured attention only when it was contingent on the setting for displaywide color. These results raise doubts as to the generality of the displaywide contingent orienting hypothesis and help delineate the boundary conditions on this hypothesis. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    PubMed

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. A computational developmental model for specificity and transfer in perceptual learning.

    PubMed

    Solgi, Mojtaba; Liu, Taosheng; Weng, Juyang

    2013-01-04

    How and under what circumstances the training effects of perceptual learning (PL) transfer to novel situations is critical to our understanding of generalization and abstraction in learning. Although PL is generally believed to be highly specific to the trained stimulus, a series of psychophysical studies have recently shown that training effects can transfer to untrained conditions under certain experimental protocols. In this article, we present a brain-inspired, neuromorphic computational model of the Where-What visuomotor pathways which successfully explains both the specificity and transfer of perceptual learning. The major architectural novelty is that each feature neuron has both sensory and motor inputs. The network of neurons is autonomously developed from experience, using a refined Hebbian-learning rule and lateral competition, which altogether result in neuronal recruitment. Our hypothesis is that certain paradigms of experiments trigger two-way (descending and ascending) off-task processes about the untrained condition which lead to recruitment of more neurons in lower feature representation areas as well as higher concept representation areas for the untrained condition, hence the transfer. We put forward a novel proposition that gated self-organization of the connections during the off-task processes accounts for the observed transfer effects. Simulation results showed transfer of learning across retinal locations in a Vernier discrimination task in a double-training procedure, comparable to previous psychophysical data (Xiao et al., 2008). To the best of our knowledge, this model is the first neurally-plausible model to explain both transfer and specificity in a PL setting.

  6. The integration of a mesh reflector to a 15-foot box truss structure. Task 3: Box truss analysis and technology development

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Thiemet, W. F.; Morosow, G.

    1987-01-01

    To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.

  7. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  8. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  9. PARAMO: A Parallel Predictive Modeling Platform for Healthcare Analytic Research using Electronic Health Records

    PubMed Central

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R.; Stewart, Walter F.; Malin, Bradley; Sun, Jimeng

    2014-01-01

    Objective Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: 1) cohort construction, 2) feature construction, 3) cross-validation, 4) feature selection, and 5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. Methods To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which 1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, 2) schedules the tasks in a topological ordering of the graph, and 3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. Results We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3 hours in parallel compared to 9 days if running sequentially. Conclusion This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. PMID:24370496

  10. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.

    PubMed

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R; Stewart, Walter F; Malin, Bradley; Sun, Jimeng

    2014-04-01

    Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3) cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which (1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2) schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3h in parallel compared to 9days if running sequentially. This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Emotional task management: neural correlates of switching between affective and non-affective task-sets.

    PubMed

    Reeck, Crystal; Egner, Tobias

    2015-08-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Distance Metric Learning Using Privileged Information for Face Verification and Person Re-Identification.

    PubMed

    Xu, Xinxing; Li, Wen; Xu, Dong

    2015-12-01

    In this paper, we propose a new approach to improve face verification and person re-identification in the RGB images by leveraging a set of RGB-D data, in which we have additional depth images in the training data captured using depth cameras such as Kinect. In particular, we extract visual features and depth features from the RGB images and depth images, respectively. As the depth features are available only in the training data, we treat the depth features as privileged information, and we formulate this task as a distance metric learning with privileged information problem. Unlike the traditional face verification and person re-identification tasks that only use visual features, we further employ the extra depth features in the training data to improve the learning of distance metric in the training process. Based on the information-theoretic metric learning (ITML) method, we propose a new formulation called ITML with privileged information (ITML+) for this task. We also present an efficient algorithm based on the cyclic projection method for solving the proposed ITML+ formulation. Extensive experiments on the challenging faces data sets EUROCOM and CurtinFaces for face verification as well as the BIWI RGBD-ID data set for person re-identification demonstrate the effectiveness of our proposed approach.

  13. Automatic detection of protected health information from clinic narratives.

    PubMed

    Yang, Hui; Garibaldi, Jonathan M

    2015-12-01

    This paper presents a natural language processing (NLP) system that was designed to participate in the 2014 i2b2 de-identification challenge. The challenge task aims to identify and classify seven main Protected Health Information (PHI) categories and 25 associated sub-categories. A hybrid model was proposed which combines machine learning techniques with keyword-based and rule-based approaches to deal with the complexity inherent in PHI categories. Our proposed approaches exploit a rich set of linguistic features, both syntactic and word surface-oriented, which are further enriched by task-specific features and regular expression template patterns to characterize the semantics of various PHI categories. Our system achieved promising accuracy on the challenge test data with an overall micro-averaged F-measure of 93.6%, which was the winner of this de-identification challenge. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Is set shifting really impaired in trait anxiety? Only when switching away from an effortfully established task set.

    PubMed

    Gustavson, Daniel E; Altamirano, Lee J; Johnson, Daniel P; Whisman, Mark A; Miyake, Akira

    2017-02-01

    The current study investigated whether trait anxiety was systematically related to task-set shifting performance, using a task-switching paradigm in which 1 task was more attentionally demanding than the other. Specifically, taking advantage of a well-established phenomenon known as asymmetric switch costs, we tested the hypothesis that the association between trait anxiety and task-set shifting is most clearly observed when individuals must switch away from a more attentionally demanding task for which it was necessary to effortfully establish an appropriate task set. Ninety-one young adults completed an asymmetric switching task and trait-level mood questionnaires. Results indicated that higher levels of trait anxiety were systematically associated with greater asymmetry in reaction time (RT) switch costs. Specifically, the RT costs for switching from the more attentionally demanding task to the less demanding task were significantly greater with higher levels of trait anxiety, whereas the RT costs for switching in the opposite direction were not significantly associated with trait anxiety levels. Further analyses indicated that these associations were not attributable to comorbid dysphoria or worry. These results suggest that levels of trait anxiety may not be related to general set-shifting ability per se, but, rather, that anxiety-specific effects may primarily be restricted to when one must efficiently switch away from (or let go of) an effortfully established task set. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Feature integration theory revisited: dissociating feature detection and attentional guidance in visual search.

    PubMed

    Chan, Louis K H; Hayward, William G

    2009-02-01

    In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed results are difficult to explain in its absence. The present study measured dimension-specific performance during detection and localization, tasks that require operation of dimensional modules and the master map, respectively. Results showed a dissociation between tasks in terms of both dimension-switching costs and cross-dimension attentional capture, reflecting a dimension-specific nature for detection tasks and a dimension-general nature for localization tasks. In a feature-discrimination task, results precluded an explanation based on response mode. These results are interpreted to support FIT's postulation that different mechanisms are involved in parallel and focal attention searches. This indicates that the FIT architecture should be adopted to explain the current results and that a variety of visual attention findings can be addressed within this framework. Copyright 2009 APA, all rights reserved.

  16. Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition

    PubMed Central

    Popp, Margot; Trumpp, Natalie M.; Kiefer, Markus

    2016-01-01

    Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance. PMID:28018201

  17. Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition.

    PubMed

    Popp, Margot; Trumpp, Natalie M; Kiefer, Markus

    2016-01-01

    Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance.

  18. Mesh-free based variational level set evolution for breast region segmentation and abnormality detection using mammograms.

    PubMed

    Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George

    2018-01-01

    Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Linear and Non-Linear Visual Feature Learning in Rat and Humans

    PubMed Central

    Bossens, Christophe; Op de Beeck, Hans P.

    2016-01-01

    The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201

  20. Speech recognition features for EEG signal description in detection of neonatal seizures.

    PubMed

    Temko, A; Boylan, G; Marnane, W; Lightbody, G

    2010-01-01

    In this work, features which are usually employed in automatic speech recognition (ASR) are used for the detection of neonatal seizures in newborn EEG. Three conventional ASR feature sets are compared to the feature set which has been previously developed for this task. The results indicate that the thoroughly-studied spectral envelope based ASR features perform reasonably well on their own. Additionally, the SVM Recursive Feature Elimination routine is applied to all extracted features pooled together. It is shown that ASR features consistently appear among the top-rank features.

  1. Discriminative and informative features for biomolecular text mining with ensemble feature selection.

    PubMed

    Van Landeghem, Sofie; Abeel, Thomas; Saeys, Yvan; Van de Peer, Yves

    2010-09-15

    In the field of biomolecular text mining, black box behavior of machine learning systems currently limits understanding of the true nature of the predictions. However, feature selection (FS) is capable of identifying the most relevant features in any supervised learning setting, providing insight into the specific properties of the classification algorithm. This allows us to build more accurate classifiers while at the same time bridging the gap between the black box behavior and the end-user who has to interpret the results. We show that our FS methodology successfully discards a large fraction of machine-generated features, improving classification performance of state-of-the-art text mining algorithms. Furthermore, we illustrate how FS can be applied to gain understanding in the predictions of a framework for biomolecular event extraction from text. We include numerous examples of highly discriminative features that model either biological reality or common linguistic constructs. Finally, we discuss a number of insights from our FS analyses that will provide the opportunity to considerably improve upon current text mining tools. The FS algorithms and classifiers are available in Java-ML (http://java-ml.sf.net). The datasets are publicly available from the BioNLP'09 Shared Task web site (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/).

  2. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    PubMed

    Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan

    2014-01-01

    One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.

  3. Classification of chemical substances, reactions, and interactions: The effect of expertise

    NASA Astrophysics Data System (ADS)

    Stains, Marilyne Nicole Olivia

    2007-12-01

    This project explored the strategies that undergraduate and graduate chemistry students engaged in when solving classification tasks involving microscopic (particulate) representations of chemical substances and microscopic and symbolic representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention while classifying, identifying the patterns of reasoning that they follow, and comparing the performance of students with different levels of preparation in the discipline. In general, our results suggest that advanced levels of expertise in chemical classification do not necessarily evolve in a linear and continuous way with academic training. Novice students had a tendency to reduce the cognitive demand of the task and rely on common-sense reasoning; they had difficulties differentiating concepts (conceptual undifferentiation) and based their classification decisions on only one variable (reduction). These ways of thinking lead them to consider extraneous features, pay more attention to explicit or surface features than implicit features and to overlook important and relevant features. However, unfamiliar levels of representations (microscopic level) seemed to trigger deeper and more meaningful thinking processes. On the other hand, expert students classified entities using a specific set of rules that they applied throughout the classification tasks. They considered a larger variety of implicit features and the unfamiliarity with the microscopic level of representation did not affect their reasoning processes. Consequently, novices created numerous small groups, few of them being chemically meaningful, while experts created few but large chemically meaningful groups. Novices also had difficulties correctly classifying entities in chemically meaningful groups. Finally, expert chemists in our study used classification schemes that are not necessarily traditionally taught in classroom chemistry (e.g. the structure of substances is more relevant to them than their composition when classifying substances as compounds or elements). This result suggests that practice in the field may develop different types of knowledge framework than those usually presented in chemistry textbooks.

  4. Perirhinal Cortex Resolves Feature Ambiguity in Configural Object Recognition and Perceptual Oddity Tasks

    ERIC Educational Resources Information Center

    Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…

  5. Training enhances attentional expertise, but not attentional capacity: Evidence from content-specific training benefits.

    PubMed

    Strong, Roger W; Alvarez, George A

    2017-04-01

    Cognitive training has become a billion-dollar industry with the promise that exercising a cognitive faculty (e.g., attention) on simple "brain games" will lead to improvements on any task relying on the same faculty. Although this logic seems sound, it assumes performance improves on training tasks because attention's capacity has been enhanced. Alternatively, training may result in attentional expertise-an enhancement of the ability to deploy attention to particular content-such that improvement on training tasks is specific to the features of the training context. The present study supported this attentional expertise hypothesis, showing that training benefits did not generalize fully from a trained attentional tracking task to untrained tracking tasks requiring a common attentional capacity, but differing in seemingly superficial features (i.e., retinotopic location and or motion type). This specificity suggests that attentional training benefits are linked to enhanced coordination between attentional processes and content-specific perceptual representations. Thus, these results indicate that shared attentional capacity between tasks is insufficient for producing generalized training benefits, and predict that generalization requires attentional expertise for content present in both training and outcome tasks.

  6. Inattentional blindness: A combination of a relational set and a feature inhibition set?

    PubMed

    Goldstein, Rebecca R; Beck, Melissa R

    2016-07-01

    Two experiments were conducted to directly test the feature set hypothesis and the relational set hypothesis in an inattentional blindness task. The feature set hypothesis predicts that unexpected objects that match the to-be-attended stimuli will be reported most. The relational set hypothesis predicts that unexpected objects that match the relationship between the to-be-attended and the to-be-ignored stimuli will be reported the most. Experiment 1 manipulated the luminance of the stimuli. Participants were instructed to monitor the gray letter shapes and to ignore either black or white letter shapes. The unexpected objects that exhibited the luminance relation of the to-be-attended to the to-be-ignored stimuli were reported by participants the most. Experiment 2 manipulated the color of the stimuli. Participants were instructed to monitor the yellower orange or the redder orange letter shapes and to ignore the redder orange or yellower letter shapes. The unexpected objects that exhibited the color relation of the to-be-attended to the to-be-ignored stimuli were reported the most. The results do not support the use of a feature set to accomplish the task and instead support the use of a relational set. In addition, the results point to the concurrent use of multiple attentional sets that are both excitatory and inhibitory.

  7. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    PubMed

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  8. The effect of feature-based attention on flanker interference processing: An fMRI-constrained source analysis.

    PubMed

    Siemann, Julia; Herrmann, Manfred; Galashan, Daniela

    2018-01-25

    The present study examined whether feature-based cueing affects early or late stages of flanker conflict processing using EEG and fMRI. Feature cues either directed participants' attention to the upcoming colour of the target or were neutral. Validity-specific modulations during interference processing were investigated using the N200 event-related potential (ERP) component and BOLD signal differences. Additionally, both data sets were integrated using an fMRI-constrained source analysis. Finally, the results were compared with a previous study in which spatial instead of feature-based cueing was applied to an otherwise identical flanker task. Feature-based and spatial attention recruited a common fronto-parietal network during conflict processing. Irrespective of attention type (feature-based; spatial), this network responded to focussed attention (valid cueing) as well as context updating (invalid cueing), hinting at domain-general mechanisms. However, spatially and non-spatially directed attention also demonstrated domain-specific activation patterns for conflict processing that were observable in distinct EEG and fMRI data patterns as well as in the respective source analyses. Conflict-specific activity in visual brain regions was comparable between both attention types. We assume that the distinction between spatially and non-spatially directed attention types primarily applies to temporal differences (domain-specific dynamics) between signals originating in the same brain regions (domain-general localization).

  9. Classification of visual and linguistic tasks using eye-movement features.

    PubMed

    Coco, Moreno I; Keller, Frank

    2014-03-07

    The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).

  10. Establishing a group of endpoints to support collective operations without specifying unique identifiers for any endpoints

    DOEpatents

    Archer, Charles J.; Blocksom, Michael A.; Ratterman, Joseph D.; Smith, Brian E.; Xue, Hanghon

    2016-02-02

    A parallel computer executes a number of tasks, each task includes a number of endpoints and the endpoints are configured to support collective operations. In such a parallel computer, establishing a group of endpoints receiving a user specification of a set of endpoints included in a global collection of endpoints, where the user specification defines the set in accordance with a predefined virtual representation of the endpoints, the predefined virtual representation is a data structure setting forth an organization of tasks and endpoints included in the global collection of endpoints and the user specification defines the set of endpoints without a user specification of a particular endpoint; and defining a group of endpoints in dependence upon the predefined virtual representation of the endpoints and the user specification.

  11. Establishing a group of endpoints in a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.; Xue, Hanhong

    2016-02-02

    A parallel computer executes a number of tasks, each task includes a number of endpoints and the endpoints are configured to support collective operations. In such a parallel computer, establishing a group of endpoints receiving a user specification of a set of endpoints included in a global collection of endpoints, where the user specification defines the set in accordance with a predefined virtual representation of the endpoints, the predefined virtual representation is a data structure setting forth an organization of tasks and endpoints included in the global collection of endpoints and the user specification defines the set of endpoints without a user specification of a particular endpoint; and defining a group of endpoints in dependence upon the predefined virtual representation of the endpoints and the user specification.

  12. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  13. Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning.

    PubMed

    Jing, Xiao-Yuan; Zhu, Xiaoke; Wu, Fei; Hu, Ruimin; You, Xinge; Wang, Yunhong; Feng, Hui; Yang, Jing-Yu

    2017-03-01

    Person re-identification has been widely studied due to its importance in surveillance and forensics applications. In practice, gallery images are high resolution (HR), while probe images are usually low resolution (LR) in the identification scenarios with large variation of illumination, weather, or quality of cameras. Person re-identification in this kind of scenarios, which we call super-resolution (SR) person re-identification, has not been well studied. In this paper, we propose a semi-coupled low-rank discriminant dictionary learning (SLD 2 L) approach for SR person re-identification task. With the HR and LR dictionary pair and mapping matrices learned from the features of HR and LR training images, SLD 2 L can convert the features of the LR probe images into HR features. To ensure that the converted features have favorable discriminative capability and the learned dictionaries can well characterize intrinsic feature spaces of the HR and LR images, we design a discriminant term and a low-rank regularization term for SLD 2 L. Moreover, considering that low resolution results in different degrees of loss for different types of visual appearance features, we propose a multi-view SLD 2 L (MVSLD 2 L) approach, which can learn the type-specific dictionary pair and mappings for each type of feature. Experimental results on multiple publicly available data sets demonstrate the effectiveness of our proposed approaches for the SR person re-identification task.

  14. U.S. Army physical demands study: Prevalence and frequency of performing physically demanding tasks in deployed and non-deployed settings.

    PubMed

    Boye, Michael W; Cohen, Bruce S; Sharp, Marilyn A; Canino, Maria C; Foulis, Stephen A; Larcom, Kathleen; Smith, Laurel

    2017-11-01

    To compare percentages of on-duty time spent performing physically demanding soldier tasks in non-deployed and deployed settings, and secondarily examine the number of physically demanding tasks performed among five Army combat arms occupational specialties. Job task analysis. Soldiers (n=1295; over 99% serving on active duty) across five Army jobs completed one of three questionnaires developed using reviews of job and task related documents, input from subject matter experts, observation of task performance, and conduct of focus groups. Soldiers reported estimates of the total on-duty time spent performing physically demanding tasks in both deployed and non-deployed settings. One-way analyses of variance and Duncan post-hoc tests were used to compare percentage time differences by job. Two-tailed t-tests were used to evaluate differences by setting. Frequency analyses were used to present supplementary findings. Soldiers reported performing physically demanding job-specific tasks 17.7% of the time while non-deployed and 19.6% of the time while deployed. There were significant differences in time spent on job-specific tasks across settings (p<0.05) for three of five occupational specialties. When categories of physically demanding tasks were grouped, all soldiers reported spending more time on physically demanding tasks when deployed (p<0.001). Twenty-five percent reported performing less than half the physically demanding tasks represented on the questionnaire in the last two years. Soldiers spent more time performing physically demanding tasks while deployed compared to non-deployed but spent similar amounts of time performing job-specific tasks. Published by Elsevier Ltd.

  15. The perceptual processing capacity of summary statistics between and within feature dimensions

    PubMed Central

    Attarha, Mouna; Moore, Cathleen M.

    2015-01-01

    The simultaneous–sequential method was used to test the processing capacity of statistical summary representations both within and between feature dimensions. Sixteen gratings varied with respect to their size and orientation. In Experiment 1, the gratings were equally divided into four separate smaller sets, one of which with a mean size that was larger or smaller than the other three sets, and one of which with a mean orientation that was tilted more leftward or rightward. The task was to report the mean size and orientation of the oddball sets. This therefore required four summary representations for size and another four for orientation. The sets were presented at the same time in the simultaneous condition or across two temporal frames in the sequential condition. Experiment 1 showed evidence of a sequential advantage, suggesting that the system may be limited with respect to establishing multiple within-feature summaries. Experiment 2 eliminates the possibility that some aspect of the task, other than averaging, was contributing to this observed limitation. In Experiment 3, the same 16 gratings appeared as one large superset, and therefore the task only required one summary representation for size and another one for orientation. Equal simultaneous–sequential performance indicated that between-feature summaries are capacity free. These findings challenge the view that within-feature summaries drive a global sense of visual continuity across areas of the peripheral visual field, and suggest a shift in focus to seeking an understanding of how between-feature summaries in one area of the environment control behavior. PMID:26360153

  16. Is attention enough? A re-examination of the impact of feature-specific attention allocation on semantic priming effects in the pronunciation task.

    PubMed

    Becker, Manuel; Klauer, Karl Christoph; Spruyt, Adriaan

    2016-02-01

    In a series of articles, Spruyt and colleagues have developed the Feature-Specific Attention Allocation framework, stating that the semantic analysis of task-irrelevant stimuli is critically dependent upon dimension-specific attention allocation. In an adversarial collaboration, we replicate one experiment supporting this theory (Spruyt, de Houwer, & Hermans, 2009; Exp. 3), in which semantic priming effects in the pronunciation task were found to be restricted to stimulus dimensions that were task-relevant on induction trials. Two pilot studies showed the capability of our laboratory to detect priming effects in the pronunciation task, but also suggested that the original effect may be difficult to replicate. In this study, we tried to replicate the original experiment while ensuring adequate statistical power. Results show little evidence for dimension-specific priming effects. The present results provide further insight into the malleability of early semantic encoding processes, but also show the need for further research on this topic.

  17. Comparative Cognitive Task Analysis

    DTIC Science & Technology

    2007-01-01

    is to perform a task analyses to determine how people operate in a specific domain on a specific task. Cognitive Task Analysis (CTA) is a set of...accomplish a task. In this chapter, we build on CTA methods by suggesting that comparative cognitive task analysis (C2TA) can help solve the aforementioned

  18. From Scribbles to Scrabble: Preschool Children’s Developing Knowledge of Written Language

    PubMed Central

    Puranik, Cynthia S.; Lonigan, Christopher J.

    2011-01-01

    The purpose of this study was to concurrently examine the development of written language across several writing tasks and to investigate how writing features develop in preschool children. Emergent written language knowledge of 372 preschoolers was assessed using numerous writing tasks. The findings from this study indicate that children possess a great deal of writing knowledge before beginning school. Children appear to progress along a continuum from scribbling to conventional spelling, and this progression is linear and task dependent. There was clear evidence to support the claim that universal writing features develop before language-specific features. Children as young as 3 years possess knowledge regarding universal and language-specific writing features. There is substantial developmental continuity in literacy skills from the preschool period into early elementary grades. Implications of these findings on writing development are discussed. PMID:22448101

  19. UArizona at the CLEF eRisk 2017 Pilot Task: Linear and Recurrent Models for Early Depression Detection

    PubMed Central

    Sadeque, Farig; Xu, Dongfang; Bethard, Steven

    2017-01-01

    The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users’ posts to Reddit. In this paper we present the techniques employed for the University of Arizona team’s participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets. PMID:29075167

  20. A Validated Set of MIDAS V5 Task Network Model Scenarios to Evaluate Nextgen Closely Spaced Parallel Operations Concepts

    NASA Technical Reports Server (NTRS)

    Gore, Brian Francis; Hooey, Becky Lee; Haan, Nancy; Socash, Connie; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded operator models that comprise MIDAS. Following the initial settings, the model progresses to begin the first tasks required of the two flight deck operators, the Captain (CA) and the First Officer (FO). The task sets will initialize operator specific settings prior to loading all of the alerts, probes, and other events that occur in the scenario. As a note, the CA and FO were terms used in developing this model but the CA can also be thought of as the Pilot Flying (PF), while the FO can be considered the Pilot-Not-Flying (PNF)or Pilot Monitoring (PM). As such, the document refers to the operators as PFCA and PNFFO respectively.

  1. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks

    NASA Astrophysics Data System (ADS)

    Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh

    2017-10-01

    Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.

  2. Feature singletons attract spatial attention independently of feature priming

    PubMed Central

    Yashar, Amit; White, Alex L.; Fang, Wanghaoming; Carrasco, Marisa

    2017-01-01

    People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial. PMID:28800369

  3. Feature singletons attract spatial attention independently of feature priming.

    PubMed

    Yashar, Amit; White, Alex L; Fang, Wanghaoming; Carrasco, Marisa

    2017-08-01

    People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial.

  4. The association of color memory and the enumeration of multiple spatially overlapping sets.

    PubMed

    Poltoratski, Sonia; Xu, Yaoda

    2013-07-09

    Using dot displays, Halberda, Sires, and Feigenson (2006) showed that observers could simultaneously encode the numerosity of two spatially overlapping sets and the superset of all items at a glance. With the brief display and the masking used in Halberda et al., the task required observers to encode the colors of each set in order to select and enumerate all the dots in that set. As such, the observed capacity limit for set enumeration could reflect a limit in visual short-term memory (VSTM) capacity for the set color rather than a limit in set enumeration per se. Here, we largely replicated Halberda et al. and found successful enumeration of approximately two sets (the superset was not probed). We also found that only about two and a half colors could be remembered from the colored dot displays whether or not the enumeration task was performed concurrently with the color VSTM task. Because observers must remember the color of a set prior to enumerating it, the under three-item VSTM capacity for color necessarily dictates that set enumeration capacity in this paradigm could not exceed two sets. Thus, the ability to enumerate multiple spatially overlapping sets is likely limited by VSTM capacity to retain the discriminating feature of these sets. This relationship suggests that the capacity for set enumeration cannot be considered independently from the capacity for the set's defining features.

  5. Deep learning with word embeddings improves biomedical named entity recognition.

    PubMed

    Habibi, Maryam; Weber, Leon; Neves, Mariana; Wiegandt, David Luis; Leser, Ulf

    2017-07-15

    Text mining has become an important tool for biomedical research. The most fundamental text-mining task is the recognition of biomedical named entities (NER), such as genes, chemicals and diseases. Current NER methods rely on pre-defined features which try to capture the specific surface properties of entity types, properties of the typical local context, background knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and empirically optimal feature sets differ between entity types, which makes their development costly. Furthermore, features are often optimized for a specific gold standard corpus, which makes extrapolation of quality measures difficult. We show that a completely generic method based on deep learning and statistical word embeddings [called long short-term memory network-conditional random field (LSTM-CRF)] outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end, we compared the performance of LSTM-CRF on 33 data sets covering five different entity classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On average, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in recall. The source code for LSTM-CRF is available at https://github.com/glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/ . habibima@informatik.hu-berlin.de. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Deep learning with word embeddings improves biomedical named entity recognition

    PubMed Central

    Habibi, Maryam; Weber, Leon; Neves, Mariana; Wiegandt, David Luis; Leser, Ulf

    2017-01-01

    Abstract Motivation: Text mining has become an important tool for biomedical research. The most fundamental text-mining task is the recognition of biomedical named entities (NER), such as genes, chemicals and diseases. Current NER methods rely on pre-defined features which try to capture the specific surface properties of entity types, properties of the typical local context, background knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and empirically optimal feature sets differ between entity types, which makes their development costly. Furthermore, features are often optimized for a specific gold standard corpus, which makes extrapolation of quality measures difficult. Results: We show that a completely generic method based on deep learning and statistical word embeddings [called long short-term memory network-conditional random field (LSTM-CRF)] outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end, we compared the performance of LSTM-CRF on 33 data sets covering five different entity classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On average, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in recall. Availability and implementation: The source code for LSTM-CRF is available at https://github.com/glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/. Contact: habibima@informatik.hu-berlin.de PMID:28881963

  7. Differential age-related decline in conflict-driven task-set shielding from emotional versus non-emotional distracters.

    PubMed

    Monti, Jim M; Weintraub, Sandra; Egner, Tobias

    2010-05-01

    While normal aging is associated with a marked decline in cognitive abilities, such as memory and executive functions, recent evidence suggests that control processes involved in regulating responses to emotional stimuli may remain well-preserved in the elderly. However, neither the precise nature of these preserved control processes, nor their domain-specificity with respect to comparable non-emotional control processes, are currently well-established. Here, we tested the hypothesis of domain-specific preservation of emotional control in the elderly by employing two closely matched behavioral tasks that assessed the ability to shield the processing of task-relevant stimulus information from competition by task-irrelevant distracter stimuli that could be either non-emotional or emotional in nature. The efficacy of non-emotional versus emotional task-set shielding, gauged via the 'conflict adaptation effect', was compared between cohorts of healthy young adults, healthy elderly adults, and individuals diagnosed with probable Alzheimer's disease (PRAD), age-matched to the elderly subjects. It was found that, compared to the young adult cohort, the healthy elderly displayed deficits in task-set shielding in the non-emotional but not in the emotional task, whereas PRAD subjects displayed impaired performance in both tasks. These results provide new evidence that healthy aging is associated with a domain-specific preservation of emotional control functions, specifically, the shielding of a current task-set from interference by emotional distracter stimuli. This selective preservation of function supports the notion of partly dissociable affective control mechanisms, and may either reflect different time-courses of degeneration in the neuroanatomical circuits mediating task-set maintenance in the face of non-emotional versus emotional distracters, or a motivational shift towards affective processing in the elderly. 2010 Elsevier Ltd. All rights reserved.

  8. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  9. How Are Bodies Special? Effects Of Body Features On Spatial Reasoning

    PubMed Central

    Yu, Alfred B.; Zacks, Jeffrey M.

    2015-01-01

    Embodied views of cognition argue that cognitive processes are influenced by bodily experience. This implies that when people make spatial judgments about human bodies, they bring to bear embodied knowledge that affects spatial reasoning performance. Here, we examined the specific contribution to spatial reasoning of visual features associated with the human body. We used two different tasks to elicit distinct visuospatial transformations: object-based transformations, as elicited in typical mental rotation tasks, and perspective transformations, used in tasks in which people deliberately adopt the egocentric perspective of another person. Body features facilitated performance in both tasks. This result suggests that observers are particularly sensitive to the presence of a human head and body, and that these features allow observers to quickly recognize and encode the spatial configuration of a figure. Contrary to prior reports, this facilitation was not related to the transformation component of task performance. These results suggest that body features facilitate task components other than spatial transformation, including the encoding of stimulus orientation. PMID:26252072

  10. Connecting a cognitive architecture to robotic perception

    NASA Astrophysics Data System (ADS)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  11. Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise

    PubMed Central

    Burge, Johannes

    2017-01-01

    Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important. PMID:28178266

  12. A human performance evaluation of graphic symbol-design features.

    PubMed

    Samet, M G; Geiselman, R E; Landee, B M

    1982-06-01

    16 subjects learned each of two tactical display symbol sets (conventional symbols and iconic symbols) in turn and were then shown a series of graphic displays containing various symbol configurations. For each display, the subject was asked questions corresponding to different behavioral processes relating to symbol use (identification, search, comparison, pattern recognition). The results indicated that: (a) conventional symbols yielded faster pattern-recognition performance than iconic symbols, and iconic symbols did not yield faster identification than conventional symbols, and (b) the portrayal of additional feature information (through the use of perimeter density or vector projection coding) slowed processing of the core symbol information in four tasks, but certain symbol-design features created less perceptual interference and had greater correspondence with the portrayal of specific tactical concepts than others. The results were discussed in terms of the complexities involved in the selection of symbol design features for use in graphic tactical displays.

  13. Adult age differences in task switching.

    PubMed

    Kray, J; Lindenberger, U

    2000-03-01

    Age differences in 2 components of task-set switching speed were investigated in 118 adults aged 20 to 80 years using task-set homogeneous (e.g., AAAA ...) and task-set heterogeneous (e.g., AABBAABB ... ) blocks. General switch costs were defined as latency differences between heterogeneous and homogeneous blocks. whereas specific switch costs were defined as differences between switch and nonswitch trials within heterogeneous blocks. Both types of costs generalized over verbal, figural, and numeric stimulus materials; were more highly correlated to fluid than to crystallized abilities; and were not eliminated after 6 sessions of practice, indicating that they reflect basic and domain-general aspects of cognitive control. Most important, age-associated increments in costs were significantly greater for general than for specific switch costs, suggesting that the ability to efficiently maintain and coordinate 2 alternating task sets in working memory instead of 1 is more negatively affected by advancing age than the ability to execute the task switch itself.

  14. Agreement With Conjoined NPs Reflects Language Experience.

    PubMed

    Lorimor, Heidi; Adams, Nora C; Middleton, Erica L

    2018-01-01

    An important question within psycholinguistic research is whether grammatical features, such as number values on nouns, are probabilistic or discrete. Similarly, researchers have debated whether grammatical specifications are only set for individual lexical items, or whether certain types of noun phrases (NPs) also obtain number valuations at the phrasal level. Through a corpus analysis and an oral production task, we show that conjoined NPs can take both singular and plural verb agreement and that notional number (i.e., the numerosity of the referent of the subject noun phrase) plays an important role in agreement with conjoined NPs. In two written production tasks, we show that participants who are exposed to plural (versus singular or unmarked) agreement with conjoined NPs in a biasing story are more likely to produce plural agreement with conjoined NPs on a subsequent production task. This suggests that, in addition to their sensitivity to notional information, conjoined NPs have probabilistic grammatical specifications that reflect their distributional properties in language. These results provide important evidence that grammatical number reflects language experience, and that this language experience impacts agreement at the phrasal level, and not just the lexical level.

  15. Agreement With Conjoined NPs Reflects Language Experience

    PubMed Central

    Lorimor, Heidi; Adams, Nora C.; Middleton, Erica L.

    2018-01-01

    An important question within psycholinguistic research is whether grammatical features, such as number values on nouns, are probabilistic or discrete. Similarly, researchers have debated whether grammatical specifications are only set for individual lexical items, or whether certain types of noun phrases (NPs) also obtain number valuations at the phrasal level. Through a corpus analysis and an oral production task, we show that conjoined NPs can take both singular and plural verb agreement and that notional number (i.e., the numerosity of the referent of the subject noun phrase) plays an important role in agreement with conjoined NPs. In two written production tasks, we show that participants who are exposed to plural (versus singular or unmarked) agreement with conjoined NPs in a biasing story are more likely to produce plural agreement with conjoined NPs on a subsequent production task. This suggests that, in addition to their sensitivity to notional information, conjoined NPs have probabilistic grammatical specifications that reflect their distributional properties in language. These results provide important evidence that grammatical number reflects language experience, and that this language experience impacts agreement at the phrasal level, and not just the lexical level. PMID:29725311

  16. Perceptual learning in visual search: fast, enduring, but non-specific.

    PubMed

    Sireteanu, R; Rettenbach, R

    1995-07-01

    Visual search has been suggested as a tool for isolating visual primitives. Elementary "features" were proposed to involve parallel search, while serial search is necessary for items without a "feature" status, or, in some cases, for conjunctions of "features". In this study, we investigated the role of practice in visual search tasks. We found that, under some circumstances, initially serial tasks can become parallel after a few hundred trials. Learning in visual search is far less specific than learning of visual discriminations and hyperacuity, suggesting that it takes place at another level in the central visual pathway, involving different neural circuits.

  17. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  18. Working memory for visual features and conjunctions in schizophrenia.

    PubMed

    Gold, James M; Wilk, Christopher M; McMahon, Robert P; Buchanan, Robert W; Luck, Steven J

    2003-02-01

    The visual working memory (WM) storage capacity of patients with schizophrenia was investigated using a change detection paradigm. Participants were presented with 2, 3, 4, or 6 colored bars with testing of both single feature (color, orientation) and feature conjunction conditions. Patients performed significantly worse than controls at all set sizes but demonstrated normal feature binding. Unlike controls, patient WM capacity declined at set size 6 relative to set size 4. Impairments with subcapacity arrays suggest a deficit in task set maintenance: Greater impairment for supercapacity set sizes suggests a deficit in the ability to selectively encode information for WM storage. Thus, the WM impairment in schizophrenia appears to be a consequence of attentional deficits rather than a reduction in storage capacity.

  19. Vision-Based UAV Flight Control and Obstacle Avoidance

    DTIC Science & Technology

    2006-01-01

    denoted it by Vb = (Vb1, Vb2 , Vb3). Fig. 2 shows the block diagram of the proposed vision-based motion analysis and obstacle avoidance system. We denote...structure analysis often involve computation- intensive computer vision tasks, such as feature extraction and geometric modeling. Computation-intensive...First, we extract a set of features from each block. 2) Second, we compute the distance between these two sets of features. In conventional motion

  20. Stimulus information contaminates summation tests of independent neural representations of features

    NASA Technical Reports Server (NTRS)

    Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.

    2002-01-01

    Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.

  1. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Automated identification of diagnosis and co-morbidity in clinical records.

    PubMed

    Cano, C; Blanco, A; Peshkin, L

    2009-01-01

    Automated understanding of clinical records is a challenging task involving various legal and technical difficulties. Clinical free text is inherently redundant, unstructured, and full of acronyms, abbreviations and domain-specific language which make it challenging to mine automatically. There is much effort in the field focused on creating specialized ontology, lexicons and heuristics based on expert knowledge of the domain. However, ad-hoc solutions poorly generalize across diseases or diagnoses. This paper presents a successful approach for a rapid prototyping of a diagnosis classifier based on a popular computational linguistics platform. The corpus consists of several hundred of full length discharge summaries provided by Partners Healthcare. The goal is to identify a diagnosis and assign co-morbidi-ty. Our approach is based on the rapid implementation of a logistic regression classifier using an existing toolkit: LingPipe (http://alias-i.com/lingpipe). We implement and compare three different classifiers. The baseline approach uses character 5-grams as features. The second approach uses a bag-of-words representation enriched with a small additional set of features. The third approach reduces a feature set to the most informative features according to the information content. The proposed systems achieve high performance (average F-micro 0.92) for the task. We discuss the relative merit of the three classifiers. Supplementary material with detailed results is available at: http:// decsai.ugr.es/~ccano/LR/supplementary_ material/ We show that our methodology for rapid prototyping of a domain-unaware system is effective for building an accurate classifier for clinical records.

  3. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    PubMed

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  4. Leveraging Paraphrase Labels to Extract Synonyms from Twitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Maria A.; Bell, Eric B.; Xia, Fei

    2015-05-18

    We present an approach for automatically learning synonyms from a paraphrase corpus of tweets. This work shows improvement on the task of paraphrase detection when we substitute our extracted synonyms into the training set. The synonyms are learned by using chunks from a shallow parse to create candidate synonyms and their context windows, and the synonyms are incorporated into a paraphrase detection system that uses machine translation metrics as features for a classifier. We demonstrate a 2.29% improvement in F1 when we train and test on the paraphrase training set, providing better coverage than previous systems, which shows the potentialmore » power of synonyms that are representative of a specific topic.« less

  5. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  6. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning

    PubMed Central

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794

  7. When do letter features migrate? A boundary condition for feature-integration theory.

    PubMed

    Butler, B E; Mewhort, D J; Browse, R A

    1991-01-01

    Feature-integration theory postulates that a lapse of attention will allow letter features to change position and to recombine as illusory conjunctions (Treisman & Paterson, 1984). To study such errors, we used a set of uppercase letters known to yield illusory conjunctions in each of three tasks. The first, a bar-probe task, showed whole-character mislocations but not errors based on feature migration and recombination. The second, a two-alternative forced-choice detection task, allowed subjects to focus on the presence or absence of subletter features and showed illusory conjunctions based on feature migration and recombination. The third was also a two-alternative forced-choice detection task, but we manipulated the subjects' knowledge of the shape of the stimuli: In the case-certain condition, the stimuli were always in uppercase, but in the case-uncertain condition, the stimuli could appear in either upper- or lowercase. Subjects in the case-certain condition produced illusory conjunctions based on feature recombination, whereas subjects in the case-uncertain condition did not. The results suggest that when subjects can view the stimuli as feature groups, letter features regroup as illusory conjunctions; when subjects encode the stimuli as letters, whole items may be mislocated, but subletter features are not. Thus, illusory conjunctions reflect the subject's processing strategy, rather than the architecture of the visual system.

  8. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    PubMed

    Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  9. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients

    PubMed Central

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations. PMID:25885272

  10. Development of Collaborative Research Initiatives to Advance the Aerospace Sciences-via the Communications, Electronics, Information Systems Focus Group

    NASA Technical Reports Server (NTRS)

    Knasel, T. Michael

    1996-01-01

    The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.

  11. An approach to vehicle design: In-depth audit to understand the needs of older drivers.

    PubMed

    Karali, Sukru; Mansfield, Neil J; Gyi, Diane E

    2017-01-01

    The population of older people continues to increase around the world, and this trend is expected to continue; the population of older drivers is increasing accordingly. January 2012 figures from the DVLA in the UK stated that there were more than 15 million drivers aged over 60; more than 1 million drivers were aged over 80. There is a need for specific research tools to understand and capture how all users interact with features in the vehicle cabin e.g. controls and tasks, including the specific needs of the increasingly older driving population. This paper describes an in-depth audit that was conducted to understand how design of the vehicle cabin impacts on comfort, posture, usability, health and wellbeing in older drivers. The sample involved 47 drivers (38% female, 62% male). The age distribution was: 50-64 (n = 12), 65-79 (n = 20), and those 80 and over (n = 15). The methodology included tools to capture user experience in the vehicle cabin and functional performance tests relevant to specific driving tasks. It is shown that drivers' physical capabilities reduce with age and that there are associated difficulties in setting up an optimal driving position such that some controls cannot be operated as intended, and many adapt their driving cabins. The cabin set-up process consistently began with setting up the seat and finished with operation of the seat belt. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The Role of Response Repetition in Task Switching

    ERIC Educational Resources Information Center

    Cooper, Stephen; Mari-Beffa, Paloma

    2008-01-01

    When switching between tasks, participants are sometimes required to use different response sets for each task. Thus, task switch and response set switch are confounded. In 5 experiments, the authors examined transitions of response within a linear 4-finger arrangement. A random baseline condition was compared with the cuing of specific response…

  13. Optimizing Radiometric Processing and Feature Extraction of Drone Based Hyperspectral Frame Format Imagery for Estimation of Yield Quantity and Quality of a Grass Sward

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Markelin, L.; Nezami, S.; Suomalainen, J.; Honkavaara, E.

    2018-04-01

    Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure. Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10 % better results than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 40 % compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0 %) was obtained with multiview anisotropy corrected data set and the 3D features.

  14. Fine-tuning convolutional deep features for MRI based brain tumor classification

    NASA Astrophysics Data System (ADS)

    Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.

    2017-03-01

    Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.

  15. Influence of Familiar Features on Diagnosis: Instantiated Features in an Applied Setting

    ERIC Educational Resources Information Center

    Dore, Kelly L.; Brooks, Lee R.; Weaver, Bruce; Norman, Geoffrey R.

    2012-01-01

    Medical diagnosis can be viewed as a categorization task. There are two mechanisms whereby humans make categorical judgments: "analytical reasoning," based on explicit consideration of features and "nonanalytical reasoning," an unconscious holistic process of matching against prior exemplars. However, there is evidence that prior experience can…

  16. NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms

    PubMed Central

    Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan

    2014-01-01

    One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available. PMID:24667482

  17. Contingency and similarity in response selection.

    PubMed

    Prinz, Wolfgang

    2018-05-09

    This paper explores issues of task representation in choice reaction time tasks. How is it possible, and what does it take, to represent such a task in a way that enables a performer to do the task in line with the prescriptions entailed in the instructions? First, a framework for task representation is outlined which combines the implementation of task sets and their use for performance with different kinds of representational operations (pertaining to feature compounds for event codes and code assemblies for task sets, respectively). Then, in a second step, the framework is itself embedded in the bigger picture of the classical debate on the roles of contingency and similarity for the formation of associations. The final conclusion is that both principles are needed and that the operation of similarity at the level of task sets requires and presupposes the operation of contingency at the level of event codes. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  18. [Historical compendium of physical activity and sport].

    PubMed

    Rodríguez Rodríguez, Luis Pablo

    2004-01-01

    The Historical Compendium of Physical Activity and Sport analyses, from a scientific perspective, past events in the array of tasks or manoeuvres comprising body movement, in a setting of human liberty and creative capacity. Sport is examined as a result of the evolution of games and in a context of these games. This book contemplates sports, whose selection criteria have included specific features of their individual or team qualities, or combat or opposition characteristics, or those related to their artistic features or to instrumentation or adaptation, or other connotations. 1st authors are 36 professors, from the universities of Barcelona, (Central), Granada, Jaen, Las Palmas de Gran Canaria, León, Madrid (Complutense), Málaga, Murcia, Oviedo, País Vasco, Salamanca, Valencia and Zaragoza.

  19. Predicting human protein function with multi-task deep neural networks.

    PubMed

    Fa, Rui; Cozzetto, Domenico; Wan, Cen; Jones, David T

    2018-01-01

    Machine learning methods for protein function prediction are urgently needed, especially now that a substantial fraction of known sequences remains unannotated despite the extensive use of functional assignments based on sequence similarity. One major bottleneck supervised learning faces in protein function prediction is the structured, multi-label nature of the problem, because biological roles are represented by lists of terms from hierarchically organised controlled vocabularies such as the Gene Ontology. In this work, we build on recent developments in the area of deep learning and investigate the usefulness of multi-task deep neural networks (MTDNN), which consist of upstream shared layers upon which are stacked in parallel as many independent modules (additional hidden layers with their own output units) as the number of output GO terms (the tasks). MTDNN learns individual tasks partially using shared representations and partially from task-specific characteristics. When no close homologues with experimentally validated functions can be identified, MTDNN gives more accurate predictions than baseline methods based on annotation frequencies in public databases or homology transfers. More importantly, the results show that MTDNN binary classification accuracy is higher than alternative machine learning-based methods that do not exploit commonalities and differences among prediction tasks. Interestingly, compared with a single-task predictor, the performance improvement is not linearly correlated with the number of tasks in MTDNN, but medium size models provide more improvement in our case. One of advantages of MTDNN is that given a set of features, there is no requirement for MTDNN to have a bootstrap feature selection procedure as what traditional machine learning algorithms do. Overall, the results indicate that the proposed MTDNN algorithm improves the performance of protein function prediction. On the other hand, there is still large room for deep learning techniques to further enhance prediction ability.

  20. An efficient scheme for automatic web pages categorization using the support vector machine

    NASA Astrophysics Data System (ADS)

    Bhalla, Vinod Kumar; Kumar, Neeraj

    2016-07-01

    In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.

  1. A novel automated spike sorting algorithm with adaptable feature extraction.

    PubMed

    Bestel, Robert; Daus, Andreas W; Thielemann, Christiane

    2012-10-15

    To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  3. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  4. Modulation of Automatic Semantic Priming by Feature-Specific Attention Allocation

    ERIC Educational Resources Information Center

    Spruyt, Adriaan; De Houwer, Jan; Hermans, Dirk

    2009-01-01

    We argue that the semantic analysis of task-irrelevant stimuli is modulated by feature-specific attention allocation. In line with this hypothesis, we found semantic priming of pronunciation responses to depend upon the extent to which participants focused their attention upon specific semantic stimulus dimensions. In Experiment 1, we examined the…

  5. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    PubMed

    Schwemmer, Michael A; Feng, Samuel F; Holmes, Philip J; Gottlieb, Jacqueline; Cohen, Jonathan D

    2015-01-01

    Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP) neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  6. Evolutionary optimization of radial basis function classifiers for data mining applications.

    PubMed

    Buchtala, Oliver; Klimek, Manuel; Sick, Bernhard

    2005-10-01

    In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given (and often large) set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes an evolutionary algorithm (EA) that performs feature and model selection simultaneously for radial basis function (RBF) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the EA significantly: hybrid training of RBF networks, lazy evaluation, consideration of soft constraints by means of penalty terms, and temperature-based adaptive control of the EA. The feasibility and the benefits of the approach are demonstrated by means of four data mining problems: intrusion detection in computer networks, biometric signature verification, customer acquisition with direct marketing methods, and optimization of chemical production processes. It is shown that, compared to earlier EA-based RBF optimization techniques, the runtime is reduced by up to 99% while error rates are lowered by up to 86%, depending on the application. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.

  7. Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval.

    PubMed

    Wei, Xiu-Shen; Luo, Jian-Hao; Wu, Jianxin; Zhou, Zhi-Hua

    2017-06-01

    Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.

  8. Metacognitive deficits in categorization tasks in a population with impaired inner speech.

    PubMed

    Langland-Hassan, Peter; Gauker, Christopher; Richardson, Michael J; Dietz, Aimee; Faries, Frank R

    2017-11-01

    This study examines the relation of language use to a person's ability to perform categorization tasks and to assess their own abilities in those categorization tasks. A silent rhyming task was used to confirm that a group of people with post-stroke aphasia (PWA) had corresponding covert language production (or "inner speech") impairments. The performance of the PWA was then compared to that of age- and education-matched healthy controls on three kinds of categorization tasks and on metacognitive self-assessments of their performance on those tasks. The PWA showed no deficits in their ability to categorize objects for any of the three trial types (visual, thematic, and categorial). However, on the categorial trials, their metacognitive assessments of whether they had categorized correctly were less reliable than those of the control group. The categorial trials were distinguished from the others by the fact that the categorization could not be based on some immediately perceptible feature or on the objects' being found together in a type of scenario or setting. This result offers preliminary evidence for a link between covert language use and a specific form of metacognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Part-Set Cuing Facilitation for Spatial Information

    ERIC Educational Resources Information Center

    Cole, Sydni M.; Reysen, Matthew B.; Kelley, Matthew R.

    2013-01-01

    Part-set cuing "inhibition" refers to the counterintuitive finding that hints--specifically, part of the set of to-be-remembered information--often impair memory performance in free recall tasks. Although inhibition is the most commonly reported result, part-set cuing "facilitation" has been shown with serial order tasks. The…

  10. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    PubMed

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-12-01

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  11. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    PubMed Central

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  12. Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

    PubMed Central

    Gong, Mengyuan

    2018-01-01

    Abstract Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection. PMID:29497703

  13. An Evaluation of optional timing/synchronization features to support selection of an optimum design for the DCS digital communication network

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Cain, J. B., III; Williard, M. W.

    1978-01-01

    The task was to evaluate the ability of a set of timing/synchronization subsystem features to provide a set of desirable characteristics for the evolving Defense Communications System digital communications network. The set of features related to the approaches by which timing/synchronization information could be disseminated throughout the network and the manner in which this information could be utilized to provide a synchronized network. These features, which could be utilized in a large number of different combinations, included mutual control, directed control, double ended reference links, independence of clock error measurement and correction, phase reference combining, and self organizing.

  14. Feature-based memory-driven attentional capture: visual working memory content affects visual attention.

    PubMed

    Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan

    2006-10-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.

  15. Rapid and long-lasting learning of feature binding

    PubMed Central

    Yashar, Amit; Carrasco, Marisa

    2016-01-01

    How are features integrated (bound) into objects and how can this process be facilitated? Here we investigated the role of rapid perceptual learning in feature binding and its long-lasting effects. By isolating the contributions of individual features from their conjunctions between training and test displays, we demonstrate for the first time that training can rapidly and substantially improve feature binding. Observers trained on a conjunction search task consisting of a rapid display with one target-conjunction, then tested with a new target-conjunction. Features were the same between training and test displays. Learning transferred to the new target when its conjunction was presented as a distractor, but not when only its component features were presented in different conjunction distractors during training. Training improvement lasted for up to 16 months, but, in all conditions, it was specific to the trained target. Our findings suggest that with short training observers’ ability to bind two specific features into an object is improved, and that this learning effect can last for over a year. Moreover, our findings show that while the short-term learning effect reflects activation of presented items and their binding, long-term consolidation is task specific. PMID:27289484

  16. Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex

    PubMed Central

    Vaden, Ryan J.; Visscher, Kristina M.

    2015-01-01

    Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806

  17. A laboratory procedure for measuring and georeferencing soil colour

    NASA Astrophysics Data System (ADS)

    Marques-Mateu, A.; Balaguer-Puig, M.; Moreno-Ramon, H.; Ibanez-Asensio, S.

    2015-04-01

    Remote sensing and geospatial applications very often require ground truth data to assess outcomes from spatial analyses or environmental models. Those data sets, however, may be difficult to collect in proper format or may even be unavailable. In the particular case of soil colour the collection of reliable ground data can be cumbersome due to measuring methods, colour communication issues, and other practical factors which lead to a lack of standard procedure for soil colour measurement and georeferencing. In this paper we present a laboratory procedure that provides colour coordinates of georeferenced soil samples which become useful in later processing stages of soil mapping and classification from digital images. The procedure requires a laboratory setup consisting of a light booth and a trichromatic colorimeter, together with a computer program that performs colour measurement, storage, and colour space transformation tasks. Measurement tasks are automated by means of specific data logging routines which allow storing recorded colour data in a spatial format. A key feature of the system is the ability of transforming between physically-based colour spaces and the Munsell system which is still the standard in soil science. The working scheme pursues the automation of routine tasks whenever possible and the avoidance of input mistakes by means of a convenient layout of the user interface. The program can readily manage colour and coordinate data sets which eventually allow creating spatial data sets. All the tasks regarding data joining between colorimeter measurements and samples locations are executed by the software in the background, allowing users to concentrate on samples processing. As a result, we obtained a robust and fully functional computer-based procedure which has proven a very useful tool for sample classification or cataloging purposes as well as for integrating soil colour data with other remote sensed and spatial data sets.

  18. Aspect-object alignment with Integer Linear Programming in opinion mining.

    PubMed

    Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei

    2015-01-01

    Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.

  19. Statistics of natural movements are reflected in motor errors.

    PubMed

    Howard, Ian S; Ingram, James N; Körding, Konrad P; Wolpert, Daniel M

    2009-09-01

    Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.

  20. Remapping Nominal Features in the Second Language

    ERIC Educational Resources Information Center

    Cho, Ji-Hyeon Jacee

    2012-01-01

    This dissertation investigates second language (L2) development in the domains of morphosyntax and semantics. Specifically, it examines the acquisition of definiteness and specificity in Russian within the Feature Re-assembly framework (Lardiere, 2009), according to which the hardest L2 learning task is not to reset parameters but to reconfigure,…

  1. Interfering with memory for faces: The cost of doing two things at once.

    PubMed

    Wammes, Jeffrey D; Fernandes, Myra A

    2016-01-01

    We inferred the processes critical for episodic retrieval of faces by measuring susceptibility to memory interference from different distracting tasks. Experiment 1 examined recognition of studied faces under full attention (FA) or each of two divided attention (DA) conditions requiring concurrent decisions to auditorily presented letters. Memory was disrupted in both DA relative to FA conditions, a result contrary to a material-specific account of interference effects. Experiment 2 investigated whether the magnitude of interference depended on competition between concurrent tasks for common processing resources. Studied faces were presented either upright (configurally processed) or inverted (featurally processed). Recognition was completed under FA, or DA with one of two face-based distracting tasks requiring either featural or configural processing. We found an interaction: memory for upright faces was lower under DA when the distracting task required configural than featural processing, while the reverse was true for memory of inverted faces. Across experiments, the magnitude of memory interference was similar (a 19% or 20% decline from FA) regardless of whether the materials in the distracting task overlapped with the to-be-remembered information. Importantly, interference was significantly larger (42%) when the processing demands of the distracting and target retrieval task overlapped, suggesting a processing-specific account of memory interference.

  2. Decoding memory features from hippocampal spiking activities using sparse classification models.

    PubMed

    Dong Song; Hampson, Robert E; Robinson, Brian S; Marmarelis, Vasilis Z; Deadwyler, Sam A; Berger, Theodore W

    2016-08-01

    To understand how memory information is encoded in the hippocampus, we build classification models to decode memory features from hippocampal CA3 and CA1 spatio-temporal patterns of spikes recorded from epilepsy patients performing a memory-dependent delayed match-to-sample task. The classification model consists of a set of B-spline basis functions for extracting memory features from the spike patterns, and a sparse logistic regression classifier for generating binary categorical output of memory features. Results show that classification models can extract significant amount of memory information with respects to types of memory tasks and categories of sample images used in the task, despite the high level of variability in prediction accuracy due to the small sample size. These results support the hypothesis that memories are encoded in the hippocampal activities and have important implication to the development of hippocampal memory prostheses.

  3. TEES 2.2: Biomedical Event Extraction for Diverse Corpora

    PubMed Central

    2015-01-01

    Background The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. Results The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. Conclusions The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented. PMID:26551925

  4. TEES 2.2: Biomedical Event Extraction for Diverse Corpora.

    PubMed

    Björne, Jari; Salakoski, Tapio

    2015-01-01

    The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented.

  5. Use of Order Sets in Inpatient Computerized Provider Order Entry Systems: A Comparative Analysis of Usage Patterns at Seven Sites

    PubMed Central

    Wright, Adam; Feblowitz, Joshua C.; Pang, Justine E.; Carpenter, James D.; Krall, Michael A.; Middleton, Blackford; Sittig, Dean F.

    2012-01-01

    Background Many computerized provider order entry (CPOE) systems include the ability to create electronic order sets: collections of clinically-related orders grouped by purpose. Order sets promise to make CPOE systems more efficient, improve care quality and increase adherence to evidence-based guidelines. However, the development and implementation of order sets can be expensive and time-consuming and limited literature exists about their utilization. Methods Based on analysis of order set usage logs from a diverse purposive sample of seven sites with commercially- and internally-developed inpatient CPOE systems, we developed an original order set classification system. Order sets were categorized across seven non-mutually exclusive axes: admission/discharge/transfer (ADT), perioperative, condition-specific, task-specific, service-specific, convenience, and personal. In addition, 731 unique subtypes were identified within five axes: four in ADT (S=4), three in perioperative, 144 in condition-specific, 513 in task-specific, and 67 in service-specific. Results Order sets (n=1,914) were used a total of 676,142 times at the participating sites during a one-year period. ADT and perioperative order sets accounted for 27.6% and 24.2% of usage respectively. Peripartum/labor, chest pain/Acute Coronary Syndrome/Myocardial Infarction and diabetes order sets accounted for 51.6% of condition-specific usage. Insulin, angiography/angioplasty and arthroplasty order sets accounted for 19.4% of task-specific usage. Emergency/trauma, Obstetrics/Gynecology/Labor Delivery and anesthesia accounted for 32.4% of service-specific usage. Overall, the top 20% of order sets accounted for 90.1% of all usage. Additional salient patterns are identified and described. Conclusion We observed recurrent patterns in order set usage across multiple sites as well as meaningful variations between sites. Vendors and institutional developers should identify high-value order set types through concrete data analysis in order to optimize the resources devoted to development and implementation. PMID:22819199

  6. Central and Peripheral Components of Working Memory Storage

    PubMed Central

    Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.

    2014-01-01

    This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488

  7. Anomaly Detection Using an Ensemble of Feature Models

    PubMed Central

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2011-01-01

    We present a new approach to semi-supervised anomaly detection. Given a set of training examples believed to come from the same distribution or class, the task is to learn a model that will be able to distinguish examples in the future that do not belong to the same class. Traditional approaches typically compare the position of a new data point to the set of “normal” training data points in a chosen representation of the feature space. For some data sets, the normal data may not have discernible positions in feature space, but do have consistent relationships among some features that fail to appear in the anomalous examples. Our approach learns to predict the values of training set features from the values of other features. After we have formed an ensemble of predictors, we apply this ensemble to new data points. To combine the contribution of each predictor in our ensemble, we have developed a novel, information-theoretic anomaly measure that our experimental results show selects against noisy and irrelevant features. Our results on 47 data sets show that for most data sets, this approach significantly improves performance over current state-of-the-art feature space distance and density-based approaches. PMID:22020249

  8. Featural and temporal attention selectively enhance task-appropriate representations in human V1

    PubMed Central

    Warren, Scott; Yacoub, Essa; Ghose, Geoffrey

    2015-01-01

    Our perceptions are often shaped by focusing our attention toward specific features or periods of time irrespective of location. We explore the physiological bases of these non-spatial forms of attention by imaging brain activity while subjects perform a challenging change detection task. The task employs a continuously varying visual stimulus that, for any moment in time, selectively activates functionally distinct subpopulations of primary visual cortex (V1) neurons. When subjects are cued to the timing and nature of the change, the mapping of orientation preference across V1 was systematically shifts toward the cued stimulus just prior to its appearance. A simple linear model can explain this shift: attentional changes are selectively targeted toward neural subpopulations representing the attended feature at the times the feature was anticipated. Our results suggest that featural attention is mediated by a linear change in the responses of task-appropriate neurons across cortex during appropriate periods of time. PMID:25501983

  9. Temporal Processing Instability with Millisecond Accuracy Is a Cardinal Feature of Sensorimotor Impairments in Autism Spectrum Disorder: Analysis Using the Synchronized Finger-Tapping Task

    ERIC Educational Resources Information Center

    Morimoto, Chie; Hida, Eisuke; Shima, Keisuke; Okamura, Hitoshi

    2018-01-01

    To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD…

  10. Visual perceptual training reconfigures post-task resting-state functional connectivity with a feature-representation region.

    PubMed

    Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi

    2018-01-01

    The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.

  11. A keyword spotting model using perceptually significant energy features

    NASA Astrophysics Data System (ADS)

    Umakanthan, Padmalochini

    The task of a keyword recognition system is to detect the presence of certain words in a conversation based on the linguistic information present in human speech. Such keyword spotting systems have applications in homeland security, telephone surveillance and human-computer interfacing. General procedure of a keyword spotting system involves feature generation and matching. In this work, new set of features that are based on the psycho-acoustic masking nature of human speech are proposed. After developing these features a time aligned pattern matching process was implemented to locate the words in a set of unknown words. A word boundary detection technique based on frame classification using the nonlinear characteristics of speech is also addressed in this work. Validation of this keyword spotting model was done using widely acclaimed Cepstral features. The experimental results indicate the viability of using these perceptually significant features as an augmented feature set in keyword spotting.

  12. A framework for semisupervised feature generation and its applications in biomedical literature mining.

    PubMed

    Li, Yanpeng; Hu, Xiaohua; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Feature representation is essential to machine learning and text mining. In this paper, we present a feature coupling generalization (FCG) framework for generating new features from unlabeled data. It selects two special types of features, i.e., example-distinguishing features (EDFs) and class-distinguishing features (CDFs) from original feature set, and then generalizes EDFs into higher-level features based on their coupling degrees with CDFs in unlabeled data. The advantage is: EDFs with extreme sparsity in labeled data can be enriched by their co-occurrences with CDFs in unlabeled data so that the performance of these low-frequency features can be greatly boosted and new information from unlabeled can be incorporated. We apply this approach to three tasks in biomedical literature mining: gene named entity recognition (NER), protein-protein interaction extraction (PPIE), and text classification (TC) for gene ontology (GO) annotation. New features are generated from over 20 GB unlabeled PubMed abstracts. The experimental results on BioCreative 2, AIMED corpus, and TREC 2005 Genomics Track show that 1) FCG can utilize well the sparse features ignored by supervised learning. 2) It improves the performance of supervised baselines by 7.8 percent, 5.0 percent, and 5.8 percent, respectively, in the tree tasks. 3) Our methods achieve 89.1, 64.5 F-score, and 60.1 normalized utility on the three benchmark data sets.

  13. A study of interactive control scheduling and economic assessment for robotic systems

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.

  14. Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features.

    PubMed

    Tales, A; Butler, S R; Fossey, J; Gilchrist, I D; Jones, R W; Troscianko, T

    2002-01-01

    Human vision often needs to encode multiple characteristics of many elements of the visual field, for example their lightness and orientation. The paradigm of visual search allows a quantitative assessment of the function of the underlying mechanisms. It measures the ability to detect a target element among a set of distractor elements. We asked whether Alzheimer's disease (AD) patients are particularly affected in one type of search, where the target is defined by a conjunction of features (orientation and lightness) and where performance depends on some shifting of attention. Two non-conjunction control conditions were employed. The first was a pre-attentive, single-feature, "pop-out" task, detecting a vertical target among horizontal distractors. The second was a single-feature, partly attentive task in which the target element was slightly larger than the distractors-a "size" task. This was chosen to have a similar level of attentional load as the conjunction task (for the control group), but lacked the conjunction of two features. In an experiment, 15 AD patients were compared to age-matched controls. The results suggested that AD patients have a particular impairment in the conjunction task but not in the single-feature size or pre-attentive tasks. This may imply that AD particularly affects those mechanisms which compare across more than one feature type, and spares the other systems and is not therefore simply an 'attention-related' impairment. Additionally, these findings show a double dissociation with previous data on visual search in Parkinson's disease (PD), suggesting a different effect of these diseases on the visual pathway.

  15. Obligatory encoding of task-irrelevant features depletes working memory resources.

    PubMed

    Marshall, Louise; Bays, Paul M

    2013-02-18

    Selective attention is often considered the "gateway" to visual working memory (VWM). However, the extent to which we can voluntarily control which of an object's features enter memory remains subject to debate. Recent research has converged on the concept of VWM as a limited commodity distributed between elements of a visual scene. Consequently, as memory load increases, the fidelity with which each visual feature is stored decreases. Here we used changes in recall precision to probe whether task-irrelevant features were encoded into VWM when individuals were asked to store specific feature dimensions. Recall precision for both color and orientation was significantly enhanced when task-irrelevant features were removed, but knowledge of which features would be probed provided no advantage over having to memorize both features of all items. Next, we assessed the effect an interpolated orientation-or color-matching task had on the resolution with which orientations in a memory array were stored. We found that the presence of orientation information in the second array disrupted memory of the first array. The cost to recall precision was identical whether the interfering features had to be remembered, attended to, or could be ignored. Therefore, it appears that storing, or merely attending to, one feature of an object is sufficient to promote automatic encoding of all its features, depleting VWM resources. However, the precision cost was abolished when the match task preceded the memory array. So, while encoding is automatic, maintenance is voluntary, allowing resources to be reallocated to store new visual information.

  16. Neural network classification of myoelectric signal for prosthesis control.

    PubMed

    Kelly, M F; Parker, P A; Scott, R N

    1991-12-01

    An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions. Copyright © 1991. Published by Elsevier Ltd.

  17. Cue combination in a combined feature contrast detection and figure identification task.

    PubMed

    Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula

    2006-11-01

    Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.

  18. Mitigating Disruptive Effects of Interruptions through Training: What Needs to Be Practiced?

    ERIC Educational Resources Information Center

    Cades, David M.; Boehm-Davis, Deborah A.; Trafton, J. Gregory; Monk, Christopher A.

    2011-01-01

    It is generally accepted that, with practice, people improve on most tasks. However, when tasks have multiple parts, it is not always clear what aspects of the tasks practice or training should focus on. This research explores the features that allow training to improve the ability to resume a task after an interruption, specifically focusing on…

  19. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments.

    PubMed

    Pardowitz, Michael; Knoop, Steffen; Dillmann, Ruediger; Zöllner, Raoul D

    2007-04-01

    Since many years the robotics community is envisioning robot assistants sharing the same environment with humans. It became obvious that they have to interact with humans and should adapt to individual user needs. Especially the high variety of tasks robot assistants will be facing requires a highly adaptive and user-friendly programming interface. One possible solution to this programming problem is the learning-by-demonstration paradigm, where the robot is supposed to observe the execution of a task, acquire task knowledge, and reproduce it. In this paper, a system to record, interpret, and reason over demonstrations of household tasks is presented. The focus is on the model-based representation of manipulation tasks, which serves as a basis for incremental reasoning over the acquired task knowledge. The aim of the reasoning is to condense and interconnect the data, resulting in more general task knowledge. A measure for the assessment of information content of task features is introduced. This measure for the relevance of certain features relies both on general background knowledge as well as task-specific knowledge gathered from the user demonstrations. Beside the autonomous information estimation of features, speech comments during the execution, pointing out the relevance of features are considered as well. The results of the incremental growth of the task knowledge when more task demonstrations become available and their fusion with relevance information gained from speech comments is demonstrated within the task of laying a table.

  20. Does overgeneral autobiographical memory result from poor memory for task instructions?

    PubMed

    Yanes, Paula K; Roberts, John E; Carlos, Erica L

    2008-10-01

    Considerable previous research has shown that retrieval of overgeneral autobiographical memories (OGM) is elevated among individuals suffering from various emotional disorders and those with a history of trauma. Although previous theories suggest that OGM serves the function of regulating acute negative affect, it is also possible that OGM results from difficulties in keeping the instruction set for the Autobiographical Memory Test (AMT) in working memory, or what has been coined "secondary goal neglect" (Dalgleish, 2004). The present study tested whether OGM is associated with poor memory for the task's instruction set, and whether an instruction set reminder would improve memory specificity over repeated trials. Multilevel modelling data-analytic techniques demonstrated a significant relationship between poor recall of instruction set and probability of retrieving OGMs. Providing an instruction set reminder for the AMT relative to a control task's instruction set improved memory specificity immediately afterward.

  1. Expressive writing and eating disorder features: a preliminary trial in a student sample of the impact of three writing tasks on eating disorder symptoms and associated cognitive, affective and interpersonal factors.

    PubMed

    East, Philippa; Startup, Helen; Roberts, Clifford; Schmidt, Ulrike

    2010-05-01

    To evaluate the impact of three writing tasks on the cognitive, affective and interpersonal factors typically associated with eating disorder symptoms, in a student population. Two experimental tasks and one control task were evaluated. Participants gave subjective ratings of the writing experience, and objective questionnaire measures were administered at baseline, and 4- and 8-week follow-up. Participants who dropped out without completing the writing tasks were more experientially avoidant. The three tasks differed significantly in subjective impact, and the experimental tasks were most effective in reducing eating disorder symptoms. They also ameliorated some key features associated with eating difficulties. The control task generally had less, no or a detrimental effect. The results provide preliminary indirect support for the use of therapeutic writing to address specific features associated with the eating disorder presentation. Further research is required to replicate the present findings and extend these to the clinical population. Copyright (c) 2010 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering.

    PubMed

    Rodríguez-Sotelo, J L; Peluffo-Ordoñez, D; Cuesta-Frau, D; Castellanos-Domínguez, G

    2012-10-01

    The computer-assisted analysis of biomedical records has become an essential tool in clinical settings. However, current devices provide a growing amount of data that often exceeds the processing capacity of normal computers. As this amount of information rises, new demands for more efficient data extracting methods appear. This paper addresses the task of data mining in physiological records using a feature selection scheme. An unsupervised method based on relevance analysis is described. This scheme uses a least-squares optimization of the input feature matrix in a single iteration. The output of the algorithm is a feature weighting vector. The performance of the method was assessed using a heartbeat clustering test on real ECG records. The quantitative cluster validity measures yielded a correctly classified heartbeat rate of 98.69% (specificity), 85.88% (sensitivity) and 95.04% (general clustering performance), which is even higher than the performance achieved by other similar ECG clustering studies. The number of features was reduced on average from 100 to 18, and the temporal cost was a 43% lower than in previous ECG clustering schemes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Mechanisms supporting superior source memory for familiar items: A multi-voxel pattern analysis study

    PubMed Central

    Poppenk, Jordan; Norman, Kenneth A.

    2012-01-01

    Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within- and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. PMID:22820636

  4. Task Demands Control Acquisition and Storage of Visual Information

    ERIC Educational Resources Information Center

    Droll, Jason A.; Hayhoe, Mary M.; Triesch, Jochen; Sullivan, Brian T.

    2005-01-01

    Attention and working memory limitations set strict limits on visual representations, yet researchers have little appreciation of how these limits constrain the acquisition of information in ongoing visually guided behavior. Subjects performed a brick sorting task in a virtual environment. A change was made to 1 of the features of the brick being…

  5. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  6. Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.

    PubMed

    Devereux, Barry J; Taylor, Kirsten I; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K

    2016-03-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in (distinctiveness/sharedness) and likelihood of co-occurrence (correlational strength)--determine conceptual activation. To test these claims, we investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning mapping, using a lexical decision task and computational simulations. Responses were faster for concepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical decision that require access to them. Correlational strength facilitated responses for slower participants, suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation showed similar effects, with early effects of shared features and later effects of correlational strength. These results support a general-to-specific account of conceptual processing, whereby early activation of shared features is followed by the gradual emergence of a specific target representation. Copyright © 2015 The Authors. Cognitive Science published by Cognitive Science Society, Inc.

  7. Does It Really Matter Where You Look When Walking on Stairs? Insights from a Dual-Task Study

    PubMed Central

    Miyasike-daSilva, Veronica; McIlroy, William E.

    2012-01-01

    Although the visual system is known to provide relevant information to guide stair locomotion, there is less understanding of the specific contributions of foveal and peripheral visual field information. The present study investigated the specific role of foveal vision during stair locomotion and ground-stairs transitions by using a dual-task paradigm to influence the ability to rely on foveal vision. Fifteen healthy adults (26.9±3.3 years; 8 females) ascended a 7-step staircase under four conditions: no secondary tasks (CONTROL); gaze fixation on a fixed target located at the end of the pathway (TARGET); visual reaction time task (VRT); and auditory reaction time task (ART). Gaze fixations towards stair features were significantly reduced in TARGET and VRT compared to CONTROL and ART. Despite the reduced fixations, participants were able to successfully ascend stairs and rarely used the handrail. Step time was increased during VRT compared to CONTROL in most stair steps. Navigating on the transition steps did not require more gaze fixations than the middle steps. However, reaction time tended to increase during locomotion on transitions suggesting additional executive demands during this phase. These findings suggest that foveal vision may not be an essential source of visual information regarding stair features to guide stair walking, despite the unique control challenges at transition phases as highlighted by phase-specific challenges in dual-tasking. Instead, the tendency to look at the steps in usual conditions likely provides a stable reference frame for extraction of visual information regarding step features from the entire visual field. PMID:22970297

  8. Cognitive Maps of a Naturalistic Setting.

    ERIC Educational Resources Information Center

    Cohen, Robert; And Others

    1978-01-01

    Distance estimates of locations in a camp setting were obtained from 9- and 10-year-olds and adults. Each subject estimated distance on two tasks: magnitude estimation and reconstruction. Data were analyzed for the effects of certain environmental features such as buildings, trees, and hills. (JMB)

  9. Task-phase-specific dynamics of basal forebrain neuronal ensembles

    PubMed Central

    Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.

    2014-01-01

    Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352

  10. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    PubMed

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    NASA Technical Reports Server (NTRS)

    Winters, J. M.; Stark, L.

    1984-01-01

    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities.

  12. Context-dependent control over attentional capture

    PubMed Central

    Cosman, Joshua D.; Vecera, Shaun P.

    2014-01-01

    A number of studies have demonstrated that the likelihood of a salient item capturing attention is dependent on the “attentional set” an individual employs in a given situation. The instantiation of an attentional set is often viewed as a strategic, voluntary process, relying on working memory systems that represent immediate task priorities. However, influential theories of attention and automaticity propose that goal-directed control can operate more or less automatically on the basis of longer-term task representations, a notion supported by a number of recent studies. Here, we provide evidence that longer-term contextual learning can rapidly and automatically influence the instantiation of a given attentional set. Observers learned associations between specific attentional sets and specific task-irrelevant background scenes during a training session, and in the ensuing test session simply reinstating particular scenes on a trial by trial basis biased observers to employ the associated attentional set. This directly influenced the magnitude of attentional capture, suggesting that memory for the context in which a task is performed can play an important role in the ability to instantiate a particular attentional set and overcome distraction by salient, task-irrelevant information. PMID:23025581

  13. Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.

    PubMed

    Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M

    2018-06-15

    Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Sparse Contextual Activation for Efficient Visual Re-Ranking.

    PubMed

    Bai, Song; Bai, Xiang

    2016-03-01

    In this paper, we propose an extremely efficient algorithm for visual re-ranking. By considering the original pairwise distance in the contextual space, we develop a feature vector called sparse contextual activation (SCA) that encodes the local distribution of an image. Hence, re-ranking task can be simply accomplished by vector comparison under the generalized Jaccard metric, which has its theoretical meaning in the fuzzy set theory. In order to improve the time efficiency of re-ranking procedure, inverted index is successfully introduced to speed up the computation of generalized Jaccard metric. As a result, the average time cost of re-ranking for a certain query can be controlled within 1 ms. Furthermore, inspired by query expansion, we also develop an additional method called local consistency enhancement on the proposed SCA to improve the retrieval performance in an unsupervised manner. On the other hand, the retrieval performance using a single feature may not be satisfactory enough, which inspires us to fuse multiple complementary features for accurate retrieval. Based on SCA, a robust feature fusion algorithm is exploited that also preserves the characteristic of high time efficiency. We assess our proposed method in various visual re-ranking tasks. Experimental results on Princeton shape benchmark (3D object), WM-SRHEC07 (3D competition), YAEL data set B (face), MPEG-7 data set (shape), and Ukbench data set (image) manifest the effectiveness and efficiency of SCA.

  15. Faces in-between: evaluations reflect the interplay of facial features and task-dependent fluency.

    PubMed

    Winkielman, Piotr; Olszanowski, Michal; Gola, Mateusz

    2015-04-01

    Facial features influence social evaluations. For example, faces are rated as more attractive and trustworthy when they have more smiling features and also more female features. However, the influence of facial features on evaluations should be qualified by the affective consequences of fluency (cognitive ease) with which such features are processed. Further, fluency (along with its affective consequences) should depend on whether the current task highlights conflict between specific features. Four experiments are presented. In 3 experiments, participants saw faces varying in expressions ranging from pure anger, through mixed expression, to pure happiness. Perceivers first categorized faces either on a control dimension, or an emotional dimension (angry/happy). Thus, the emotional categorization task made "pure" expressions fluent and "mixed" expressions disfluent. Next, participants made social evaluations. Results show that after emotional categorization, but not control categorization, targets with mixed expressions are relatively devalued. Further, this effect is mediated by categorization disfluency. Additional data from facial electromyography reveal that on a basic physiological level, affective devaluation of mixed expressions is driven by their objective ambiguity. The fourth experiment shows that the relative devaluation of mixed faces that vary in gender ambiguity requires a gender categorization task. Overall, these studies highlight that the impact of facial features on evaluation is qualified by their fluency, and that the fluency of features is a function of the current task. The discussion highlights the implications of these findings for research on emotional reactions to ambiguity. (c) 2015 APA, all rights reserved).

  16. Primary bowing tremor: a task-specific movement disorder of string instrumentalists.

    PubMed

    Lederman, Richard J

    2012-12-01

    Fear of a tremulous or unsteady bow is widespread among string instrumentalists. Faulty technique and performance anxiety have generally been blamed. The cases of 4 high-level violinists and 1 violist, 3 women and 2 men, with uncontrollable bow tremor are presented. Age at onset was from 16 to 75 years, and symptom duration 8 months to 20 years at the time of neurological evaluation. The degree of tremor varied with type of bow stroke and even the portion of the bow contacting the string. Only 1 patient had a slight postural tremor of the opposite limb. In 3 of 5 the tremor was task-specific; the other 2 had mild and nontroubling tremor with other activities. The tremor appeared to worsen over time but then seemed to stabilize. The characteristics of this tremor appear to be distinguishable from the features of both essential tremor and focal dystonia; comparison is made with representative string players afflicted by these other disorders. Analogy of this tremor is made with primary writing tremor, a well-defined task-specific movement disorder also sharing at least some features with both essential tremor and writers' cramp, a focal dystonia. Hence, it was decided to call this primary bowing tremor. Clinical features, family history, diagnostic studies, and responsiveness to treatment of primary writing tremor are discussed to emphasize the similarity to primary bowing tremor. This appears to represent a previously unreported form of task-specific movement disorder of string instrumentalists.

  17. Switching between Abstract Rules Reflects Disease Severity but Not Dopaminergic Status in Parkinson's Disease

    ERIC Educational Resources Information Center

    Kehagia, Angie A.; Cools, Roshan; Barker, Roger A.; Robbins, Trevor W.

    2009-01-01

    This study sought to disambiguate the impact of Parkinson's disease (PD) on cognitive control as indexed by task set switching, by addressing discrepancies in the literature pertaining to disease severity and paradigm heterogeneity. A task set is governed by a rule that determines how relevant stimuli (stimulus set) map onto specific responses…

  18. Automated surgical skill assessment in RMIS training.

    PubMed

    Zia, Aneeq; Essa, Irfan

    2018-05-01

    Manual feedback in basic robot-assisted minimally invasive surgery (RMIS) training can consume a significant amount of time from expert surgeons' schedule and is prone to subjectivity. In this paper, we explore the usage of different holistic features for automated skill assessment using only robot kinematic data and propose a weighted feature fusion technique for improving score prediction performance. Moreover, we also propose a method for generating 'task highlights' which can give surgeons a more directed feedback regarding which segments had the most effect on the final skill score. We perform our experiments on the publicly available JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and evaluate four different types of holistic features from robot kinematic data-sequential motion texture (SMT), discrete Fourier transform (DFT), discrete cosine transform (DCT) and approximate entropy (ApEn). The features are then used for skill classification and exact skill score prediction. Along with using these features individually, we also evaluate the performance using our proposed weighted combination technique. The task highlights are produced using DCT features. Our results demonstrate that these holistic features outperform all previous Hidden Markov Model (HMM)-based state-of-the-art methods for skill classification on the JIGSAWS dataset. Also, our proposed feature fusion strategy significantly improves performance for skill score predictions achieving up to 0.61 average spearman correlation coefficient. Moreover, we provide an analysis on how the proposed task highlights can relate to different surgical gestures within a task. Holistic features capturing global information from robot kinematic data can successfully be used for evaluating surgeon skill in basic surgical tasks on the da Vinci robot. Using the framework presented can potentially allow for real-time score feedback in RMIS training and help surgical trainees have more focused training.

  19. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases

    PubMed Central

    Janowczyk, Andrew; Madabhushi, Anant

    2016-01-01

    Background: Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific “handcrafted” features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a) selecting appropriate magnification, (b) managing errors in annotations in the training (or learning) dataset, and (c) identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, and (ii) DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. Aims: This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Results: Specifically, in this tutorial on DL for DP image analysis, we show how an open source framework (Caffe), with a singular network architecture, can be used to address: (a) nuclei segmentation (F-score of 0.83 across 12,000 nuclei), (b) epithelium segmentation (F-score of 0.84 across 1735 regions), (c) tubule segmentation (F-score of 0.83 from 795 tubules), (d) lymphocyte detection (F-score of 0.90 across 3064 lymphocytes), (e) mitosis detection (F-score of 0.53 across 550 mitotic events), (f) invasive ductal carcinoma detection (F-score of 0.7648 on 50 k testing patches), and (g) lymphoma classification (classification accuracy of 0.97 across 374 images). Conclusion: This paper represents the largest comprehensive study of DL approaches in DP to date, with over 1200 DP images used during evaluation. The supplemental online material that accompanies this paper consists of step-by-step instructions for the usage of the supplied source code, trained models, and input data. PMID:27563488

  20. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.

    PubMed

    Janowczyk, Andrew; Madabhushi, Anant

    2016-01-01

    Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific "handcrafted" features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a) selecting appropriate magnification, (b) managing errors in annotations in the training (or learning) dataset, and (c) identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, and (ii) DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Specifically, in this tutorial on DL for DP image analysis, we show how an open source framework (Caffe), with a singular network architecture, can be used to address: (a) nuclei segmentation (F-score of 0.83 across 12,000 nuclei), (b) epithelium segmentation (F-score of 0.84 across 1735 regions), (c) tubule segmentation (F-score of 0.83 from 795 tubules), (d) lymphocyte detection (F-score of 0.90 across 3064 lymphocytes), (e) mitosis detection (F-score of 0.53 across 550 mitotic events), (f) invasive ductal carcinoma detection (F-score of 0.7648 on 50 k testing patches), and (g) lymphoma classification (classification accuracy of 0.97 across 374 images). This paper represents the largest comprehensive study of DL approaches in DP to date, with over 1200 DP images used during evaluation. The supplemental online material that accompanies this paper consists of step-by-step instructions for the usage of the supplied source code, trained models, and input data.

  1. Verbal predicates foster conscious recollection but not familiarity of a task-irrelevant perceptual feature--an ERP study.

    PubMed

    Ecker, Ullrich K H; Arend, Anna M; Bergström, Kirstin; Zimmer, Hubert D

    2009-09-01

    Research on the effects of perceptual manipulations on recognition memory has suggested that (a) recollection is selectively influenced by task-relevant information and (b) familiarity can be considered perceptually specific. The present experiment tested divergent assumptions that (a) perceptual features can influence conscious object recollection via verbal code despite being task-irrelevant and that (b) perceptual features do not influence object familiarity if study is verbal-conceptual. At study, subjects named objects and their presentation colour; this was followed by an old/new object recognition test. Event-related potentials (ERP) showed that a study-test manipulation of colour impacted selectively on the ERP effect associated with recollection, while a size manipulation showed no effect. It is concluded that (a) verbal predicates generated at study are potent episodic memory agents that modulate recollection even if the recovered feature information is task-irrelevant and (b) commonly found perceptual match effects on familiarity critically depend on perceptual processing at study.

  2. Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J.

    2016-01-01

    Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082

  3. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.

    PubMed

    Ibos, Guilhem; Freedman, David J

    2016-08-17

    Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exploiting ensemble learning for automatic cataract detection and grading.

    PubMed

    Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing

    2016-02-01

    Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Processing statistics: an examination of focused and distributed attention using event related potentials.

    PubMed

    Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan

    2013-06-07

    Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Unique sudden onsets capture attention even when observers are in feature-search mode.

    PubMed

    Spalek, Thomas M; Yanko, Matthew R; Poiese, Paola; Lagroix, Hayley E P

    2012-01-01

    Two sources of attentional capture have been proposed: stimulus-driven (exogenous) and goal-oriented (endogenous). A resolution between these modes of capture has not been straightforward. Even such a clearly exogenous event as the sudden onset of a stimulus can be said to capture attention endogenously if observers operate in singleton-detection mode rather than feature-search mode. In four experiments we show that a unique sudden onset captures attention even when observers are in feature-search mode. The displays were rapid serial visual presentation (RSVP) streams of differently coloured letters with the target letter defined by a specific colour. Distractors were four #s, one of the target colour, surrounding one of the non-target letters. Capture was substantially reduced when the onset of the distractor array was not unique because it was preceded by other sets of four grey # arrays in the RSVP stream. This provides unambiguous evidence that attention can be captured both exogenously and endogenously within a single task.

  7. Classification of Focal and Non Focal Epileptic Seizures Using Multi-Features and SVM Classifier.

    PubMed

    Sriraam, N; Raghu, S

    2017-09-02

    Identifying epileptogenic zones prior to surgery is an essential and crucial step in treating patients having pharmacoresistant focal epilepsy. Electroencephalogram (EEG) is a significant measurement benchmark to assess patients suffering from epilepsy. This paper investigates the application of multi-features derived from different domains to recognize the focal and non focal epileptic seizures obtained from pharmacoresistant focal epilepsy patients from Bern Barcelona database. From the dataset, five different classification tasks were formed. Total 26 features were extracted from focal and non focal EEG. Significant features were selected using Wilcoxon rank sum test by setting p-value (p < 0.05) and z-score (-1.96 > z > 1.96) at 95% significance interval. Hypothesis was made that the effect of removing outliers improves the classification accuracy. Turkey's range test was adopted for pruning outliers from feature set. Finally, 21 features were classified using optimized support vector machine (SVM) classifier with 10-fold cross validation. Bayesian optimization technique was adopted to minimize the cross-validation loss. From the simulation results, it was inferred that the highest sensitivity, specificity, and classification accuracy of 94.56%, 89.74%, and 92.15% achieved respectively and found to be better than the state-of-the-art approaches. Further, it was observed that the classification accuracy improved from 80.2% with outliers to 92.15% without outliers. The classifier performance metrics ensures the suitability of the proposed multi-features with optimized SVM classifier. It can be concluded that the proposed approach can be applied for recognition of focal EEG signals to localize epileptogenic zones.

  8. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.

    PubMed

    Grubert, Anna; Eimer, Martin

    2013-10-01

    To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data

    NASA Astrophysics Data System (ADS)

    Aleem, Idris; Chau, Tom

    2013-02-01

    Transcranial Doppler (TCD) was recently introduced as a new brain-computer interface (BCI) modality for detecting task-induced hemispheric lateralization. To date, single-trial discrimination between a lateralized mental activity and a rest state has been demonstrated with long (45 s) activation time periods. However, the possibility of detecting successive activations in a user-independent framework (i.e. without training data from the user) remains an open question. Objective. The objective of this research was to assess TCD-based detection of lateralized mental activity with a user-independent classifier. In so doing, we also investigated the accuracy of detecting successive lateralizations. Approach. TCD data from 18 participants were collected during verbal fluency, mental rotation tasks and baseline counting tasks. Linear discriminant analysis and a set of four time-domain features were used to classify successive left and right brain activations. Main results. In a user-independent framework, accuracies up to 74.6 ± 12.6% were achieved using training data from a single participant, and lateralization task durations of 18 s. Significance. Subject-independent, algorithmic classification of TCD signals corresponding to successive brain lateralization may be a feasible paradigm for TCD-BCI design.

  10. Enhancing business intelligence by means of suggestive reviews.

    PubMed

    Qazi, Atika; Raj, Ram Gopal; Tahir, Muhammad; Cambria, Erik; Syed, Karim Bux Shah

    2014-01-01

    Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons.

  11. Enhancing Business Intelligence by Means of Suggestive Reviews

    PubMed Central

    Qazi, Atika

    2014-01-01

    Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons. PMID:25054188

  12. A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities

    NASA Astrophysics Data System (ADS)

    Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.

    2017-12-01

    The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.

  13. Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.

    PubMed

    Zhang, Baochang; Yang, Yun; Chen, Chen; Yang, Linlin; Han, Jungong; Shao, Ling

    2017-10-01

    Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.

  14. Reusable Reinforcement Learning via Shallow Trails.

    PubMed

    Yu, Yang; Chen, Shi-Yong; Da, Qing; Zhou, Zhi-Hua

    2018-06-01

    Reinforcement learning has shown great success in helping learning agents accomplish tasks autonomously from environment interactions. Meanwhile in many real-world applications, an agent needs to accomplish not only a fixed task but also a range of tasks. For this goal, an agent can learn a metapolicy over a set of training tasks that are drawn from an underlying distribution. By maximizing the total reward summed over all the training tasks, the metapolicy can then be reused in accomplishing test tasks from the same distribution. However, in practice, we face two major obstacles to train and reuse metapolicies well. First, how to identify tasks that are unrelated or even opposite with each other, in order to avoid their mutual interference in the training. Second, how to characterize task features, according to which a metapolicy can be reused. In this paper, we propose the MetA-Policy LEarning (MAPLE) approach that overcomes the two difficulties by introducing the shallow trail. It probes a task by running a roughly trained policy. Using the rewards of the shallow trail, MAPLE automatically groups similar tasks. Moreover, when the task parameters are unknown, the rewards of the shallow trail also serve as task features. Empirical studies on several controlling tasks verify that MAPLE can train metapolicies well and receives high reward on test tasks.

  15. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  16. Feature relevance assessment for the semantic interpretation of 3D point cloud data

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Jutzi, B.; Mallet, C.

    2013-10-01

    The automatic analysis of large 3D point clouds represents a crucial task in photogrammetry, remote sensing and computer vision. In this paper, we propose a new methodology for the semantic interpretation of such point clouds which involves feature relevance assessment in order to reduce both processing time and memory consumption. Given a standard benchmark dataset with 1.3 million 3D points, we first extract a set of 21 geometric 3D and 2D features. Subsequently, we apply a classifier-independent ranking procedure which involves a general relevance metric in order to derive compact and robust subsets of versatile features which are generally applicable for a large variety of subsequent tasks. This metric is based on 7 different feature selection strategies and thus addresses different intrinsic properties of the given data. For the example of semantically interpreting 3D point cloud data, we demonstrate the great potential of smaller subsets consisting of only the most relevant features with 4 different state-of-the-art classifiers. The results reveal that, instead of including as many features as possible in order to compensate for lack of knowledge, a crucial task such as scene interpretation can be carried out with only few versatile features and even improved accuracy.

  17. Detection of explosive cough events in audio recordings by internal sound analysis.

    PubMed

    Rocha, B M; Mendes, L; Couceiro, R; Henriques, J; Carvalho, P; Paiva, R P

    2017-07-01

    We present a new method for the discrimination of explosive cough events, which is based on a combination of spectral content descriptors and pitch-related features. After the removal of near-silent segments, a vector of event boundaries is obtained and a proposed set of 9 features is extracted for each event. Two data sets, recorded using electronic stethoscopes and comprising a total of 46 healthy subjects and 13 patients, were employed to evaluate the method. The proposed feature set is compared to three other sets of descriptors: a baseline, a combination of both sets, and an automatic selection of the best 10 features from both sets. The combined feature set yields good results on the cross-validated database, attaining a sensitivity of 92.3±2.3% and a specificity of 84.7±3.3%. Besides, this feature set seems to generalize well when it is trained on a small data set of patients, with a variety of respiratory and cardiovascular diseases, and tested on a bigger data set of mostly healthy subjects: a sensitivity of 93.4% and a specificity of 83.4% are achieved in those conditions. These results demonstrate that complementing the proposed feature set with a baseline set is a promising approach.

  18. Context-dependent control of attention capture: Evidence from proportion congruent effects.

    PubMed

    Crump, Matthew J C; Milliken, Bruce; Leboe-McGowan, Jason; Leboe-McGowan, Launa; Gao, Xiaoqing

    2018-06-01

    There are several independent demonstrations that attentional phenomena can be controlled in a context-dependent manner by cues associated with differing attentional control demands. The present set of experiments provide converging evidence that attention-capture phenomena can be modulated in a context-dependent fashion. We determined whether methods from the proportion congruent literature (listwide and item- and context-specific proportion congruent designs) that are known to modulate distractor interference effects in Stroop and flanker tasks are capable of modulating attention capture by salient feature singletons. Across experiments we found evidence that attention capture can be modulated by listwide, item-specific, and context-specific manipulations of proportion congruent. We discuss challenges associated with interpreting results from proportion congruent studies but propose that our findings converge with existing work that has demonstrated context-dependent control of attention capture. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.

    PubMed

    Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi

    2014-02-01

    This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.

  20. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests.

    PubMed

    Gel, Bernat; Díez-Villanueva, Anna; Serra, Eduard; Buschbeck, Marcus; Peinado, Miguel A; Malinverni, Roberto

    2016-01-15

    Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model. regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions. In addition to the predefined randomization and evaluation strategies, regioneR is fully customizable allowing the use of custom strategies to adapt it to specific questions. Finally, it also implements a novel function to evaluate the local specificity of the detected association. regioneR is an R package released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/regioneR). rmalinverni@carrerasresearch.org. © The Author 2015. Published by Oxford University Press.

  1. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  2. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    PubMed Central

    Gupta, Rishabh; Falk, Tiago H.

    2017-01-01

    Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021

  3. A standard set of upper extremity tasks for evaluating rehabilitation interventions for individuals with complete arm paralysis

    PubMed Central

    Cornwell, Andrew S.; Liao, James Y.; Bryden, Anne M.; Kirsch, Robert F.

    2013-01-01

    We have developed a set of upper extremity functional tasks to guide the design and test the performance of rehabilitation technologies that restore arm motion in people with high tetraplegia. Our goal was to develop a short set of tasks that would be representative of a much larger set of activities of daily living while also being feasible for a unilateral user of an implanted Functional Electrical Stimulation (FES) system. To compile this list of tasks, we reviewed existing clinical outcome measures related to arm and hand function, and were further informed by surveys of patient desires. We ultimately selected a set of five tasks that captured the most common components of movement seen in these tasks, making them highly relevant for assessing FES-restored unilateral arm function in individuals with high cervical spinal cord injury (SCI). The tasks are intended to be used when setting design specifications and for evaluation and standardization of rehabilitation technologies under development. While not unique, this set of tasks will provide a common basis for comparing different interventions (e.g., FES, powered orthoses, robotic assistants) and testing different user command interfaces (e.g., sip-and-puff, head joysticks, brain-computer interfaces). PMID:22773199

  4. Task-specific Dystonias

    PubMed Central

    Torres-Russotto, Diego; Perlmutter, Joel S.

    2009-01-01

    Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127

  5. Domain-specific learning of grammatical structure in musical and phonological sequences.

    PubMed

    Bly, Benjamin Martin; Carrión, Ricardo E; Rasch, Björn

    2009-01-01

    Artificial grammar learning depends on acquisition of abstract structural representations rather than domain-specific representational constraints, or so many studies tell us. Using an artificial grammar task, we compared learning performance in two stimulus domains in which respondents have differing tacit prior knowledge. We found that despite grammatically identical sequence structures, learning was better for harmonically related chord sequences than for letter name sequences or harmonically unrelated chord sequences. We also found transfer effects within the musical and letter name tasks, but not across the domains. We conclude that knowledge acquired in implicit learning depends not only on abstract features of structured stimuli, but that the learning of regularities is in some respects domain-specific and strongly linked to particular features of the stimulus domain.

  6. Simultaneous and Sequential Feature Negative Discriminations: Elemental Learning and Occasion Setting in Human Pavlovian Conditioning

    ERIC Educational Resources Information Center

    Baeyens, Frank; Vervliet, Bram; Vansteenwegen, Debora; Beckers, Tom; Hermans, Dirk; Eelen, Paul

    2004-01-01

    Using a conditioned suppression task, we investigated simultaneous (XA-/A+) vs. sequential (X [right arrow] A-/A+) Feature Negative (FN) discrimination learning in humans. We expected the simultaneous discrimination to result in X (or alternatively the XA configuration) becoming an inhibitor acting directly on the US, and the sequential…

  7. Mass tracking and material accounting in the Integral Fast Reactor (IFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities atmore » ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.« less

  8. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  9. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  10. A wavelet-based approach for a continuous analysis of phonovibrograms.

    PubMed

    Unger, Jakob; Meyer, Tobias; Doellinger, Michael; Hecker, Dietmar J; Schick, Bernhard; Lohscheller, Joerg

    2012-01-01

    Recently, endoscopic high-speed laryngoscopy has been established for commercial use and constitutes a state-of-the-art technique to examine vocal fold dynamics. Despite overcoming many limitations of commonly applied stroboscopy it has not gained widespread clinical application, yet. A major drawback is a missing methodology of extracting valuable features to support visual assessment or computer-aided diagnosis. In this paper a compact and descriptive feature set is presented. The feature extraction routines are based on two-dimensional color graphs called phonovibrograms (PVG). These graphs contain the full spatio-temporal pattern of vocal fold dynamics and are therefore suited to derive features that comprehensively describe the vibration pattern of vocal folds. Within our approach, clinically relevant features such as glottal closure type, symmetry and periodicity are quantified in a set of 10 descriptive features. The suitability for classification tasks is shown using a clinical data set comprising 50 healthy and 50 paralytic subjects. A classification accuracy of 93.2% has been achieved.

  11. A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis.

    PubMed

    Previtali, F; Bertolazzi, P; Felici, G; Weitschek, E

    2017-05-01

    The cause of the Alzheimer's disease is poorly understood and to date no treatment to stop or reverse its progression has been discovered. In developed countries, the Alzheimer's disease is one of the most financially costly diseases due to the requirement of continuous treatments as well as the need of assistance or supervision with the most cognitively demanding activities as time goes by. The objective of this work is to present an automated approach for classifying the Alzheimer's disease from magnetic resonance imaging (MRI) patient brain scans. The method is fast and reliable for a suitable and straightforward deploy in clinical applications for helping diagnosing and improving the efficacy of medical treatments by recognising the disease state of the patient. Many features can be extracted from magnetic resonance images, but most are not suitable for the classification task. Therefore, we propose a new feature extraction technique from patients' MRI brain scans that is based on a recent computer vision method, called Oriented FAST and Rotated BRIEF. The extracted features are processed with the definition and the combination of two new metrics, i.e., their spatial position and their distribution around the patient's brain, and given as input to a function-based classifier (i.e., Support Vector Machines). We report the comparison with recent state-of-the-art approaches on two established medical data sets (ADNI and OASIS). In the case of binary classification (case vs control), our proposed approach outperforms most state-of-the-art techniques, while having comparable results with the others. Specifically, we obtain 100% (97%) of accuracy, 100% (97%) sensitivity and 99% (93%) specificity for the ADNI (OASIS) data set. When dealing with three or four classes (i.e., classification of all subjects) our method is the only one that reaches remarkable performance in terms of classification accuracy, sensitivity and specificity, outperforming the state-of-the-art approaches. In particular, in the ADNI data set we obtain a classification accuracy, sensitivity and specificity of 99% while in the OASIS data set a classification accuracy and sensitivity of 77% and specificity of 79% when dealing with four classes. By providing a quantitative comparison on the two established data sets with many state-of-the-art techniques, we demonstrated the effectiveness of our proposed approach in classifying the Alzheimer's disease from MRI patient brain scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Automation of lidar-based hydrologic feature extraction workflows using GIS

    NASA Astrophysics Data System (ADS)

    Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.

    2016-10-01

    With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.

  13. Earth resources data analysis program, phase 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.

  14. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.

    PubMed

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2012-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called "normal" instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach.

  15. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection

    PubMed Central

    Brodley, Carla; Slonim, Donna

    2011-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called “normal” instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach. PMID:22639542

  16. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension, Markov random field features, and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-10-01

    In this paper, we propose a report about our examining of the validity of OCT in identifying changes using a skin cancer texture analysis compiled from Haralick texture features, fractal dimension, Markov random field method and the complex directional features from different tissues. Described features have been used to detect specific spatial characteristics, which can differentiate healthy tissue from diverse skin cancers in cross-section OCT images (B- and/or C-scans). In this work, we used an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images. The Haralick texture features as contrast, correlation, energy, and homogeneity have been calculated in various directions. A box-counting method is performed to evaluate fractal dimension of skin probes. Markov random field have been used for the quality enhancing of the classifying. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. Our results demonstrate that these texture features may present helpful information to discriminate tumor from healthy tissue. The experimental data set contains 488 OCT-images with normal skin and tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevus. All images were acquired from our laboratory SD-OCT setup based on broadband light source, delivering an output power of 20 mW at the central wavelength of 840 nm with a bandwidth of 25 nm. We obtained sensitivity about 97% and specificity about 73% for a task of discrimination between MM and Nevus.

  17. Mechanisms supporting superior source memory for familiar items: a multi-voxel pattern analysis study.

    PubMed

    Poppenk, Jordan; Norman, Kenneth A

    2012-11-01

    Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants' source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cueing cognitive flexibility: Item-specific learning of switch readiness.

    PubMed

    Chiu, Yu-Chin; Egner, Tobias

    2017-12-01

    The rich behavioral repertoire of the human species derives from our ability to flexibly reconfigure processing strategies (task sets) in response to changing requirements. This updating of task sets is effortful, as reflected by longer response times when switching a task than repeating it (switch costs). However, some recent data suggest that switch costs can be reduced by cueing switch readiness bottom-up, by associating particular stimuli with frequent switch requirements. This type of "stimulus-control (S-C) learning" would be highly adaptive, as it combines the speed of automatic (bottom-up) processing with the flexibility and generalizability of controlled (top-down) processing. However, it is unclear whether S-C learning of switch readiness is truly possible, and what the underlying mechanisms are. Here we address these questions by pairing specific stimuli with a need to update task-sets either frequently or rarely. In all 3 experiments, we observe robust item-specific switch probability (ISSP) effects as revealed by smaller switch costs for frequent switch items than for rare switch items. By including a neutral condition, we also show that the ISSP effect is primarily driven by S-C learning reducing switch costs in frequent switch items. Furthermore, by employing 3 tasks in Experiment 3, we establish that the ISSP effect reflects an enhancement of general switch readiness, rather than of the readiness to switch to a specific alternate task. These results firmly establish that switch readiness is malleable by item-specific S-C learning processes, documenting that a generalizable state of cognitive flexibility can be primed by a bottom-up stimulus. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Resource-Bounded Information Acquisition and Learning

    DTIC Science & Technology

    2012-05-01

    candidate features arrive one at a time, and the learner’s task is to select a ‘best so far’ set of features from streaming features. Krause et al...on Artificial Intelligence. [31] Gatterbauer, Wolfgang . Estimating required recall for successful knowledge acquisition from the web. In Proceedings of...the 15th international conference on World Wide Web (New York, NY, USA, 2006), WWW ’06, ACM, pp. 969– 970. [32] Gatterbauer, Wolfgang . Rules of thumb

  20. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  1. 23 CFR 635.413 - Guaranty and warranty clauses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... following: (a) Warranty provisions shall be for a specific construction product or feature. Items of... the quality of workmanship, materials and other specific tasks identified in the contract. (2) Performance warranties for specific products on NHS projects may be used at the STD's discretion. If...

  2. Using classification models for the generation of disease-specific medications from biomedical literature and clinical data repository.

    PubMed

    Wang, Liqin; Haug, Peter J; Del Fiol, Guilherme

    2017-05-01

    Mining disease-specific associations from existing knowledge resources can be useful for building disease-specific ontologies and supporting knowledge-based applications. Many association mining techniques have been exploited. However, the challenge remains when those extracted associations contained much noise. It is unreliable to determine the relevance of the association by simply setting up arbitrary cut-off points on multiple scores of relevance; and it would be expensive to ask human experts to manually review a large number of associations. We propose that machine-learning-based classification can be used to separate the signal from the noise, and to provide a feasible approach to create and maintain disease-specific vocabularies. We initially focused on disease-medication associations for the purpose of simplicity. For a disease of interest, we extracted potentially treatment-related drug concepts from biomedical literature citations and from a local clinical data repository. Each concept was associated with multiple measures of relevance (i.e., features) such as frequency of occurrence. For the machine purpose of learning, we formed nine datasets for three diseases with each disease having two single-source datasets and one from the combination of previous two datasets. All the datasets were labeled using existing reference standards. Thereafter, we conducted two experiments: (1) to test if adding features from the clinical data repository would improve the performance of classification achieved using features from the biomedical literature only, and (2) to determine if classifier(s) trained with known medication-disease data sets would be generalizable to new disease(s). Simple logistic regression and LogitBoost were two classifiers identified as the preferred models separately for the biomedical-literature datasets and combined datasets. The performance of the classification using combined features provided significant improvement beyond that using biomedical-literature features alone (p-value<0.001). The performance of the classifier built from known diseases to predict associated concepts for new diseases showed no significant difference from the performance of the classifier built and tested using the new disease's dataset. It is feasible to use classification approaches to automatically predict the relevance of a concept to a disease of interest. It is useful to combine features from disparate sources for the task of classification. Classifiers built from known diseases were generalizable to new diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Relational and conjunctive binding functions dissociate in short-term memory.

    PubMed

    Parra, Mario A; Fabi, Katia; Luzzi, Simona; Cubelli, Roberto; Hernandez Valdez, Maria; Della Sala, Sergio

    2015-02-01

    Remembering complex events requires binding features within unified objects (conjunctions) and holding associations between objects (relations). Recent studies suggest that the two functions dissociate in long-term memory (LTM). Less is known about their functional organization in short-term memory (STM). The present study investigated this issue in patient AE affected by a stroke which caused damage to brain regions known to be relevant for relational functions both in LTM and in STM (i.e., the hippocampus). The assessment involved a battery of standard neuropsychological tasks and STM binding tasks. One STM binding task (Experiment 1) presented common objects and common colors forming either pairs (relations) or integrated objects (conjunctions). Free recall of relations or conjunctions was assessed. A second STM binding task used random polygons and non-primary colors instead (Experiment 2). Memory was assessed by selecting the features that made up the relations or the conjunctions from a set of single polygons and a set of single colors. The neuropsychological assessment revealed impaired delayed memory in AE. AE's pronounced relational STM binding deficits contrasted with his completely preserved conjunctive binding functions in both Experiments 1 and 2. Only 2.35% and 1.14% of the population were expected to have a discrepancy more extreme than that presented by AE in Experiments 1 and 2, respectively. Processing relations and conjunctions of very elementary nonspatial features in STM led to dissociating performances in AE. These findings may inform current theories of memory decline such as those linked to cognitive aging.

  4. Common EEG features for behavioral estimation in disparate, real-world tasks.

    PubMed

    Touryan, Jon; Lance, Brent J; Kerick, Scott E; Ries, Anthony J; McDowell, Kaleb

    2016-02-01

    In this study we explored the potential for capturing the behavioral dynamics observed in real-world tasks from concurrent measures of EEG. In doing so, we sought to develop models of behavior that would enable the identification of common cross-participant and cross-task EEG features. To accomplish this we had participants perform both simulated driving and guard duty tasks while we recorded their EEG. For each participant we developed models to estimate their behavioral performance during both tasks. Sequential forward floating selection was used to identify the montage of independent components for each model. Linear regression was then used on the combined power spectra from these independent components to generate a continuous estimate of behavior. Our results show that oscillatory processes, evidenced in EEG, can be used to successfully capture slow fluctuations in behavior in complex, multi-faceted tasks. The average correlation coefficients between the actual and estimated behavior was 0.548 ± 0.117 and 0.701 ± 0.154 for the driving and guard duty tasks respectively. Interestingly, through a simple clustering approach we were able to identify a number of common components, both neural and eye-movement related, across participants and tasks. We used these component clusters to quantify the relative influence of common versus participant-specific features in the models of behavior. These findings illustrate the potential for estimating complex behavioral dynamics from concurrent measures from EEG using a finite library of universal features. Published by Elsevier B.V.

  5. Effects of task-irrelevant grouping on visual selection in partial report.

    PubMed

    Lunau, Rasmus; Habekost, Thomas

    2017-07-01

    Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.

  6. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  7. Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.

  8. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness.

    PubMed

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte

    2016-04-23

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player's performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive.

  9. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness

    PubMed Central

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M. Charlotte

    2016-01-01

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player’s performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive. PMID:27120604

  10. GATOR: Requirements capturing of telephony features

    NASA Technical Reports Server (NTRS)

    Dankel, Douglas D., II; Walker, Wayne; Schmalz, Mark

    1992-01-01

    We are developing a natural language-based, requirements gathering system called GATOR (for the GATherer Of Requirements). GATOR assists in the development of more accurate and complete specifications of new telephony features. GATOR interacts with a feature designer who describes a new feature, set of features, or capability to be implemented. The system aids this individual in the specification process by asking for clarifications when potential ambiguities are present, by identifying potential conflicts with other existing features, and by presenting its understanding of the feature to the designer. Through user interaction with a model of the existing telephony feature set, GATOR constructs a formal representation of the new, 'to be implemented' feature. Ultimately GATOR will produce a requirements document and will maintain an internal representation of this feature to aid in future design and specification. This paper consists of three sections that describe (1) the structure of GATOR, (2) POND, GATOR's internal knowledge representation language, and (3) current research issues.

  11. Genetically modified starter and protective cultures.

    PubMed

    Geisen, R; Holzapfel, W H

    1996-07-01

    Modern approaches towards starter and protective culture improvement rely on advances in molecular biology. For most microorganisms used for food production, gene technological methods have been well developed. By recombinant DNA technology, 'tailor-made' starter and protective cultures may be constructed so as to combine technically desirable features. A single strain which normally would fail to accomplish a given 'task' may now be improved so as to meet a set of requirements necessary for a specific production or preservation process (e.g. wholesomeness, no off-flavour production, overproduction of bacteriocins or particular enzymes). In addition, undesirable properties (e.g. mycotoxin or antibiotic production by cheese moulds) may be eliminated by techniques such as 'gene disruption'.

  12. From guideline modeling to guideline execution: defining guideline-based decision-support services.

    PubMed Central

    Tu, S. W.; Musen, M. A.

    2000-01-01

    We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007

  13. Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps

    PubMed Central

    Bowen, Chris; Ye, Gu; Alterovitz, Ron

    2015-01-01

    In unstructured environments in people’s homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task’s motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method’s effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints. Note to Practitioners Motivated by the desire to enable robots to autonomously operate in cluttered home and workplace environments, this paper presents an approach for intuitively training a robot in a manner that enables it to repeat the task in novel scenarios and in the presence of unforeseen obstacles in the environment. Based on user-provided demonstrations of the task, our method learns features of the task that are consistent across the demonstrations and that we expect should be repeated by the robot when performing the task. We next present an efficient algorithm for planning robot motions to perform the task based on the learned features while avoiding obstacles. We demonstrate the effectiveness of our motion planner for scenarios requiring transferring a powder and pushing a button in environments with obstacles, and we plan to extend our results to more complex tasks in the future. PMID:26279642

  14. Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI

    NASA Astrophysics Data System (ADS)

    Litjens, G. J. S.; Elliott, R.; Shih, N.; Feldman, M.; Barentsz, J. O.; Hulsbergen-van de Kaa, C. A.; Kovacs, I.; Huisman, H. J.; Madabhushi, A.

    2014-03-01

    Learning how to separate benign confounders from prostate cancer is important because the imaging characteristics of these confounders are poorly understood. Furthermore, the typical representations of the MRI parameters might not be enough to allow discrimination. The diagnostic uncertainty this causes leads to a lower diagnostic accuracy. In this paper a new cascaded classifier is introduced to separate prostate cancer and benign confounders on MRI in conjunction with specific computer-extracted features to distinguish each of the benign classes (benign prostatic hyperplasia (BPH), inflammation, atrophy or prostatic intra-epithelial neoplasia (PIN). In this study we tried to (1) calculate different mathematical representations of the MRI parameters which more clearly express subtle differences between different classes, (2) learn which of the MRI image features will allow to distinguish specific benign confounders from prostate cancer, and (2) find the combination of computer-extracted MRI features to best discriminate cancer from the confounding classes using a cascaded classifier. One of the most important requirements for identifying MRI signatures for adenocarcinoma, BPH, atrophy, inflammation, and PIN is accurate mapping of the location and spatial extent of the confounder and cancer categories from ex vivo histopathology to MRI. Towards this end we employed an annotated prostatectomy data set of 31 patients, all of whom underwent a multi-parametric 3 Tesla MRI prior to radical prostatectomy. The prostatectomy slides were carefully co-registered to the corresponding MRI slices using an elastic registration technique. We extracted texture features from the T2-weighted imaging, pharmacokinetic features from the dynamic contrast enhanced imaging and diffusion features from the diffusion-weighted imaging for each of the confounder classes and prostate cancer. These features were selected because they form the mainstay of clinical diagnosis. Relevant features for each of the classes were selected using maximum relevance minimum redundancy feature selection, allowing us to perform classifier independent feature selection. The selected features were then incorporated in a cascading classifier, which can focus on easier sub-tasks at each stage, leaving the more difficult classification tasks for later stages. Results show that distinct features are relevant for each of the benign classes, for example the fraction of extra-vascular, extra-cellular space in a voxel is a clear discriminator for inflammation. Furthermore, the cascaded classifier outperforms both multi-class and one-shot classifiers in overall accuracy for discriminating confounders from cancer: 0.76 versus 0.71 and 0.62.

  15. Effects of two hospital bed design features on physical demands and usability during brake engagement and patient transportation: a repeated measures experimental study.

    PubMed

    Kim, Sunwook; Barker, Linsey M; Jia, Bochen; Agnew, Michael J; Nussbaum, Maury A

    2009-03-01

    Work-related musculoskeletal disorders (WMSDs) are prevalent among healthcare workers worldwide. While existing research has focused on patient-handling techniques during activities which require direct patient contact (e.g., patient transfer), nursing tasks also involve other patient-handling activities, such as engaging bed brakes and transporting patients in beds, which could render healthcare workers at risk of developing WMSDs. Effectiveness of hospital bed design features (brake pedal location and steering-assistance) was evaluated in terms of physical demands and usability during brake engagement and patient transportation tasks. Two laboratory-based studies were conducted. In simulated brake engagement tasks, three brake pedal locations (head-end vs. foot-end vs. side of a bed) and two hands conditions (hands-free vs. hands-occupied) were manipulated. Additionally, both in-room and corridor patient transportation tasks were simulated, in which activation of steering-assistance features (5th wheel and/or front wheel caster lock) and two patient masses were manipulated. Nine novice participants were recruited from the local student population and community for each study. During brake engagement, trunk flexion angle, task completion time, and questionnaires were used to quantify postural comfort and usability. For patient transportation, dependent measures were hand forces and questionnaire responses. Brake pedal locations and steering-assistance features in hospital beds had significant effects on physical demands and usability during brake engagement and patient transportation tasks. Specifically, a brake pedal at the head-end of a bed increased trunk flexion by 74-224% and completion time by 53-74%, compared to other pedal locations. Participants reported greater overall perceived difficulty and less postural comfort with the brake pedal at the head-end. During in-room transportation, participants generally reported "Neither Low nor High" physical demands with the 5th wheel activated, compared to "Moderately High" physical demands when the 5th wheel was deactivated. Corridor transportation was similarly reported to be easier when a steering-assistance feature (the 5th wheel or front caster lock) was activated. Braking and steering-assistance features of hospital beds can have important effects on task efficiency and physical demands placed on healthcare workers. Selection of specific designs may thus be able to improve productivity and contribute to a reduction in WMSDs risk among healthcare workers.

  16. DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Ramsey, Jon P.; Popovas, Andrius; Küffmeier, Michael

    2018-06-01

    We introduce a high-performance simulation framework that permits the semi-independent, task-based solution of sets of partial differential equations, typically manifesting as updates to a collection of `patches' in space-time. A hybrid MPI/OpenMP execution model is adopted, where work tasks are controlled by a rank-local `dispatcher' which selects, from a set of tasks generally much larger than the number of physical cores (or hardware threads), tasks that are ready for updating. The definition of a task can vary, for example, with some solving the equations of ideal magnetohydrodynamics (MHD), others non-ideal MHD, radiative transfer, or particle motion, and yet others applying particle-in-cell (PIC) methods. Tasks do not have to be grid based, while tasks that are, may use either Cartesian or orthogonal curvilinear meshes. Patches may be stationary or moving. Mesh refinement can be static or dynamic. A feature of decisive importance for the overall performance of the framework is that time-steps are determined and applied locally; this allows potentially large reductions in the total number of updates required in cases when the signal speed varies greatly across the computational domain, and therefore a corresponding reduction in computing time. Another feature is a load balancing algorithm that operates `locally' and aims to simultaneously minimize load and communication imbalance. The framework generally relies on already existing solvers, whose performance is augmented when run under the framework, due to more efficient cache usage, vectorization, local time-stepping, plus near-linear and, in principle, unlimited OpenMP and MPI scaling.

  17. Design specifications for NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction): Phase 2, Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twitty, A.F.; Handler, B.H.; Duncan, L.D.

    Data Systems Engineering Organization (DSEO) personnel are developing a prototype computer aided instruction (CAI) system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project is to provide a prototype for implementing CAI as an enhancement to existing NALDA training. The CAI prototype project is being performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. In Phase II a structured design and specification document was completed that will provide the basis for development and implementationmore » of the desired CAI system. Phase III will consist of designing, developing, and testing a user interface which will extend the features of the Phase II prototype. The design of the CAI prototype has followed a rigorous structured analysis based on Yourdon/DeMarco methodology and Information Engineering tools. This document includes data flow diagrams, a data dictionary, process specifications, an entity-relationship diagram, a curriculum description, special function key definitions, and a set of standards developed for the NALDA CAI Prototype.« less

  18. Textural features for image classification

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  19. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Visual scan-path analysis with feature space transient fixation moments

    NASA Astrophysics Data System (ADS)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  1. A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data

    PubMed Central

    Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos

    2013-01-01

    We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815

  2. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    ERIC Educational Resources Information Center

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  3. Detecting Parkinson's disease from sustained phonation and speech signals.

    PubMed

    Vaiciukynas, Evaldas; Verikas, Antanas; Gelzinis, Adas; Bacauskiene, Marija

    2017-01-01

    This study investigates signals from sustained phonation and text-dependent speech modalities for Parkinson's disease screening. Phonation corresponds to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. Signals were recorded through two channels simultaneously, namely, acoustic cardioid (AC) and smart phone (SP) microphones. Additional modalities were obtained by splitting speech recording into voiced and unvoiced parts. Information in each modality is summarized by 18 well-known audio feature sets. Random forest (RF) is used as a machine learning algorithm, both for individual feature sets and for decision-level fusion. Detection performance is measured by the out-of-bag equal error rate (EER) and the cost of log-likelihood-ratio. Essentia audio feature set was the best using the AC speech modality and YAAFE audio feature set was the best using the SP unvoiced modality, achieving EER of 20.30% and 25.57%, respectively. Fusion of all feature sets and modalities resulted in EER of 19.27% for the AC and 23.00% for the SP channel. Non-linear projection of a RF-based proximity matrix into the 2D space enriched medical decision support by visualization.

  4. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  5. Mechanisms underlying transfer of task-defined rules across feature dimensions.

    PubMed

    Baroni, Giulia; Yamaguchi, Motonori; Chen, Jing; Proctor, Robert W

    2013-01-01

    The Simon effect can be reversed, favoring spatially noncorresponding responses, when people respond to stimulus colors (e.g., green) by pressing a key labeled with the alternative color (i.e., red). This Hedge and Marsh reversal is most often attributed to transfer of logical recoding rules from the color dimension to the location dimension. A recent study showed that this transfer of logical recoding rules can occur not only within a single task but also across two separate tasks that are intermixed. The present study investigated the conditions that determine the transfer of logical recoding rules across tasks. Experiment 1 examined whether it occurs in a transfer paradigm, that is when the two tasks are performed separately, but provided little support for this possibility. Experiment 2 investigated the role of task-set readiness, using a mixed-task paradigm with a predictable trials sequence, which indicated that there is no transfer of task-defined rules across tasks even when they are highly active during the Simon task. Finally, Experiments 3 and 4 used a mixed-task paradigm, where trials of the two tasks were mixed randomly and unpredictably, and manipulated the amount of feature overlap between tasks. Results indicated that task similarity is a determining factor for transfer of task-defined rules to occur. Overall, the study provides evidence that transfer of logical recoding rules tends to occur across two tasks when tasks are unpredictably intermixed and use stimuli that are highly similar and confusable.

  6. A machine learning approach for efficient uncertainty quantification using multiscale methods

    NASA Astrophysics Data System (ADS)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  7. The neuronal dynamics underlying cognitive flexibility in set shifting tasks.

    PubMed

    Stemme, Anja; Deco, Gustavo; Busch, Astrid

    2007-12-01

    The ability to switch attention from one aspect of an object to another or in other words to switch the "attentional set" as investigated in tasks like the "Wisconsin Card Sorting Test" is commonly referred to as cognitive flexibility. In this work we present a biophysically detailed neurodynamical model which illustrates the neuronal base of the processes related to this cognitive flexibility. For this purpose we conducted behavioral experiments which allow the combined evaluation of different aspects of set shifting tasks: uninstructed set shifts as investigated in Wisconsin-like tasks, effects of stimulus congruency as investigated in Stroop-like tasks and the contribution of working memory as investigated in "Delayed-Match-to-Sample" tasks. The work describes how general experimental findings are usable to design the architecture of a biophysical detailed though minimalistic model with a high orientation on neurobiological findings and how, in turn, the simulations support experimental investigations. The resulting model is able to account for experimental and individual response times and error rates and enables the switch of attention as a system inherent model feature: The switching process suggested by the model is based on the memorization of the visual stimuli and does not require any synaptic learning. The operation of the model thus demonstrates with at least a high probability the neuronal dynamics underlying a key component of human behavior: the ability to adapt behavior according to context requirements--cognitive flexibility.

  8. Neural Correlates of Expert Behavior During a Domain-Specific Attentional Cueing Task in Badminton Players.

    PubMed

    Wang, Chun-Hao; Tu, Kuo-Cheng

    2017-06-01

    The present study aimed to investigate the neural correlates associated with sports expertise during a domain-specific task in badminton players. We compared event-related potentials activity from collegiate male badminton players and a set of matched athletic controls when they performed a badminton-specific attentional cueing task in which the uncertainty and validity were manipulated. The data showed that, regardless of cue type, the badminton players had faster responses along with greater P3 amplitudes than the athletic controls on the task. Specifically, the contingent negative variation amplitude was smaller for the players than for the controls in the condition involving higher uncertainty. Such an effect, however, was absent in the condition with lower uncertainty. We conclude that expertise in sports is associated with proficient modulation of brain activity during cognitive and motor preparation, as well as response execution, when performing a task related to an individual's specific sport domain.

  9. Learning time series for intelligent monitoring

    NASA Technical Reports Server (NTRS)

    Manganaris, Stefanos; Fisher, Doug

    1994-01-01

    We address the problem of classifying time series according to their morphological features in the time domain. In a supervised machine-learning framework, we induce a classification procedure from a set of preclassified examples. For each class, we infer a model that captures its morphological features using Bayesian model induction and the minimum message length approach to assign priors. In the performance task, we classify a time series in one of the learned classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. We report results from experiments in a monitoring domain of interest to NASA.

  10. Task-irrelevant emotion facilitates face discrimination learning.

    PubMed

    Lorenzino, Martina; Caudek, Corrado

    2015-03-01

    We understand poorly how the ability to discriminate faces from one another is shaped by visual experience. The purpose of the present study is to determine whether face discrimination learning can be facilitated by facial emotions. To answer this question, we used a task-irrelevant perceptual learning paradigm because it closely mimics the learning processes that, in daily life, occur without a conscious intention to learn and without an attentional focus on specific facial features. We measured face discrimination thresholds before and after training. During the training phase (4 days), participants performed a contrast discrimination task on face images. They were not informed that we introduced (task-irrelevant) subtle variations in the face images from trial to trial. For the Identity group, the task-irrelevant features were variations along a morphing continuum of facial identity. For the Emotion group, the task-irrelevant features were variations along an emotional expression morphing continuum. The Control group did not undergo contrast discrimination learning and only performed the pre-training and post-training tests, with the same temporal gap between them as the other two groups. Results indicate that face discrimination improved, but only for the Emotion group. Participants in the Emotion group, moreover, showed face discrimination improvements also for stimulus variations along the facial identity dimension, even if these (task-irrelevant) stimulus features had not been presented during training. The present results highlight the importance of emotions for face discrimination learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Qualitative Analysis for Maintenance Process Assessment

    NASA Technical Reports Server (NTRS)

    Brand, Lionel; Kim, Yong-Mi; Melo, Walcelio; Seaman, Carolyn; Basili, Victor

    1996-01-01

    In order to improve software maintenance processes, we first need to be able to characterize and assess them. These tasks must be performed in depth and with objectivity since the problems are complex. One approach is to set up a measurement-based software process improvement program specifically aimed at maintenance. However, establishing a measurement program requires that one understands the problems to be addressed by the measurement program and is able to characterize the maintenance environment and processes in order to collect suitable and cost-effective data. Also, enacting such a program and getting usable data sets takes time. A short term substitute is therefore needed. We propose in this paper a characterization process aimed specifically at maintenance and based on a general qualitative analysis methodology. This process is rigorously defined in order to be repeatable and usable by people who are not acquainted with such analysis procedures. A basic feature of our approach is that actual implemented software changes are analyzed in order to understand the flaws in the maintenance process. Guidelines are provided and a case study is shown that demonstrates the usefulness of the approach.

  12. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.

    PubMed

    Kray, Jutta

    2006-08-11

    Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.

  13. Clarifying the role of target similarity, task relevance and feature-based suppression during sustained inattentional blindness.

    PubMed

    Drew, Trafton; Stothart, Cary

    2016-12-01

    How is feature-based attention distributed when engaged in a challenging attentional task? Thanks to formative electrophysiological and psychophysical work, we know a great deal about the spatial distribution of attention, but much less is known about how feature-based attention is allocated. In a large-scale online study, we investigated the distribution of attention to color space using a sustained inattentional blindness task. In order to query what parts of color space were being attended or inhibited, we varied the color of an unexpected stimulus on the final trial. Noticing rates for this stimulus indicate that when engaged in a difficult task that involves tracking items of one color and ignoring items of two different colors, observers attend the target color and inhibit the to-be ignored colors. Further, similarity to the target drives detection such that colors more similar to the target are more likely to be detected. Finally, our data suggest that when possible, observers inhibit regions of color space rather than individuating specific colors and adjusting the level of inhibition for a particular color accordingly. Together, our data support the notion of feature-based suppression for task relevant (to-be ignored) information, but we found no evidence of an inhibitory surround based on target color similarity.

  14. Task-Driven Evaluation of Aggregation in Time Series Visualization

    PubMed Central

    Albers, Danielle; Correll, Michael; Gleicher, Michael

    2014-01-01

    Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks. PMID:25343147

  15. The predictive value of general movement tasks in assessing occupational task performance.

    PubMed

    Frost, David M; Beach, Tyson A C; McGill, Stuart M; Callaghan, Jack P

    2015-01-01

    Within the context of evaluating individuals' movement behavior it is generally assumed that the tasks chosen will predict their competency to perform activities relevant to their occupation. This study sought to examine whether a battery of general tasks could be used to predict the movement patterns employed by firefighters to perform select job-specific skills. Fifty-two firefighters performed a battery of general and occupation-specific tasks that simulated the demands of firefighting. Participants' peak lumbar spine and frontal plane knee motion were compared across tasks. During 85% of all comparisons, the magnitude of spine and knee motion was greater during the general movement tasks than observed during the firefighting skills. Certain features of a worker's movement behavior may be exhibited across a range of tasks. Therefore, provided that a movement screen's tasks expose the motions of relevance for the population being tested, general evaluations could offer valuable insight into workers' movement competency or facilitate an opportunity to establish an evidence-informed intervention.

  16. The importance of source and cue type in time-based everyday prospective memory.

    PubMed

    Oates, Joyce M; Peynircioğlu, Zehra F

    2014-01-01

    We examined the effects of the source of a prospective memory task (provided or generated) and the type of cue (specific or general) triggering that task in everyday settings. Participants were asked to complete both generated and experimenter-provided tasks and to send a text message when each task was completed. The cue/context for the to-be-completed tasks was either a specific time or a general deadline (time-based cue), and the cue/context for the texting task was the completion of the task itself (activity-based cue). Although generated tasks were completed more often, generated cues/contexts were no more effective than provided ones in triggering the intention. Furthermore, generated tasks were completed more often when the cue/context comprised a specific time, whereas provided tasks were completed more often when the cue/context comprised a general deadline. However, texting was unaffected by the source of the cue/context. Finally, emotion modulated the effects. Results are discussed within a process-driven framework.

  17. Task-specific modulation of adult humans' tool preferences: number of choices and size of the problem.

    PubMed

    Silva, Kathleen M; Gross, Thomas J; Silva, Francisco J

    2015-03-01

    In two experiments, we examined the effect of modifications to the features of a stick-and-tube problem on the stick lengths that adult humans used to solve the problem. In Experiment 1, we examined whether people's tool preferences for retrieving an out-of-reach object in a tube might more closely resemble those reported with laboratory crows if people could modify a single stick to an ideal length to solve the problem. Contrary to when adult humans have selected a tool from a set of ten sticks, asking people to modify a single stick to retrieve an object did not generally result in a stick whose length was related to the object's distance. Consistent with the prior research, though, the working length of the stick was related to the object's distance. In Experiment 2, we examined the effect of increasing the scale of the stick-and-tube problem on people's tool preferences. Increasing the scale of the task influenced people to select relatively shorter tools than had selected in previous studies. Although the causal structures of the tasks used in the two experiments were identical, their results were not. This underscores the necessity of studying physical cognition in relation to a particular causal structure by using a variety of tasks and methods.

  18. Altering attentional control settings causes persistent biases of visual attention.

    PubMed

    Knight, Helen C; Smith, Daniel T; Knight, David C; Ellison, Amanda

    2016-01-01

    Attentional control settings have an important role in guiding visual behaviour. Previous work within cognitive psychology has found that the deployment of general attentional control settings can be modulated by training. However, research has not yet established whether long-term modifications of one particular type of attentional control setting can be induced. To address this, we investigated persistent alterations to feature search mode, also known as an attentional bias, towards an arbitrary stimulus in healthy participants. Subjects were biased towards the colour green by an information sheet. Attentional bias was assessed using a change detection task. After an interval of either 1 or 2 weeks, participants were then retested on the same change detection task, tested on a different change detection task where colour was irrelevant, or were biased towards an alternative colour. One experiment included trials in which the distractor stimuli (but never the target stimuli) were green. The key finding was that green stimuli in the second task attracted attention, despite this impairing task performance. Furthermore, inducing a second attentional bias did not override the initial bias toward green objects. The attentional bias also persisted for at least two weeks. It is argued that this persistent attentional bias is mediated by a chronic change to participants' attentional control settings, which is aided by long-term representations involving contextual cueing. We speculate that similar changes to attentional control settings and continuous cueing may relate to attentional biases observed in psychopathologies. Targeting these biases may be a productive approach to treatment.

  19. An object-based visual attention model for robotic applications.

    PubMed

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  20. The mental representation of living and nonliving things: differential weighting and interactivity of sensorial and non-sensorial features.

    PubMed

    Ventura, Paulo; Morais, José; Brito-Mendes, Carlos; Kolinsky, Régine

    2005-02-01

    Warrington and colleagues (Warrington & McCarthy, 1983, 1987; Warrington & Shallice, 1984) claimed that sensorial and functional-associative (FA) features are differentially important in determining the meaning of living things (LT) and nonliving things (NLT). The first aim of the present study was to evaluate this hypothesis through two different access tasks: feature generation (Experiment 1) and cued recall (Experiment 2). The results of both experiments provided consistent empirical support for Warrington and colleagues' assumption. The second aim of the present study was to test a new differential interactivity hypothesis that combines Warrington and colleagueS' assumption with the notion of a higher number of intercorrelations and hence of a stronger connectivity between sensorial and non-sensorial features for LTs than for NLTs. This hypothesis was motivated by previoUs reports of an uncrossed interaction between domain (LTs vs NLTs) and attribute type (sensorial vs FA) in, for example, a feature verification task (Laws, Humber, Ramsey, & McCarthy, 1995): while FA attributes are verified faster than sensorial attributes for NLTs, no difference is observed for LTs. We replicated and generalised this finding using several feature verification tasks on both written words and pictures (Experiment 3), including in conditions aimed at minimising the intervention of priming biases and strategic or mnemonic processes (Experiment 4). The whole set of results suggests that both privileged relations between features and categories, and the differential importance of intercorrelations between features as a function of category, modulate access to semantic features.

  1. Overcoming catastrophic forgetting in neural networks

    PubMed Central

    Kirkpatrick, James; Pascanu, Razvan; Rabinowitz, Neil; Veness, Joel; Desjardins, Guillaume; Rusu, Andrei A.; Milan, Kieran; Quan, John; Ramalho, Tiago; Grabska-Barwinska, Agnieszka; Hassabis, Demis; Clopath, Claudia; Kumaran, Dharshan; Hadsell, Raia

    2017-01-01

    The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially. PMID:28292907

  2. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  3. Holistic processing, contact, and the other-race effect in face recognition.

    PubMed

    Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle

    2014-12-01

    Face recognition, holistic processing, and processing of configural and featural facial information are known to be influenced by face race, with better performance for own- than other-race faces. However, whether these various other-race effects (OREs) arise from the same underlying mechanisms or from different processes remains unclear. The present study addressed this question by measuring the OREs in a set of face recognition tasks, and testing whether these OREs are correlated with each other. Participants performed different tasks probing (1) face recognition, (2) holistic processing, (3) processing of configural information, and (4) processing of featural information for both own- and other-race faces. Their contact with other-race people was also assessed with a questionnaire. The results show significant OREs in tasks testing face memory and processing of configural information, but not in tasks testing either holistic processing or processing of featural information. Importantly, there was no cross-task correlation between any of the measured OREs. Moreover, the level of other-race contact predicted only the OREs obtained in tasks testing face memory and processing of configural information. These results indicate that these various cross-race differences originate from different aspects of face processing, in contrary to the view that the ORE in face recognition is due to cross-race differences in terms of holistic processing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and type of constraints and in task objectives, and can adapt to changes in kinematics configurations (change of module, change of tool, joint failure adaptation, etc.).« less

  5. Top-down modulation from inferior frontal junction to FEFs and intraparietal sulcus during short-term memory for visual features.

    PubMed

    Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark

    2013-11-01

    Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.

  6. Tasks and premises in quantum state determination

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Heinosaari, Teiko; Schultz, Jussi; Toigo, Alessandro

    2014-02-01

    The purpose of quantum tomography is to determine an unknown quantum state from measurement outcome statistics. There are two obvious ways to generalize this setting. First, our task need not be the determination of any possible input state but only some input states, for instance pure states. Second, we may have some prior information, or premise, which guarantees that the input state belongs to some subset of states, for instance the set of states with rank less than half of the dimension of the Hilbert space. We investigate state determination under these two supplemental features, concentrating on the cases where the task and the premise are statements about the rank of the unknown state. We characterize the structure of quantum observables (positive operator valued measures) that are capable of fulfilling these type of determination tasks. After the general treatment we focus on the class of covariant phase space observables, thus providing physically relevant examples of observables both capable and incapable of performing these tasks. In this context, the effect of noise is discussed.

  7. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Properties of the numerical algorithms for problems of quantum information technologies: Benefits of deep analysis

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir

    2016-10-01

    In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.

  9. An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data.

    PubMed

    Yu, Hualong; Ni, Jun

    2014-01-01

    Training classifiers on skewed data can be technically challenging tasks, especially if the data is high-dimensional simultaneously, the tasks can become more difficult. In biomedicine field, skewed data type often appears. In this study, we try to deal with this problem by combining asymmetric bagging ensemble classifier (asBagging) that has been presented in previous work and an improved random subspace (RS) generation strategy that is called feature subspace (FSS). Specifically, FSS is a novel method to promote the balance level between accuracy and diversity of base classifiers in asBagging. In view of the strong generalization capability of support vector machine (SVM), we adopt it to be base classifier. Extensive experiments on four benchmark biomedicine data sets indicate that the proposed ensemble learning method outperforms many baseline approaches in terms of Accuracy, F-measure, G-mean and AUC evaluation criterions, thus it can be regarded as an effective and efficient tool to deal with high-dimensional and imbalanced biomedical data.

  10. Exploring cognitive support use and preference by college students with TBI: A mixed-methods study.

    PubMed

    Brown, Jessica; Hux, Karen; Hey, Morgan; Murphy, Madeline

    2017-01-01

    Many college students with TBI rely on external strategies and supports to compensate for persistent memory, organization, and planning deficits that interfere with recalling and executing daily tasks. Practitioners know little, however, about the supports students with TBI choose for this purpose, the reasoning behind their choice, or preferred features of selected supports. The purpose of this study was to explore these issues. We collected and analyzed quantitative and qualitative data from eight college students with TBI for completion of a concurrent triangulation mixed-methods design. Data analysis included evaluation and triangulation of participant demographic information, survey responses about persistent post-injury symptoms, transcripts from semi-structured interviews about cognitive support devices and strategies, and ranking results about specific compensatory tools. Results suggest that college students with TBI prefer high-tech external supports-sometimes with the addition of low-tech, paper supports-to assist them in managing daily tasks. This preference related to features of portability, accessibility, and automatic reminders. An electronic calendar was the most-preferred high-tech support, and a paper checklist was the most-preferred low-tech support. Rehabilitation professionals should consider implementing high-tech supports with preferred characteristics during treatment given the preferences of students with TBI and the consequent likelihood of their continued long-term use following reintegration to community settings.

  11. The ATLAS Production System Evolution: New Data Processing and Analysis Paradigm for the LHC Run2 and High-Luminosity

    NASA Astrophysics Data System (ADS)

    Barreiro, F. H.; Borodin, M.; De, K.; Golubkov, D.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Padolski, S.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The second generation of the ATLAS Production System called ProdSys2 is a distributed workload manager that runs daily hundreds of thousands of jobs, from dozens of different ATLAS specific workflows, across more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criteria, such as input and output size, memory requirements and CPU consumption, with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteer-computers. The system dynamically assigns a group of jobs (task) to a group of geographically distributed computing resources. Dynamic assignment and resources utilization is one of the major features of the system, it didn’t exist in the earliest versions of the production system where Grid resources topology was predefined using national or/and geographical pattern. Production System has a sophisticated job fault-recovery mechanism, which efficiently allows to run multi-Terabyte tasks without human intervention. We have implemented “train” model and open-ended production which allow to submit tasks automatically as soon as new set of data is available and to chain physics groups data processing and analysis with central production by the experiment. We present an overview of the ATLAS Production System and its major components features and architecture: task definition, web user interface and monitoring. We describe the important design decisions and lessons learned from an operational experience during the first year of LHC Run2. We also report the performance of the designed system and how various workflows, such as data (re)processing, Monte-Carlo and physics group production, users analysis, are scheduled and executed within one production system on heterogeneous computing resources.

  12. Optical Flow Estimation for Flame Detection in Videos

    PubMed Central

    Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen

    2014-01-01

    Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042

  13. Anonymization of electronic medical records for validating genome-wide association studies

    PubMed Central

    Loukides, Grigorios; Gkoulalas-Divanis, Aris; Malin, Bradley

    2010-01-01

    Genome-wide association studies (GWAS) facilitate the discovery of genotype–phenotype relations from population-based sequence databases, which is an integral facet of personalized medicine. The increasing adoption of electronic medical records allows large amounts of patients’ standardized clinical features to be combined with the genomic sequences of these patients and shared to support validation of GWAS findings and to enable novel discoveries. However, disseminating these data “as is” may lead to patient reidentification when genomic sequences are linked to resources that contain the corresponding patients’ identity information based on standardized clinical features. This work proposes an approach that provably prevents this type of data linkage and furnishes a result that helps support GWAS. Our approach automatically extracts potentially linkable clinical features and modifies them in a way that they can no longer be used to link a genomic sequence to a small number of patients, while preserving the associations between genomic sequences and specific sets of clinical features corresponding to GWAS-related diseases. Extensive experiments with real patient data derived from the Vanderbilt's University Medical Center verify that our approach generates data that eliminate the threat of individual reidentification, while supporting GWAS validation and clinical case analysis tasks. PMID:20385806

  14. The Influence of Attention Set, Working Memory Capacity, and Expectations on Inattentional Blindness.

    PubMed

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2016-04-01

    The probability of inattentional blindness, the failure to notice an unexpected object when attention is engaged on some primary task, is influenced by contextual factors like task demands, features of the unexpected object, and the observer's attention set. However, predicting who will notice an unexpected object and who will remain inattentionally blind has proven difficult, and the evidence that individual differences in cognition affect noticing remains ambiguous. We hypothesized that greater working memory capacity might modulate the effect of attention sets on noticing because working memory is associated with the ability to focus attention selectively. People with greater working memory capacity might be better able to attend selectively to target items, thereby increasing the chances of noticing unexpected objects that were similar to the attended items while decreasing the odds of noticing unexpected objects that differed from the attended items. Our study (N = 120 participants) replicated evidence that task-induced attention sets modulate noticing but found no link between noticing and working memory capacity. Our results are largely consistent with the idea that individual differences in working memory capacity do not predict noticing of unexpected objects in an inattentional blindness task. © The Author(s) 2015.

  15. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data

    PubMed Central

    Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.

    2016-01-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679

  16. Set shifting deficits in melancholic vs. non-melancholic depression: preliminary findings.

    PubMed

    Michopoulos, I; Zervas, I M; Papakosta, V M; Tsaltas, E; Papageorgiou, C; Manessi, T; Papakostas, Y G; Lykouras, L; Soldatos, C R

    2006-09-01

    Twenty-two patients with major depressive disorder, 11 of them with melancholic features, and 11 controls were investigated with CANTAB subtests focusing in visual memory/learning and executive functions. Melancholic patients performed worse than the other groups in all tasks and manifested a significant impairment in set shifting. The results are discussed in association with prefrontal dysfunction.

  17. Coherent Image Layout using an Adaptive Visual Vocabulary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillard, Scott E.; Henry, Michael J.; Bohn, Shawn J.

    When querying a huge image database containing millions of images, the result of the query may still contain many thousands of images that need to be presented to the user. We consider the problem of arranging such a large set of images into a visually coherent layout, one that places similar images next to each other. Image similarity is determined using a bag-of-features model, and the layout is constructed from a hierarchical clustering of the image set by mapping an in-order traversal of the hierarchy tree into a space-filling curve. This layout method provides strong locality guarantees so we aremore » able to quantitatively evaluate performance using standard image retrieval benchmarks. Performance of the bag-of-features method is best when the vocabulary is learned on the image set being clustered. Because learning a large, discriminative vocabulary is a computationally demanding task, we present a novel method for efficiently adapting a generic visual vocabulary to a particular dataset. We evaluate our clustering and vocabulary adaptation methods on a variety of image datasets and show that adapting a generic vocabulary to a particular set of images improves performance on both hierarchical clustering and image retrieval tasks.« less

  18. Integrating Dimension Reduction and Out-of-Sample Extension in Automated Classification of Ex Vivo Human Patellar Cartilage on Phase Contrast X-Ray Computed Tomography

    PubMed Central

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns. PMID:25710875

  19. Searching for substructures in fragment spaces.

    PubMed

    Ehrlich, Hans-Christian; Volkamer, Andrea; Rarey, Matthias

    2012-12-21

    A common task in drug development is the selection of compounds fulfilling specific structural features from a large data pool. While several methods that iteratively search through such data sets exist, their application is limited compared to the infinite character of molecular space. The introduction of the concept of fragment spaces (FSs), which are composed of molecular fragments and their connection rules, made the representation of large combinatorial data sets feasible. At the same time, search algorithms face the problem of structural features spanning over multiple fragments. Due to the combinatorial nature of FSs, an enumeration of all products is impossible. In order to overcome these time and storage issues, we present a method that is able to find substructures in FSs without explicit product enumeration. This is accomplished by splitting substructures into subsubstructures and mapping them onto fragments with respect to fragment connectivity rules. The method has been evaluated on three different drug discovery scenarios considering the exploration of a molecule class, the elaboration of decoration patterns for a molecular core, and the exhaustive query for peptides in FSs. FSs can be searched in seconds, and found products contain novel compounds not present in the PubChem database which may serve as hints for new lead structures.

  20. Improving EMG based classification of basic hand movements using EMD.

    PubMed

    Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios

    2013-01-01

    This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.

  1. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  2. Automated concept-level information extraction to reduce the need for custom software and rules development.

    PubMed

    D'Avolio, Leonard W; Nguyen, Thien M; Goryachev, Sergey; Fiore, Louis D

    2011-01-01

    Despite at least 40 years of promising empirical performance, very few clinical natural language processing (NLP) or information extraction systems currently contribute to medical science or care. The authors address this gap by reducing the need for custom software and rules development with a graphical user interface-driven, highly generalizable approach to concept-level retrieval. A 'learn by example' approach combines features derived from open-source NLP pipelines with open-source machine learning classifiers to automatically and iteratively evaluate top-performing configurations. The Fourth i2b2/VA Shared Task Challenge's concept extraction task provided the data sets and metrics used to evaluate performance. Top F-measure scores for each of the tasks were medical problems (0.83), treatments (0.82), and tests (0.83). Recall lagged precision in all experiments. Precision was near or above 0.90 in all tasks. Discussion With no customization for the tasks and less than 5 min of end-user time to configure and launch each experiment, the average F-measure was 0.83, one point behind the mean F-measure of the 22 entrants in the competition. Strong precision scores indicate the potential of applying the approach for more specific clinical information extraction tasks. There was not one best configuration, supporting an iterative approach to model creation. Acceptable levels of performance can be achieved using fully automated and generalizable approaches to concept-level information extraction. The described implementation and related documentation is available for download.

  3. Branching Search

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-12-01

    Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.

  4. Neural correlates of the object-recall process in semantic memory.

    PubMed

    Assaf, Michal; Calhoun, Vince D; Kuzu, Cheedem H; Kraut, Michael A; Rivkin, Paul R; Hart, John; Pearlson, Godfrey D

    2006-10-30

    The recall of an object from features is a specific operation in semantic memory in which the thalamus and pre-supplementary motor area (pre-SMA) are integrally involved. Other higher-order semantic cortices are also likely to be involved. We used the object-recall-from-features paradigm, with more sensitive scanning techniques and larger sample size, to replicate and extend our previous results. Eighteen right-handed healthy participants performed an object-recall task and an association semantic task, while undergoing functional magnetic resonance imaging. During object-recall, subjects determined whether words pairs describing object features combined to recall an object; during the association task they decided if two words were related. Of brain areas specifically involved in object recall, in addition to the thalamus and pre-SMA, other regions included the left dorsolateral prefrontal cortex, inferior parietal lobule, and middle temporal gyrus, and bilateral rostral anterior cingulate and inferior frontal gyri. These regions are involved in semantic processing, verbal working memory and response-conflict detection and monitoring. The thalamus likely helps to coordinate activity of these different brain areas. Understanding the circuit that normally mediates this process is relevant for schizophrenia, where many regions in this circuit are functionally abnormal and semantic memory is impaired.

  5. Global Ground Motion Prediction Equations Program | Just another WordPress

    Science.gov Websites

    Motion Task 2: Compile and Critically Review GMPEs Task 3: Select or Derive a Global Set of GMPEs Task 6 : Design the Specifications to Compile a Global Database of Soil Classification Task 5: Build a Database of Update on PEER's Global GMPEs Project from recent workshop in Turkey Posted on June 11, 2012 During May

  6. Congruency sequence effect in cross-task context: evidence for dimension-specific modulation.

    PubMed

    Lee, Jaeyong; Cho, Yang Seok

    2013-11-01

    The congruency sequence effect refers to a reduced congruency effect after incongruent trials relative to congruent trials. This modulation is thought to be, at least in part, due to the control mechanisms resolving conflict. The present study examined the nature of the control mechanisms by having participants perform two different tasks in an alternating way. When participants performed horizontal and vertical Simon tasks in Experiment 1A, and horizontal and vertical spatial Stroop task in Experiment 1B, no congruency sequence effect was obtained between the task congruencies. When the Simon task and spatial Stroop task were performed with different response sets in Experiment 2, no congruency sequence effect was obtained. However, in Experiment 3, in which the participants performed the horizontal Simon and spatial Stroop tasks with an identical response set, a significant congruency sequence effect was obtained between the task congruencies. In Experiment 4, no congruency sequence effect was obtained when participants performed two tasks having different task-irrelevant dimensions with the identical response set. The findings suggest inhibitory processing between the task-irrelevant dimension and response mode after conflict. © 2013 Elsevier B.V. All rights reserved.

  7. Feature-based attentional modulation increases with stimulus separation in divided-attention tasks.

    PubMed

    Sally, Sharon L; Vidnyánsky, Zoltán; Papathomas, Thomas V

    2009-01-01

    Attention modifies our visual experience by selecting certain aspects of a scene for further processing. It is therefore important to understand factors that govern the deployment of selective attention over the visual field. Both location and feature-specific mechanisms of attention have been identified and their modulatory effects can interact at a neural level (Treue and Martinez-Trujillo, 1999). The effects of spatial parameters on feature-based attentional modulation were examined for the feature dimensions of orientation, motion and color using three divided-attention tasks. Subjects performed concurrent discriminations of two briefly presented targets (Gabor patches) to the left and right of a central fixation point at eccentricities of +/-2.5 degrees , 5 degrees , 10 degrees and 15 degrees in the horizontal plane. Gabors were size-scaled to maintain consistent single-task performance across eccentricities. For all feature dimensions, the data show a linear increase in the attentional effects with target separation. In a control experiment, Gabors were presented on an isoeccentric viewing arc at 10 degrees and 15 degrees at the closest spatial separation (+/-2.5 degrees ) of the main experiment. Under these conditions, the effects of feature-based attentional effects were largely eliminated. Our results are consistent with the hypothesis that feature-based attention prioritizes the processing of attended features. Feature-based attentional mechanisms may have helped direct the attentional focus to the appropriate target locations at greater separations, whereas similar assistance may not have been necessary at closer target spacings. The results of the present study specify conditions under which dual-task performance benefits from sharing similar target features and may therefore help elucidate the processes by which feature-based attention operates.

  8. Domain-specific conflict adaptation without feature repetitions.

    PubMed

    Akçay, Çağlar; Hazeltine, Eliot

    2011-06-01

    An influential account of how cognitive control deals with conflicting sources of information holds that conflict is monitored by a module that automatically recruits attention to resolve the conflict. This leads to reduced effects of conflict on the subsequent trial, a phenomenon termed conflict adaptation. A prominent question is whether control processes are domain specific--that is, recruited only by the particular type of conflict they resolve. Previous studies that have examined this question used two-choice tasks in which feature repetition effects could be responsible for domain-specific adaptation effects. We report two experiments using four-choice (Experiment 1) and five-choice (Experiment 2) tasks that contain two types of irrelevant sources of potentially conflicting information: stimulus location (Simon conflict) and distractors (flanker conflict). In both experiments, we found within-type conflict adaptation for both types of conflict after eliminating trials on which stimulus features were repeated from one trial to the next. Across-type conflict adaptation, however, was not significant. Thus, conflict adaptation was due to domain-specific recruitment of cognitive control. Our results add converging evidence to the idea that multiple independent control processes are involved in reactive cognitive control, although whether control is always local remains to be determined.

  9. A trainable decisions-in decision-out (DEI-DEO) fusion system

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1998-03-01

    Most of the decision fusion systems proposed hitherto in the literature for multiple data source (sensor) environments operate on the basis of pre-defined fusion logic, be they crisp (deterministic), probabilistic, or fuzzy in nature, with no specific learning phase. The fusion systems that are trainable, i.e., ones that have a learning phase, mostly operate in the features-in-decision-out mode, which essentially reduces the fusion process functionally to a pattern classification task in the joint feature space. In this study, a trainable decisions-in-decision-out fusion system is described which estimates a fuzzy membership distribution spread across the different decision choices based on the performance of the different decision processors (sensors) corresponding to each training sample (object) which is associated with a specific ground truth (true decision). Based on a multi-decision space histogram analysis of the performance of the different processors over the entire training data set, a look-up table associating each cell of the histogram with a specific true decision is generated which forms the basis for the operational phase. In the operational phase, for each set of decision inputs, a pointer to the look-up table learnt previously is generated from which a fused decision is derived. This methodology, although primarily designed for fusing crisp decisions from the multiple decision sources, can be adapted for fusion of fuzzy decisions as well if such are the inputs from these sources. Examples, which illustrate the benefits and limitations of the crisp and fuzzy versions of the trainable fusion systems, are also included.

  10. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  11. Persuasive Dialogue Based on a Narrative Theory: An ECA Implementation

    NASA Astrophysics Data System (ADS)

    Cavazza, Marc; Smith, Cameron; Charlton, Daniel; Crook, Nigel; Boye, Johan; Pulman, Stephen; Moilanen, Karo; Pizzi, David; de La Camara, Raul Santos; Turunen, Markku

    Embodied Conversational Agents (ECA) are poised to constitute a specific category within persuasive systems, in particular through their ability to support affective dialogue. One possible approach consists in using ECA as virtual coaches or personal assistants and to make persuasion part of a dialogue game implementing specific argumentation or negotiation features. In this paper, we explore an alternative framework, which emerges from the long-term development of ECA as "Companions" supporting free conversation with the user, rather than task-oriented dialogue. Our system aims at influencing user attitudes as part of free conversation, albeit on a limited set of topics. We describe the implementation of a Companion ECA to which the user reports on his working day, and which can assess the user's emotional attitude towards daily events in the office, trying to influence such attitude using affective strategies derived from a narrative model. This discussion is illustrated through examples from a first fully-implemented prototype.

  12. Process and domain specificity in regions engaged for face processing: an fMRI study of perceptual differentiation.

    PubMed

    Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E

    2012-12-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.

  13. Process- and Domain-Specificity in Regions Engaged for Face Processing: An fMRI Study of Perceptual Differentiation

    PubMed Central

    Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.

    2015-01-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402

  14. Two-dimensional wavelet transform feature extraction for porous silicon chemical sensors.

    PubMed

    Murguía, José S; Vergara, Alexander; Vargas-Olmos, Cecilia; Wong, Travis J; Fonollosa, Jordi; Huerta, Ramón

    2013-06-27

    Designing reliable, fast responding, highly sensitive, and low-power consuming chemo-sensory systems has long been a major goal in chemo-sensing. This goal, however, presents a difficult challenge because having a set of chemo-sensory detectors exhibiting all these aforementioned ideal conditions are still largely un-realizable to-date. This paper presents a unique perspective on capturing more in-depth insights into the physicochemical interactions of two distinct, selectively chemically modified porous silicon (pSi) film-based optical gas sensors by implementing an innovative, based on signal processing methodology, namely the two-dimensional discrete wavelet transform. Specifically, the method consists of using the two-dimensional discrete wavelet transform as a feature extraction method to capture the non-stationary behavior from the bi-dimensional pSi rugate sensor response. Utilizing a comprehensive set of measurements collected from each of the aforementioned optically based chemical sensors, we evaluate the significance of our approach on a complex, six-dimensional chemical analyte discrimination/quantification task problem. Due to the bi-dimensional aspects naturally governing the optical sensor response to chemical analytes, our findings provide evidence that the proposed feature extractor strategy may be a valuable tool to deepen our understanding of the performance of optically based chemical sensors as well as an important step toward attaining their implementation in more realistic chemo-sensing applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Influence of Task Instruction on Action Coding: Constraint Setting or Direct Coding?

    ERIC Educational Resources Information Center

    Wenke, Dorit; Frensch, Peter A.

    2005-01-01

    In 3 experiments, the authors manipulated response instructions for 2 concurrently performed tasks. Specifically, the authors' instructions described left and right keypresses on a manual task either as left versus right or as blue versus green keypresses and required either "left" versus "right" or "blue" versus "green" concurrent verbalizations.…

  16. A Generic Deep-Learning-Based Approach for Automated Surface Inspection.

    PubMed

    Ren, Ruoxu; Hung, Terence; Tan, Kay Chen

    2018-03-01

    Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%-25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%-19.00% in three defect types and improves accuracies by 2.29%-9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.

  17. Color is processed less efficiently than orientation in change detection but more efficiently in visual search.

    PubMed

    Huang, Liqiang

    2015-05-01

    Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.

  18. Set Shifting Training with Categorization Tasks

    PubMed Central

    Soveri, Anna; Waris, Otto; Laine, Matti

    2013-01-01

    The very few cognitive training studies targeting an important executive function, set shifting, have reported performance improvements that also generalized to untrained tasks. The present randomized controlled trial extends set shifting training research by comparing previously used cued training with uncued training. A computerized adaptation of the Wisconsin Card Sorting Test was utilized as the training task in a pretest-posttest experimental design involving three groups of university students. One group received uncued training (n = 14), another received cued training (n = 14) and the control group (n = 14) only participated in pre- and posttests. The uncued training group showed posttraining performance increases on their training task, but neither training group showed statistically significant transfer effects. Nevertheless, comparison of effect sizes for transfer effects indicated that our results did not differ significantly from the previous studies. Our results suggest that the cognitive effects of computerized set shifting training are mostly task-specific, and would preclude any robust generalization effects with this training. PMID:24324717

  19. Basic Visual Merchandising. Second Edition. [Student's Manual and] Answer Book/Teacher's Guide.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This student's manual that features content needed to do tasks related to visual merchandising is intended for students in co-op training stations and entry-level, master employee, and supervisory-level employees. It contains 13 assignments. Each assignment has questions covering specific information and also features activities in which students…

  20. Investigation of automated feature extraction using multiple data sources

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.

    2003-04-01

    An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

  1. Validation of a short-term memory test for the recognition of people and faces.

    PubMed

    Leyk, D; Sievert, A; Heiss, A; Gorges, W; Ridder, D; Alexander, T; Wunderlich, M; Ruther, T

    2008-08-01

    Memorising and processing faces is a short-term memory dependent task of utmost importance in the security domain, in which constant and high performance is a must. Especially in access or passport control-related tasks, the timely identification of performance decrements is essential, margins of error are narrow and inadequate performance may have grave consequences. However, conventional short-term memory tests frequently use abstract settings with little relevance to working situations. They may thus be unable to capture task-specific decrements. The aim of the study was to devise and validate a new test, better reflecting job specifics and employing appropriate stimuli. After 1.5 s (short) or 4.5 s (long) presentation, a set of seven portraits of faces had to be memorised for comparison with two control stimuli. Stimulus appearance followed 2 s (first item) and 8 s (second item) after set presentation. Twenty eight subjects (12 male, 16 female) were tested at seven different times of day, 3 h apart. Recognition rates were above 60% even for the least favourable condition. Recognition was significantly better in the 'long' condition (+10%) and for the first item (+18%). Recognition time showed significant differences (10%) between items. Minor effects of learning were found for response latencies only. Based on occupationally relevant metrics, the test displayed internal and external validity, consistency and suitability for further use in test/retest scenarios. In public security, especially where access to restricted areas is monitored, margins of error are narrow and operator performance must remain high and level. Appropriate schedules for personnel, based on valid test results, are required. However, task-specific data and performance tests, permitting the description of task specific decrements, are not available. Commonly used tests may be unsuitable due to undue abstraction and insufficient reference to real-world conditions. Thus, tests are required that account for task-specific conditions and neurophysiological characteristics.

  2. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  3. Switching between univalent task-sets in schizophrenia: ERP evidence of an anticipatory task-set reconfiguration deficit.

    PubMed

    Karayanidis, Frini; Nicholson, Rebecca; Schall, Ulrich; Meem, Lydia; Fulham, Ross; Michie, Patricia T

    2006-10-01

    The present study used behavioral and event-related potential (ERP) indices of task-switching to examine whether schizophrenia patients have a specific deficit in anticipatory task-set reconfiguration. Participants switched between univalent tasks in an alternating runs paradigms with blocked response-stimulus interval (RSI) manipulation (150, 300, 600, and 1200ms). Nineteen high functioning people with schizophrenia were compared to controls that were matched for age, gender, education and premorbid IQ estimate. Schizophrenia patients had overall increased RT, but no increase in corrected RT switch cost. In the schizophrenia group, ERPs showed reduced activation of the differential positivity in anticipation of switch trial at the optimal 600ms RSI and reduced activation of the frontal post-stimulus switch negativity at both 600 and 1200ms RSI compared to the control group. Despite no behavioral differences in task switching performance, anticipatory and stimulus-triggered ERP indices of task-switching suggest group differences in processing of switch and repeat trials, especially at longer RSI conditions that for control participants provide opportunity for anticipatory activation of task-set reconfiguration processes. These results are compatible with impaired implementation of endogenously driven processes in schizophrenia and greater reliance on external task cues, especially at long preparation intervals.

  4. Symbiosis of executive and selective attention in working memory

    PubMed Central

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723

  5. Symbiosis of executive and selective attention in working memory.

    PubMed

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  6. Automated simultaneous multiple feature classification of MTI data

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.

    2002-08-01

    Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.

  7. Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals.

    PubMed

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

  8. Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals

    PubMed Central

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966

  9. Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.

    PubMed

    Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo

    2016-09-01

    Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.

  10. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Combining virtual reality and multimedia techniques for effective maintenance training

    NASA Astrophysics Data System (ADS)

    McLin, David M.; Chung, James C.

    1996-02-01

    This paper describes a virtual reality (VR) system developed for use as part of an integrated, low-cost, stand-alone, multimedia trainer. The trainer is used to train National Guard personnel in maintenance and trouble-shooting tasks for the M1A1 Abrams tank, the M2A2 Bradley fighting vehicle and the TOW II missile system. The VR system features a modular, extensible, object-oriented design which consists of a training monitor component, a VR run time component, a model loader component, and a set of domain-specific object behaviors which mimic the behavior of objects encountered in the actual vehicles. The VR system is built from a combination of off-the-shelf commercial software and custom software developed at RTI.

  12. GeneRIF indexing: sentence selection based on machine learning.

    PubMed

    Jimeno-Yepes, Antonio J; Sticco, J Caitlin; Mork, James G; Aronson, Alan R

    2013-05-31

    A Gene Reference Into Function (GeneRIF) describes novel functionality of genes. GeneRIFs are available from the National Center for Biotechnology Information (NCBI) Gene database. GeneRIF indexing is performed manually, and the intention of our work is to provide methods to support creating the GeneRIF entries. The creation of GeneRIF entries involves the identification of the genes mentioned in MEDLINE®; citations and the sentences describing a novel function. We have compared several learning algorithms and several features extracted or derived from MEDLINE sentences to determine if a sentence should be selected for GeneRIF indexing. Features are derived from the sentences or using mechanisms to augment the information provided by them: assigning a discourse label using a previously trained model, for example. We show that machine learning approaches with specific feature combinations achieve results close to one of the annotators. We have evaluated different feature sets and learning algorithms. In particular, Naïve Bayes achieves better performance with a selection of features similar to one used in related work, which considers the location of the sentence, the discourse of the sentence and the functional terminology in it. The current performance is at a level similar to human annotation and it shows that machine learning can be used to automate the task of sentence selection for GeneRIF annotation. The current experiments are limited to the human species. We would like to see how the methodology can be extended to other species, specifically the normalization of gene mentions in other species.

  13. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments

    PubMed Central

    Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke

    2017-01-01

    Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation, but it is unclear how well they capture human behavior on complex cognitive tasks. Recent reports suggest that DNNs can explain significant variance in one such task, judging object similarity. Here, we extend these findings by replicating them for a rich set of object images, comparing performance across layers within two DNNs of different depths, and examining how the DNNs’ performance compares to that of non-computational “conceptual” models. Human observers performed similarity judgments for a set of 92 images of real-world objects. Representations of the same images were obtained in each of the layers of two DNNs of different depths (8-layer AlexNet and 16-layer VGG-16). To create conceptual models, other human observers generated visual-feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the same image set. Feature labels were divided into parts, colors, textures and contours, while category labels were divided into subordinate, basic, and superordinate categories. We fitted models derived from the features, categories, and from each layer of each DNN to the similarity judgments, using representational similarity analysis to evaluate model performance. In both DNNs, similarity within the last layer explains most of the explainable variance in human similarity judgments. The last layer outperforms almost all feature-based models. Late and mid-level layers outperform some but not all feature-based models. Importantly, categorical models predict similarity judgments significantly better than any DNN layer. Our results provide further evidence for commonalities between DNNs and brain representations. Models derived from visual features other than object parts perform relatively poorly, perhaps because DNNs more comprehensively capture the colors, textures and contours which matter to human object perception. However, categorical models outperform DNNs, suggesting that further work may be needed to bring high-level semantic representations in DNNs closer to those extracted by humans. Modern DNNs explain similarity judgments remarkably well considering they were not trained on this task, and are promising models for many aspects of human cognition. PMID:29062291

  14. Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence.

    PubMed

    Reimer, Christina B; Strobach, Tilo; Schubert, Torsten

    2017-12-01

    Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.

  15. ANALYSIS OF SAMPLING TECHNIQUES FOR IMBALANCED DATA: AN N=648 ADNI STUDY

    PubMed Central

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M.; Ye, Jieping

    2013-01-01

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and under sampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1). a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2). sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869

  16. Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study.

    PubMed

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M; Ye, Jieping

    2014-02-15

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer's disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and undersampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1) a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2) sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. © 2013 Elsevier Inc. All rights reserved.

  17. Odor Valence Linearly Modulates Attractiveness, but Not Age Assessment, of Invariant Facial Features in a Memory-Based Rating Task

    PubMed Central

    Seubert, Janina; Gregory, Kristen M.; Chamberland, Jessica; Dessirier, Jean-Marc; Lundström, Johan N.

    2014-01-01

    Scented cosmetic products are used across cultures as a way to favorably influence one's appearance. While crossmodal effects of odor valence on perceived attractiveness of facial features have been demonstrated experimentally, it is unknown whether they represent a phenomenon specific to affective processing. In this experiment, we presented odors in the context of a face battery with systematic feature manipulations during a speeded response task. Modulatory effects of linear increases of odor valence were investigated by juxtaposing subsequent memory-based ratings tasks – one predominantly affective (attractiveness) and a second, cognitive (age). The linear modulation pattern observed for attractiveness was consistent with additive effects of face and odor appraisal. Effects of odor valence on age perception were not linearly modulated and may be the result of cognitive interference. Affective and cognitive processing of faces thus appear to differ in their susceptibility to modulation by odors, likely as a result of privileged access of olfactory stimuli to affective brain networks. These results are critically discussed with respect to potential biases introduced by the preceding speeded response task. PMID:24874703

  18. Serotonergic and dopaminergic modulation of attentional processes.

    PubMed

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  19. Rapid top-down control over template-guided attention shifts to multiple objects.

    PubMed

    Grubert, Anna; Fahrenfort, Johannes; Olivers, Christian N L; Eimer, Martin

    2017-02-01

    Previous research has shown that when observers search for targets defined by a particular colour, attention can be directed rapidly and independently to two target objects that appear in close temporal proximity. We investigated how such rapid attention shifts are modulated by task instructions to selectively attend versus ignore one of these objects. Two search displays that both contained a colour-defined target and a distractor in a different colour were presented in rapid succession, with a stimulus onset asynchrony (SOA) of 100ms. In different blocks, participants were instructed to attend and respond to target-colour objects in the first display and to ignore these objects in the second display, or vice versa. N2pc components were measured to track the allocation of spatial attention to target-colour objects in these two displays. When participants responded to the second display, irrelevant target-colour objects in the first display still triggered N2pc components, demonstrating task-set contingent attentional capture while a feature-specific target template is active. Critically, when participants responded to the first display instead, no N2pc was elicited by target-colour items in the second display, indicating that they no longer rapidly captured attention. However, these items still elicited a longer-latency contralateral negativity (SPCN component), suggesting that attention was oriented towards template-matching objects in working memory. This dissociation between N2pc and SPCN components shows that rapid attentional capture and subsequent attentional selection processes within working memory can be independent. We suggest that early attentional orienting mechanisms can be inhibited when task-set matching objects are no longer task-relevant, and that this type of inhibitory control is a rapid but transient process. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Learning better deep features for the prediction of occult invasive disease in ductal carcinoma in situ through transfer learning

    NASA Astrophysics Data System (ADS)

    Shi, Bibo; Hou, Rui; Mazurowski, Maciej A.; Grimm, Lars J.; Ren, Yinhao; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.

    2018-02-01

    Purpose: To determine whether domain transfer learning can improve the performance of deep features extracted from digital mammograms using a pre-trained deep convolutional neural network (CNN) in the prediction of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy. Method: In this study, we collected digital mammography magnification views for 140 patients with DCIS at biopsy, 35 of which were subsequently upstaged to invasive cancer. We utilized a deep CNN model that was pre-trained on two natural image data sets (ImageNet and DTD) and one mammographic data set (INbreast) as the feature extractor, hypothesizing that these data sets are increasingly more similar to our target task and will lead to better representations of deep features to describe DCIS lesions. Through a statistical pooling strategy, three sets of deep features were extracted using the CNNs at different levels of convolutional layers from the lesion areas. A logistic regression classifier was then trained to predict which tumors contain occult invasive disease. The generalization performance was assessed and compared using repeated random sub-sampling validation and receiver operating characteristic (ROC) curve analysis. Result: The best performance of deep features was from CNN model pre-trained on INbreast, and the proposed classifier using this set of deep features was able to achieve a median classification performance of ROC-AUC equal to 0.75, which is significantly better (p<=0.05) than the performance of deep features extracted using ImageNet data set (ROCAUC = 0.68). Conclusion: Transfer learning is helpful for learning a better representation of deep features, and improves the prediction of occult invasive disease in DCIS.

  1. Visual search for feature and conjunction targets with an attention deficit.

    PubMed

    Arguin, M; Joanette, Y; Cavanagh, P

    1993-01-01

    Abstract Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or color) or for a conjunction target (orientation and color) in unilateral displays in which the number of items presented was variable. Ocular fixation was controlled so that trials on which eye movements occurred were cancelled. While brain-damaged subjects with a visual attention disorder (VAD subjects) performed similarly to normal controls in feature search tasks, they showed a marked deficit in conjunction search. Specifically, VAD subjects exhibited an important reduction of their serial search rates for a conjunction target with contralesional displays. In support of Treisman's feature integration theory, a visual attention deficit leads to a marked impairment in feature integration whereas it does not appear to affect feature encoding.

  2. Adaptable, high recall, event extraction system with minimal configuration.

    PubMed

    Miwa, Makoto; Ananiadou, Sophia

    2015-01-01

    Biomedical event extraction has been a major focus of biomedical natural language processing (BioNLP) research since the first BioNLP shared task was held in 2009. Accordingly, a large number of event extraction systems have been developed. Most such systems, however, have been developed for specific tasks and/or incorporated task specific settings, making their application to new corpora and tasks problematic without modification of the systems themselves. There is thus a need for event extraction systems that can achieve high levels of accuracy when applied to corpora in new domains, without the need for exhaustive tuning or modification, whilst retaining competitive levels of performance. We have enhanced our state-of-the-art event extraction system, EventMine, to alleviate the need for task-specific tuning. Task-specific details are specified in a configuration file, while extensive task-specific parameter tuning is avoided through the integration of a weighting method, a covariate shift method, and their combination. The task-specific configuration and weighting method have been employed within the context of two different sub-tasks of BioNLP shared task 2013, i.e. Cancer Genetics (CG) and Pathway Curation (PC), removing the need to modify the system specifically for each task. With minimal task specific configuration and tuning, EventMine achieved the 1st place in the PC task, and 2nd in the CG, achieving the highest recall for both tasks. The system has been further enhanced following the shared task by incorporating the covariate shift method and entity generalisations based on the task definitions, leading to further performance improvements. We have shown that it is possible to apply a state-of-the-art event extraction system to new tasks with high levels of performance, without having to modify the system internally. Both covariate shift and weighting methods are useful in facilitating the production of high recall systems. These methods and their combination can adapt a model to the target data with no deep tuning and little manual configuration.

  3. Right-hemispheric processing of non-linguistic word features: implications for mapping language recovery after stroke.

    PubMed

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-06-01

    Verbal stimuli often induce right-hemispheric activation in patients with aphasia after left-hemispheric stroke. This right-hemispheric activation is commonly attributed to functional reorganization within the language system. Yet previous evidence suggests that functional activation in right-hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required subjects to decide whether a stimulus is natural or man-made; the phonologic decision required a decision on whether a stimulus contains two or three syllables. Compared to phonologic or semantic decision, nonlinguistic perceptual decisions resulted in a stronger right-hemispheric activation. Specifically, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially reflect increased attentional focus on nonlinguistic perceptual aspects of language. Copyright © 2012 Wiley Periodicals, Inc.

  4. The role of audience participation and task relevance on change detection during a card trick.

    PubMed

    Smith, Tim J

    2015-01-01

    Magicians utilize many techniques for misdirecting audience attention away from the secret sleight of a trick. One technique is to ask an audience member to participate in a trick either physically by asking them to choose a card or cognitively by having them keep track of a card. While such audience participation is an established part of most magic the cognitive mechanisms by which it operates are unknown. Failure to detect changes to objects while passively viewing magic tricks has been shown to be conditional on the changing feature being irrelevant to the current task. How change blindness operates during interactive tasks is unclear but preliminary evidence suggests that relevance of the changing feature may also play a role (Triesch et al., 2003). The present study created a simple on-line card trick inspired by Triesch et al.'s (2003) that allowed playing cards to be instantaneously replaced without distraction or occlusion as participants were either actively sorting the cards (Doing condition) or watching another person perform the task (Watching conditions). Participants were given one of three sets of instructions. The relevance of the card color to the task increased across the three instructions. During half of the trials a card changed color (but retained its number) as it was moving to the stack. Participants were instructed to immediately report such changes. Analysis of the probability of reporting a change revealed that actively performing the sorting task led to more missed changes than passively watching the same task but only when the changing feature was irrelevant to the sorting task. If the feature was relevant during either the pick-up or put-down action change detection was as good as during the watching block. These results confirm the ability of audience participation to create subtle dynamics of attention and perception during a magic trick and hide otherwise striking changes at the center of attention.

  5. The role of audience participation and task relevance on change detection during a card trick

    PubMed Central

    Smith, Tim J.

    2015-01-01

    Magicians utilize many techniques for misdirecting audience attention away from the secret sleight of a trick. One technique is to ask an audience member to participate in a trick either physically by asking them to choose a card or cognitively by having them keep track of a card. While such audience participation is an established part of most magic the cognitive mechanisms by which it operates are unknown. Failure to detect changes to objects while passively viewing magic tricks has been shown to be conditional on the changing feature being irrelevant to the current task. How change blindness operates during interactive tasks is unclear but preliminary evidence suggests that relevance of the changing feature may also play a role (Triesch et al., 2003). The present study created a simple on-line card trick inspired by Triesch et al.’s (2003) that allowed playing cards to be instantaneously replaced without distraction or occlusion as participants were either actively sorting the cards (Doing condition) or watching another person perform the task (Watching conditions). Participants were given one of three sets of instructions. The relevance of the card color to the task increased across the three instructions. During half of the trials a card changed color (but retained its number) as it was moving to the stack. Participants were instructed to immediately report such changes. Analysis of the probability of reporting a change revealed that actively performing the sorting task led to more missed changes than passively watching the same task but only when the changing feature was irrelevant to the sorting task. If the feature was relevant during either the pick-up or put-down action change detection was as good as during the watching block. These results confirm the ability of audience participation to create subtle dynamics of attention and perception during a magic trick and hide otherwise striking changes at the center of attention. PMID:25698986

  6. Structure learning in action

    PubMed Central

    Braun, Daniel A.; Mehring, Carsten; Wolpert, Daniel M.

    2010-01-01

    ‘Learning to learn’ phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated—a process termed ‘learning to learn’. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a ‘learning to learn’ mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system. PMID:19720086

  7. Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy

    2005-01-01

    The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.

  8. A Feature-Reinforcement-Based Approach for Supporting Poly-Lingual Category Integration

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Ping; Chen, Chao-Chi; Cheng, Tsang-Hsiang; Yang, Christopher C.

    Document-category integration (or category integration for short) is fundamental to many e-commerce applications, including information integration along supply chains and information aggregation by intermediaries. Because of the trend of globalization, the requirement for category integration has been extended from monolingual to poly-lingual settings. Poly-lingual category integration (PLCI) aims to integrate two document catalogs, each of which consists of documents written in a mix of languages. Several category integration techniques have been proposed in the literature, but these techniques focus only on monolingual category integration rather than PLCI. In this study, we propose a feature-reinforcement-based PLCI (namely, FR-PLCI) technique that takes into account the master documents of all languages when integrating source documents (in the source catalog) written in a specific language into the master catalog. Using the monolingual category integration (MnCI) technique as a performance benchmark, our empirical evaluation results show that our proposed FR-PLCI technique achieves better integration accuracy than MnCI does in both English and Chinese category integration tasks.

  9. ETS Matched Pictures Language Comprehension Task I and II; Technical Report 5. Disadvantaged Children and Their First School Experiences. ETS-Head Start Longitudinal Study. Technical Report Series.

    ERIC Educational Resources Information Center

    Meissner, Judith A.; And Others

    The ETS Matched Pictures test was used in the longitudinal study to measure children's comprehension of certain grammatical features, such as past and future tenses, negation and prepositions. The task materials for both I and II consist of a set of cards, with each card having a pair of black and white pictures. Both pictures in a pair contain…

  10. Training apartment upkeep skills to rehabilitation clients: a comparison of task analytic strategies.

    PubMed Central

    Williams, G E; Cuvo, A J

    1986-01-01

    The research was designed to validate procedures to teach apartment upkeep skills to severely handicapped clients with various categorical disabilities. Methodological features of this research included performance comparisons between general and specific task analyses, effect of an impasse correction baseline procedure, social validation of training goals, natural environment assessments and contingencies, as well as long-term follow-up. Subjects were taught to perform upkeep responses on their air conditioner-heating unit, electric range, refrigerator, and electrical appliances within the context of a multiple-probe across subjects experimental design. The results showed acquisition, long-term maintenance, and generalization of the upkeep skills to a nontraining apartment. General task analyses were recommended for assessment and specific task analyses for training. The impasse correction procedure generally did not produce acquisition. PMID:3710947

  11. Effects of the Protestant Work Ethic and Perceived Challenge on Time Allocated to an Experimental Task.

    ERIC Educational Resources Information Center

    Tang, Thomas Li-Ping

    Goal-setting literature has suggested that specific, difficult goals will produce higher performance levels than easy goals. A difficult task or one with negative performance feedback may increase an individual's perceived challenge of the task which may in turn enhance his motivation. Effects of the Protestant work ethic and perceived challenge…

  12. Reinforcement learning in computer vision

    NASA Astrophysics Data System (ADS)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  13. HIV-1 protease cleavage site prediction based on two-stage feature selection method.

    PubMed

    Niu, Bing; Yuan, Xiao-Cheng; Roeper, Preston; Su, Qiang; Peng, Chun-Rong; Yin, Jing-Yuan; Ding, Juan; Li, HaiPeng; Lu, Wen-Cong

    2013-03-01

    Knowledge of the mechanism of HIV protease cleavage specificity is critical to the design of specific and effective HIV inhibitors. Searching for an accurate, robust, and rapid method to correctly predict the cleavage sites in proteins is crucial when searching for possible HIV inhibitors. In this article, HIV-1 protease specificity was studied using the correlation-based feature subset (CfsSubset) selection method combined with Genetic Algorithms method. Thirty important biochemical features were found based on a jackknife test from the original data set containing 4,248 features. By using the AdaBoost method with the thirty selected features the prediction model yields an accuracy of 96.7% for the jackknife test and 92.1% for an independent set test, with increased accuracy over the original dataset by 6.7% and 77.4%, respectively. Our feature selection scheme could be a useful technique for finding effective competitive inhibitors of HIV protease.

  14. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.

    PubMed

    Zhu, Qile; Li, Xiaolin; Conesa, Ana; Pereira, Cécile

    2018-05-01

    Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in the biomedical domain, using the same architecture does not yield competitive performance compared with conventional machine learning models. We propose a novel end-to-end deep learning approach for biomedical NER tasks that leverages the local contexts based on n-gram character and word embeddings via Convolutional Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this method uses the local information around a word. Therefore, the GRAM-CNN method does not require any specific knowledge or feature engineering and can be theoretically applied to a wide range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge, we are the first to apply CNN based structures to BioNER problems. The GRAM-CNN source code, datasets and pre-trained model are available online at: https://github.com/valdersoul/GRAM-CNN. andyli@ece.ufl.edu or aconesa@ufl.edu. Supplementary data are available at Bioinformatics online.

  15. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text

    PubMed Central

    Zhu, Qile; Li, Xiaolin; Conesa, Ana; Pereira, Cécile

    2018-01-01

    Abstract Motivation Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in the biomedical domain, using the same architecture does not yield competitive performance compared with conventional machine learning models. Results We propose a novel end-to-end deep learning approach for biomedical NER tasks that leverages the local contexts based on n-gram character and word embeddings via Convolutional Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this method uses the local information around a word. Therefore, the GRAM-CNN method does not require any specific knowledge or feature engineering and can be theoretically applied to a wide range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge, we are the first to apply CNN based structures to BioNER problems. Availability and implementation The GRAM-CNN source code, datasets and pre-trained model are available online at: https://github.com/valdersoul/GRAM-CNN. Contact andyli@ece.ufl.edu or aconesa@ufl.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:29272325

  16. Use of evidence in a categorization task: analytic and holistic processing modes.

    PubMed

    Greco, Alberto; Moretti, Stefania

    2017-11-01

    Category learning performance can be influenced by many contextual factors, but the effects of these factors are not the same for all learners. The present study suggests that these differences can be due to the different ways evidence is used, according to two main basic modalities of processing information, analytically or holistically. In order to test the impact of the information provided, an inductive rule-based task was designed, in which feature salience and comparison informativeness between examples of two categories were manipulated during the learning phases, by introducing and progressively reducing some perceptual biases. To gather data on processing modalities, we devised the Active Feature Composition task, a production task that does not require classifying new items but reproducing them by combining features. At the end, an explicit rating task was performed, which entailed assessing the accuracy of a set of possible categorization rules. A combined analysis of the data collected with these two different tests enabled profiling participants in regard to the kind of processing modality, the structure of representations and the quality of categorial judgments. Results showed that despite the fact that the information provided was the same for all participants, those who adopted analytic processing better exploited evidence and performed more accurately, whereas with holistic processing categorization is perfectly possible but inaccurate. Finally, the cognitive implications of the proposed procedure, with regard to involved processes and representations, are discussed.

  17. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke

    2016-03-01

    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate this approach,using a publicly available head and neck CT dataset. We also show that a deep neural network of similar depth, if trained directly using backpropagation, cannot acheive the tasks achieved using our layer wise training paradigm.

  18. Examining the design features of a communication-rich, problem-centred mathematics professional development

    NASA Astrophysics Data System (ADS)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-04-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.

  19. Computer assisted optical biopsy for colorectal polyps

    NASA Astrophysics Data System (ADS)

    Navarro-Avila, Fernando J.; Saint-Hill-Febles, Yadira; Renner, Janis; Klare, Peter; von Delius, Stefan; Navab, Nassir; Mateus, Diana

    2017-03-01

    We propose a method for computer-assisted optical biopsy for colorectal polyps, with the final goal of assisting the medical expert during the colonoscopy. In particular, we target the problem of automatic classification of polyp images in two classes: adenomatous vs non-adenoma. Our approach is based on recent advancements in convolutional neural networks (CNN) for image representation. In the paper, we describe and compare four different methodologies to address the binary classification task: a baseline with classical features and a Random Forest classifier, two methods based on features obtained from a pre-trained network, and finally, the end-to-end training of a CNN. With the pre-trained network, we show the feasibility of transferring a feature extraction mechanism trained on millions of natural images, to the task of classifying adenomatous polyps. We then demonstrate further performance improvements when training the CNN for our specific classification task. In our study, 776 polyp images were acquired and histologically analyzed after polyp resection. We report a performance increase of the CNN-based approaches with respect to both, the conventional engineered features and to a state-of-the-art method based on videos and 3D shape features.

  20. Lesson 7: From Requirements to Specific Solutions

    EPA Pesticide Factsheets

    CROMERR requirements set performance goals, they do not dictate specific system functions, operating procedures,system architecture, or technology. The task is to decide on a solution to meet the goals.

  1. Effects of dynamic text in an AAC app on sight word reading for individuals with autism spectrum disorder.

    PubMed

    Caron, Jessica; Light, Janice; Holyfield, Christine; McNaughton, David

    2018-06-01

    The purpose of this study was to investigate the effects of Transition to Literacy (T2L) software features (i.e., dynamic text and speech output upon selection of a graphic symbol) within a grid display in an augmentative and alternative communication (AAC) app, on the sight word reading skills of individuals with autism spectrum disorders (ASD) and complex communication needs. The study implemented a single-subject multiple probe research design across one set of three participants. The same design was utilized with an additional set of two participants. As part of the intervention, the participants were exposed to an AAC app with the T2L features during a highly structured matching task. With only limited exposure to the features, the five participants all demonstrated increased accuracy of identification of 12 targeted sight words. This study provides preliminary evidence that redesigning AAC apps to include the provision of dynamic text combined with speech output, can positively impact the sight-word reading of participants during a structured task. This adaptation in AAC system design could be used to complement literacy instruction and to potentially infuse components of literacy learning into daily communication.

  2. Chemical name extraction based on automatic training data generation and rich feature set.

    PubMed

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  3. Cognitive dysfunction in Body Dysmorphic Disorder: New implications for nosological systems & neurobiological models

    PubMed Central

    Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR

    2017-01-01

    Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165

  4. Visual Saliency Detection Based on Multiscale Deep CNN Features.

    PubMed

    Guanbin Li; Yizhou Yu

    2016-11-01

    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this paper, we discover that a high-quality visual saliency model can be learned from multiscale features extracted using deep convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for feature extraction at three different scales. The penultimate layer of our neural network has been confirmed to be a discriminative high-level feature vector for saliency detection, which we call deep contrast feature. To generate a more robust feature, we integrate handcrafted low-level features with our deep contrast feature. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotations. Experimental results demonstrate that our proposed method is capable of achieving the state-of-the-art performance on all public benchmarks, improving the F-measure by 6.12% and 10%, respectively, on the DUT-OMRON data set and our new data set (HKU-IS), and lowering the mean absolute error by 9% and 35.3%, respectively, on these two data sets.

  5. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood

    PubMed Central

    Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  6. Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Arnegard, Ruth J.; Comstock, J. R., Jr.

    1991-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  7. The multi-attribute task battery for human operator workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Arnegard, Ruth J.

    1992-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  8. Learning semantic histopathological representation for basal cell carcinoma classification

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  9. Using Explanatory Item Response Models to Evaluate Complex Scientific Tasks Designed for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Chiu, Tina

    This dissertation includes three studies that analyze a new set of assessment tasks developed by the Learning Progressions in Middle School Science (LPS) Project. These assessment tasks were designed to measure science content knowledge on the structure of matter domain and scientific argumentation, while following the goals from the Next Generation Science Standards (NGSS). The three studies focus on the evidence available for the success of this design and its implementation, generally labelled as "validity" evidence. I use explanatory item response models (EIRMs) as the overarching framework to investigate these assessment tasks. These models can be useful when gathering validity evidence for assessments as they can help explain student learning and group differences. In the first study, I explore the dimensionality of the LPS assessment by comparing the fit of unidimensional, between-item multidimensional, and Rasch testlet models to see which is most appropriate for this data. By applying multidimensional item response models, multiple relationships can be investigated, and in turn, allow for a more substantive look into the assessment tasks. The second study focuses on person predictors through latent regression and differential item functioning (DIF) models. Latent regression models show the influence of certain person characteristics on item responses, while DIF models test whether one group is differentially affected by specific assessment items, after conditioning on latent ability. Finally, the last study applies the linear logistic test model (LLTM) to investigate whether item features can help explain differences in item difficulties.

  10. Robot-assisted surgery: an emerging platform for human neuroscience research

    PubMed Central

    Jarc, Anthony M.; Nisky, Ilana

    2015-01-01

    Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785

  11. Assessment of features for automatic CTG analysis based on expert annotation.

    PubMed

    Chudácek, Vacláv; Spilka, Jirí; Lhotská, Lenka; Janku, Petr; Koucký, Michal; Huptych, Michal; Bursa, Miroslav

    2011-01-01

    Cardiotocography (CTG) is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO) since 1960's used routinely by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the ever-used features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and the features are assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. Annotation derived from the panel of experts instead of the commonly utilized pH values was used for evaluation of the features on a large data set (552 records). We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. Number of acceleration and deceleration, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.

  12. Feature reliability determines specificity and transfer of perceptual learning in orientation search.

    PubMed

    Yashar, Amit; Denison, Rachel N

    2017-12-01

    Training can modify the visual system to produce a substantial improvement on perceptual tasks and therefore has applications for treating visual deficits. Visual perceptual learning (VPL) is often specific to the trained feature, which gives insight into processes underlying brain plasticity, but limits VPL's effectiveness in rehabilitation. Under what circumstances VPL transfers to untrained stimuli is poorly understood. Here we report a qualitatively new phenomenon: intrinsic variation in the representation of features determines the transfer of VPL. Orientations around cardinal are represented more reliably than orientations around oblique in V1, which has been linked to behavioral consequences such as visual search asymmetries. We studied VPL for visual search of near-cardinal or oblique targets among distractors of the other orientation while controlling for other display and task attributes, including task precision, task difficulty, and stimulus exposure. Learning was the same in all training conditions; however, transfer depended on the orientation of the target, with full transfer of learning from near-cardinal to oblique targets but not the reverse. To evaluate the idea that representational reliability was the key difference between the orientations in determining VPL transfer, we created a model that combined orientation-dependent reliability, improvement of reliability with learning, and an optimal search strategy. Modeling suggested that not only search asymmetries but also the asymmetric transfer of VPL depended on preexisting differences between the reliability of near-cardinal and oblique representations. Transfer asymmetries in model behavior also depended on having different learning rates for targets and distractors, such that greater learning for low-reliability distractors facilitated transfer. These findings suggest that training on sensory features with intrinsically low reliability may maximize the generalizability of learning in complex visual environments.

  13. Feature reliability determines specificity and transfer of perceptual learning in orientation search

    PubMed Central

    2017-01-01

    Training can modify the visual system to produce a substantial improvement on perceptual tasks and therefore has applications for treating visual deficits. Visual perceptual learning (VPL) is often specific to the trained feature, which gives insight into processes underlying brain plasticity, but limits VPL’s effectiveness in rehabilitation. Under what circumstances VPL transfers to untrained stimuli is poorly understood. Here we report a qualitatively new phenomenon: intrinsic variation in the representation of features determines the transfer of VPL. Orientations around cardinal are represented more reliably than orientations around oblique in V1, which has been linked to behavioral consequences such as visual search asymmetries. We studied VPL for visual search of near-cardinal or oblique targets among distractors of the other orientation while controlling for other display and task attributes, including task precision, task difficulty, and stimulus exposure. Learning was the same in all training conditions; however, transfer depended on the orientation of the target, with full transfer of learning from near-cardinal to oblique targets but not the reverse. To evaluate the idea that representational reliability was the key difference between the orientations in determining VPL transfer, we created a model that combined orientation-dependent reliability, improvement of reliability with learning, and an optimal search strategy. Modeling suggested that not only search asymmetries but also the asymmetric transfer of VPL depended on preexisting differences between the reliability of near-cardinal and oblique representations. Transfer asymmetries in model behavior also depended on having different learning rates for targets and distractors, such that greater learning for low-reliability distractors facilitated transfer. These findings suggest that training on sensory features with intrinsically low reliability may maximize the generalizability of learning in complex visual environments. PMID:29240813

  14. Dissociable top-down anticipatory neural states for different linguistic dimensions.

    PubMed

    Ruz, María; Nobre, Anna C

    2008-03-07

    When preparing to perform a task, the brain settles into task-set states which are relevant for the selection of the appropriate task-rules and stimulus-response mappings. The way this selection takes place within the Language domain is not well understood. We used high-density electrophysiological recordings while participants were engaged in a task in which cues directed their attention to the orthography, phonology or semantics of upcoming target words (or to the shape of novel symbols). To study the specificity of the brain preparatory states to different goals within the language domain, we contrasted the topographical maps associated with the cues for these different tasks, and explored whether the need of task-set reconfiguration modulated this preparatory activity. As a complement to the topographical analyses, we compared the amplitude of the cue-locked ERPs across task conditions. The topographical maps differed only at the end of the epoch. During this time window, each task-cue generated distinct topographical activity, which was also different depending on whether it involved a switch in task-set or not. These results suggest that, when the time of target onset approaches, the generators of anticipatory-biasing brain states for different language tasks vary depending on the nature of the task.

  15. Quantum algorithms for topological and geometric analysis of data

    PubMed Central

    Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo

    2016-01-01

    Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491

  16. An Execution Service for Grid Computing

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Hu, Chaumin

    2004-01-01

    This paper describes the design and implementation of the IPG Execution Service that reliably executes complex jobs on a computational grid. Our Execution Service is part of the IPG service architecture whose goal is to support location-independent computing. In such an environment, once n user ports an npplicntion to one or more hardware/software platfrms, the user can describe this environment to the grid the grid can locate instances of this platfrm, configure the platfrm as required for the application, and then execute the application. Our Execution Service runs jobs that set up such environments for applications and executes them. These jobs consist of a set of tasks for executing applications and managing data. The tasks have user-defined starting conditions that allow users to specih complex dependencies including task to execute when tasks fail, afiequent occurrence in a large distributed system, or are cancelled. The execution task provided by our service also configures the application environment exactly as specified by the user and captures the exit code of the application, features that many grid execution services do not support due to dflculties interfacing to local scheduling systems.

  17. Biocybernetic system evaluates indices of operator engagement in automated task

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bogart, E. H.; Bartolome, D. S.

    1995-01-01

    A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.

  18. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE.

    PubMed

    Kadam, Shilpa D; D'Ambrosio, Raimondo; Duveau, Venceslas; Roucard, Corinne; Garcia-Cairasco, Norberto; Ikeda, Akio; de Curtis, Marco; Galanopoulou, Aristea S; Kelly, Kevin M

    2017-11-01

    In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  19. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  20. Classification and data acquisition with incomplete data

    NASA Astrophysics Data System (ADS)

    Williams, David P.

    In remote-sensing applications, incomplete data can result when only a subset of sensors (e.g., radar, infrared, acoustic) are deployed at certain regions. The limitations of single sensor systems have spurred interest in employing multiple sensor modalities simultaneously. For example, in land mine detection tasks, different sensor modalities are better-suited to capture different aspects of the underlying physics of the mines. Synthetic aperture radar sensors may be better at detecting surface mines, while infrared sensors may be better at detecting buried mines. By employing multiple sensor modalities to address the detection task, the strengths of the disparate sensors can be exploited in a synergistic manner to improve performance beyond that which would be achievable with either single sensor alone. When multi-sensor approaches are employed, however, incomplete data can be manifested. If each sensor is located on a separate platform ( e.g., aircraft), each sensor may interrogate---and hence collect data over---only partially overlapping areas of land. As a result, some data points may be characterized by data (i.e., features) from only a subset of the possible sensors employed in the task. Equivalently, this scenario implies that some data points will be missing features. Increasing focus in the future on using---and fusing data from---multiple sensors will make such incomplete-data problems commonplace. In many applications involving incomplete data, it is possible to acquire the missing data at a cost. In multi-sensor remote-sensing applications, data is acquired by deploying sensors to data points. Acquiring data is usually an expensive, time-consuming task, a fact that necessitates an intelligent data acquisition process. Incomplete data is not limited to remote-sensing applications, but rather, can arise in virtually any data set. In this dissertation, we address the general problem of classification when faced with incomplete data. We also address the closely related problem of active data acquisition, which develops a strategy to acquire missing features and labels that will most benefit the classification task. We first address the general problem of classification with incomplete data, maintaining the view that all data (i.e., information) is valuable. We employ a logistic regression framework within which we formulate a supervised classification algorithm for incomplete data. This principled, yet flexible, framework permits several interesting extensions that allow all available data to be utilized. One extension incorporates labeling error, which permits the usage of potentially imperfectly labeled data in learning a classifier. A second major extension converts the proposed algorithm to a semi-supervised approach by utilizing unlabeled data via graph-based regularization. Finally, the classification algorithm is extended to the case in which (image) data---from which features are extracted---are available from multiple resolutions. Taken together, this family of incomplete-data classification algorithms exploits all available data in a principled manner by avoiding explicit imputation. Instead, missing data is integrated out analytically with the aid of an estimated conditional density function (conditioned on the observed features). This feat is accomplished by invoking only mild assumptions. We also address the problem of active data acquisition by determining which missing data should be acquired to most improve performance. Specifically, we examine this data acquisition task when the data to be acquired can be either labels or features. The proposed approach is based on a criterion that accounts for the expected benefit of the acquisition. This approach, which is applicable for any general missing data problem, exploits the incomplete-data classification framework introduced in the first part of this dissertation. This data acquisition approach allows for the acquisition of both labels and features. Moreover, several types of feature acquisition are permitted, including the acquisition of individual or multiple features for individual or multiple data points, which may be either labeled or unlabeled. Furthermore, if different types of data acquisition are feasible for a given application, the algorithm will automatically determine the most beneficial type of data to acquire. Experimental results on both benchmark machine learning data sets and real (i.e., measured) remote-sensing data demonstrate the advantages of the proposed incomplete-data classification and active data acquisition algorithms.

  1. Verbal makes it positive, spatial makes it negative: working memory biases judgments, attention, and moods.

    PubMed

    Storbeck, Justin; Watson, Philip

    2014-12-01

    Prior research has suggested that emotion and working memory domains are integrated, such that positive affect enhances verbal working memory, whereas negative affect enhances spatial working memory (Gray, 2004; Storbeck, 2012). Simon (1967) postulated that one feature of emotion and cognition integration would be reciprocal connectedness (i.e., emotion influences cognition and cognition influences emotion). We explored whether affective judgments and attention to affective qualities are biased by the activation of verbal and spatial working memory mind-sets. For all experiments, participants completed a 2-back verbal or spatial working memory task followed by an endorsement task (Experiments 1 & 2), word-pair selection task (Exp. 3), or attentional dot-probe task (Exp. 4). Participants who had an activated verbal, compared with spatial, working memory mind-set were more likely to endorse pictures (Exp. 1) and words (Exp. 2) as being more positive and to select the more positive word pair out of a set of word pairs that went 'together best' (Exp. 3). Additionally, people who completed the verbal working memory task took longer to disengage from positive stimuli, whereas those who completed the spatial working memory task took longer to disengage from negative stimuli (Exp. 4). Interestingly, across the 4 experiments, we observed higher levels of self-reported negative affect for people who completed the spatial working memory task, which was consistent with their endorsement and attentional bias toward negative stimuli. Therefore, emotion and working memory may have a reciprocal connectedness allowing for bidirectional influence.

  2. The effects of goal setting on rugby performance.

    PubMed

    Mellalieu, Stephen D; Hanton, Sheldon; O'Brien, Michael

    2006-01-01

    Goal-setting effects on selected performance behaviors of 5 collegiate rugby players were assessed over an entire competitive season using self-generated targets and goal-attainment scaling. Results suggest that goal setting was effective for enhancing task-specific on-field behavior in rugby union.

  3. STEM Studio: Where Innovation Generates Innovation

    ERIC Educational Resources Information Center

    Plonczak, Irene; Brooks, Jacqueline Grennon; Wilson, Gloria Lodato; Elijah, Rosebud; Caliendo, Julia

    2014-01-01

    STEM Studio at Hofstra University is a clinical practice site that brings together public school pupils and preservice teachers in settings with three features that lead to enhanced learning of all participants: classroom structures using multidisciplinary STEM tasks as platforms for learning; design challenge templates for diverse student…

  4. Human Factors Research Task 2006-8722;111: AIMSsim Feature Development II

    DTIC Science & Technology

    2008-01-01

    originally scheduled to end in May 2007. The SOW was amended in May to set the target end date to August 31st, 2007, without any change to the budget...work task identified in the SOW is described below. More details can be found in the User and System manuals. 1. Multiple USB joysticks: This consisted...machine for changing the course of the experiment or saving responses/data. 9. SGE cleanup: This was originally included in the SOW to allow for

  5. Goal orientation, perceived task outcome and task demands in mathematics tasks: effects on students' attitude in actual task settings.

    PubMed

    Seegers, Gerard; van Putten, Cornelis M; de Brabander, Cornelis J

    2002-09-01

    In earlier studies, it has been found that students' domain-specific cognitions and personal learning goals (goal orientation) influence task-specific appraisals of actual learning tasks. The relations between domain-specific and task-specific variables have been specified in the model of adaptive learning. In this study, additional influences, i.e., perceived task outcome on a former occasion and variations in task demands, were investigated. The purpose of this study was to identify personality and situational variables that mediate students' attitude when confronted with a mathematics task. Students worked on a mathematics task in two subsequent sessions. Effects of perceived task outcome at the first session on students' attitude at the second session were investigated. In addition, we investigated how differences in task demands influenced students' attitude. Variations in task demands were provoked by different conditions in task-instruction. In one condition, students were told that the result on the test would add to their mark on mathematics. This outcome orienting condition was contrasted with a task-orienting condition where students were told that the results on the test would not be used to give individual grades. Participants were sixth grade students (N = 345; aged 11-12 years) from 14 primary schools. Multivariate and univariate analyses of (co)variance were applied to the data. Independent variables were goal orientation, task demands, and perceived task outcome, with task-specific variables (estimated competence for the task, task attraction, task relevance, and willingness to invest effort) as the dependent variables. The results showed that previous perceived task outcome had a substantial impact on students' attitude. Additional but smaller effects were found for variation in task demands. Furthermore, effects of previous perceived task outcome and task demands were related to goal orientation. The resulting pattern confirmed that, in general, performance-oriented learning goals emphasised the negative impact of failure experiences, whereas task-oriented learning goals had a strengthening effect on how success experiences influenced students' attitude.

  6. NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.

    PubMed

    Tseytlin, Eugene; Mitchell, Kevin; Legowski, Elizabeth; Corrigan, Julia; Chavan, Girish; Jacobson, Rebecca S

    2016-01-14

    Natural language processing (NLP) applications are increasingly important in biomedical data analysis, knowledge engineering, and decision support. Concept recognition is an important component task for NLP pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly used alternatives on both a biological and clinical corpus. NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The system's matching options can be configured individually or in combination to yield specific system behavior for a variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary Lookup Annotator. We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm, configurable matching strategies, and multiple terminology input formats. These features provide unique functionality when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE's performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error analysis revealed differences in error profiles among systems. NOBLE Coder is comparable to other widely used concept recognition systems in terms of accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching system suitable for general concept recognition in biomedical NLP pipelines.

  7. Learning feature representations with a cost-relevant sparse autoencoder.

    PubMed

    Längkvist, Martin; Loutfi, Amy

    2015-02-01

    There is an increasing interest in the machine learning community to automatically learn feature representations directly from the (unlabeled) data instead of using hand-designed features. The autoencoder is one method that can be used for this purpose. However, for data sets with a high degree of noise, a large amount of the representational capacity in the autoencoder is used to minimize the reconstruction error for these noisy inputs. This paper proposes a method that improves the feature learning process by focusing on the task relevant information in the data. This selective attention is achieved by weighting the reconstruction error and reducing the influence of noisy inputs during the learning process. The proposed model is trained on a number of publicly available image data sets and the test error rate is compared to a standard sparse autoencoder and other methods, such as the denoising autoencoder and contractive autoencoder.

  8. FY16 ASME High Temperature Code Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, M. J.; Jetter, R. I.; Sham, T. -L.

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is amore » basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.« less

  9. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  10. Discovering rules for protein-ligand specificity using support vector inductive logic programming.

    PubMed

    Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2009-09-01

    Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.

  11. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  12. Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns

    PubMed Central

    Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C.; Tang, Shou Jiang

    2014-01-01

    Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician’s time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a “texton histogram” of an image block as features. The histogram captures the distribution of different “textons” representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723

  13. Cerebellum engages in automation of verb-generation skill.

    PubMed

    Yang, Zhi; Wu, Paula; Weng, Xuchu; Bandettini, Peter A

    2014-03-01

    Numerous studies have shown cerebellar involvement in item-specific association, a form of explicit learning. However, very few have demonstrated cerebellar participation in automation of non-motor cognitive tasks. Applying fMRI to a repeated verb-generation task, we sought to distinguish cerebellar involvement in learning of item-specific noun-verb association and automation of verb generation skill. The same set of nouns was repeated in six verb-generation blocks so that subjects practiced generating verbs for the nouns. The practice was followed by a novel block with a different set of nouns. The cerebellar vermis (IV/V) and the right cerebellar lobule VI showed decreased activation following practice; activation in the right cerebellar Crus I was significantly lower in the novel challenge than in the initial verb-generation task. Furthermore, activation in this region during well-practiced blocks strongly correlated with improvement of behavioral performance in both the well-practiced and the novel blocks, suggesting its role in the learning of general mental skills not specific to the practiced noun-verb pairs. Therefore, the cerebellum processes both explicit verbal associative learning and automation of cognitive tasks. Different cerebellar regions predominate in this processing: lobule VI during the acquisition of item-specific association, and Crus I during automation of verb-generation skills through practice.

  14. Perceptual learning: toward a comprehensive theory.

    PubMed

    Watanabe, Takeo; Sasaki, Yuka

    2015-01-03

    Visual perceptual learning (VPL) is long-term performance increase resulting from visual perceptual experience. Task-relevant VPL of a feature results from training of a task on the feature relevant to the task. Task-irrelevant VPL arises as a result of exposure to the feature irrelevant to the trained task. At least two serious problems exist. First, there is the controversy over which stage of information processing is changed in association with task-relevant VPL. Second, no model has ever explained both task-relevant and task-irrelevant VPL. Here we propose a dual plasticity model in which feature-based plasticity is a change in a representation of the learned feature, and task-based plasticity is a change in processing of the trained task. Although the two types of plasticity underlie task-relevant VPL, only feature-based plasticity underlies task-irrelevant VPL. This model provides a new comprehensive framework in which apparently contradictory results could be explained.

  15. Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.

    PubMed

    Daberdaku, Sebastian; Ferrari, Carlo

    2018-02-06

    The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class.

  16. Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.

    PubMed

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja

    2016-10-05

    Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.

  17. The counting abilities of children with specific language impairment: a comparison of oral and gestural tasks.

    PubMed

    Fazio, B B

    1994-04-01

    This study examined the counting abilities of preschool children with specific language impairment compared to language-matched and mental-age-matched peers. In order to determine the nature of the difficulties SLI children exhibited in counting, the subjects participated in a series of oral counting tasks and a series of gestural tasks that used an invented counting system based on pointing to body parts. Despite demonstrating knowledge of many of the rules associated with counting, SLI preschool children displayed marked difficulty in counting objects. On oral counting tasks, they showed difficulty with rote counting, displayed a limited repertoire of number terms, and miscounted sets of objects. However, on gestural counting tasks, SLI children's performance was significantly better. These findings suggest that SLI children have a specific difficulty with the rote sequential aspect of learning number words.

  18. Rapid and selective updating of the target template in visual search.

    PubMed

    Sha, Li Z; Remington, Roger W; Jiang, Yuhong V

    2017-01-01

    Frequent target stimuli are detected more rapidly than infrequent ones. Here, we examined whether the frequency effect reflected durable attentional biases toward frequent target features, and whether the effect was confined to featural properties that defined the target. Participants searched for two specific target colors among distractors of heterogeneous colors and reported the line orientation of the target. The target was more often in one specific feature (e.g., a specific color or a specific orientation) than another in a training phase. This frequency difference was removed or reversed in a testing phase. Experiments 1 and 2 showed that when frequency differences were introduced to the target's defining feature, participants more rapidly found the high-frequency target than the low-frequency target. However, changes in attention were not durable-the search advantage vanished immediately when the frequency differences were removed. Experiments 3-5 showed that only featural properties that defined the target facilitated search of the more frequent feature. Features that did not define the target, such as the target feature that participants reported, sped up response but did not facilitate search. These data showed that when searching for multiple targets in a feature search task, people selectively and rapidly adapt to the frequency in the target's defining feature.

  19. Brief Report: Imitation of Object-Directed Acts in Young Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gonsiorowski, Anna; Williamson, Rebecca A.; Robins, Diana L.

    2016-01-01

    Children with autism spectrum disorders (ASD) imitate less than typically developing (TD) children; however, the specific features and causes of this deficit are still unclear. The current study investigates the role of joint engagement, specifically children's visual attention to demonstrations, in an object-directed imitation task. This sample…

  20. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    PubMed

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  1. The Effects of Goal Setting on Rugby Performance

    ERIC Educational Resources Information Center

    Mellalieu, Stephen D.; Hanton, Sheldon; O'Brien, Michael

    2006-01-01

    Goal-setting effects on selected performance behaviors of 5 collegiate rugby players were assessed over an entire competitive season using self-generated targets and goal-attainment scaling. Results suggest that goal setting was effective for enhancing task-specific on-field behavior in rugby union. (Contains 1 figure.)

  2. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features.

    PubMed

    Chudáček, V; Spilka, J; Janků, P; Koucký, M; Lhotská, L; Huptych, M

    2011-08-01

    Cardiotocography is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO), used routinely since the 1960s by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. We assess the features on a large data set (552 records) and unlike in other published papers we use three-class expert evaluation of the records instead of the pH values. We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. The number of accelerations and decelerations, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.

  3. Image annotation based on positive-negative instances learning

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    Automatic image annotation is now a tough task in computer vision, the main sense of this tech is to deal with managing the massive image on the Internet and assisting intelligent retrieval. This paper designs a new image annotation model based on visual bag of words, using the low level features like color and texture information as well as mid-level feature as SIFT, and mixture the pic2pic, label2pic and label2label correlation to measure the correlation degree of labels and images. We aim to prune the specific features for each single label and formalize the annotation task as a learning process base on Positive-Negative Instances Learning. Experiments are performed using the Corel5K Dataset, and provide a quite promising result when comparing with other existing methods.

  4. Classification of melanoma lesions using sparse coded features and random forests

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mojdeh; Lemaître, Guillaume; Morel, Olivier; Massich, Joan; Garcia, Rafael; Meriaudeau, Fabrice; Marzani, Franck; Sidibé, Désiré

    2016-03-01

    Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the performance of each process depends on the previous one, and the errors are accumulated throughout the framework. In this paper, we propose a framework for melanoma classification based on sparse coding which does not rely on any pre-processing or lesion segmentation. Our framework uses Random Forests classifier and sparse representation of three features: SIFT, Hue and Opponent angle histograms, and RGB intensities. The experiments are carried out on the public PH2 dataset using a 10-fold cross-validation. The results show that SIFT sparse-coded feature achieves the highest performance with sensitivity and specificity of 100% and 90.3% respectively, with a dictionary size of 800 atoms and a sparsity level of 2. Furthermore, the descriptor based on RGB intensities achieves similar results with sensitivity and specificity of 100% and 71.3%, respectively for a smaller dictionary size of 100 atoms. In conclusion, dictionary learning techniques encode strong structures of dermoscopic images and provide discriminant descriptors.

  5. Visual short-term memory for oriented, colored objects.

    PubMed

    Shin, Hongsup; Ma, Wei Ji

    2017-08-01

    A central question in the study of visual short-term memory (VSTM) has been whether its basic units are objects or features. Most studies addressing this question have used change detection tasks in which the feature value before the change is highly discriminable from the feature value after the change. This approach assumes that memory noise is negligible, which recent work has shown not to be the case. Here, we investigate VSTM for orientation and color within a noisy-memory framework, using change localization with a variable magnitude of change. A specific consequence of the noise is that it is necessary to model the inference (decision) stage. We find that (a) orientation and color have independent pools of memory resource (consistent with classic results); (b) an irrelevant feature dimension is either encoded but ignored during decision-making, or encoded with low precision and taken into account during decision-making; and (c) total resource available in a given feature dimension is lower in the presence of task-relevant stimuli that are neutral in that feature dimension. We propose a framework in which feature resource comes both in packaged and in targeted form.

  6. Age-related declines of stability in visual perceptual learning.

    PubMed

    Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo

    2014-12-15

    One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eads, Damian Ryan; Rosten, Edward; Helmbold, David

    The authors present BEAMER: a new spatially exploitative approach to learning object detectors which shows excellent results when applied to the task of detecting objects in greyscale aerial imagery in the presence of ambiguous and noisy data. There are four main contributions used to produce these results. First, they introduce a grammar-guided feature extraction system, enabling the exploration of a richer feature space while constraining the features to a useful subset. This is specified with a rule-based generative grammer crafted by a human expert. Second, they learn a classifier on this data using a newly proposed variant of AdaBoost whichmore » takes into account the spatially correlated nature of the data. Third, they perform another round of training to optimize the method of converting the pixel classifications generated by boosting into a high quality set of (x,y) locations. lastly, they carefully define three common problems in object detection and define two evaluation criteria that are tightly matched to these problems. Major strengths of this approach are: (1) a way of randomly searching a broad feature space, (2) its performance when evaluated on well-matched evaluation criteria, and (3) its use of the location prediction domain to learn object detectors as well as to generate detections that perform well on several tasks: object counting, tracking, and target detection. They demonstrate the efficacy of BEAMER with a comprehensive experimental evaluation on a challenging data set.« less

  8. Odor Recognition vs. Classification in Artificial Olfaction

    NASA Astrophysics Data System (ADS)

    Raman, Baranidharan; Hertz, Joshua; Benkstein, Kurt; Semancik, Steve

    2011-09-01

    Most studies in chemical sensing have focused on the problem of precise identification of chemical species that were exposed during the training phase (the recognition problem). However, generalization of training to predict the chemical composition of untrained gases based on their similarity with analytes in the training set (the classification problem) has received very limited attention. These two analytical tasks pose conflicting constraints on the system. While correct recognition requires detection of molecular features that are unique to an analyte, generalization to untrained chemicals requires detection of features that are common across a desired class of analytes. A simple solution that addresses both issues simultaneously can be obtained from biological olfaction, where the odor class and identity information are decoupled and extracted individually over time. Mimicking this approach, we proposed a hierarchical scheme that allowed initial discrimination between broad chemical classes (e.g. contains oxygen) followed by finer refinements using additional data into sub-classes (e.g. ketones vs. alcohols) and, eventually, specific compositions (e.g. ethanol vs. methanol) [1]. We validated this approach using an array of temperature-controlled chemiresistors. We demonstrated that a small set of training analytes is sufficient to allow generalization to novel chemicals and that the scheme provides robust categorization despite aging. Here, we provide further characterization of this approach.

  9. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  10. A Probabilistic Palimpsest Model of Visual Short-term Memory

    PubMed Central

    Matthey, Loic; Bays, Paul M.; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204

  11. A probabilistic palimpsest model of visual short-term memory.

    PubMed

    Matthey, Loic; Bays, Paul M; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.

  12. Using Saliency-Weighted Disparity Statistics for Objective Visual Comfort Assessment of Stereoscopic Images

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing

    2016-06-01

    Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.

  13. Texture and color features for tile classification

    NASA Astrophysics Data System (ADS)

    Baldrich, Ramon; Vanrell, Maria; Villanueva, Juan J.

    1999-09-01

    In this paper we present the results of a preliminary computer vision system to classify the production of a ceramic tile industry. We focus on the classification of a specific type of tiles whose production can be affected by external factors, such as humidity, temperature, origin of clays and pigments. Variations on these uncontrolled factors provoke small differences in the color and the texture of the tiles that force to classify all the production. A constant and non- subjective classification would allow avoiding devolution from customers and unnecessary stock fragmentation. The aim of this work is to simulate the human behavior on this classification task by extracting a set of features from tile images. These features are induced by definitions from experts. To compute them we need to mix color and texture information and to define global and local measures. In this work, we do not seek a general texture-color representation, we only deal with textures formed by non-oriented colored-blobs randomly distributed. New samples are classified using Discriminant Analysis functions derived from known class tile samples. The last part of the paper is devoted to explain the correction of acquired images in order to avoid time and geometry illumination changes.

  14. Aging and feature search: the effect of search area.

    PubMed

    Burton-Danner, K; Owsley, C; Jackson, G R

    2001-01-01

    The preattentive system involves the rapid parallel processing of visual information in the visual scene so that attention can be directed to meaningful objects and locations in the environment. This study used the feature search methodology to examine whether there are aging-related deficits in parallel-processing capabilities when older adults are required to visually search a large area of the visual field. Like young subjects, older subjects displayed flat, near-zero slopes for the Reaction Time x Set Size function when searching over a broad area (30 degrees radius) of the visual field, implying parallel processing of the visual display. These same older subjects exhibited impairment in another task, also dependent on parallel processing, performed over the same broad field area; this task, called the useful field of view test, has more complex task demands. Results imply that aging-related breakdowns of parallel processing over a large visual field area are not likely to emerge when required responses are simple, there is only one task to perform, and there is no limitation on visual inspection time.

  15. Examining Classroom Interactions Related to Difference in Students' Science Achievement.

    ERIC Educational Resources Information Center

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    Examines the cognitive supports that underlie achievement in science using a cultural historical framework and the activity setting (AS) construct with five features: personnel, motivation, scripts, task demands, and beliefs. Reports four emergent phenomena--science activities, the building of learning, meaning in lessons, and the conflict over…

  16. Effects of memory load on hemispheric asymmetries of colour memory.

    PubMed

    Clapp, Wes; Kirk, Ian J; Hausmann, Markus

    2007-03-01

    Hemispheric asymmetries in colour perception have been a matter of debate for some time. Recent evidence suggests that lateralisation of colour processing may be largely task specific. Here we investigated hemispheric asymmetries during different types and phases of a delayed colour-matching (recognition) memory task. A total of 11 male and 12 female right-handed participants performed colour-memory tasks. The task involved presentation of a set of colour stimuli (encoding), and subsequent indication (forced choice) of which colours in a larger set had previously appeared at the retrieval or recognition phase. The effect of memory load (set size), and the effect of lateralisation at the encoding or retrieval phases were investigated. Overall, the results indicate a right hemisphere advantage in colour processing, which was particularly pronounced in high memory load conditions, and was seen in males rather than female participants. The results suggest that verbal (mnemonic) strategies can significantly affect the magnitude of hemispheric asymmetries in a non-verbal task.

  17. Image Recognition and Feature Detection in Solar Physics

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.

    2012-05-01

    The Solar Dynamics Observatory (SDO) data repository will dwarf the archives of all previous solar physics missions put together. NASA recognized early on that the traditional methods of analyzing the data -- solar scientists and grad students in particular analyzing the images by hand -- would simply not work and tasked our Feature Finding Team (FFT) with developing automated feature recognition modules for solar events and phenomena likely to be observed by SDO. Having these metadata available on-line will enable solar scientist to conduct statistical studies involving large sets of events that would be impossible now with traditional means. We have followed a two-track approach in our project: we have been developing some existing task-specific solar feature finding modules to be "pipe-line" ready for the stream of SDO data, plus we are designing a few new modules. Secondly, we took it upon us to develop an entirely new "trainable" module that would be capable of identifying different types of solar phenomena starting from a limited number of user-provided examples. Both approaches are now reaching fruition, and I will show examples and movies with results from several of our feature finding modules. In the second part of my presentation I will focus on our “trainable” module, which is the most innovative in character. First, there is the strong similarity between solar and medical X-ray images with regard to their texture, which has allowed us to apply some advances made in medical image recognition. Second, we have found that there is a strong similarity between the way our trainable module works and the way our brain recognizes images. The brain can quickly recognize similar images from key characteristics, just as our code does. We conclude from that that our approach represents the beginning of a more human-like procedure for computer image recognition.

  18. No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.

    PubMed

    Li, Xuelong; Guo, Qun; Lu, Xiaoqiang

    2016-05-13

    It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.

  19. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  20. Microcomputers: Software Evaluation. Evaluation Guides. Guide Number 17.

    ERIC Educational Resources Information Center

    Gray, Peter J.

    This guide discusses three critical steps in selecting microcomputer software and hardware: setting the context, software evaluation, and managing microcomputer use. Specific topics addressed include: (1) conducting an informal task analysis to determine how the potential user's time is spent; (2) identifying tasks amenable to computerization and…

  1. Chinese Students' Perceptions of a Collaborative E-Learning Environment and Factors Affecting Their Performance: Implementing a Flemish E-Learning Course in a Chinese Educational Context

    ERIC Educational Resources Information Center

    Zhu, Chang; Valcke, Martin; Schellens, Tammy; Li, Yifei

    2009-01-01

    This study was set up in a Chinese university in Beijing by implementing a Flemish e-learning course in a Chinese setting. A main feature of the e-learning environment is the asynchronous "task-based" online group discussion. The purpose of the study is to understand Chinese students' perceptions of a collaborative e-learning environment…

  2. Does semantic preactivation reduce inattentional blindness?

    PubMed

    Kreitz, Carina; Schnuerch, Robert; Furley, Philip A; Gibbons, Henning; Memmert, Daniel

    2015-04-01

    We are susceptible to failures of awareness if a stimulus occurs unexpectedly and our attention is focused elsewhere. Such inattentional blindness is modulated by various parameters, including stimulus attributes, the observer's cognitive resources, and the observer's attentional set regarding the primary task. In three behavioral experiments with a total of 360 participants, we investigated whether mere semantic preactivation of the color of an unexpected object can reduce inattentional blindness. Neither explicitly mentioning the color several times before the occurrence of the unexpected stimulus nor priming the color more implicitly via color-related concepts could significantly reduce the susceptibility to inattentional blindness. Even putting the specific color concept in the main focus of the primary task did not lead to reduced inattentional blindness. Thus, we have shown that the failure to consciously perceive unexpected objects was not moderated by semantic preactivation of the objects' most prominent feature: its color. We suggest that this finding reflects the rather general principle that preactivations that are not motivationally relevant for one's current selection goals do not suffice to make an unexpected object overcome the threshold of awareness.

  3. A distributed computing environment with support for constraint-based task scheduling and scientific experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.

    1997-04-01

    This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less

  4. Adaptable, high recall, event extraction system with minimal configuration

    PubMed Central

    2015-01-01

    Background Biomedical event extraction has been a major focus of biomedical natural language processing (BioNLP) research since the first BioNLP shared task was held in 2009. Accordingly, a large number of event extraction systems have been developed. Most such systems, however, have been developed for specific tasks and/or incorporated task specific settings, making their application to new corpora and tasks problematic without modification of the systems themselves. There is thus a need for event extraction systems that can achieve high levels of accuracy when applied to corpora in new domains, without the need for exhaustive tuning or modification, whilst retaining competitive levels of performance. Results We have enhanced our state-of-the-art event extraction system, EventMine, to alleviate the need for task-specific tuning. Task-specific details are specified in a configuration file, while extensive task-specific parameter tuning is avoided through the integration of a weighting method, a covariate shift method, and their combination. The task-specific configuration and weighting method have been employed within the context of two different sub-tasks of BioNLP shared task 2013, i.e. Cancer Genetics (CG) and Pathway Curation (PC), removing the need to modify the system specifically for each task. With minimal task specific configuration and tuning, EventMine achieved the 1st place in the PC task, and 2nd in the CG, achieving the highest recall for both tasks. The system has been further enhanced following the shared task by incorporating the covariate shift method and entity generalisations based on the task definitions, leading to further performance improvements. Conclusions We have shown that it is possible to apply a state-of-the-art event extraction system to new tasks with high levels of performance, without having to modify the system internally. Both covariate shift and weighting methods are useful in facilitating the production of high recall systems. These methods and their combination can adapt a model to the target data with no deep tuning and little manual configuration. PMID:26201408

  5. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  6. Make Your Workflows Smarter

    NASA Technical Reports Server (NTRS)

    Jones, Corey; Kapatos, Dennis; Skradski, Cory

    2012-01-01

    Do you have workflows with many manual tasks that slow down your business? Or, do you scale back workflows because there are simply too many manual tasks? Basic workflow robots can automate some common tasks, but not everything. This presentation will show how advanced robots called "expression robots" can be set up to perform everything from simple tasks such as: moving, creating folders, renaming, changing or creating an attribute, and revising, to more complex tasks like: creating a pdf, or even launching a session of Creo Parametric and performing a specific modeling task. Expression robots are able to utilize the Java API and Info*Engine to do almost anything you can imagine! Best of all, these tools are supported by PTC and will work with later releases of Windchill. Limited knowledge of Java, Info*Engine, and XML are required. The attendee will learn what task expression robots are capable of performing. The attendee will learn what is involved in setting up an expression robot. The attendee will gain a basic understanding of simple Info*Engine tasks

  7. An integrated reweighting theory of perceptual learning

    PubMed Central

    Dosher, Barbara Anne; Jeter, Pamela; Liu, Jiajuan; Lu, Zhong-Lin

    2013-01-01

    Improvements in performance on visual tasks due to practice are often specific to a retinal position or stimulus feature. Many researchers suggest that specific perceptual learning alters selective retinotopic representations in early visual analysis. However, transfer is almost always practically advantageous, and it does occur. If perceptual learning alters location-specific representations, how does it transfer to new locations? An integrated reweighting theory explains transfer over retinal locations by incorporating higher level location-independent representations into a multilevel learning system. Location transfer is mediated through location-independent representations, whereas stimulus feature transfer is determined by stimulus similarity at both location-specific and location-independent levels. Transfer to new locations/positions differs fundamentally from transfer to new stimuli. After substantial initial training on an orientation discrimination task, switches to a new location or position are compared with switches to new orientations in the same position, or switches of both. Position switches led to the highest degree of transfer, whereas orientation switches led to the highest levels of specificity. A computational model of integrated reweighting is developed and tested that incorporates the details of the stimuli and the experiment. Transfer to an identical orientation task in a new position is mediated via more broadly tuned location-invariant representations, whereas changing orientation in the same position invokes interference or independent learning of the new orientations at both levels, reflecting stimulus dissimilarity. Consistent with single-cell recording studies, perceptual learning alters the weighting of both early and midlevel representations of the visual system. PMID:23898204

  8. Label-aligned Multi-task Feature Learning for Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan

    2015-01-01

    Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145

  9. Shift Work and Cognitive Flexibility: Decomposing Task Performance.

    PubMed

    Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L

    2017-04-01

    Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine phenotypic differences in shift work and the associated consequences. Results also suggest that fatigue risk management strategies may benefit from increased scope and specificity in assessment of sleep, sleepiness, and circadian rhythms in shift workers.

  10. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  11. Hypothesis testing for differentially correlated features.

    PubMed

    Sheng, Elisa; Witten, Daniela; Zhou, Xiao-Hua

    2016-10-01

    In a multivariate setting, we consider the task of identifying features whose correlations with the other features differ across conditions. Such correlation shifts may occur independently of mean shifts, or differences in the means of the individual features across conditions. Previous approaches for detecting correlation shifts consider features simultaneously, by computing a correlation-based test statistic for each feature. However, since correlations involve two features, such approaches do not lend themselves to identifying which feature is the culprit. In this article, we instead consider a serial testing approach, by comparing columns of the sample correlation matrix across two conditions, and removing one feature at a time. Our method provides a novel perspective and favorable empirical results compared with competing approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Electrophysiological evidence for parallel and serial processing during visual search.

    PubMed

    Luck, S J; Hillyard, S A

    1990-12-01

    Event-related potentials were recorded from young adults during a visual search task in order to evaluate parallel and serial models of visual processing in the context of Treisman's feature integration theory. Parallel and serial search strategies were produced by the use of feature-present and feature-absent targets, respectively. In the feature-absent condition, the slopes of the functions relating reaction time and latency of the P3 component to set size were essentially identical, indicating that the longer reaction times observed for larger set sizes can be accounted for solely by changes in stimulus identification and classification time, rather than changes in post-perceptual processing stages. In addition, the amplitude of the P3 wave on target-present trials in this condition increased with set size and was greater when the preceding trial contained a target, whereas P3 activity was minimal on target-absent trials. These effects are consistent with the serial self-terminating search model and appear to contradict parallel processing accounts of attention-demanding visual search performance, at least for a subset of search paradigms. Differences in ERP scalp distributions further suggested that different physiological processes are utilized for the detection of feature presence and absence.

  13. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems.

    PubMed

    Thomas, Minta; De Brabanter, Kris; De Moor, Bart

    2014-05-10

    DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

  14. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians.

    PubMed

    Walter, Uwe; Buttkus, Franziska; Benecke, Reiner; Grossmann, Annette; Dressler, Dirk; Altenmüller, Eckart

    2012-01-01

    In distinct movement disorders, transcranial sonography detects alterations of deep brain structures with higher sensitivity than other neuroimaging methods. Lenticular nucleus hyperechogenicity on transcranial sonography, thought to be caused by increased local copper content, has been reported as a characteristic finding in primary spontaneous dystonia. Here, we wanted to find out whether deep brain structures are altered in task-specific dystonia. The frequency of sonographic brainstem and basal ganglia changes was studied in an investigator-blinded setting in 15 musicians with focal task-specific hand dystonia, 15 musicians without dystonia, and 15 age- and sex-matched nonmusicians without dystonia. Lenticular nucleus hyperechogenicity was found in 12 musicians with task-specific dystonia, but only in 3 nondystonic musicians (Fisher's exact test, p = 0.001) and 2 nonmusicians (p < 0.001). The degree of lenticular nucleus hyperechogenicity in affected musicians correlated with age, but not with duration of music practice or duration of dystonia. In 2 of 3 affected musicians with normal echogenic lenticular nucleus, substantia nigra hyperechogenicity was found. Our findings support the idea of a pathogenetic link between primary spontaneous and task-specific dystonia. Sonographic basal ganglia alteration might indicate a risk factor that in combination with extensive fine motor training promotes the manifestation of task-specific dystonia. Copyright © 2011 S. Karger AG, Basel.

  15. Visual feature-tolerance in the reading network.

    PubMed

    Rauschecker, Andreas M; Bowen, Reno F; Perry, Lee M; Kevan, Alison M; Dougherty, Robert F; Wandell, Brian A

    2011-09-08

    A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Context-specific adjustment of cognitive control: Transfer of adaptive control sets.

    PubMed

    Surrey, Caroline; Dreisbach, Gesine; Fischer, Rico

    2017-11-01

    Cognitive control protects processing of relevant information from interference by irrelevant information. The level of this processing selectivity can be flexibly adjusted to different control demands (e.g., frequency of conflict) associated with a certain context, leading to the formation of specific context-control associations. In the present study we investigated the robustness and transferability of the acquired context-control demands to new situations. In three experiments, we used a version of the context-specific proportion congruence (CSPC) paradigm, in which each context (e.g., location) is associated with a specific conflict frequency, determining high and low control demands. In a learning phase, associations between context and control demands were established. In a subsequent transfer block, stimulus-response mappings, whole task sets, or context-control demands changed. Results showed an impressive robustness of context-control associations, as context-specific adjustments of control from the learning phase were virtually unaffected by new stimuli and tasks in the transfer block. Only a change of the context-control demand eliminated the context-specific adjustment of control. These findings suggest that context-control associations that have proven to be adaptive in the past are continuously applied despite major changes in the task structure as long as the context-control associations remain the same.

  17. Geospatial analysis based on GIS integrated with LADAR.

    PubMed

    Fetterman, Matt R; Freking, Robert; Fernandez-Cull, Christy; Hinkle, Christopher W; Myne, Anu; Relyea, Steven; Winslow, Jim

    2013-10-07

    In this work, we describe multi-layered analyses of a high-resolution broad-area LADAR data set in support of expeditionary activities. High-level features are extracted from the LADAR data, such as the presence and location of buildings and cars, and then these features are used to populate a GIS (geographic information system) tool. We also apply line-of-sight (LOS) analysis to develop a path-planning module. Finally, visualization is addressed and enhanced with a gesture-based control system that allows the user to navigate through the enhanced data set in a virtual immersive experience. This work has operational applications including military, security, disaster relief, and task-based robotic path planning.

  18. Impaired preparatory re-mapping of stimulus-response associations and rule-implementation in schizophrenic patients--the role for differences in early processing.

    PubMed

    Finke, Mareike; Barceló, Francisco; Garolera, Maite; Cortiñas, Miriam; Garrido, Gemma; Pajares, Marta; Escera, Carles

    2011-07-01

    An accurate representation of task-set information is needed for successful goal directed behavior. Recent studies point to disturbances in the early processing stages as plausible causes for task-switching deficits in schizophrenia. A task-cueing protocol was administered to a group of schizophrenic patients and compared with a sample of age-matched healthy controls. Patients responded slower and less accurate compared with controls in all conditions. The concurrent recording of event-related brain potentials to contextual cues and target events revealed abnormalities in the early processing of both cue-locked and target-locked N1 potentials. Abnormally enhanced target-locked P2 amplitudes were observed in schizophrenic patients for task-switch trials only, suggesting disrupted stimulus evaluation and memory retrieval processes. The endogenous P3 potentials discriminated between task conditions but without further differences between groups. These results suggest that the observed impairments in task-switching behavior were not specifically related to anticipatory set-shifting, but derived from a deficit in the implementation of task-set representations at target onset in the presence of irrelevant and conflicting information. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions.

    PubMed

    Moran, Rani; Zehetleitner, Michael; Liesefeld, Heinrich René; Müller, Hermann J; Usher, Marius

    2016-10-01

    Visual search is central to the investigation of selective visual attention. Classical theories propose that items are identified by serially deploying focal attention to their locations. While this accounts for set-size effects over a continuum of task difficulties, it has been suggested that parallel models can account for such effects equally well. We compared the serial Competitive Guided Search model with a parallel model in their ability to account for RT distributions and error rates from a large visual search data-set featuring three classical search tasks: 1) a spatial configuration search (2 vs. 5); 2) a feature-conjunction search; and 3) a unique feature search (Wolfe, Palmer & Horowitz Vision Research, 50(14), 1304-1311, 2010). In the parallel model, each item is represented by a diffusion to two boundaries (target-present/absent); the search corresponds to a parallel race between these diffusors. The parallel model was highly flexible in that it allowed both for a parametric range of capacity-limitation and for set-size adjustments of identification boundaries. Furthermore, a quit unit allowed for a continuum of search-quitting policies when the target is not found, with "single-item inspection" and exhaustive searches comprising its extremes. The serial model was found to be superior to the parallel model, even before penalizing the parallel model for its increased complexity. We discuss the implications of the results and the need for future studies to resolve the debate.

  20. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  1. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  2. Feature construction can improve diagnostic criteria for high-dimensional metabolic data in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Ho, Sirikit; Lukacs, Zoltan; Hoffmann, Georg F; Lindner, Martin; Wetter, Thomas

    2007-07-01

    In newborn screening with tandem mass spectrometry, multiple intermediary metabolites are quantified in a single analytical run for the diagnosis of fatty-acid oxidation disorders, organic acidurias, and aminoacidurias. Published diagnostic criteria for these disorders normally incorporate a primary metabolic marker combined with secondary markers, often analyte ratios, for which the markers have been chosen to reflect metabolic pathway deviations. We applied a procedure to extract new markers and diagnostic criteria for newborn screening to the data of newborns with confirmed medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and a control group from the newborn screening program, Heidelberg, Germany. We validated the results with external data of the screening center in Hamburg, Germany. We extracted new markers by performing a systematic search for analyte combinations (features) with high discriminatory performance for MCADD. To select feature thresholds, we applied automated procedures to separate controls and cases on the basis of the feature values. Finally, we built classifiers from these new markers to serve as diagnostic criteria in screening for MCADD. On the basis of chi(2) scores, we identified approximately 800 of >628,000 new analyte combinations with superior discriminatory performance compared with the best published combinations. Classifiers built with the new features achieved diagnostic sensitivities and specificities approaching 100%. Feature construction methods provide ways to disclose information hidden in the set of measured analytes. Other diagnostic tasks based on high-dimensional metabolic data might also profit from this approach.

  3. GazeAppraise v. 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Andrew; Haass, Michael; Rintoul, Mark Daniel

    GazeAppraise advances the state of the art of gaze pattern analysis using methods that simultaneously analyze spatial and temporal characteristics of gaze patterns. GazeAppraise enables novel research in visual perception and cognition; for example, using shape features as distinguishing elements to assess individual differences in visual search strategy. Given a set of point-to-point gaze sequences, hereafter referred to as scanpaths, the method constructs multiple descriptive features for each scanpath. Once the scanpath features have been calculated, they are used to form a multidimensional vector representing each scanpath and cluster analysis is performed on the set of vectors from all scanpaths.more » An additional benefit of this method is the identification of causal or correlated characteristics of the stimuli, subjects, and visual task through statistical analysis of descriptive metadata distributions within and across clusters.« less

  4. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    PubMed

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-02-28

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects.

  5. Machine learning for epigenetics and future medical applications.

    PubMed

    Holder, Lawrence B; Haque, M Muksitul; Skinner, Michael K

    2017-07-03

    Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to develop a more efficient feature selection process and address the imbalance problem in all genomic data sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and associated disease is suggested. The current approach requires extensive computation of features over the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and simultaneous computation of novel genomic features tuned to the classification task. This approach can be used with any genomic or biological data set applied to medicine. The application of molecular epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

  6. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  7. Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism

    PubMed Central

    Marković, Dimitrije; Gläscher, Jan; Bossaerts, Peter; O’Doherty, John; Kiebel, Stefan J.

    2015-01-01

    For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features. At each moment in time a particular feature was relevant for obtaining reward, and participants had to infer which feature was relevant and report their beliefs accordingly. To test the hypothesis that attentional focus modulates the belief update process, we derived and fitted several probabilistic and non-probabilistic behavioral models, which either incorporate a dynamical model of attentional focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model, without attention-like features. We used Bayesian model selection to identify the most likely generative model of subjects’ behavior and found that attention-like features in the behavioral model are essential for explaining subjects’ responses. Furthermore, we demonstrate a method for integrating both connectionist and Bayesian models of decision making within a single framework that allowed us to infer hidden belief processes of human subjects. PMID:26495984

  8. Prompting Secondary Students' Use of Criteria, Feedback Specificity and Feedback Levels during an Investigative Task

    ERIC Educational Resources Information Center

    Gan, Mark J. S.; Hattie, John

    2014-01-01

    This study investigates the effects of prompting on secondary students' written peer feedback in chemistry investigation reports. In particular, we examined students' feedback features in relation to the use of criteria, feedback specificity, and feedback levels. A quasi-experimental pre-test post-test design was adopted. Reviewers in…

  9. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    PubMed Central

    Kourkoumelis, Nikolaos; Balatsoukas, Ioannis; Moulia, Violetta; Elka, Aspasia; Gaitanis, Georgios; Bassukas, Ioannis D.

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i) assembling the technical specifications of portable systems and (ii) analyzing the spectral characteristics of in vivo measurements. PMID:26132563

  10. They call it like they see it: spontaneous naming and attention to shape.

    PubMed

    Samuelson, Larissa K; Smith, Linda B

    2005-03-01

    Two experiments explore children's spontaneous labeling of novel objects as a method to study early lexical access. The experiments also provide new evidence on children's attention to object shape when labeling objects. In Experiment 1, the spontaneous productions of 21 23- to 28-month-olds (mean 26;28) shown a set of novel, unnamed objects were analyzed both in terms of the specific words said and, via adult judgments, their likely perceptual basis. We found that children's spontaneous names were cued by the perceptual feature of shape. Experiment 2 examines the relation between spontaneous productions, name generalizations in a structured task, and vocabulary development in a group of children between 17 and 24 months of age (mean 21;6). Results indicate that object shape plays an important role in both spontaneous productions and novel noun generalization, but contrary to current hypotheses, children may name objects by shape from the earliest points of productive vocabulary development and this tendency may not be lexically specific.

  11. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images.

    PubMed

    Hu, Qin; Victor, Jonathan D

    2016-09-01

    Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features, but they are challenging to study - largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the projection of the function onto a 1-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank.

  12. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke.

    PubMed

    Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen

    2018-01-10

    Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (p<0.01, d=0.55; p<0.01, d=0.88). QUEST effectiveness and safety scores showed feasibility and satisfaction in the clinical setting. Our newly developed compact brain-machine interface system is feasible for use in real-world clinical settings.

  13. Predicting Improvement in Writer's Cramp Symptoms following Botulinum Neurotoxin Injection Therapy.

    PubMed

    Jackman, Mallory; Delrobaei, Mehdi; Rahimi, Fariborz; Atashzar, S Farokh; Shahbazi, Mahya; Patel, Rajni; Jog, Mandar

    2016-01-01

    Writer's cramp is a specific focal hand dystonia causing abnormal posturing and tremor in the upper limb. The most popular medical intervention, botulinum neurotoxin type A (BoNT-A) therapy, is variably effective for 50-70% of patients. BoNT-A non-responders undergo ineffective treatment and may experience significant side effects. Various assessments have been used to determine response prediction to BoNT-A, but not in the same population of patients. A comprehensive assessment was employed to measure various symptom aspects. Clinical scales, full upper-limb kinematic measures, self-report, and task performance measures were assessed for nine writer's cramp patients at baseline. Patients received two BoNT-A injections then were classified as responders or non-responders based on a quantified self-report measure. Baseline scores were compared between groups, across all measures, to determine which scores predicted a positive BoNT-A response. Five of nine patients were responders. No kinematic measures were predictably different between groups. Analyses revealed three features that predicted a favorable response and separated the two groups: higher than average cramp severity and cramp frequency, and below average cramp latency. Non-kinematic measures appear to be superior in making such predictions. Specifically, measures of cramp severity, frequency, and latency during performance of a specific set of writing and drawing tasks were predictive factors. Since kinematic was not used to determine the injection pattern and the injections were visually guided, it may still be possible to use individual patient kinematics for better outcomes.

  14. A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Gallego-Jutglà, Esteve; Solé-Casals, Jordi; Vialatte, François-Benoît; Elgendi, Mohamed; Cichocki, Andrzej; Dauwels, Justin

    2015-02-01

    Objective. Recently, significant advances have been made in the early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG). However, choosing suitable measures is a challenging task. Among other measures, frequency relative power (RP) and loss of complexity have been used with promising results. In the present study we investigate the early diagnosis of AD using synchrony measures and frequency RP on EEG signals, examining the changes found in different frequency ranges. Approach. We first explore the use of a single feature for computing the classification rate (CR), looking for the best frequency range. Then, we present a multiple feature classification system that outperforms all previous results using a feature selection strategy. These two approaches are tested in two different databases, one containing mild cognitive impairment (MCI) and healthy subjects (patients age: 71.9 ± 10.2, healthy subjects age: 71.7 ± 8.3), and the other containing Mild AD and healthy subjects (patients age: 77.6 ± 10.0 healthy subjects age: 69.4 ± 11.5). Main results. Using a single feature to compute CRs we achieve a performance of 78.33% for the MCI data set and of 97.56% for Mild AD. Results are clearly improved using the multiple feature classification, where a CR of 95% is found for the MCI data set using 11 features, and 100% for the Mild AD data set using four features. Significance. The new features selection method described in this work may be a reliable tool that could help to design a realistic system that does not require prior knowledge of a patient's status. With that aim, we explore the standardization of features for MCI and Mild AD data sets with promising results.

  15. Cooperative network clustering and task allocation for heterogeneous small satellite network

    NASA Astrophysics Data System (ADS)

    Qin, Jing

    The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).

  16. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    PubMed

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  17. Feature instructions improve face-matching accuracy

    PubMed Central

    Bindemann, Markus

    2018-01-01

    Identity comparisons of photographs of unfamiliar faces are prone to error but important for applied settings, such as person identification at passport control. Finding techniques to improve face-matching accuracy is therefore an important contemporary research topic. This study investigated whether matching accuracy can be improved by instruction to attend to specific facial features. Experiment 1 showed that instruction to attend to the eyebrows enhanced matching accuracy for optimized same-day same-race face pairs but not for other-race faces. By contrast, accuracy was unaffected by instruction to attend to the eyes, and declined with instruction to attend to ears. Experiment 2 replicated the eyebrow-instruction improvement with a different set of same-race faces, comprising both optimized same-day and more challenging different-day face pairs. These findings suggest that instruction to attend to specific features can enhance face-matching accuracy, but feature selection is crucial and generalization across face sets may be limited. PMID:29543822

  18. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.

    PubMed

    Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S

    2008-02-06

    Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.

  19. Attention to Distinct Goal-relevant Features Differentially Guides Semantic Knowledge Retrieval.

    PubMed

    Hanson, Gavin K; Chrysikou, Evangelia G

    2017-07-01

    A critical aspect of conceptual knowledge is the selective activation of goal-relevant aspects of meaning. Although the contributions of ventrolateral prefrontal and posterior temporal areas to semantic cognition are well established, the precise role of posterior parietal cortex in semantic control remains unknown. Here, we examined whether this region modulates attention to goal-relevant features within semantic memory according to the same principles that determine the salience of task-relevant object properties during visual attention. Using multivoxel pattern analysis, we decoded attentional referents during a semantic judgment task, in which participants matched an object cue to a target according to concrete (i.e., color, shape) or abstract (i.e., function, thematic context) semantic features. The goal-relevant semantic feature participants attended to (e.g., color or shape, function or theme) could be decoded from task-associated cortical activity with above-chance accuracy, a pattern that held for both concrete and abstract semantic features. A Bayesian confusion matrix analysis further identified differential contributions to representing attentional demands toward specific object properties across lateral prefrontal, posterior temporal, and inferior parietal regions, with the dorsolateral pFC supporting distinctions between higher-order properties and the left intraparietal sulcus being the only region supporting distinctions across all semantic features. These results are the first to demonstrate that patterns of neural activity in the parietal cortex are sensitive to which features of a concept are attended to, thus supporting the contributions of posterior parietal cortex to semantic control.

  20. Developing a benchmark for emotional analysis of music

    PubMed Central

    Yang, Yi-Hsuan; Soleymani, Mohammad

    2017-01-01

    Music emotion recognition (MER) field rapidly expanded in the last decade. Many new methods and new audio features are developed to improve the performance of MER algorithms. However, it is very difficult to compare the performance of the new methods because of the data representation diversity and scarcity of publicly available data. In this paper, we address these problems by creating a data set and a benchmark for MER. The data set that we release, a MediaEval Database for Emotional Analysis in Music (DEAM), is the largest available data set of dynamic annotations (valence and arousal annotations for 1,802 songs and song excerpts licensed under Creative Commons with 2Hz time resolution). Using DEAM, we organized the ‘Emotion in Music’ task at MediaEval Multimedia Evaluation Campaign from 2013 to 2015. The benchmark attracted, in total, 21 active teams to participate in the challenge. We analyze the results of the benchmark: the winning algorithms and feature-sets. We also describe the design of the benchmark, the evaluation procedures and the data cleaning and transformations that we suggest. The results from the benchmark suggest that the recurrent neural network based approaches combined with large feature-sets work best for dynamic MER. PMID:28282400

  1. Developing a benchmark for emotional analysis of music.

    PubMed

    Aljanaki, Anna; Yang, Yi-Hsuan; Soleymani, Mohammad

    2017-01-01

    Music emotion recognition (MER) field rapidly expanded in the last decade. Many new methods and new audio features are developed to improve the performance of MER algorithms. However, it is very difficult to compare the performance of the new methods because of the data representation diversity and scarcity of publicly available data. In this paper, we address these problems by creating a data set and a benchmark for MER. The data set that we release, a MediaEval Database for Emotional Analysis in Music (DEAM), is the largest available data set of dynamic annotations (valence and arousal annotations for 1,802 songs and song excerpts licensed under Creative Commons with 2Hz time resolution). Using DEAM, we organized the 'Emotion in Music' task at MediaEval Multimedia Evaluation Campaign from 2013 to 2015. The benchmark attracted, in total, 21 active teams to participate in the challenge. We analyze the results of the benchmark: the winning algorithms and feature-sets. We also describe the design of the benchmark, the evaluation procedures and the data cleaning and transformations that we suggest. The results from the benchmark suggest that the recurrent neural network based approaches combined with large feature-sets work best for dynamic MER.

  2. A category-specific top-down attentional set can affect the neural responses outside the current focus of attention.

    PubMed

    Jiang, Yunpeng; Wu, Xia; Gao, Xiaorong

    2017-10-17

    A top-down set can guide attention to enhance the processing of task-relevant objects. Many studies have found that the top-down set can be tuned to a category level. However, it is unclear whether the category-specific top-down set involving a central search task can exist outside the current area of attentional focus. To directly probe the neural responses inside and outside the current focus of attention, we recorded continuous EEG to measure the contralateral ERP components for central targets and the steady-state visual evoked potential (SSVEP) oscillations associated with a flickering checkerboard placed on the visual periphery. The relationship of color categories between targets and non-targets was manipulated to investigate the effect of category-specific top-down set. Results showed that when the color categories of targets and non-targets in the central search arrays were the same, larger SSVEP oscillations were evoked by target color peripheral checkerboards relative to the non-target color ones outside the current attentional focus. However, when the color categories of targets and non-targets were different, the peripheral checkerboards in two different colors of the same category evoked similar SSVEP oscillations, indicating the effects of category-specific top-down set. These results firstly demonstrate that the category-specific top-down set can affect the neural responses of peripheral distractors. The results could support the idea of a global selection account and challenge the attentional window account in selective attention. Copyright © 2017. Published by Elsevier B.V.

  3. Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response.

    PubMed

    Heath, Matthew; Gillen, Caitlin; Samani, Ashna

    2016-03-01

    Antisaccades are a nonstandard task requiring a response mirror-symmetrical to the location of a target. The completion of an antisaccade has been shown to delay the reaction time (RT) of a subsequent prosaccade, whereas the converse switch elicits a null RT cost (i.e., the unidirectional prosaccade switch-cost). The present study sought to determine whether the prosaccade switch-cost arises from low-level interference specific to the sensory features of a target (i.e., modality-dependent) or manifests via the high-level demands of dissociating the spatial relations between stimulus and response (i.e., modality-independent). Participants alternated between pro- and antisaccades wherein the target associated with the response alternated between visual and auditory modalities. Thus, the present design involved task-switch (i.e., switching from a pro- to antisaccade and vice versa) and modality-switch (i.e., switching from a visual to auditory target and vice versa) trials as well as their task- and modality-repetition counterparts. RTs were longer for modality-switch than modality-repetition trials. Notably, however, modality-switch trials did not nullify or lessen the unidirectional prosaccade switch-cost; that is, the magnitude of the RT cost for task-switch prosaccades was equivalent across modality-switch and modality-repetition trials. Thus, competitive interference within a sensory modality does not contribute to the unidirectional prosaccade switch-cost. Instead, the modality-independent findings evince that dissociating the spatial relations between stimulus and response instantiates a high-level and inertially persistent nonstandard task-set that impedes the planning of a subsequent prosaccade.

  4. Evaluation of Alternative Field Buses for Lighting ControlApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Ed; Rubinstein, Francis

    2005-03-21

    The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include atmore » least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.« less

  5. Task switching in video game players: Benefits of selective attention but not resistance to proactive interference.

    PubMed

    Karle, James W; Watter, Scott; Shedden, Judith M

    2010-05-01

    Research into the perceptual and cognitive effects of playing video games is an area of increasing interest for many investigators. Over the past decade, expert video game players (VGPs) have been shown to display superior performance compared to non-video game players (nVGPs) on a range of visuospatial and attentional tasks. A benefit of video game expertise has recently been shown for task switching, suggesting that VGPs also have superior cognitive control abilities compared to nVGPs. In two experiments, we examined which aspects of task switching performance this VGP benefit may be localized to. With minimal trial-to-trial interference from minimally overlapping task set rules, VGPs demonstrated a task switching benefit compared to nVGPs. However, this benefit disappeared when proactive interference between tasks was increased, with substantial stimulus and response overlap in task set rules. We suggest that VGPs have no generalized benefit in task switching-related cognitive control processes compared to nVGPs, with switch cost reductions due instead to a specific benefit in controlling selective attention. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.

    PubMed

    Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel

    2011-05-09

    Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.

  7. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

    PubMed Central

    2011-01-01

    Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689

  8. Gene/protein name recognition based on support vector machine using dictionary as features.

    PubMed

    Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi

    2005-01-01

    Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.

  9. Hand specific representations in language comprehension.

    PubMed

    Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P

    2014-01-01

    Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  10. Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications.

    PubMed

    Heimler, Benedetta; Striem-Amit, Ella; Amedi, Amir

    2015-12-01

    Evidence of task-specific sensory-independent (TSSI) plasticity from blind and deaf populations has led to a better understanding of brain organization. However, the principles determining the origins of this plasticity remain unclear. We review recent data suggesting that a combination of the connectivity bias and sensitivity to task-distinctive features might account for TSSI plasticity in the sensory cortices as a whole, from the higher-order occipital/temporal cortices to the primary sensory cortices. We discuss current theories and evidence, open questions and related predictions. Finally, given the rapid progress in visual and auditory restoration techniques, we address the crucial need to develop effective rehabilitation approaches for sensory recovery. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Distinct Transfer Effects of Training Different Facets of Working Memory Capacity

    ERIC Educational Resources Information Center

    von Bastian, Claudia C.; Oberauer, Klaus

    2013-01-01

    The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…

  12. "So What if My Students Misbehave?" Addressing Misbehavior in a Task-Involving Motivational Climate

    ERIC Educational Resources Information Center

    Model, Eric D.; Todorovich, John R.; Largo-Wight, Erin

    2005-01-01

    This article describes factors that teachers can use to create a task-involving motivational climate, discusses behavioral practices for increasing student compliance, and provides specific recommendations for addressing behavior concerns in the physical education setting. A good teaching philosophy built upon established principles is the best…

  13. Software Tools for Formal Specification and Verification of Distributed Real-Time Systems.

    DTIC Science & Technology

    1997-09-30

    set of software tools for specification and verification of distributed real time systems using formal methods. The task of this SBIR Phase II effort...to be used by designers of real - time systems for early detection of errors. The mathematical complexity of formal specification and verification has

  14. A Data Preparation Methodology in Data Mining Applied to Mortality Population Databases.

    PubMed

    Pérez, Joaquín; Iturbide, Emmanuel; Olivares, Víctor; Hidalgo, Miguel; Martínez, Alicia; Almanza, Nelva

    2015-11-01

    It is known that the data preparation phase is the most time consuming in the data mining process, using up to 50% or up to 70% of the total project time. Currently, data mining methodologies are of general purpose and one of their limitations is that they do not provide a guide about what particular task to develop in a specific domain. This paper shows a new data preparation methodology oriented to the epidemiological domain in which we have identified two sets of tasks: General Data Preparation and Specific Data Preparation. For both sets, the Cross-Industry Standard Process for Data Mining (CRISP-DM) is adopted as a guideline. The main contribution of our methodology is fourteen specialized tasks concerning such domain. To validate the proposed methodology, we developed a data mining system and the entire process was applied to real mortality databases. The results were encouraging because it was observed that the use of the methodology reduced some of the time consuming tasks and the data mining system showed findings of unknown and potentially useful patterns for the public health services in Mexico.

  15. Learning the facts in medical school is not enough: which factors predict successful application of procedural knowledge in a laboratory setting?

    PubMed

    Schmidmaier, Ralf; Eiber, Stephan; Ebersbach, Rene; Schiller, Miriam; Hege, Inga; Holzer, Matthias; Fischer, Martin R

    2013-02-22

    Medical knowledge encompasses both conceptual (facts or "what" information) and procedural knowledge ("how" and "why" information). Conceptual knowledge is known to be an essential prerequisite for clinical problem solving. Primarily, medical students learn from textbooks and often struggle with the process of applying their conceptual knowledge to clinical problems. Recent studies address the question of how to foster the acquisition of procedural knowledge and its application in medical education. However, little is known about the factors which predict performance in procedural knowledge tasks. Which additional factors of the learner predict performance in procedural knowledge? Domain specific conceptual knowledge (facts) in clinical nephrology was provided to 80 medical students (3rd to 5th year) using electronic flashcards in a laboratory setting. Learner characteristics were obtained by questionnaires. Procedural knowledge in clinical nephrology was assessed by key feature problems (KFP) and problem solving tasks (PST) reflecting strategic and conditional knowledge, respectively. Results in procedural knowledge tests (KFP and PST) correlated significantly with each other. In univariate analysis, performance in procedural knowledge (sum of KFP+PST) was significantly correlated with the results in (1) the conceptual knowledge test (CKT), (2) the intended future career as hospital based doctor, (3) the duration of clinical clerkships, and (4) the results in the written German National Medical Examination Part I on preclinical subjects (NME-I). After multiple regression analysis only clinical clerkship experience and NME-I performance remained independent influencing factors. Performance in procedural knowledge tests seems independent from the degree of domain specific conceptual knowledge above a certain level. Procedural knowledge may be fostered by clinical experience. More attention should be paid to the interplay of individual clinical clerkship experiences and structured teaching of procedural knowledge and its assessment in medical education curricula.

  16. Top-down dimensional weight set determines the capture of visual attention: evidence from the PCN component.

    PubMed

    Töllner, Thomas; Müller, Hermann J; Zehetleitner, Michael

    2012-07-01

    Visual search for feature singletons is slowed when a task-irrelevant, but more salient distracter singleton is concurrently presented. While there is a consensus that this distracter interference effect can be influenced by internal system settings, it remains controversial at what stage of processing this influence starts to affect visual coding. Advocates of the "stimulus-driven" view maintain that the initial sweep of visual processing is entirely driven by physical stimulus attributes and that top-down settings can bias visual processing only after selection of the most salient item. By contrast, opponents argue that top-down expectancies can alter the initial selection priority, so that focal attention is "not automatically" shifted to the location exhibiting the highest feature contrast. To precisely trace the allocation of focal attention, we analyzed the Posterior-Contralateral-Negativity (PCN) in a task in which the likelihood (expectancy) with which a distracter occurred was systematically varied. Our results show that both high (vs. low) distracter expectancy and experiencing a distracter on the previous trial speed up the timing of the target-elicited PCN. Importantly, there was no distracter-elicited PCN, indicating that participants did not shift attention to the distracter before selecting the target. This pattern unambiguously demonstrates that preattentive vision is top-down modifiable.

  17. A Computer-Assisted Personalized Approach in an Undergraduate Plant Physiology Class1

    PubMed Central

    Artus, Nancy N.; Nadler, Kenneth D.

    1999-01-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed. PMID:10198076

  18. Collaborative classification of hyperspectral and visible images with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2017-10-01

    Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.

  19. Statistical benchmark for BosonSampling

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Kuipers, Jack; Urbina, Juan-Diego; Mayer, Klaus; Tichy, Malte Christopher; Richter, Klaus; Buchleitner, Andreas

    2016-03-01

    Boson samplers—set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes—promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church-Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects.

  20. Irrelevant Features of a Stimulus Can Either Facilitate or Disrupt Performance in a Working Memory Task: The Role of Fluid Intelligence

    PubMed Central

    Perfetti, Bernardo; Tesse, Marcello; Varanese, Sara; Saggino, Aristide; Onofrj, Marco

    2011-01-01

    It has been shown that fluid intelligence (gf) is fundamental to overcome interference due to information of a previously encoded item along a task-relevant domain. However, the biasing effect of task-irrelevant dimensions is still unclear as well as its relation with gf. The present study aimed at clarifying these issues. Gf was assessed in 60 healthy subjects. In a different session, the same subjects performed two versions (letter-detection and spatial) of a three-back working memory task with a set of physically identical stimuli (letters) presented at different locations on the screen. In the letter-detection task, volunteers were asked to match stimuli on the basis of their identity whereas, in the spatial task, they were required to match items on their locations. Cross-domain bias was manipulated by pseudorandomly inserting a match between the current and the three back items on the irrelevant domain. Our findings showed that a task-irrelevant feature of a salient stimulus can actually bias the ongoing performance. We revealed that, at trials in which the current and the three-back items matched on the irrelevant domain, group accuracy was lower (interference). On the other hand, at trials in which the two items matched on both the relevant and irrelevant domains, the group showed an enhancement of the performance (facilitation). Furthermore, we demonstrated that individual differences in fluid intelligence covaries with the ability to override cross-domain interference in that higher gf subjects showed better performance at interference trials than low gf subjects. Altogether, our findings suggest that stimulus features irrelevant to the task can affect cognitive performance along the relevant domain and that gf plays an important role in protecting relevant memory contents from the hampering effect of such a bias. PMID:22022580

Top