Science.gov

Sample records for features demonstrating defects

  1. Defects' geometric feature recognition based on infrared image edge detection

    NASA Astrophysics Data System (ADS)

    Junyan, Liu; Qingju, Tang; Yang, Wang; Yumei, Lu; Zhiping, Zhang

    2014-11-01

    Edge detection is an important technology in image segmentation, feature extraction and other digital image processing areas. Boundary contains a wealth of information in the image, so to extract defects' edges in infrared images effectively enables the identification of defects' geometric features. This paper analyzed the detection effect of classic edge detection operators, and proposed fuzzy C-means (FCM) clustering-Canny operator algorithm to achieve defects' edges in the infrared images. Results show that the proposed algorithm has better effect than the classic edge detection operators, which can identify the defects' geometric feature much more completely and clearly. The defects' diameters have been calculated based on the image edge detection results.

  2. Feature matching method in shaped light mode VFD defect detection

    NASA Astrophysics Data System (ADS)

    Jin, Xuanhong; Dai, Shuguang; Mu, Pingan

    2010-08-01

    In recent years, Vacuum Fluorescent Display (VFD) module in the car audio panel has been widely used. However, due to process reasons, VFD display production process will produce defects, not only affect the appearance, but also affect the display correctly. So building a car VFD display panel defect detection system is of great significance. Machine vision technology is introduced into the automotive VFD display defect detection in order to achieve fast and accurate detection of defects. Shaped light mode is a typical flaw detection mode which is based on characteristics of vehicle VFD panel. According to the image features, learning of the gray matching and feature matching method, we integrated use of feature matching method and the gray level matching method to achieve defect detection.

  3. Frequency feature based quantification of defect depth and thickness

    NASA Astrophysics Data System (ADS)

    Tian, Shulin; Chen, Kai; Bai, Libing; Cheng, Yuhua; Tian, Lulu; Zhang, Hong

    2014-06-01

    This study develops a frequency feature based pulsed eddy current method. A frequency feature, termed frequency to zero, is proposed for subsurface defects and metal loss quantification in metallic specimens. A curve fitting method is also employed to generate extra frequency components and improve the accuracy of the proposed method. Experimental validation is carried out. Conclusions and further work are derived on the basis of the studies.

  4. Frequency feature based quantification of defect depth and thickness.

    PubMed

    Tian, Shulin; Chen, Kai; Bai, Libing; Cheng, Yuhua; Tian, Lulu; Zhang, Hong

    2014-06-01

    This study develops a frequency feature based pulsed eddy current method. A frequency feature, termed frequency to zero, is proposed for subsurface defects and metal loss quantification in metallic specimens. A curve fitting method is also employed to generate extra frequency components and improve the accuracy of the proposed method. Experimental validation is carried out. Conclusions and further work are derived on the basis of the studies.

  5. Inferior sinus venosus defects: anatomic features and echocardiographic correlates.

    PubMed

    Plymale, Jennifer; Kolinski, Kellen; Frommelt, Peter; Bartz, Peter; Tweddell, James; Earing, Michael G

    2013-02-01

    Inferior sinus venosus defects (SVDs) are rare imperfections located in the inferior portion of the atrial septum, leading to an overriding inferior vena cava (IVC) and an interatrial connection. These defects have increased risk of anomalous pulmonary venous return (PAPVR) and often are confused with secundum atrial septal defects (ASDs) with inferior extension. The authors sought to review their experience with inferior SVDs and to establish at their institution an echocardiographic definition that differentiates inferior SVDs from secundum ASDs with inferior extension. The study identified 161 patients 1.5 to 32 years of age who had undergone repair of a secundum ASD with inferior extension or inferior SVD over the preceding 10 years. All surgical notes, preoperative transthoracic echocardiograms (TTEs), and preoperative transesophageal echocardiograms (TEEs) were reviewed. Based on the surgical notes, 147 patients were classified as having a secundum ASD (147/161, 91 %) and 14 patients (9 %) as having an inferior SVD. The study identified PAPVR in 7 % (1/14) of the patients with inferior SVDs and 3.5 % (5/14) of the patients with secundum ASDs. Surgical diagnosis and preoperative TTE correlated for 143 (89 %) of the 161 patients. Using a strict anatomic and echocardiographic definition with a blinded observer, the majority of the defects (14/18, 78 %) were reclassified correctly after review of their TTE images, and 100 % of the defects were correctly reclassified after TEE image review. Accurate diagnosis of inferior SVDs remains challenging. The data from this study demonstrate that use of a strict anatomic and echocardiographic definition (a defect that originates in the mouth of the IVC and continues into the inferoposterior border of the left atrium, leaving no residual atrial septal tissue at the inferior margin) allows for accurate differentiation between secundum ASDs with inferior extension and inferior SVDs. This differentiation is extremely important

  6. Successful demonstration of a comprehensive lithography defect monitoring strategy

    NASA Astrophysics Data System (ADS)

    Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael

    2003-07-01

    This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the

  7. Software for Demonstration of Features of Chain Polymerization Processes

    ERIC Educational Resources Information Center

    Sosnowski, Stanislaw

    2013-01-01

    Free software for the demonstration of the features of homo- and copolymerization processes (free radical, controlled radical, and living) is described. The software is based on the Monte Carlo algorithms and offers insight into the kinetics, molecular weight distribution, and microstructure of the macromolecules formed in those processes. It also…

  8. Classification, clinical features, and genetics of neural tube defects

    PubMed Central

    Salih, Mustafa A.; Murshid, Waleed R.; Seidahmed, Mohammed Z.

    2014-01-01

    Neural tube defects (NTDs) constitute a major health burden (0.5-2/1000 pregnancies worldwide), and remain a preventable cause of still birth, neonatal, and infant death, or significant lifelong handicaps. The malformations result from failure of the neural folds to fuse in the midline, and form the neural tube between the third and the fourth week of embryonic development. This review article discusses their classification, clinical features, and genetics. Most NTDs are sporadic and both genetic, and non-genetic environmental factors are involved in its etiology. Consanguinity was suggested to contribute to the high incidence of NTDs in several countries, including Saudi Arabia. Syndromes, often associated with chromosomal anomalies, account for <10% of all NTDs; but a higher proportion (20%) has been documented in Saudi Arabia. Genetic predisposition constitutes the major underlying risk factor, with a strong implication of genes that regulate folate one-carbon metabolism and planar cell polarity. PMID:25551113

  9. Comparison of ultrasonic image features with echodynamic curves for defect classification and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wedge, Sam; Rogerson, Allan; Drinkwater, Bruce

    2015-03-01

    Ultrasonic array imaging and multi-probe pulse echo inspection are two common ultrasonic techniques used for defect detection, classification and characterization in non-destructive evaluation. Compared to multi-probe pulse echo inspection, ultrasonic array imaging offers some advantages such as higher resolution images and the requirement to obtain fewer measurements. However, it is also limited by a lack of industry-approved inspection procedures and standards. In this paper, several artificial planar and volumetric weld defects of different orientations and locations embedded in 60 mm thick welded ferritic test specimens were measured using both ultrasonic arrays and multiple single crystal probes. The resultant TFM images and echodynamic curves for each defect were compared and the results demonstrate the correlations between TFM image features and echodynamic curve characteristics. Combining the analysis of multi-probe pulse echo inspection data and ultrasonic array images offers better classification and characterization of defects. These findings benefit the further development of industrial ultrasonic array inspection procedures and encourage the uptake of TFM technology within industry.

  10. Defective autophagy is a key feature of cerebral cavernous malformations

    PubMed Central

    Marchi, Saverio; Corricelli, Mariangela; Trapani, Eliana; Bravi, Luca; Pittaro, Alessandra; Delle Monache, Simona; Ferroni, Letizia; Patergnani, Simone; Missiroli, Sonia; Goitre, Luca; Trabalzini, Lorenza; Rimessi, Alessandro; Giorgi, Carlotta; Zavan, Barbara; Cassoni, Paola; Dejana, Elisabetta; Retta, Saverio Francesco; Pinton, Paolo

    2015-01-01

    Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3–0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions. PMID:26417067

  11. Application of multi-scale feature extraction to surface defect classification of hot-rolled steels

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Ai, Yong-hao; Wu, Xiu-yong

    2013-01-01

    Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subbands at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.

  12. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  13. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGES

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  14. Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface

    PubMed Central

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The Eads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599

  15. Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.

    PubMed

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.

  16. Evidence for two distinct defect related luminescence features in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Saigal, Nihit; Ghosh, Sandip

    2016-09-01

    Apart from the defect related emission peak which lies ˜100 meV below the A exciton/trion peak and is labeled D1 here, this study shows that there is another distinct feature D2 lying ˜200 meV below A in the photoluminescence spectrum of the exfoliated monolayer MoS2 on SiO2/Si substrates. The D2 feature is explicitly resolved at low temperature only in few samples. Both D1 and D2 do not show circular polarization anisotropy for 633 nm excitation. Both decay with the increase in temperature in a seemingly activated manner with similar activation energy of ˜50 meV, but D1 decays earlier and therefore D2 dominates at high temperature in all samples. Annealing in vacuum increases both D1 and D2 emission intensities while annealing under sulfur vapour decreases them. Comparison with reported theoretical studies on defects in monolayer MoS2 suggests that these two emissions possibly involve excitons bound to single and double sulphur vacancies, the latter binding excitons more strongly.

  17. Cholelithiasis demonstrated on hepatobiliary scintigraphy as a photopenic defect within the inferior portion of the liver

    SciTech Connect

    Moreno, A.J.; Yedinak, M.A.; Turnbull, G.L.; Spicer, M.J.; Brown, T.J.

    1984-11-01

    A 47-year-old man presented with the clinical findings of acute cholecystitis. During hepatobiliary scintigraphy using Tc-99m DISIDA, a persistent photopenic defect was noted within the inferior portion of the liver in the region of the gallbladder. Abdominal ultrasonography revealed large gallstones with acoustic shadowing within a normal-sized gallbladder. Eleven large gallstones were found within a normal-sized intrahepatic gallbladder at surgery.

  18. Infrared and Raman spectroscopic features of the self-interstitial defect in diamond from exact-exchange hybrid DFT calculations.

    PubMed

    Salustro, Simone; Erba, Alessandro; Zicovich-Wilson, Claudio M; Nöel, Yves; Maschio, Lorenzo; Dovesi, Roberto

    2016-08-01

    Quantum-mechanical calculations are performed to investigate the structural, electronic, and infrared (IR) and Raman spectroscopic features of one of the most common radiation-induced defects in diamond: the "dumb-bell" 〈100〉 split self-interstitial. A periodic super-cell approach is used in combination with all-electron basis sets and hybrid functionals of density-functional-theory (DFT), which include a fraction of exact non-local exchange and are known to provide a correct description of the electronic spin localization at the defect, at variance with simpler formulations of the DFT. The effects of both defect concentration and spin state are explicitly addressed. Geometrical constraints are found to prevent the formation of a double bond between the two three-fold coordinated carbon atoms. In contrast, two unpaired electrons are fully localized on each of the carbon atoms involved in the defect. The open-shell singlet state is slightly more stable than the triplet (the energy difference being just 30 meV, as the unpaired electrons occupy orthogonal orbitals) while the closed-shell solution is less stable by about 1.55 eV. The formation energy of the defect from pristine diamond is about 12 eV. The Raman spectrum presents only two peaks of low intensity at wave-numbers higher than the pristine diamond peak (characterized by normal modes extremely localized on the defect), whose positions strongly depend on defect concentration as they blue shift up to 1550 and 1927 cm(-1) at infinite defect dilution. The first of these peaks, also IR active, is characterized by a very high IR intensity, and might then be related to the strong experimental feature of the IR spectrum occurring at 1570 cm(-1). A second very intense IR peak appears at about 500 cm(-1), which, despite being originated from a "wagging" motion of the self-interstitial defect, exhibits a more collective, less localized character.

  19. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  20. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, electro-scan (FELL-41), and a multi-sens...

  1. Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing.

    PubMed

    Tsalamanis, Ioannis; Rochat, Etienne; Walker, Stuart; Parker, Michael; Holburn, D

    2004-03-01

    We present the first experimental demonstration of a bidirectional cascaded arrayed-waveguide grating (AWG) access network combining one NxN AWG in the central office with multiple 1xN AWG's at the distribution points, such as to individually address N(2) users with only N wavelengths. Downstream and upstream data share the same optical path. BER curves were measured using 2.5Gb/s data stream in each direction, and error free transmission achieved for downstream and upstream, with only 0.3dB power penalty for simultaneous transmission. The addition of two orthogonal polarization-multiplexed channels per wavelength doubled the number of possible end users. Error free transmission was achieved with simultaneous upstream and downstream transmission of a composite signal featuring eight 2.5Gb/s channels (2 polarizations x 4 wavelengths). PMID:19474883

  2. NPAS3 Demonstrates Features of a Tumor Suppressive Role in Driving the Progression of Astrocytomas

    PubMed Central

    Moreira, Frederico; Kiehl, Tim-Rasmus; So, Kelvin; Ajeawung, Norbert F.; Honculada, Carmelita; Gould, Peter; Pieper, Russell O.; Kamnasaran, Deepak

    2011-01-01

    Malignant astrocytomas, the most common primary brain tumors, are predominantly fatal. Improved treatments will require a better understanding of the biological features of high-grade astrocytomas. To better understand the role of neuronal PAS 3 (NPAS3) in diseases in human beings, it was investigated as a candidate for astrocytomagenesis based on the presence of aberrant protein expression in greater than 70% of a human astrocytoma panel (n = 433) and most notably in surgically resected malignant lesions. In subsequent functional studies, it was concluded that NPAS3 exhibits features of a tumor-suppressor, which drives the progression of astrocytomas by modulating the cell cycle, proliferation, apoptosis, and cell migration/invasion and has a further influence on the viability of endothelial cells. Of clinical importance, absence of NPAS3 expression in glioblastomas was a significantly negative prognostic marker of survival. In addition, malignant astrocytomas lacking NPAS3 expression demonstrated loss of function mutations, which were associated with loss of heterozygosity. While overexpressed NPAS3 in malignant glioma cell lines significantly suppressed transformation, the converse decreased expression considerably induced more aggressive growth. In addition, knockdown NPAS3 expression in a human astrocyte cell line in concert with the human papillomavirus E6 and E7 oncogenes induced growth of malignant astrocytomas. In conclusion, NPAS3 drives the progression of human malignant astrocytomas as a tumor suppressor and is a negative prognostication marker for survival. PMID:21703424

  3. Infrared and Raman spectroscopic features of the self-interstitial defect in diamond from exact-exchange hybrid DFT calculations.

    PubMed

    Salustro, Simone; Erba, Alessandro; Zicovich-Wilson, Claudio M; Nöel, Yves; Maschio, Lorenzo; Dovesi, Roberto

    2016-08-01

    Quantum-mechanical calculations are performed to investigate the structural, electronic, and infrared (IR) and Raman spectroscopic features of one of the most common radiation-induced defects in diamond: the "dumb-bell" 〈100〉 split self-interstitial. A periodic super-cell approach is used in combination with all-electron basis sets and hybrid functionals of density-functional-theory (DFT), which include a fraction of exact non-local exchange and are known to provide a correct description of the electronic spin localization at the defect, at variance with simpler formulations of the DFT. The effects of both defect concentration and spin state are explicitly addressed. Geometrical constraints are found to prevent the formation of a double bond between the two three-fold coordinated carbon atoms. In contrast, two unpaired electrons are fully localized on each of the carbon atoms involved in the defect. The open-shell singlet state is slightly more stable than the triplet (the energy difference being just 30 meV, as the unpaired electrons occupy orthogonal orbitals) while the closed-shell solution is less stable by about 1.55 eV. The formation energy of the defect from pristine diamond is about 12 eV. The Raman spectrum presents only two peaks of low intensity at wave-numbers higher than the pristine diamond peak (characterized by normal modes extremely localized on the defect), whose positions strongly depend on defect concentration as they blue shift up to 1550 and 1927 cm(-1) at infinite defect dilution. The first of these peaks, also IR active, is characterized by a very high IR intensity, and might then be related to the strong experimental feature of the IR spectrum occurring at 1570 cm(-1). A second very intense IR peak appears at about 500 cm(-1), which, despite being originated from a "wagging" motion of the self-interstitial defect, exhibits a more collective, less localized character. PMID:27326546

  4. Histopathological features of bone regeneration in a canine segmental ulnar defect model

    PubMed Central

    2014-01-01

    Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone

  5. Do Linguistic Features of Science Test Items Prevent English Language Learners from Demonstrating Their Knowledge?

    ERIC Educational Resources Information Center

    Noble, Tracy; Kachchaf, Rachel; Rosebery, Ann; Warren, Beth; O'Connor, Mary Catherine; Wang, Yang

    2014-01-01

    Little research has examined individual linguistic features that influence English language learners (ELLs) test performance. Furthermore, research has yet to explore the relationship between the science strand of test items and the types of linguistic features the items include. Utilizing Differential Item Functioning, this study examines ELL…

  6. A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma

    SciTech Connect

    Kong Xiangkun; Liu Shaobin; Li Chunzao; Zhang Haifeng

    2010-10-15

    A novel tunable filter featuring the defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma is presented. The photonic crystals are composed by SiO{sub 2} and air with one defect layer made by magnetized plasma. By the transfer matrix method and Bloch's theorem, we find out that the frequency of the defect mode can be modulated by plasma density or external magnetic field. Without changing the structure of the photonic crystal, the defect mode can be modulated in a larger frequency range, especially when the left-hand polarized electromagnetic wave is utilized.

  7. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging

    PubMed Central

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.

    2016-01-01

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size. PMID:27185385

  8. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging.

    PubMed

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E

    2016-01-01

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and "cutting" into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size. PMID:27185385

  9. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging

    NASA Astrophysics Data System (ADS)

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.

    2016-05-01

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size.

  10. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field.

    PubMed

    El Malti, Rajae; Liu, Hui; Doray, Bérénice; Thauvin, Christel; Maltret, Alice; Dauphin, Claire; Gonçalves-Rocha, Miguel; Teboul, Michel; Blanchet, Patricia; Roume, Joëlle; Gronier, Céline; Ducreux, Corinne; Veyrier, Magali; Marçon, François; Acar, Philippe; Lusson, Jean-René; Levy, Marilyne; Beyler, Constance; Vigneron, Jacqueline; Cordier-Alex, Marie-Pierre; Heitz, François; Sanlaville, Damien; Bonnet, Damien; Bouvagnet, Patrice

    2016-02-01

    The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvular arterial stenosis. Twenty-two variants were found, but segregation analysis confirmed unambiguously the causality of 16 variants: GATA4 (1 ×), NKX2-5 (6 ×), ZIC3 (3 ×), MLPA (2 ×) and ELN (4 ×). Therefore, this approach was able to identify the causal variant in 10.4% of familial CHD cases. This study demonstrated the existence of a de novo variant even in familial CHD cases and the impact of CHD variants on adult cardiac condition even in the absence of CHD. This study showed that the systematic screening of genetic factors is useful in familial CHD cases with up to 10.4% elucidated cases. When successful, it drastically improved genetic counseling by discovering unaffected variant carriers who are at risk of transmitting their variant and are also exposed to develop cardiac complications during adulthood thus prompting long-term cardiac follow-up. This study provides an important baseline at dawning of the next-generation sequencing era.

  11. Specific features of formation of radiation defects in the silicon layer in 'silicon-on-insulator' structures

    SciTech Connect

    Shcherbachev, K. D. Bublik, V. T.; Mordkovich, V. N.; Pazhin, D. M.

    2011-06-15

    Specific features of formation of radiation defects in thin silicon layer of silicon-on-insulator (SOI) structures have been studied. It is shown that there are differences between variations in the structural and electrical properties of the thin silicon layer and those in bulk silicon crystals (with similar electrical characteristics) subjected to the same radiation effect. It is established that the embedded insulator in the SOI structure represents a barrier for motion of radiation-induced intrinsic interstitial silicon atoms, which brings about an increase in the dose of bombarding ions, which leads to the loss of single-crystallinity of the silicon layer in a SOI structure. It is shown that {gamma}-ray irradiation with doses unaffecting the electrical conductivity of bulk silicon crystals appreciably affects the conductivity of the silicon layer in the SOI structures. In addition, variation in the conductivity of silicon layer is related to variation in the density of surface states at the interface between the silicon layer and the built-in insulator, rather than to generation of conventional radiation-induced structural defects in silicon.

  12. Tears of the fascia cruris demonstrate characteristic sonographic features: a case series analysis

    PubMed Central

    Morton, Sarah; Chan, Otto; Webborn, Nick; Pritchard, Melanie; Morrissey, Dylan

    2015-01-01

    Summary Background fascia cruris (FC) tears have recently been recognised in the literature, although little is known about their characteristic ultrasound findings. The aim was to describe the echo-graphic features of FC tears in order to improve recognition and diagnosis. Methods the ultrasound reports and images of >600 patients attending a specialist musculoskeletal clinic for Achilles tendon ultrasound scans between October 2010–May 2014 were reviewed. Any patient diagnosed with a FC tear had a structured data set extracted. All ultrasound images were performed by one consultant radiologist. Bilateral Achilles images were available for analysis. Results sixteen patients from >600 subjects were diagnosed with a FC tear. Fourteen subjects were male and two female (mean age 37.8; range 23–61), with seven elite level sports men. Nine tears were right sided and seven left, with eight situated laterally and seven medially. Seven of the tears were situated in the musculotendinous junction. Symptomatic Achilles tendinopathy co-existed in ten of sixteen subjects (average transverse diameter of Achilles tendon = 7.1±2.0 mm). Conclusion FC tears should be considered in the differential diagnoses for Achillodynia, diagnosed using their characteristic ultrasound findings, with a hypoechoic area at the medial or lateral attachment to the Achilles tendon in the transverse plane. PMID:26958540

  13. Assessment of student pharmacists' knowledge concerning folic acid and prevention of birth defects demonstrates a need for further education.

    PubMed

    Lynch, Sean M

    2002-03-01

    Adequate periconceptional consumption of folic acid can prevent neural tube birth defects, and all women capable of becoming pregnant are recommended to consume 400 microg/d. Most women, however, are unaware of this recommendation and do not consume adequate amounts of folic acid. It is important, therefore, that healthcare professionals, such as pharmacists, be capable of educating women regarding folic acid. The aim of this study was to assess knowledge regarding prevention of birth defects by folic acid among student (future) pharmacists in the final year of a professional degree program. Over a 3-y period (1998-2000), students (n = 98) enrolled in a PharmD program completed a survey consisting of five multiple-choice questions concerning folic acid and birth defects. Almost all students (93.9%) correctly identified folic acid as preventing birth defects. Of these students, many also knew that supplementation should begin before pregnancy (73.9%). Fewer, however, were able to correctly identify either the recommended level of intake (55.4%) or good sources of folic acid (57.6-65.2%). These results show that although student (future) pharmacists are aware of folic acid's ability to prevent birth defects, many lack the specific knowledge needed to effectively counsel women in future clinical practice.

  14. Feasibility Demonstration of a Massively Parallelizable Near-Field Sensor for Sub-Wavelength Defect Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Mostafavi, Mahkamehossadat

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, consisting of a remotely interrogating array of dipoles, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. In the present work a remotely interrogating slot antenna inside a 60nm silver slab is designed which increases the signal to noise ratio of the original system. The antenna is tuned to resonance at 600nm range by taking advantage of the plasmon resonance properties of the metal's negative permittivity and judicious shaping of the slot element. Full-physics simulations show the capability of detecting an 8nm particle using red light illumination. The sensitivity to the lambda/78 particle is attained by detecting the change induced on the antenna's far field signature by the proximate particle, a change that is 15dB greater than the scattering signature of the particle by itself. To verify the capabilities of this technology in a readily accessible experimental environment, a radiofrequency scale model is designed using a meta-material to mimic the optical properties of silver in the 2GHz to 5GHz range. Various approaches to the replication of the metal's behavior are explored in a trade-off between fidelity to the metal's natural plasmon response, desired bandwidth of the demonstration, and ii manufacturability of the meta-material. The simulation and experimental results successfully verify the capability of the proposed near-field sensor in sub-wavelength detection and imaging not only as a proof of concept for optical frequencies but also as a

  15. Demonstration of two distinct cytopathic effects with syncytium formation-defective human immunodeficiency virus type 1 mutants.

    PubMed

    Dedera, D; Ratner, L

    1991-11-01

    The mechanism of human immunodeficiency virus type 1 (HIV-1) cytopathicity is poorly understood and might involve formation of multinucleated giant cells (syncytia), single-cell lysis, or both. In order to determine the contributions of the fusion domain to syncytium formation, single-cell lysis, and viral infectivity and to clarify the molecular details of these events, insertion mutations were made in the portion of env encoding this sequence in the functional HIV-1 proviral clone HXB2. Viruses produced from these mutant clones were found to have a partial (F3) or complete (F6) loss of syncytium-forming ability in acutely infected CEM, Sup T1, and MT4 T-cell lines. During the early stage of acute infection by F6 virus, there was a loss of the syncytial cytopathic effect, which resulted in increased cell viability, and a 1.9- to 2.6-fold increase in virus yield in the cell lines tested. In the late stage of acute infection, the single-cell cytopathic effect of F6 virus was similar to that of the parental HXB2 virus. The F3 and F6 viruses were also found to have a 1.7- to 43-fold reduction in infectivity compared with the HXB2 virus. The mutant F3 and F6 and parental HXB2 envelope proteins were expressed in vaccinia virus, and the mutant envelope proteins were observed to be defective in their ability to form syncytia. BSC-40 cells infected with vaccinia virus recombinants revealed no differences in kinetics of cleavage, cell surface expression, or CD4 binding capacity of the mutant and parental envelope proteins. These results demonstrate that a loss of syncytium formation results in an attenuation of infectivity and a loss of the syncytial cytopathic effect without a loss of single-cell lysis. These mutants may reflect in tissue culture the changes observed in the HIV isolates in vivo during disease progression, which exhibit marked differences in syncytium production.

  16. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour.

    PubMed

    Kazantseva, Jekaterina; Ivanov, Roman; Gasik, Michael; Neuman, Toomas; Hussainova, Irina

    2016-01-01

    Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~10(7)), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer's disease) as well as cancer therapy development. PMID:27443974

  17. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour

    PubMed Central

    Kazantseva, Jekaterina; Ivanov, Roman; Gasik, Michael; Neuman, Toomas; Hussainova, Irina

    2016-01-01

    Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~107), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer’s disease) as well as cancer therapy development. PMID:27443974

  18. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour

    NASA Astrophysics Data System (ADS)

    Kazantseva, Jekaterina; Ivanov, Roman; Gasik, Michael; Neuman, Toomas; Hussainova, Irina

    2016-07-01

    Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~107), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer’s disease) as well as cancer therapy development.

  19. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469

  20. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features

    PubMed Central

    McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469

  1. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  2. Fanca-/- hematopoietic stem cells demonstrate a mobilization defect which can be overcome by administration of the Rac inhibitor NSC23766.

    PubMed

    Milsom, Michael D; Lee, Andrew W; Zheng, Yi; Cancelas, Jose A

    2009-07-01

    Fanconi anemia is a severe bone marrow failure syndrome resulting from inactivating mutations of Fanconi anemia pathway genes. Gene and cell therapy trials using hematopoietic stem cells and progenitors have been hampered by poor mobilization of HSC to peripheral blood in response to G-CSF. Using a murine model of Fanconi anemia (Fanca(-/-) mice), we found that the Fanca deficiency was associated with a profound defect in hematopoietic stem cells and progenitors mobilization in response to G-CSF in absence of bone marrow failure, which correlates with the findings of clinical trials in Fanconi anemia patients. This mobilization defect was overcome by co-administration of the Rac inhibitor NSC23766, suggesting that Rac signaling is implicated in the retention of Fanca(-/-) hematopoietic stem cells and progenitors in the bone marrow. In view of these data, we propose that targeting Rac signaling may enhance G-CSF-induced HSC mobilization in Fanconi anemia.

  3. Demonstration of pattern transfer into sub-100 nm polysilicon line/space features patterned with extreme ultraviolet lithography

    SciTech Connect

    Cardinale, G. F.; Henderson, C. C.; Goldsmith, J. E. M.; Mangat, P. J. S.; Cobb, J.; Hector, S. D.

    1999-11-01

    In two separate experiments, we have successfully demonstrated the transfer of dense- and loose-pitch line/space (L/S) photoresist features, patterned with extreme ultraviolet (EUV) lithography, into an underlying hard mask material. In both experiments, a deep-UV photoresist ({approx}90 nm thick) was spin cast in bilayer format onto a hard mask (50-90 nm thick) and was subsequently exposed to EUV radiation using a 10x reduction EUV exposure system. The EUV reticle was fabricated at Motorola (Tempe, AZ) using a subtractive process with Ta-based absorbers on Mo/Si multilayer mask blanks. In the first set of experiments, following the EUV exposures, the L/S patterns were transferred first into a SiO{sub 2} hard mask (60 nm thick) using a reactive ion etch (RIE), and then into polysilicon (350 nm thick) using a triode-coupled plasma RIE etcher at the University of California, Berkeley, microfabrication facilities. The latter etch process, which produced steep (>85 degree sign ) sidewalls, employed a HBr/Cl chemistry with a large (>10:1) etch selectivity of polysilicon to silicon dioxide. In the second set of experiments, hard mask films of SiON (50 nm thick) and SiO{sub 2} (87 nm thick) were used. A RIE was performed at Motorola using a halogen gas chemistry that resulted in a hard mask-to-photoresist etch selectivity >3:1 and sidewall profile angles {>=}85 degree sign . Line edge roughness (LER) and linewidth critical dimension (CD) measurements were performed using Sandia's GORA(c) CD digital image analysis software. Low LER values (6-9 nm, 3{sigma}, one side) and good CD linearity (better than 10%) were demonstrated for the final pattern-transferred dense polysilicon L/S features from 80 to 175 nm. In addition, pattern transfer (into polysilicon) of loose-pitch (1:2) L/S features with CDs{>=}60 nm was demonstrated. (c) 1999 American Vacuum Society.

  4. Features of the interaction of Cu-rich precipitates with irradiation-produced defects in α-Fe.

    SciTech Connect

    Arokiam, Alan; Barashev, Aleksandr; Bacon, David J; Osetskiy, Yury N

    2005-01-01

    The interaction between copper-rich precipitates in {alpha}-iron and either vacancies or self-interstitial atoms and their clusters is studied by atomic-scale modeling. Results are compared with predictions of elasticity theory and interpreted in terms of size misfit of precipitates and defects, and the modulus and cohesive energy differences between iron and copper. Interstitial defects are repelled by precipitates at large distance but, like vacancies, attracted at small distance. Hence, copper precipitates in iron can be sinks for both vacancy and interstitial defects, and can act as strong recombination centers under irradiation conditions. This leads to a tentative explanation for the mixed Cu-Fe structure of precipitates and the absence of precipitate growth under neutron irradiation conditions. More generally, both vacancy and interstitial defects may be strongly bound to precipitates with weaker cohesion than the matrix.

  5. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems - Paper

    EPA Science Inventory

    A USEPA-sponsored field demonstration program was conducted to gather technically reliable cost and performance information on the electro-scan (FELL -41) pipeline condition assessment technology. Electro-scan technology can be used to estimate the magnitude and location of pote...

  6. Defect Detection in Arc-Welding Processes by Means of the Line-to-Continuum Method and Feature Selection

    PubMed Central

    Garcia-Allende, P. Beatriz; Mirapeix, Jesus; Conde, Olga M.; Cobo, Adolfo; Lopez-Higuera, Jose M.

    2009-01-01

    Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution. PMID:22408478

  7. Order and defectivity nanometrology by image processing and analysis of sub-20 nm BCPs features for lithographic applications

    NASA Astrophysics Data System (ADS)

    Simão, C.; Tuchapsky, D.; Khunsin, W.; Amann, A.; Morris, M. A.; Sotomayor Torres, Clivia

    2014-05-01

    The line patterns obtained by the self-assembly of the block copolymer (BCP) polystyrene-b-polyethylene oxide (PS-b-PEO) was investigated. The hexagonal PS-b-PEO 42k-11.5k in a thin film was solvent annealed in a chlorophorm saturated atmosphere for three different annealing times. The microphase segregation of this BCP returned 18nm cylinders of PEO through the PS matrix, with an approximately 40 n periodicity, as expected. Under chlorophorm vapours, the PEO cylinders oriented perpendicular to the silicon substrate while increasing the annealing time. These cylinders formed linear patterns with different alignment. To achieve insights about the percentage of alignment, defect type pareto and density, and order quantification to compare the three annealing recipes, the samples were analysed with innovative image analysis software specifically developed in our laboratory to identify elements and defects of line arrays from block copolymer self-assembly. From this technique, it was extracted dimensional metrology estimating pitch size and placement error, and the line-width of the lines was estimated. Secondly, the methodology allows identification and quantification of typical defects observable in BCP systems, such as turning points, disclination or branching points, break or lone points and end points. The defect density and the quantification of the alignment were estimated using our technique. The methodology presented here represents a step forward in dimensional metrology and defect analysis of BCP DSA systems and can be readily used to analyze other lithographic or non-lithographic patterns.

  8. The transformation features of impurity defects in natural diamonds of various habits under high P- T conditions

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Kalinin, A. A.; Kalinina, V. V.; Pal'yanov, Yu. N.; Shatsky, V. S.

    2016-01-01

    The results of the investigations of the transformation of impurity defects in natural diamonds of various habits at the stage of high-temperature annealing at P = 6 GPa and T = 2200°C are presented. The studies conducted allowed us to ascertain that the transformations of Aand B-defects in diamonds of octahedral and cubic habits follow general regularities. This fact shows that most of the diamonds of cubic habit with low degree of aggregation of nitrogen centers were not really annealed over a long-term interval. Unlike octahedral diamonds, those of cubic habit are characterized by a pronounced increase in the peak of H-containing defects (3107 cm-1) after annealing.

  9. Demonstration of thermal control, microstructure control, defect mitigation and process parameter database generation for Ti-6Al-4V Direct Digital Manufacturing - Understanding defect mitigation and process parameter database generation for direct digital manufacturing

    SciTech Connect

    Dehoff, Ryan R.; Sridharan, Niyanth; Dinwiddie, Ralph; Robson, Alan; Jordan, Brian; Chaudhary, Anil; Babu, Sudarsanam Suresh

    2015-09-01

    Researchers from Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) worked with Applied Optimization (AO) to understand and evaluate the propensity for defect formation in builds manufactured using DM3D-POM laser direct metal deposition. The main aim of this collaboration was to understand the character of powder jet behavior as a function of the nozzle parameters such as cover gas, carrier gas, and shaping gas. In order to evaluate the sensitivities of the parameters used in model, various experiments were performed with in-situ monitoring of the powder stream characteristics using a high speed camera. A wide variety of conditions while keeping the hopper motor rpm constant, including laser power and travel speed were explored. The cross sections of the deposits were characterized using optical microscopy.

  10. Strip-Pattern-Spheres Self-Assembled from Polypeptide-Based Polymer Mixtures: Structure and Defect Features

    NASA Astrophysics Data System (ADS)

    Zhu, Xingyu; Guan, Zhou; Lin, Jiaping; Cai, Chunhua

    2016-07-01

    We found that poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers and polystyrene (PS) homopolymers can cooperatively self-assemble into nano-spheres with striped patterns on their surfaces (strip-pattern-spheres) in aqueous solution. With assistance of dissipative particle dynamics simulation, it is discovered that the PS homopolymers form a spherical template core and the PBLG-b-PEG block copolymers assemble into striped patterns on the spherical surface. The hydrophobic PBLG rods are packed orderly in the strips, while the hydrophilic PEG blocks stabilize the strip-pattern-spheres in solution. Defects such as dislocations and disclinations can be observed in the striped patterns. Self-assembling temperature and sphere radius are found to affect defect densities in the striped patterns. A possible mechanism is proposed to illustrate how PBLG-b-PEG and PS cooperatively self-assemble into hierarchical spheres with striped patterns on surfaces.

  11. Strip-Pattern-Spheres Self-Assembled from Polypeptide-Based Polymer Mixtures: Structure and Defect Features.

    PubMed

    Zhu, Xingyu; Guan, Zhou; Lin, Jiaping; Cai, Chunhua

    2016-01-01

    We found that poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers and polystyrene (PS) homopolymers can cooperatively self-assemble into nano-spheres with striped patterns on their surfaces (strip-pattern-spheres) in aqueous solution. With assistance of dissipative particle dynamics simulation, it is discovered that the PS homopolymers form a spherical template core and the PBLG-b-PEG block copolymers assemble into striped patterns on the spherical surface. The hydrophobic PBLG rods are packed orderly in the strips, while the hydrophilic PEG blocks stabilize the strip-pattern-spheres in solution. Defects such as dislocations and disclinations can be observed in the striped patterns. Self-assembling temperature and sphere radius are found to affect defect densities in the striped patterns. A possible mechanism is proposed to illustrate how PBLG-b-PEG and PS cooperatively self-assemble into hierarchical spheres with striped patterns on surfaces. PMID:27418116

  12. Strip-Pattern-Spheres Self-Assembled from Polypeptide-Based Polymer Mixtures: Structure and Defect Features

    PubMed Central

    Zhu, Xingyu; Guan, Zhou; Lin, Jiaping; Cai, Chunhua

    2016-01-01

    We found that poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers and polystyrene (PS) homopolymers can cooperatively self-assemble into nano-spheres with striped patterns on their surfaces (strip-pattern-spheres) in aqueous solution. With assistance of dissipative particle dynamics simulation, it is discovered that the PS homopolymers form a spherical template core and the PBLG-b-PEG block copolymers assemble into striped patterns on the spherical surface. The hydrophobic PBLG rods are packed orderly in the strips, while the hydrophilic PEG blocks stabilize the strip-pattern-spheres in solution. Defects such as dislocations and disclinations can be observed in the striped patterns. Self-assembling temperature and sphere radius are found to affect defect densities in the striped patterns. A possible mechanism is proposed to illustrate how PBLG-b-PEG and PS cooperatively self-assemble into hierarchical spheres with striped patterns on surfaces. PMID:27418116

  13. A clinically euthyroid child with a large goiter due to a thyroglobulin gene defect: clinical features and genetic studies

    PubMed Central

    Hermanns, Pia; Refetoff, Samuel; Sriphrapradang, Chutintorn; Pohlenz, Joachim; Okamato, Jessica; Slyper, Leeyat

    2014-01-01

    A 10-year old child born to consanguineous parents presented with an extremely large goiter, a low free T4 level and free T4 index, and normal TSH concentration. The findings of undetectable thyroglobulin (TG) and low free T4, and an elevated free T3/free T4 ratio suggested the possibility of a defect in TG synthesis. Noteworthy aspects of this case were the extremely elevated thyroidal radioiodide uptake despite a normal TSH concentration and the fact that the reduction in the size of her goiter only occurred when her TSH was suppressed below the normal range. Gene sequencing revealed that the patient was homozygous for a donor splice site mutation in intron 30 (IVS30 + 1G > C). Isolation of RNA obtained from the thyroid gland by fine needle aspiration and sequencing of the TG cDNA confirmed the prediction that exon 30 was skipped, resulting in an in-frame loss of 46 amino acids. PMID:23457313

  14. Significant ocular findings are a feature of heritable bone dysplasias resulting from defects in type II collagen

    PubMed Central

    Meredith, Sarah P; Richards, Allan J; Bearcroft, Philip; Pouson, Arabella V; Snead, Martin P

    2007-01-01

    Background/aims The type II collagenopathies are a phenotypically diverse group of genetic skeletal disorders caused by a mutation in the gene coding for type II collagen. Reports published before the causative mutations were discovered suggest heritable bone dysplasias with skeletal malformations may be associated with a vitreoretinopathy. Methods A retrospective notes search of patients with a molecularly characterised type II collagenopathy chondrodysplasia who had been examined in the ophthalmology clinic was conducted. Results 13 of 14 patients had a highly abnormal vitreous appearance. One patient aged 11 presented with a total retinal detachment. Two other children aged 2 and 4 had bilateral flat multiple retinal tears on presentation. 10 of 12 patients refracted were myopic. Two patients had asymptomatic lens opacities: one associated with bilateral inferiorly subluxed lenses and the other with a zonule and lens coloboma. Conclusion Heritable skeletal disorders resulting from a mutation in the gene coding for type II collagen are associated with abnormal vitreous, myopia and peripheral cataract with lens subluxation. In bone dysplasias resulting from a defect of type II collagen there is likely to be a high risk of retinal detachment with a propensity to retinal tears at a young age. PMID:17347327

  15. Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons.

    PubMed

    La Magna, Antonino; Deretzis, Ioannis

    2011-03-18

    Understanding the roles of disorder and metal/graphene interface on the electronic and transport properties of graphene-based systems is crucial for a consistent analysis of the data deriving from experimental measurements. The present work is devoted to the detailed study of graphene nanoribbon systems by means of self-consistent quantum transport calculations. The computational formalism is based on a coupled Schrödinger/Poisson approach that respects both chemistry and electrostatics, applied to pure/defected graphene nanoribbons (ideally or end-contacted by various fcc metals). We theoretically characterize the formation of metal-graphene junctions as well as the effects of backscattering due to the presence of vacancies and impurities. Our results evidence that disorder can infer significant alterations on the conduction process, giving rise to mobility gaps in the conductance distribution. Moreover, we show the importance of metal-graphene coupling that gives rise to doping-related phenomena and a degradation of conductance quantization characteristics.

  16. Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons

    PubMed Central

    2011-01-01

    Understanding the roles of disorder and metal/graphene interface on the electronic and transport properties of graphene-based systems is crucial for a consistent analysis of the data deriving from experimental measurements. The present work is devoted to the detailed study of graphene nanoribbon systems by means of self-consistent quantum transport calculations. The computational formalism is based on a coupled Schrödinger/Poisson approach that respects both chemistry and electrostatics, applied to pure/defected graphene nanoribbons (ideally or end-contacted by various fcc metals). We theoretically characterize the formation of metal-graphene junctions as well as the effects of backscattering due to the presence of vacancies and impurities. Our results evidence that disorder can infer significant alterations on the conduction process, giving rise to mobility gaps in the conductance distribution. Moreover, we show the importance of metal-graphene coupling that gives rise to doping-related phenomena and a degradation of conductance quantization characteristics. PMID:21711756

  17. A study of the preparation of epitaxy-ready polished surfaces of (100) Gallium Antimonide substrates demonstrating ultra-low surface defects for MBE growth

    NASA Astrophysics Data System (ADS)

    Martinez, Rebecca; Tybjerg, Marius; Flint, Patrick; Fastenau, Joel; Lubyshev, Dmitri; Liu, Amy W. K.; Furlong, Mark J.

    2016-05-01

    Gallium Antimonide (GaSb) is an important Group III-V compound semiconductor which is suitable for use in the manufacture of a wide variety of optoelectronic devices such as infra-red (IR) focal plane detectors. A significant issue for the commercialisation of these products is the production of epitaxy ready GaSb, which remains a challenge for the substrate manufacturer, as the stringent demands of the MBE process, requires a high quality starting wafer. In this work large diameter GaSb crystals were grown by the Czochralski (Cz) method and wafers prepared for chemo-mechanical polishing (CMP). Innovative epi-ready treatments and novel post polish cleaning methodologies were applied. The effect of these modified finishing chemistries on substrate surface quality and the performance of epitaxially grown MBE GaSb IR detector structures were investigated. Improvements in the lowering of surface defectivity, maintaining of the surface roughness and optimisation of all flatness parameters is confirmed both pre and post MBE growth. In this paper we also discuss the influence of bulk GaSb quality on substrate surface performance through the characterisation of epitaxial structures grown on near zero etch pit density (EPD) crystals. In summary progression and development of current substrate polishing techniques has been demonstrated to deliver a consistent improved surface on GaSb wafers with a readily desorbed oxide for epitaxial growth.

  18. Pituitary and ovarian abnormalities demonstrated by CT and ultrasound in children with features of the McCune-Albright syndrome

    SciTech Connect

    Rieth, K.G.; Comite, F.; Shawker, T.H.; Cutler, G.B. Jr.

    1984-11-01

    In a random series of 97 children referred to the National Institutes of Health with a presumptive diagnosis of precocious puberty, eight girls were found to have features of the McCune-Albright syndrome, including fibrous dysplasia of bone and/or skin lesions resembling cafe au lait spots. Radiographic evaluation of these patients included computed tomography of the head and pelvic ultrasound. The pituitary glands were suspicious for abnormality in five of the eight girls. Seven girls underwent pelvic ultrasound, and in all of them the ovaries were considered to be abnormal for their chronological age; in addition, two had functional ovarian cysts. The role of diagnostic radiological studies in the diagnosis of this syndrome is discussed.

  19. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    SciTech Connect

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  20. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  1. DESIGN NOTE: Optical inspection of ball bearing defects

    NASA Astrophysics Data System (ADS)

    Ng, T. W.

    2007-09-01

    Ball bearings with defects can cause catastrophic machine element failure. The technique of detection using visual features provides a rapid means of inspection, although it reveals only surface defects. Nevertheless, the specular nature of the bearing surface makes it difficult to design illumination that produces high quality images for analysis using this method. In this work, a technique that uses ring light for illumination is demonstrated to be able to clearly reveal surface defects such as spalling and waviness in ball bearings.

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Two demonstrations are presented: a verification of the discontinuity of matter based on the law of definite proportions, and a series of consecutive chemical reactions featuring reversible equilibria. (BB)

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1982-01-01

    Two demonstrations are described: (1) a sunset effect using a gooseneck lamp and 20 sheets of paper and (2) the preparation and determination of structural features of dimethyl sulfoxide (DMSO) by infrared spectroscopy. (SK)

  4. Mask defect disposition: flux-area measurement of edge, contact, and OPC defects correlates to wafer and enables effective decisions

    NASA Astrophysics Data System (ADS)

    Fiekowsky, Peter; Taylor, Darren; Wang, David; Yang, Chien-Chu; Lin, Shu-Chun; Tu, L. H.; Lin, K. R.

    2001-09-01

    Lithographers' ability to set useful defect and contact specifications has almost disappeared as chip geometries have shrunk. As features sizes have decreased, measurement error has increased to 25% of the maximum allowable defect size. This has made defect disposition so difficult that many processes now require that all detected defects be repaired because the automatic defect sizing is almost meaningless, that is, the required guard band is nearly the size of the defect specification (Reynolds, BACUS 2000). Many mask processes have abandoned defect sizingin favor of stepper simulation, either using simulation microscope, such as AIMS, or software, such as NTI's VSS. However, AVI's optical Flux-Area measurement technique provides accuracy and repeatability that gives the simple, time tested defect specification technique new life. This study demonstrates high quality edge-, contact-, and OPC- defect disposition can be achieved using the Flux-Area technique. A test mask with a range of edge defects as well as mis-sized contacts and OPC defects was written. The mask defect sizing performed with the AVI is shown to be consistent on different chips using the same process. Thus it is shown that all the over-spec defects on the wafer were measured as over-spec on the mask. Results show that edge defect size on the wafer can be accurately predicted from the AVI defect area; that printed contact size is linearly proportional to the AVI measured area, on both square and irregular contacts; and that OPC defects (printed line-end separation errors) can be accurately predicted from AVI serif-area measurements on the mask. With the Flux-Area measurement technique as implemented on the AVI Photomask Metrology System, defects can be measured with long term repeatability and rms repeatability between machines of better than 10nm, 3% of a 0.3micrometers defect. This means that guard bands can often be reduced from 0.15micrometers to below 0.05micrometers .

  5. Defect solitons in photonic lattices.

    PubMed

    Yang, Jianke; Chen, Zhigang

    2006-02-01

    Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473

  6. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  7. Birth Defects

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Birth Defects: Condition Information Skip sharing on social media links Share this: Page Content What are birth defects? Birth defects are structural or functional abnormalities present ...

  8. Expression of Dominant-Negative Thyroid Hormone Receptor Alpha1 in Leydig and Sertoli Cells Demonstrates No Additional Defect Compared with Expression in Sertoli Cells Only

    PubMed Central

    Fumel, Betty; Froment, Pascal; Holzenberger, Martin; Livera, Gabriel; Monget, Philippe; Fouchécourt, Sophie

    2015-01-01

    Background In the testis, thyroid hormone (T3) regulates the number of gametes produced through its action on Sertoli cell proliferation. However, the role of T3 in the regulation of steroidogenesis is still controversial. Methods The TRαAMI knock-in allele allows the generation of transgenic mice expressing a dominant-negative TRα1 (thyroid receptor α1) isoform restricted to specific target cells after Cre-loxP recombination. Here, we introduced this mutant allele in both Sertoli and Leydig cells using a novel aromatase-iCre (ARO-iCre) line that expresses Cre recombinase under control of the human Cyp19(IIa)/aromatase promoter. Findings We showed that loxP recombination induced by this ARO-iCre is restricted to male and female gonads, and is effective in Sertoli and Leydig cells, but not in germ cells. We compared this model with the previous introduction of TRαAMI specifically in Sertoli cells in order to investigate T3 regulation of steroidogenesis. We demonstrated that TRαAMI-ARO males exhibited increased testis weight, increased sperm reserve in adulthood correlated to an increased proliferative index at P3 in vivo, and a loss of T3-response in vitro. Nevertheless, TRαAMI-ARO males showed normal fertility. This phenotype is similar to TRαAMI-SC males. Importantly, plasma testosterone and luteinizing hormone levels, as well as mRNA levels of steroidogenesis enzymes StAR, Cyp11a1 and Cyp17a1 were not affected in TRαAMI-ARO. Conclusions/Significance We concluded that the presence of a mutant TRαAMI allele in both Leydig and Sertoli cells does not accentuate the phenotype in comparison with its presence in Sertoli cells only. This suggests that direct T3 regulation of steroidogenesis through TRα1 is moderate in Leydig cells, and that Sertoli cells are the main target of T3 action in the testis. PMID:25793522

  9. Polydispersity-driven topological defects as order-restoring excitations.

    PubMed

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2014-04-01

    The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.

  10. Automated Defect Classification (ADC)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  11. Automated Defect Classification (ADC)

    SciTech Connect

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafer surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.

  12. Defect modes of chiral photonic crystals with an isotropic defect

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Oganesyan, K. B.

    2011-06-01

    Specific features of the defect modes of cholesteric liquid crystals (CLCs) with an isotropic defect, as well as their photonic density of states, Q factor, and emission, have been investigated. The effect of the thicknesses of the defect layer and the system as a whole, the position of the defect layer, and the dielectric boundaries on the features of the defect modes have been analyzed. It is shown that when the CLC layer is thin the density of states and emission intensity are maximum for the defect mode, whereas when the CLC layer is thick, these peaks are observed at the edges of the photonic band gap. Similarly, when the gain is low, the density of states and emission intensity are maximum for the defect mode, whereas at high gains these peaks are also observed at the edges of the photonic band gap. The possibilities of low-threshold lasing and obtaining high- Q microcavities have been investigated.

  13. Birth Defects

    MedlinePlus

    ... defects happen during the first 3 months of pregnancy. One out of every 33 babies in the ... abuse can cause fetal alcohol syndrome. Infections during pregnancy can also result in birth defects. For most ...

  14. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    SciTech Connect

    Cunliffe, A; Armato, S; Castillo, R; Pham, N; Guerrero, T; Al-Hallaq, H

    2014-06-15

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacement vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of

  15. Immersion defectivity study with volume production immersion lithography tool

    NASA Astrophysics Data System (ADS)

    Nakano, Katsushi; Kato, Hiroshi; Fujiwara, Tomoharu; Shiraishi, K.; Iriuchijima, Yasuhiro; Owa, Soichi; Malik, Irfan; Woodman, Steve; Terala, Prasad; Pelissier, Christine; Zhang, Haiping

    2007-03-01

    ArF immersion lithography has become accepted as the critical layer patterning solution for lithography going forward. Volume production of 55 nm devices using immersion lithography has begun. One of the key issues for the success of volume production immersion lithography is the control of immersion defectivity. Because the defectivity is influenced by the exposure tool, track, materials, and the wafer environment, a broad range of analysis and optimization is needed to minimize defect levels. Defect tests were performed using a dedicated immersion cluster consisting of a volume production immersion exposure tool, Nikon NSR-S609B, having NA of 1.07, and a resist coater-developer, TEL LITHIUS i+. Miniaturization of feature size by immersion lithography requires higher sensitivity defect inspection. In this paper, first we demonstrate the high sensitivity defect measurement using a next generation wafer inspection system, KLA-Tencor 2800 and Surfscan SP2, on both patterned and non-patterned wafers. Long-term defect stability is very important from the viewpoint of device mass production. Secondly, we present long-term defectivity data using a topcoat-less process. For tool and process qualification, a simple monitor method is required. Simple, non-pattern immersion scanned wafer measurement has been proposed elsewhere, but the correlation between such a non-pattern defect and pattern defect must be confirmed. In this paper, using a topcoat process, the correlation between topcoat defects and pattern defects is analyzed using the defect source analysis (DSA) method. In case of accidental tool contamination, a cleaning process should be established. Liquid cleaning is suitable because it can be easily introduced through the immersion nozzle. An in-situ tool cleaning method is introduced. A broad range of optimization of tools, materials, and processes provide convincing evidence that immersion lithography is ready for volume production chip manufacturing.

  16. Vertical Feature Mask Feature Classification Flag Extraction

    Atmospheric Science Data Center

    2013-03-28

      Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...

  17. Structural defect generation and band-structure features in the HfNi{sub 1−x}Co{sub x}Sn semiconductor

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Krayovskyy, V. Ya.; Kaczorowski, D.; Nakonechnyy, I. N.; Goryn, A. M.

    2015-08-15

    The crystal and electronic structure and magnetic, energy, and kinetic properties of the n-HfNiSn semiconductor heavily doped with the Co acceptor impurity (HfNi{sub 1−x}Co{sub x}Sn) are investigated in the temperature and Co concentration ranges T = 80–400 K and N{sub A}{sup Co} ≈ 9.5 × 10{sup 19}-5.7 × 10{sup 21} cm{sup −3} (x = 0.005–0.30), respectively, and under magnetic field H ≤ 10 kOe. It is established that the degree of compensation of the semiconductor changes due to transformation of the crystal structure upon doping, which leads to the generation of acceptor and donor structural defects. The calculated electronic structure is consistent with the experiment; the HfNi{sub 1−x}Co{sub x}Sn semiconductor is shown to be a promising thermoelectric material. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  18. An interstitial deletion of 7.1Mb in chromosome band 6p22.3 associated with developmental delay and dysmorphic features including heart defects, short neck, and eye abnormalities.

    PubMed

    Bremer, Anna; Schoumans, Jacqueline; Nordenskjöld, Magnus; Anderlid, Britt-Marie; Giacobini, Maibritt

    2009-01-01

    Seven cases with an interstitial deletion of the short arm of chromosome 6 involving the 6p22 region have previously been reported. The clinical phenotype of these cases includes developmental delay, brain-, heart-, and kidney defects, eye abnormalities, short neck, craniofacial malformations, hypotonia, as well as clinodactyly or syndactyly. Here, we report a patient with a 7.1Mb interstitial deletion of chromosome band 6p22.3, detected by genome-wide screening array CGH. The patient is a 4-year-old girl with developmental delay and dysmorphic features including eye abnormalities, short neck, and a ventricular septum defect. The deleted region at 6p22.3 in our patient overlaps with six out of the seven previously reported cases with a 6p22-24 interstitial deletion. This enabled us to further narrow down the critical region for the 6p22 deletion phenotype to 2.2Mb. Twelve genes are mapped to the overlapping deleted region, among them the gene encoding the ataxin-1 protein, the ATXN1 gene. Mice with homozygous deletions in ATXN1 are phenotypically normal but show cognitive delay. Haploinsufficiency of ATXN1 may therefore contribute to the learning difficulties observed in the patients harboring a 6p22 deletion.

  19. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    SciTech Connect

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  20. Demonstration of skin friction measurements featuring in situ estimation of conduction loss using constant voltage anemometers and surface hot-films

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Moes, Timothy R.

    2005-05-01

    The top of the 12.2m long NASA Dryden Flight Research Center's ground research vehicle (GRV) was used as a flat plate test bed for demonstrating an approach to measure skin friction. Using an array of surface hot-films operated by constant voltage anemometers (CVAs), the approach was demonstrated with in situ estimation of conduction heat loss from the hot-films to the substrate. An algebraic relationship, using the channel calibration constants a and b (determined a priori) with CVA output voltages Vs and Vw from that channel, is used for the estimation of the required quantities and lead resistance (rL) of the hot-film measured on site. Estimates of the power dissipated in the hot-film alone (Phf) (excluding the lead resistances), in situ resistance (Rw) of the hot-film due to applied overheat and flow, and the cold resistance (Ra) of the same hot-film at the ambient temperature are so obtained. Different approaches to estimate the in situ cold resistance (which is the resistance without any self-heating) of the hot-film are presented addressing the suitability of the procedure for flight applications as well. Tests were performed at several speeds of the GRV on the tarmac of a runway at the flight test center. The measured values are fitted to the classical (1/3) law equation with the computational dimensional skin friction (τ) obtained using the empirical local skin friction law for the long flat plate. There was an excellent (1/3) law fit in all the hot-films, demonstrating that the measured values fit classical theory. Using this measured fit with the theoretical values, calibration coefficients (A and B) for dimensional skin friction (τ) were obtained. Using these calibration coefficients, measured values were then converted to nondimensional local skin friction coefficients cf for all the hot-films at all speeds. Measured cf values agree well with the associated flat plate theory. Since the in situ measurement of heat loss to the substrate should ideally

  1. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation

    PubMed Central

    Kuznetsov, Andrey V.; Javadov, Sabzali; Sickinger, Stephan; Frotschnig, Sandra; Grimm, Michael

    2015-01-01

    Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia–reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia–reperfusion injury. PMID:25450968

  2. Defective autologous mixed lymphocyte reactivity in multiple sclerosis.

    PubMed Central

    Hirsch, R L

    1986-01-01

    T cells from patients with multiple sclerosis (MS) and normal controls were assessed for their ability to respond in the autologous mixed lymphocyte reaction (AMLR). Cells from stable MS patients demonstrated a significant defect in their proliferative response to non-T cells in comparison to normal controls. Despite the defective AMLR response, T cells from MS patients reacted as well as T cells from normal controls to allogeneic stimuli. Furthermore, MS non-T-cells were fully capable of stimulating allogeneic MLR responses by normal and MS T cells. Since the T4+ cell is the major subpopulation which proliferates in the AMLR, these studies suggest a functional defect in a subpopulation of T4+ cells in MS patients. Since the AMLR may represent an important mechanism by which immune responses are regulated, a defect in the ability of MS T cells to respond to autologous cells could account for several of the autoimmune features of the disease. PMID:2942317

  3. MSRC-based defective nanocrystalline soft magnetic ribbon detection

    NASA Astrophysics Data System (ADS)

    He, Zaixing; Zhao, Xinyue

    2015-09-01

    The traditional manual inspection of nanocrystalline soft magnetic materials based on metallographic samples is a time-consuming and somewhat unreliable task. It is also difficult to achieve high accuracy by simply adopting existing automatic signal processing methods as an alternative. To address the issue, a novel automatic microscopic defect recognition method for nanocrystalline soft magnetic ribbon using high-resolution optical microscopic images is proposed. The target problem is viewed as a pattern recognition problem, in which images are classified as non-defective and defective. An effective and highly efficient random feature is used to describe the structures of the nanocrystalline soft magnetic ribbons. Then the extracted features are used to recognize defects via a modified sparse representation-based classifier (MSRC). In the experiment, two well-known features, LBP (local binary pattern) and PCA (principal component analysis), and different classifiers, SVM (support vector machine) and SRC (sparse representation classifier), are compared. The experimental results demonstrate that the proposed method can provide low error rates in recognizing ribbon defects.

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Procedures for two demonstrations are presented. The first is a demonstration of chemiluminescence. The second is a demonstration using a secondary battery constructed from common household articles. (JN)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents the following chemistry lecture demonstrations and experiments: (1) a versatile kinetic demonstration; (2) the Bakelite Demonstration; (3) applying Beer's law; and (4) entropy calculations. (HM)

  6. Hierarchical line-defect patterns in wrinkled surfaces.

    PubMed

    Glatz, Bernhard A; Tebbe, Moritz; Kaoui, Badr; Aichele, Roland; Kuttner, Christian; Schedl, Andreas E; Schmidt, Hans-Werner; Zimmermann, Walter; Fery, Andreas

    2015-05-01

    We demonstrate a novel approach for controlling the formation of line-defects in wrinkling patterns by introducing step-like changes in the Young's modulus of elastomeric substrates supporting thin, stiff layers. Wrinkles are formed upon treating the poly(dimethylsiloxane) (PDMS) substrates by UV/Ozone (UVO) exposure in a uniaxially stretched state and subsequent relaxation. Line defects such as minutiae known from fingerprints are a typical feature in wrinkling patterns. The position where these defects occur is random for homogenous substrate elasticity and film thickness. However, we show that they can be predetermined by using PDMS substrates consisting of areas with different cross-linking densities. While changing the cross-linking density is well known to influence the wrinkling wavelength, we use this parameter in this study to force defect formation. The defect formation is monitored in situ using light microscopy and the mechanical parameters/film thicknesses are determined using imaging AFM indentation measurements. Thus the observed wrinkle-wavelengths can be compared to theoretical predictions. We study the density and morphology of defects for different changes in elasticity and compare our findings with theoretical considerations based on a generalized Swift-Hohenberg-equation to simply emulate the observed pattern-formation process, finding good agreement. The fact that for suitable changes in elasticity, well-ordered defect patterns are observed is discussed with respect to formation of hierarchical structures for applications in optics and nanotechnology. PMID:25803776

  7. Folic Acid Helps Prevent Neural Tube Defects

    MedlinePlus

    ... Features Folic Acid Helps Prevent Neural Tube Defects Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two chemistry demonstrations including a demonstration of chemical inhibition and "The Rayleigh Fountain" which demonstrates the polarity of the water molecule. Provides instructions and explanations for each demonstration. (CW)

  10. Molecular and Cellular Analysis of the DNA Repair Defect in a Patient in Xeroderma Pigmentosum Complementation Group D Who Has the Clinical Features of Xeroderma Pigmentosum and Cockayne Syndrome

    PubMed Central

    Broughton, B. C.; Thompson, A. F.; Harcourt, S. A.; Vermeulen, W.; Hoeijmakers, J. H. J.; Botta, E.; Stefanini, M.; King, M. D.; Weber, C. A.; Cole, J.; Arlett, C. F.; Lehmann, A. R.

    1995-01-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are quite distinct genetic disorders that are associated with defects in excision repair of UV-induced DNA damage. A few patients have been described previously with the clinical features of both disorders. In this paper we describe an individual in this category who has unusual cellular responses to UV light. We show that his cultured fibroblasts and lymphocytes are extremely sensitive to irradiation with UV-C, despite a level of nucleotide excision repair that is 30%–40% that of normal cells. The deficiency is assigned to the XP-D complementation group, and we have identified two causative mutations in the XPD gene: a gly→arg change at amino acid 675 in the allele inherited from the patient's mother and a −1 frameshift at amino acid 669 in the allele inherited from his father. These mutations are in the C-terminal 20% of the 760-amino-acid XPD protein, in a region where we have recently identified several mutations in patients with trichothiodystrophy. ImagesFigure 3Figure 5 PMID:7825573

  11. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes three flame test demonstrations including "Student-Presented Demonstrations on the Colors of Transition Metal Complexes,""A Flame Test Demonstration Device," and "Vivid Flame Tests." Preparation and procedures are discussed. Included in the first demonstration is an evaluation scheme for grading student demonstrations. (CW)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) partition coefficients; (2) Rutherford simulation experiment; and (3) demonstration of the powerful oxidizing property of dimanganeseheptoxide. Background information, materials needed, and procedures are provided for each demonstration. (JN)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presented are three demonstrations for chemical education. The activities include: (1) demonstration of vapor pressure; (2) a multicolored luminol-based chemiluminescence demonstration; and (3) a Charles's Law/Vapor pressure apparatus. (RH)

  15. Reflectance Demonstration.

    ERIC Educational Resources Information Center

    Kowalski, Frank

    1993-01-01

    Presents a demonstration in which a mirror "disappears" upon rotation. The author has used the demonstration with students from fourth grade up through college. Suggestions are given for making the demonstration into a permanent hallway display. (MVL)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    This article details two demonstrations involving color changes. Included are "Manganese Color Reactions" and "Flame Colors Demonstration." Include a list of materials needed, procedures, cautions, and results. (CW)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information (including chemical reactions) and procedures used are provided for (1) three buffer demonstrations and (2) a demonstration of phase transfer catalysis and carbanion formation. (JN)

  19. Defective Autophagy Initiates Malignant Transformation.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kroemer, Guido

    2016-05-19

    In this issue of Molecular Cell, Park et al. (2016) elegantly demonstrate that a partial defect in autophagy supports malignant transformation as it favors the production of genotoxic reactive oxygen species by mitochondria.

  20. Robust feature detection using sonar sensors for mobile robots

    NASA Astrophysics Data System (ADS)

    Choi, Jinwoo; Ahn, Sunghwan; Chung, Wan Kyun

    2005-12-01

    Sonar sensor is an attractive tool for the SLAM of mobile robot because of their economic aspects. This cheap sensor gives relatively accurate range readings if disregarding angular uncertainty and specular reflections. However, these defects make feature detection difficult for the most part of the SLAM. This paper proposed a robust sonar feature detection algorithm. This algorithm gives feature detection methods for both point features and line features. The point feature detection method was based on the TBF scheme. Moreover, three additional processes improved the performance of feature detection as follows; 1) stable intersections, 2) efficient sliding window update and 3) removal of the false point features on the wall. The line feature detection method was based on the basic property of adjacent sonar sensors. Along the line feature, three adjacent sonar sensors gave similar range readings. Using this sensor property, it proposed a novel algorithm for line feature detection, which is simple and the feature can be obtained by using only current sensor data. The proposed feature detection algorithm gives a good solution for the SLAM of mobile robots because it gives accurate feature information for both the point and line features even with sensor errors. Furthermore, a sufficient number of features are available to correct mobile robot pose. Experimental results for point feature and line feature detection demonstrate the performance of the proposed algorithm in a home-like environment.

  1. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Three demonstrations are described: paramagnetic properties of Fe(11) and Fe(111), the preparation of polyurethane foam: a lecture demonstration and the electrolysis of water-fuel cell reactions. A small discussion of the concepts demonstrated is included in each demonstration's description. (MR)

  2. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  3. Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects.

    PubMed

    Song, Zhigong; Artyukhov, Vasilii I; Wu, Jian; Yakobson, Boris I; Xu, Zhiping

    2015-01-27

    Defects in solids commonly limit mechanical performance of materials by reducing their rigidity and strength. However, topological defects also induce a prominent geometrical effect in addition to local stress buildup, which is especially pronounced in two-dimensional crystals. These dual roles of defects modulate mechanical responses of the material under local and global probes in very different ways. We demonstrate through atomistic simulations and theoretical analysis that local response of two-dimensional crystals can even be stiffened and strengthened by topological defects as the structure under indentation features a positive Gaussian curvature, while softened and weakened mechanical responses are measured at locations with negative Gaussian curvatures. These findings shed lights on mechanical characterization of two-dimensional materials in general. The geometrical effect of topological defects also adds a new dimension to material design, in the scenario of geometrical and topological engineering.

  4. Interferon-Gamma Directly Mediates Developmental Biliary Defects

    PubMed Central

    Cui, Shuang; EauClaire, Steven F.

    2013-01-01

    Abstract Biliary atresia (BA) is the most common identifiable hepatobiliary disease affecting infants, in which there are defects in intra- and extrahepatic bile ducts and progressive fibrosis. Activation of interferon-gamma (IFNγ) appears to be critical in both patients with BA and in rodent models of BA. We have recently reported a zebrafish model of biliary disease that shares features with BA, in which inhibition of DNA methylation leads to intrahepatic biliary defects and activation of IFNγ target genes. Here we report that ifng genes are hypomethylated and upregulated in zebrafish larvae treated with azacytidine (azaC), an inhibitor of DNA methylation. Injection of IFNγ protein into developing zebrafish larvae leads to biliary defects, suggesting that activation of the IFNγ pathway is sufficient to cause developmental biliary defects. These defects are associated with decreased cholangiocyte proliferation and with a decrease in the expression of vhnf1 (hnf1b, tcf2), which encodes a homeodomain protein with previously reported roles in biliary development in multiple models. These results support an importance of IFNγ in mediating biliary defects, and also demonstrate the feasibility of direct injection of intact protein into developing zebrafish larvae. PMID:23448251

  5. Defect reduction of patterned media templates and disks

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-05-01

    Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.

  6. Defect reduction for semiconductor memory applications using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Luo, Kang; Irving, J. W.; Lu, Xiaoming; Zhang, Wei; Fletcher, Brian; Liu, Weijun; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.

    2013-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. In previous studies, we have focused on defects such as random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. In this work, we attempted to identify the critical imprint defect types using a mask with NAND Flash-like patterns at dimensions as small as 26nm. The two key defect types identified were line break defects induced by small particulates and airborne contaminants which result in local adhesion failure. After identification, the root cause of the defect was determined, and corrective measures were taken to either eliminate or reduce the defect source. As a result, we have been able to reduce defectivity levels by more than three orders of magnitude in only 12 months and are now achieving defectivity adders as small as 2 adders per lot of wafers.

  7. New method of detection and classification of yield-impacting EUV mask defects

    NASA Astrophysics Data System (ADS)

    Graur, Ioana; Vengertsev, Dmitry; Raghunathan, Ananthan; Stobert, Ian; Rankin, Jed

    2015-10-01

    Extreme ultraviolet lithography (EUV) advances printability of small size features for both memory and logic semiconductor devices. It promises to bring relief to the semiconductor manufacturing industry, removing the need for multiple masks in rendering a single design layer on wafer. However, EUV also brings new challenges, one of which is of mask defectivity. For this purpose, much of the focus in recent years has been in finding ways to adequately detect, characterize, and reduce defects on both EUV blanks and patterned masks. In this paper we will present an efficient way to classify and disposition EUV mask defects through a new algorithm developed to classify defects located on EUV photomasks. By processing scanning electronmicroscopy images (SEM) of small regions of a photomask, we extract highdimensional local features Histograms of Oriented Gradients (HOG). Local features represent image contents compactly for detection or classification, without requiring image segmentation. Using these HOGs, a supervised classification method is applied which allows differentiating between nondefective and defective images. In the new approach we have developed a superior method of detection and classification of defects, using mask and supporting mask printed data from several metallization masks. We will demonstrate that use of the HOG method allows realtime identification of defects on EUV masks regardless of geometry or construct. The defects identified by this classifier are further divided into subclasses for mask defect disposition: foreign material, foreign material from previous step, and topological defects. The goal of disposition is to categorize on the images into subcategories and provide recommendation of prescriptive actions to avoid impact on the wafer yield.

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for college level chemistry courses including: "Electrochemical Cells Using Sodium Silicate" and "A Simple, Vivid Demonstration of Selective Precipitation." Lists materials, preparation, procedures, and precautions. (CW)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Two demonstrations are described: (1) red cabbage and electrolysis of water to bring together acid/base and electrochemical concepts; and (2) a model to demonstrate acid/base conjugate pairs utilizing magnets. (SK)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Presents: (1) a simple demonstration which illustrates the driving force of entropy using the familiar effects of the negative thermal expansion coefficient of rubber; and (2) a demonstration of tetrahedral bonding using soap films. (CS)

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two demonstrations including a variation of the iodine clock reaction, and a simple demonstration of refractive index. The materials, procedures, and a discussion of probable results are given for each. (CW)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are two demonstrations; "Heat of Solution and Colligative Properties: An Illustration of Enthalpy and Entropy," and "A Vapor Pressure Demonstration." Included are lists of materials and experimental procedures. Apparatus needed are illustrated. (CW)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents two demonstrations; one on Boyle's Law, to illustrate the gas law and serve as a challenging problem for the students; the other is a modified Color Blind Traffic Light demonstration in which the oscillating reactions were speeded up. (GA)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Provides instructions on conducting four demonstrations for the chemistry classroom. Outlines procedures for demonstrations dealing with coupled oscillations, the evaporation of liquids, thioxanthone sulfone radical anion, and the control of variables and conservation of matter. (TW)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Two demonstrations are described which are suitable for introductory chemistry classes. The first involves the precipitation of silver, and the second is a demonstration of the relationship between rate constants and equilibrium constants using water and beakers. (BB)

  16. Photomask defect tracing, analysis, and reduction with chemically amplified resist process

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-ming; Lai, Rick; Huang, W. H.; Wang, B. C.; Chen, C. Y.; Kung, C. H.; Yoo, Chue-San; Chen, Jieh-Jang; Lee, Sheng-Cha

    2003-08-01

    The features of optical proximity correction are becoming very aggressive as production technology migrates into 90nm/130 nm regime. The complicated optical proximity correction (OPC) patterns often result in un-repairable defects, a major yield loss mechanisms in a mask production line. Defect control is increasingly important. A methodology for identifying defect sources and reduction is demonstrated in this paper. The mechanisms and causes of defect formation could be determined with corresponding process step on the strength of sequence inspections. The cause of half-etched opaque defect on negative CAR process was found from PR fragment contamination of e-beam exposure step. After clean-up of e-beam chamber, yield was increased over 20%. Big pinhole defect and contact of AttPSM positive process was found on ADI step. The possible cause was poor CAR adhesion. These two type defects were decreased by modification of developing recipe, special on rinse step. Design experiment with Taguchi method was used to optimize the interactive recipe of plasma descum and rinse step on developing step of implanted layer. Average defect density was decreased from 0.99 to 0.27, and percentage of zero defect rate has been increased from 29.5 to 63.3%.

  17. Jet and flash imprint defectivity: assessment and reduction for semiconductor applications

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Litt, Lloyd C.; Johnson, Steve; Resnick, Douglas J.; Lovell, David

    2011-04-01

    Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1X lithography and the shortage in end-user generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm.

  18. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes a demonstration involving the controlled combustion of a mixture of metals with black and smokeless powder in a small Erlenmeyer flask. Also describes demonstrations using a device that precludes breathing of hazardous vapors during class demonstrations; the device is easy to transport and use in rooms without sinks. (JN)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations used in laboratory chemistry courses. Discusses a "pH-activated" display used to chemically and visually supplement lecture demonstrations. Outlines another demonstration designed to show that copper(II) chloride is made of two ions, blue and yellow, which are combined to produce green. (TW)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Sands, Robert; And Others

    1982-01-01

    Procedures for two demonstrations are provided. The solubility of ammonia gas in water is demonstrated by introducing water into a closed can filled with the gas, collapsing the can. The second demonstration relates scale of standard reduction potentials to observed behavior of metals in reactions with hydrogen to produce hydrogen gas. (Author/JN)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two classroom chemistry demonstrations which focus on the descriptive chemistry of bromine and iodine. Outlines the chemicals and equipment needed, experimental procedures, and discussion of one demonstration of the oxidation states of bromine and iodine, and another demonstration of the oxidation states of iodine. (TW)

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    List of materials needed, procedures used, and results obtained are provided for two demonstrations. The first is an inexpensive and quick method for demonstrating column chromatography of plant pigments of spinach extract. The second is a demonstration of cathodic protection by impressed current. (JN)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Free radical chlorination of methane is used in organic chemistry to introduce free radical/chain reactions. In spite of its common occurrence, demonstrations of the reaction are uncommon. Therefore, such a demonstration is provided, including background information, preparation of reactants/reaction vessel, introduction of reactants, irradiation,…

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Provides three descriptions of demonstrations used in various chemistry courses. Includes the use of a simple demonstration model to illustrate principles of chromatography, techniques for using balloons to teach about the behavior of gases, and the use of small concentrations of synthetic polyelectrolytes to induce the flocculation hydrophobic…

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Outlines a simple, inexpensive way of demonstrating electroplating using the reaction between nickel ions and copper metal. Explains how to conduct a demonstration of the electrolysis of water by using a colored Na2SO4 solution as the electrolyte so that students can observe the pH changes. (TW)

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are three demonstrations: "The Construction and Use of Commercial Voltaic Cell Displays in Freshman Chemistry"; Dramatizing Isotopes: Deuterated Ice Cubes Sink"; and "A Simple Apparatus to Demonstrate Differing Gas Diffusion Rates (Graham's Law)." Materials, procedures, and safety considerations are discussed. (CW)

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Described is a demonstration utilized to measure the heat of vaporization using the Clausius-Clapeyron equation. Explained is that when measurement is made as part of a demonstration, it raises student's consciousness that chemistry is experimentally based. (Author/DS)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) modification of copper catalysis demonstration apparatus; (2) experiments in gas-liquid chromatography with simple gas chromatography at room temperature; and (3) equilibria in silver arsenate-arsenic acid and silver phosphate-phosphoric acid systems. Procedures and materials needed are provided.…

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two chemistry demonstrations: (1) an alternative method for the demonstration of the properties of alkali metals, water is added to small amounts of metal; (2) an exploration of the properties of hydrogen, helium, propane, and carbon dioxide using an open trough and candle. (MVL)

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Described are demonstrations designed to reveal the important "nonsolvent" properties of water through its interaction with a toy called "Magic Sand" and other synthetic silica derivatives, especially those bonded with organic moities. The procedures for seven demonstrations along with a discussion of the effects are presented. (CW)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Two demonstrations are described: (1) a variant of preparing purple benzene by phase transfer catalysis with quaternary ammonium salts and potassium permanganate in which crown ethers are used; (2) a corridor or "hallway" demonstration in which unknown molecular models are displayed and prizes awarded to students correctly identifying the…

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides directions for setup and performance of two demonstrations. The first demonstrates the principles of Raoult's Law; using a simple apparatus designed to measure vapor pressure. The second illustrates the energy available from alcohol combustion (includes safety precautions) using an alcohol-fueled missile. (JM)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents two demonstrations for classroom use related to precipitation of ferrous hydroxide and to variation of vapor pressure with temperature. The former demonstration is simple and useful when discussing solubility of ionic compounds electrode potential of transition elements, and mixed valence compounds. (Author/SA)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Discusses a supplement to the "water to rose" demonstration in which a pink color is produced. Also discusses blood buffer demonstrations, including hydrolysis of sodium bicarbonate, simulated blood buffer, metabolic acidosis, natural compensation of metabolic acidosis, metabolic alkalosis, acidosis treatment, and alkalosis treatment. Procedures…

  17. Complete Demonstration.

    ERIC Educational Resources Information Center

    Yelon, Stephen; Maddocks, Peg

    1986-01-01

    Describes four-step approach to educational demonstration: tell learners they will have to perform; what they should notice; describe each step before doing it; and require memorization of steps. Examples illustrate use of this process to demonstrate a general mental strategy, and industrial design, supervisory, fine motor, and specific…

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two laboratory demonstrations in chemistry. One uses dry ice, freon, and freezer bags to demonstrate volume changes, vapor-liquid equilibrium, a simulation of a rain forest, and vaporization. The other uses the clock reaction technique to illustrate fast reactions and kinetic problems in releasing carbon dioxide during respiration. (TW)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Background information and procedures are provided for a second part to the dichromate volcano demonstration. The green ash produced during the demonstration is reduced to metal using aluminothermy (Goldschmide process). Also describes suitable light sources and spectroscopes for student observation of emission spectra in lecture halls. (JN)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations designed to help chemistry students visualize certain chemical properties. One experiment uses balloons to illustrate the behavior of gases under varying temperatures and pressures. The other uses a makeshift pea shooter and a commercial model to demonstrate atomic structure and the behavior of high-speed particles.…

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Provided are two demonstrations for an introductory course in chemistry. The first one emphasizes the observation and the interpretation of facts to form hypotheses during the heating of a beaker of water. The second demonstration shows the liquid phase of carbon dioxide using dry ice and a pressure gauge. (YP)

  2. Inspecting rapidly moving surfaces for small defects using CNN cameras

    NASA Astrophysics Data System (ADS)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents a recipe for the Nylon Rope Trick, which is considered to be one of the most spectacular demonstrations in chemistry. Materials for growing the polymer and some safety precautions are given. (SA)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1990-01-01

    Included are three demonstrations that include the phase change of ice when under pressure, viscoelasticity and colloid systems, and flame tests for metal ions. The materials, procedures, probable results, and applications to real life situations are included. (KR)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations suitable for chemistry instruction. One involves fractal structures obtained by electrodeposition of silver at an air-water interface and the other deals with molecular weights and music. (TW)

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Background information, list of materials needed, and procedures used are provided for a demonstration involving the transformation of a hydrophobic liquid to a partially hydrophobic semisolid. Safety considerations are noted. (JN)

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Reports two electrochemical demonstrations. Uses a hydrogen-oxygen fuel cell to power a clock. Includes description of methods and materials. Investigates the "potato clock" used with different fruits. Lists emf and current for various fruit and electrode combinations. (ML)

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Rehfeld, D. W.; And Others

    1988-01-01

    Describes two demonstrations (1) a dust explosion using a coffee can, candle, rubber tubing, and cornstarch and (2) forming a silicate-polyvinyl alcohol polymer which can be pressed into plastic sheets or molded. Gives specific instructions. (MVL)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presents three demonstrations suitable for undergraduate chemistry classes. Focuses on experiments with calcium carbide, the induction by iron of the oxidation of iodide by dichromate, and the classical iodine clock reaction. (ML)

  11. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Describes a room-temperature method for demonstrating phosphorescence by including samples in a polymer matrix. Also discusses the Old Nassau Reaction, a clock reaction which turns orange then black. (MLH)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for use in college chemistry classes. Includes "Spectroscopy in Large Lecture Halls" and "The Endothermic Dissolution of Ammonium Nitrate." Gives materials lists and procedures as well as a discussion of the results. (CW)

  13. Defect reduction of high-density full-field patterns in jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Singh, Lovejeet; Luo, Kang; Ye, Zhengmao; Xu, Frank; Haase, Gaddi; Curran, David; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.

    2011-04-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. This work summarizes the results of defect inspections focusing on two key defect types; random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. Non-fill defectivity must always be considered within the context of process throughput. The key limiting throughput step in an imprint process is resist filling time. As a result, it is critical to characterize the filling process by measuring non-fill defectivity as a function of fill time. Repeater defects typically have two main sources; mask defects and particle related defects. Previous studies have indicated that soft particles tend to cause non-repeating defects. Hard particles, on the other hand, can cause either resist plugging or mask damage. In this work, an Imprio 500 twenty wafer per hour (wph) development tool was used to study both defect types. By carefully controlling the volume of inkjetted resist, optimizing the drop pattern and controlling the resist fluid front during spreading, fill times of 1.5 seconds were achieved with non-fill defect levels of approximately 1.2/cm2. Longevity runs were used to study repeater defects and a nickel

  14. Quantum defect analysis of HD photoionization

    SciTech Connect

    Du, N.Y.; Greene, C.H.

    1986-11-15

    A multichannel quantum defect calculation is shown to reproduce most observed features in several portions of the HD photoabsorption spectrum. The rovibrational frame transformation theory of Atabek, Dill, and Jungen is reformulated in terms of a quantum defect matrix. The calculation accounts for spectral regions far from dissociation thresholds despite its neglect of g--u mixing.

  15. Mask Blank Defect Detection

    SciTech Connect

    Johnson, M A; Sommargren, G E

    2000-02-04

    Mask blanks are the substrates that hold the master patterns for integrated circuits. Integrated circuits are semiconductor devices, such as microprocessors (mPs), dynamic random access memory (DRAMs), and application specific integrated circuits (ASICs) that are central to the computer, communication, and electronics industries. These devices are fabricated using a set of master patterns that are sequentially imaged onto light-sensitive coated silicon wafers and processed to form thin layers of insulating and conductive materials on top of the wafer. These materials form electrical paths and transistors that control the flow of electricity through the device. For the past forty years the semiconductor industry has made phenomenal improvements in device functionality, compactness, speed, power, and cost. This progress is principally due to the exponential decrease in the minimum feature size of integrated circuits, which has been reduced by a factor of {radical}2 every three years. Since 1992 the Semiconductor Industry Association (SIA) has coordinated the efforts of producing a technology roadmap for semiconductors. In the latest document, ''The International Technology Roadmap for Semiconductors: 1999'', future technology nodes (minimum feature sizes) and targeted dates were specified and are summarized in Table 1. Lithography is the imaging technology for producing a de-magnified image of the mask on the wafer. A typical de-magnification factor is 4. Mask blank defects as small as one-eighth the equivalent minimum feature size are printable and may cause device failure. Defects might be the result of the surface preparation, such as polishing, or contamination due to handling or the environment. Table 2 shows the maximum tolerable defect sizes on the mask blank for each technology node. This downward trend puts a tremendous burden on mask fabrication, particularly in the area of defect detection and reduction. A new infrastructure for mask inspection will be

  16. Fusion of geometric and thermographic data for automated defect detection

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, Beata; O'Leary, Paul

    2012-04-01

    Many workpieces produced in large numbers with a large variety of sizes and geometries, e.g. castings and forgings, have to be 100% inspected. In addition to geometric tolerances, material defects, e.g. surface cracks, also have to be detected. We present a fully automated nondestructive testing technique for both types of defects. The workpiece is subject to continuous motion, and during this motion two measurements are performed. In the first step, after applying a short inductive heating, a thermographic measurement is carried out. An infrared camera records the surface temperature of the workpiece enabling the localization of material defects and surface cracks. In the second step, a light sectioning measurement is performed to measure the three-dimensional geometry of the piece. With the help of feature-based registration the data from the two different sources are fused and evaluated together. The advantage of this technique is that a more reliable decision can be made about the nature of the failures and their possible causes. The same registration technique also can be used for the comparison of different pieces and therefore to localize different failure types, via comparison with a ``golden,'' defect-free piece. The registration technique can be applied to any part that has unique geometric features, around which moments can be computed. Consequently, the inspection technique can be applied to many different parts. The efficacy of the method is demonstrated with measurements on three parts having different geometries.

  17. Comparison of fast 3D simulation and actinic inspection for EUV masks with buries defects

    SciTech Connect

    Clifford, C. H.; Wiraatmadja, S.; Chan, T. T.; Neureuther, A. R.; Goldberg, K. A.; Mochi, I.; Liang, T.

    2009-02-23

    Aerial images for isolated defects and the interactions of defects with features are compared between the Actinic Inspection Tool (AIT) at Lawrence Berkeley National Laboratory (LBNL) and the fast EUV simulation program RADICAL. Comparisons between AIT images from August 2007 and RADICAL simulations are used to extract aberrations. At this time astigmatism was the dominant aberration with a value of 0.55 waves RMS. Significant improvements in the imaging performance of the AIT were made between August 2007 and December 2008. A good match will be shown between the most recent AIT images and RADICAL simulations without aberrations. These comparisons will demonstrate that a large defect, in this case 7nm tall on the surface, is still printable even if it is centered under the absorber line. These comparisons also suggest that the minimum defect size is between 1.5nm and 0.8nm surface height because a 1.5nm defect was printable but a 0.8nm was not. Finally, the image of a buried defect near an absorber line through focus will demonstrate an inversion in the effect of the defect from a protrusion of the dark line into the space to a protrusion of the space into the line.

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations for use in chemistry instruction. The first illustrates the preparation of a less common oxide of iron, showing why this oxide is rare. The second is an explosion reaction of hydrogen and oxygen that is recommended for use as an attention-getting device. (TW)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides instructions and a list of materials needed to demonstrate: (1) a model of the quantum mechanical atom; (2) principles involved in metal corrosion and in the prevention of this destructive process by electrochemical means; and (3) a Thermit reaction, modified to make it more dramatic and interesting for students. (SK)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Cliche, Jean-Marie; And Others

    1988-01-01

    Describes two demonstrations: 1) the effect of polarity on solubility using sodium dichromate, TTE, ligroin, and water to form nonpolar-polar-nonpolar layers with the polar layer being colored; 2) determination of egg whites to be yellow by determining the content of yellow colored riboflavin in the egg white. (MVL)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  3. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1976-01-01

    Describes two demonstrations: one that illustrates the attainment of equilibrium in first-order reactions by changing the volumes of two beakers of water at a specified rate, and another that illustrates the role of indicators in showing pH changes in buffer solutions. (MLH)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Describes two demonstrations that require almost no preparation time, are visually stimulating, and present a variety of material for class discussion (with sample questions provided). The first involves a sodium bicarbonate hydrochloric acid volcano; the second involves a dissolving polystyrene cup. Procedures used and information on…

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Two demonstrations are described. The first shows the effect of polarity on solubility. The second is based on the unexpected formation of a precipitate of barium nitrate when barium carbonate or barium phosphate is treated with dilute nitric acid. List of materials needed and procedures used are included. (JN)

  7. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts.

    PubMed

    Kyle, Daniel J T; Oikonomou, Antonios; Hill, Ernie; Bayat, Ardeshir

    2015-06-01

    Reproducing extracellular matrix topographical cues, such as those present within acellular dermal matrix (ADM), in synthetic implant surfaces, may augment cellular responses, independent of surface chemistry. This could lead to enhanced implant integration and performance while reducing complications. In this work, the hierarchical micro and nanoscale features of ADM were accurately and reproducibly replicated in polydimethylsiloxane (PDMS), using an innovative maskless 3D grayscale fabrication process not previously reported. Human breast derived fibroblasts (n=5) were cultured on PDMS surfaces and compared to commercially available smooth and textured silicone implant surfaces, for up to one week. Cell attachment, proliferation and cytotoxicity, in addition to immunofluorescence staining, SEM imaging, qRT-PCR and cytokine array were performed. ADM PDMS surfaces promoted cell adhesion, proliferation and survival (p=<0.05), in addition to increased focal contact formation and spread fibroblast morphology when compared to commercially available implant surfaces. PCNA, vinculin and collagen 1 were up-regulated in fibroblasts on biomimetic surfaces while IL8, TNFα, TGFβ1 and HSP60 were down-regulated (p=<0.05). A reduced inflammatory cytokine response was also observed (p=<0.05). This study represents a novel approach to the development of functionalised biomimetic prosthetic implant surfaces which were demonstrated to significantly attenuate the acute in vitro foreign body reaction to silicone. PMID:25818416

  8. Ventricular septal defect (image)

    MedlinePlus

    Ventricular septal defect is a congenital defect of the heart, that occurs as an abnormal opening in ... wall that separates the right and left ventricles. Ventricular septal defect may also be associated with other ...

  9. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  10. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  11. Submicron Defect Detection in Periodic Structures Using Photorefractive Holography

    NASA Astrophysics Data System (ADS)

    Uhrich, Craig Edward

    Detection of defects in periodic objects is an important step in the manufacture of integrated circuits, particularly memory chips which are highly repetitive. As feature sizes shrink below 1 mum, automated detection of sub-micron defects becomes necessary. We present a real-time holographic system which allows the detection of sub-micron defects in periodic structures. The inspection technique is a marriage of Fourier spatial filtering and real-time phase conjugate holography. The system output is a near diffraction limited image of any defects in the pattern (defined to be any deviations from periodicity). Real-time holographic recording allows the system to adapt to the orientation and period of the object. The early chapters introduce the photorefractive effect and the generation of the phase conjugate of an optical wavefront using Bi_{12} SiO_{20}. Relevant properties of the optical Fourier transform are also discussed. The following sections present the system design rules and experimental techniques which allow the system to reliably detect sub-micron defects. The most important improvements over previous demonstrations are (1) a novel write/read holographic process which increases phase conjugate reflectivity by orders of magnitude, (2) control of the light polarization to allow efficient object illumination and collection of the diffracted signal, (3) avoidance of noise by moving the crystal away from the origin of the Fourier plane, and (4) compensation for the crystal aberrations with a holographic optical element. The final chapter presents results which clearly show enhancement of sub-micron defects and near perfect suppression of the surrounding periodic patterns. An area larger than 1 mm^2 is inspected in 20-60 seconds. Over 90% of the 0.5 mu m diameter defects on glass masks (viewed in reflection) are detected, and approximately 80% of defects in the 0.2 -0.3 μm range are found. On silicon wafers, the results are even better with over a 95% success

  12. GASIS demonstration

    SciTech Connect

    Vidas, E.H.

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  13. Reticle defect sizing of optical proximity correction defects using SEM imaging and image analysis techniques

    NASA Astrophysics Data System (ADS)

    Zurbrick, Larry S.; Wang, Lantian; Konicek, Paul; Laird, Ellen R.

    2000-07-01

    Sizing of programmed defects on optical proximity correction (OPC) feature sis addressed using high resolution scanning electron microscope (SEM) images and image analysis techniques. A comparison and analysis of different sizing methods is made. This paper addresses the issues of OPC defect definition and discusses the experimental measurement results obtained by SEM in combination with image analysis techniques.

  14. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Xue, Yanan; Yu, Pengfei; Zhang, Bing; Wang, Limin; Liu, Riping

    2014-01-01

    ZnO, aside from TiO2, has been considered as a promising material for purification and disinfection of water and air, and remediation of hazardous waste, owing to its high activity, environment-friendly feature and lower cost. However, their poor visible light utilization greatly limited their practical applications. Herein, we demonstrate the fabrication of different aspect ratios of the ZnO nanorods with surface defects by mechanical-assisted thermal decomposition method. The experiments revealed that ZnO nanorods with higher aspect ratio and surface defects show significantly higher photocatalytic performances. PMID:24699790

  15. Unmasking the ciliopathies: craniofacial defects and the primary cilium.

    PubMed

    Cortés, Claudio R; Metzis, Vicki; Wicking, Carol

    2015-01-01

    Over the past decade, the primary cilium has emerged as a pivotal sensory organelle that acts as a major signaling hub for a number of developmental signaling pathways. In that time, a vast number of proteins involved in trafficking and signaling have been linked to ciliary assembly and/or function, demonstrating the importance of this organelle during embryonic development. Given the central role of the primary cilium in regulating developmental signaling, it is not surprising that its dysfunction results in widespread defects in the embryo, leading to an expanding class of human congenital disorders known as ciliopathies. These disorders are individually rare and phenotypically variable, but together they affect virtually every vertebrate organ system. Features of ciliopathies that are often overlooked, but which are being reported with increasing frequency, are craniofacial abnormalities, ranging from subtle midline defects to full-blown orofacial clefting. The challenge moving forward is to understand the primary mechanism of disease given the link between the primary cilium and a number of developmental signaling pathways (such as hedgehog, platelet-derived growth factor, and WNT signaling) that are essential for craniofacial development. Here, we provide an overview of the diversity of craniofacial abnormalities present in the ciliopathy spectrum, and reveal those defects in common across multiple disorders. Further, we discuss the molecular defects and potential signaling perturbations underlying these anomalies. This provides insight into the mechanisms leading to ciliopathy phenotypes more generally and highlights the prevalence of widespread dysmorphologies resulting from cilia dysfunction. PMID:26173831

  16. AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK

    SciTech Connect

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-03

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  17. Wafer Mapping Using Deuterium Enhanced Defect Characterization

    NASA Astrophysics Data System (ADS)

    Hossain, K.; Holland, O. W.; Hellmer, R.; Vanmil, B.; Bubulac, L. O.; Golding, T. D.

    2010-07-01

    Deuterium (as well as other hydrogen isotopes) binds with a wide range of morphological defects in semiconductors and, as such, becomes distributed similarly to those defects. Thus, the deuterium profile within the sample serves as the basis of a technique for defect mapping known as amethyst wafer mapping (AWM). The efficiency of this technique has been demonstrated by evaluation of ion-induced damage in implanted Si, as well as as-grown defects in HgCdTe (MCT) epilayers. The defect tagging or decoration capability of deuterium is largely material independent and applicable to a wide range of defect morphologies. A number of analytical techniques including ion channeling and etch pit density measurements were used to evaluate the AWM results.

  18. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  19. Toward defect guard-banding of EUV exposures by full chip optical wafer inspection of EUV mask defect adders

    NASA Astrophysics Data System (ADS)

    Halle, Scott D.; Meli, Luciana; Delancey, Robert; Vemareddy, Kaushik; Crispo, Gary; Bonam, Ravi; Burkhardt, Martin; Corliss, Daniel

    2015-03-01

    The detection of EUV mask adder defects has been investigated with an optical wafer defect inspection system employing a methodology termed Die-to-"golden" Virtual Reference Die (D2VRD). Both opaque and clear type mask absorber programmed defects were inspected and characterized over a range of defect sizes, down to (4x mask) 40 nm. The D2VRD inspection system was capable of identifying the corresponding wafer print defects down to the limit of the defect printability threshold at approximately 30 nm (1x wafer). The efficacy of the D2VRD scheme on full chip wafer inspection to suppress random process defects and identify real mask defects is demonstrated. Using defect repeater analysis and patch image classification of both the reference die and the scanned die enables the unambiguous identification of mask adder defects.

  20. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  1. Birth Defects Diagnosis

    MedlinePlus

    ... chromosomal disorder or heart defect in the baby. Second Trimester Screening Second trimester screening tests are completed between weeks 15 ... look for certain birth defects in the baby. Second trimester screening tests include a maternal serum screen ...

  2. Duralumin - Defects and Failures

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    It is proposed in this paper to identify some of the defects and failures in duralumin most frequently encountered by the aircraft industry with a view to indicate their importance. The defects and failures in duralumin may be classified into the following groups: 1) defects produced during manufacture; 2) defects produced during fabrication; 3) corrosion and erosion; and 4) fatigue failures. Only the first two will be covered in this report.

  3. [Detection of Hawthorn Fruit Defects Using Hyperspectral Imaging].

    PubMed

    Liu, De-hua; Zhang, Shu-juan; Wang, Bin; Yu, Ke-qiang; Zhao, Yan-ru; He, Yong

    2015-11-01

    feature of 86 Hawthorn could be recognized. Lastly, the detect precision of bruised, insect damage and two-defect samples is 95.65%, 86.67% and 100%, respectively. This investigation demonstrated that hyperspectral imaging technology could detect the defects of bruise, insect damage, calyx, and stem-end in hawthorn fruit in qualitative analysis and feature detection which provided a theoretical reference for the defects nondestructive detection of hawthorn fruit. PMID:26978929

  4. [Detection of Hawthorn Fruit Defects Using Hyperspectral Imaging].

    PubMed

    Liu, De-hua; Zhang, Shu-juan; Wang, Bin; Yu, Ke-qiang; Zhao, Yan-ru; He, Yong

    2015-11-01

    feature of 86 Hawthorn could be recognized. Lastly, the detect precision of bruised, insect damage and two-defect samples is 95.65%, 86.67% and 100%, respectively. This investigation demonstrated that hyperspectral imaging technology could detect the defects of bruise, insect damage, calyx, and stem-end in hawthorn fruit in qualitative analysis and feature detection which provided a theoretical reference for the defects nondestructive detection of hawthorn fruit.

  5. Facts about Birth Defects

    MedlinePlus

    ... Us Information For... Media Policy Makers Facts about Birth Defects Language: English Español (Spanish) Recommend on Facebook Tweet ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a baby ...

  6. Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects

    NASA Astrophysics Data System (ADS)

    Petersen, Dick; Howard, Carl; Sawalhi, Nader; Moazen Ahmadi, Alireza; Singh, Sarabjeet

    2015-01-01

    A method is presented for calculating and analyzing the quasi-static load distribution and varying stiffness of a radially loaded double row bearing with a raceway defect of varying depth, length, and surface roughness. The method is applied to ball bearings on gearbox and fan test rigs seeded with line or extended outer raceway defects. When balls pass through the defect and lose all or part of their load carrying capacity, the load is redistributed between the loaded balls. This includes balls positioned outside the defect such that good raceway sections are subjected to increased loading when a defect is present. The defective bearing stiffness varies periodically at the ball spacing, and only differs from the good bearing case when balls are positioned in the defect. In this instance, the stiffness decreases in the loaded direction and increases in the unloaded direction. For an extended spall, which always has one or more balls positioned in the defect, this results in an average stiffness over the ball spacing period that is lower in the loaded direction in comparison to both the line spall and good bearing cases. The variation in bearing stiffness due to the defect produces parametric excitations of the bearing assembly. The qualitative character of the vibration response correlates to the character of the stiffness variations. Rapid stiffness changes at a defect exit produce impulses. Slower stiffness variations due to large wavelength waviness features in an extended spall produce low frequency excitation which results in defect components in the velocity spectra. The contact forces fluctuate around the quasi-static loads on the balls, with rapid stiffness changes producing high magnitude impulsive force fluctuations. Furthermore, it is shown that analyzing the properties of the dynamic model linearized at the quasi-static solutions provides greater insight into the time-frequency characteristics of the vibration response. This is demonstrated by relating

  7. Autogeneous Friction Stir Weld Lack-of-Penetration Defect Detection and Sizing Using Directional Conductivity Measurements with MWM Eddy Current Sensor

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Zilberstei, Vladimir; Lawson, Ablode; Kinchen, David; Arbegast, William

    2000-01-01

    Al 2195-T8 plate specimens containing Friction Stir Welds (FSW), provided by Lockheed Martin, were inspected using directional conductivity measurements with the MWM sensor. Sensitivity to lack-of-penetration (LOP) defect size has been demonstrated. The feature used to determine defect size was the normalized longitudinal component of the MWM conductivity measurements. This directional conductivity component was insensitive to the presence of a discrete crack. This permitted correlation of MWM conductivity measurements with the LOP defect size as changes in conductivity were apparently associated with metallurgical features within the first 0.020 in. of the LOP defect zone. Transverse directional conductivity measurements also provided an indication of the presence of discrete cracks. Continued efforts are focussed on inspection of a larger set of welded panels and further refinement of LOP characterization tools.

  8. Structural defect induced peak splitting in gold-copper bimetallic nanorods during growth by single particle spectroscopy.

    PubMed

    Thota, Sravan; Chen, Shutang; Zhou, Yadong; Zhang, Yong; Zou, Shengli; Zhao, Jing

    2015-09-21

    A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects. PMID:26268683

  9. Optical manipulation and imaging of assemblies of topological defects and colloids in liquid crystals

    NASA Astrophysics Data System (ADS)

    Trivedi, Rahul P.

    Liquid Crystals (LCs) have proven to be important for electro-optic device applications such as displays, spatial light modulators, non-mechanical beam-steerers, etc. Owing to their unique mechanical, electrical, and optical properties, they are also being explored for wide array of advanced technological applications such as biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators, etc. The thesis explores LC media from the standpoint of controlling their elastic and optical properties by generating and manipulating assemblies of defects and colloidal particles. To achieve the goal of optically manipulating these configurations comprising defects and particles at microscale with an unprecedented control, and then to visualize the resultant molecular director patterns, requires development of powerful optical system. The thesis discusses design and implementation of such an integrated system capable of 3D holographic optical manipulation and multi-modal 3D imaging (in nonlinear optical modes like multiphoton fluorescence, coherent anti-Stokes Raman scattering, etc.) and how they are used to extensively study a vast number of LC based systems. Understanding of LCs and topological defects go hand in hand. Appreciation of defects leads to their precise control, which in turn can lead to applications. The thesis describes discovery of optically generated stable, quasiparticle-like, localized defect structures in a LC cell, that we call "Torons". Torons enable twist of molecules in three dimensions and resemble both Skyrmion-like and Hopf fibration features. Under different conditions of generation, we optically realize an intriguing variety of novel solitonic defect structures comprising rather complicated configurations of point and line topological defects. Introducing colloidal particles to LC systems imparts to these hybrid material system a fascinating degree of richness of properties on account of colloidal assemblies supported by networks

  10. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  11. Surface-orientation-dependent distribution of subsurface cation-exchange defects in olivine-phosphate nanocrystals.

    PubMed

    Chung, Sung-Yoon; Choi, Si-Young; Kim, Tae-Hwan; Lee, Seongsu

    2015-01-27

    Atomic-scale exchange between two different cations of similar size in crystalline oxides is one of the major types of point defects when multiple cations in oxygen interstitials are arrayed in an ordered manner. Although a number of studies have been performed on a variety of Li-intercalation olivine phosphates to determine the distribution of exchange defects in bulk, understanding of the thermodynamic stability of the defects in subsurface regions and its dependency on the crystallographic orientation at the surface has remained elusive. Through a combination of small-angle neutron scattering, atomic-scale direct probing with scanning transmission electron microscopy, and theoretical ab initio calculations, we directly demonstrate that the antisite exchange defects are distributed in a highly anisotropic manner near the surfaces of LiFePO4 crystals. Moreover, a substantial amount of cation exchanges between Li and Fe sites is identified as an energetically favorable configuration in some surface regions, showing excellent agreement with the calculation results of negative defect formation energies. The findings in this study provide insight into developing better ways to avoid degradation of lithium mobility through the surface as well as scientifically notable features regarding the distribution of exchange defects in olivine phosphates.

  12. Design and implementation of an illumination device for optical inspection of defects in glass substrates

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Fu; Chen, Bo-Cheng; Chen, Chih-Wen; Weng, Rui-Cian; Chang, Ming

    2015-02-01

    A compact and cost-effective illumination platform was developed for a versatile optical inspection system to improve the detection accuracy of defects in glass substrates. The illumination device was developed in two phases, initially to demonstrate its feasibility for surface defect inspection in glass based on dark field images, and subsequently to optimize the design so it can provide multi-directional lighting and increase light scattering from defects on the substrate. Three LED arrays were installed above the substrate carrier and projected at an angle onto the glass substrate for the phase-I illumination device. Surface defects on the glass substrate were successfully reconstructed from images acquired by a line scanned CCD camera, but non-uniformity of defects intensity distribution on images was revealed. To optimize the illumination, two sets of tightly arrayed 3-watt LEDs were symmetrically installed at the entrance slit of the lens-camera module for phase-II illumination device. The inspection data were able to show clearer images of surface defects. The design issues such as poor contrast and sharpness of acquired images due to low scattering efficiency and non-uniform illumination were addressed as well. PCBs for the installation of the LED arrays and their power supply were also optimized. These were manufactured on aluminum substrate to help regulate heating of the inspection platform. This feature makes the system more compact, operable at low power, and easy for modification.

  13. Postdevelopment defect evaluation

    NASA Astrophysics Data System (ADS)

    Miyahara, Osamu; Kiba, Yukio; Ono, Yuko

    2001-08-01

    Reduction of defects after development is a critical issue in photolithography. A special category of post development defects is the satellite defect which is located in large exposed areas generally in proximity to large unexposed regions of photoresist. We have investigated the formation of this defect type on ESCAP and ACETAL DUV resists with and without underlying organic BARCs, In this paper, we will present AFM and elemental analysis data to determine the origin of the satellite defect. Imaging was done on a full-field Nikon 248nm stepper and resist processing was completed on a TEL CLEAN TRACK ACT 8 track. Defect inspection and review were performed on a KLA-Tencor and Hitachi SEM respectively. Results indicate that the satellite defect is generated on both BARC and resist films and defect counts are dependent on the dark erosion. Elemental analysis indicates that the defects are composed of sulfur and nitrogen compounds. We suspect that the defect is formed as a result of a reaction between PAG, quencher and TMAH. This defect type is removed after a DIW re-rinse.

  14. Characterization of rat calvarial nonunion defects.

    PubMed

    Schmitz, J P; Schwartz, Z; Hollinger, J O; Boyan, B D

    1990-01-01

    This study examined the healing of nonunions by describing the histology and ultrastructural appearance of craniotomy defects as a model. Bone defects (3, 4 and 8 mm) were created in the calvaria of adult rats. Central and peripheral specimens of 8-mm defects were retrieved at 1, 3, 7, 10, 14, 21, 28 and 42 days and examined using both light and transmission electron microscopy. Specimens from the 3- and 4-mm defects were retrieved at 28 days and examined using light microscopy. In all sizes of defects, bony repair was consistently localized to the dural side of the defect. The 3- and 4 mm defects demonstrated the greatest degree of osseous bridging and evidence of normal osseous repair throughout the defect. The 8-mm defects repaired in general with the formation of nonunions which contained a small amount of bone at the periphery and fibrous connective tissue. Bone formation was evident at 10 days in the peripheral regions of the 8-mm defects and exhibited bony peninsulas with normal primary calcification fronts. Matrix vesicles containing hydroxyapatite-like crystals were present. In contrast, the central regions of the 8-mm defects were characterized by several islands of cartilage-like cells which stained metachromatically with toluidine blue. Transmission electron microscopy of this region at 14 days demonstrated a dense, collagenous extracellular matrix with matrix vesicles infiltrating the collagen bundles. There was no evidence of crystal formation in the matrix vesicles nor of calcification in the collagenous matrix. At 21 days, both the central and peripheral regions of the 8-mm calvarial nonunions were characterized by dense fibrous connective tissue repair and inactive fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Structural defect induced peak splitting in gold-copper bimetallic nanorods during growth by single particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Thota, Sravan; Chen, Shutang; Zhou, Yadong; Zhang, Yong; Zou, Shengli; Zhao, Jing

    2015-08-01

    A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects.A single particle level study of bimetallic nanoparticle growth provides valuable information that is usually hidden in ensemble measurements, helping to improve the understanding of a reaction mechanism and overcome the synthetic challenges. In this study, we use single particle spectroscopy to monitor the changes in the scattering spectra of Au-Cu alloy nanorods during growth. We found that the unique features of the single particle scattering spectra were due to atomic level geometric defects in the nanorods. Electrodynamics simulations have demonstrated that small structural defects of a few atomic layers split the scattering peaks, giving rise to higher order modes, which do not exist in defect-free rods of similar geometry. The study shows that single particle scattering technique is as sensitive as high-resolution electron microscopy in revealing atomic level structural defects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03979g

  16. Higher-order mass defect analysis for mass spectra of complex organic mixtures.

    PubMed

    Roach, Patrick J; Laskin, Julia; Laskin, Alexander

    2011-06-15

    Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH(2), H(2), O, CH(2)O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher-order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulas that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a deisotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks. PMID:21526851

  17. EUV actinic brightfield mask microscopy for predicting printed defect images

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth; Benk, Markus P.; Wojdyla, Antoine; Verduijn, Erik; Wood, Obert R.; Mangat, Pawitter

    2015-10-01

    Improving our collective understanding of extreme ultraviolet (EUV) photomask defects and the imaging properties of available defect imaging tools is essential for improving EUV mask defectivity, defect repair and mitigation, and for high-level strategic decision-making. In this work, we perform a qualitative comparison of twenty-five defects imaged with mask scanning electron microscopy (SEM), EUV actinic mask imaging, and wafer SEM imaging. All but two of the defect locations were first identified by non-actinic mask blank inspection, prior to patterning. The others were identified as repeating defects on the wafer. We find that actinic defect imaging is predictive of the wafer prints, with small-scale features clearly replicated. While some mask defect SEM images match the wafer prints, others print with a larger outline indicating the presence of sub-surface disruptions hidden from the SEM's view. Fourteen other defects were subjected to an aerial image phase measurement method called Fourier Ptychography (FP). Although phase shifts were observed in the larger defects, the smaller defects in the dataset showed no significant phase shifting. We attribute this discrepancy to non-actinic mask blank inspection's limited ability to detect small phase defects under normal operating conditions.

  18. Eggshell defects detection based on color processing

    NASA Astrophysics Data System (ADS)

    Garcia-Alegre, Maria C.; Ribeiro, Angela; Guinea, Domingo; Cristobal, Gabriel

    2000-03-01

    The automatic classification of defective eggs constitutes a fundamental issue at the poultry industry for both economical and sanitary reasons. The early separation of eggs with spots and cracks is a relevant task as the stains can leak while progressing on the conveyor-belts, degrading all the mechanical parts. Present work is focused on the implementation of an artificial vision system for detecting in real time defective eggs at the poultry farm. First step of the algorithmic process is devoted to the detection of the egg shape to fix the region of interest. A color processing is then performed only on the eggshell to obtain an image segmentation that allows the discrimination of defective eggs from clean ones in critic time. The results are presented to demonstrate the validity of the proposed visual process on a wide sample of both defective and non-defective eggs.

  19. Defect and functionalized graphene for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Taluja, Yogita; SanthiBhushan, Boddepalli; Yadav, Shekhar; Srivastava, Anurag

    2016-10-01

    The structural, electronic and transport properties of defected (single vacancy and double vacancy) and nitrogen functionalized graphene sheets have been analysed within the framework of Density Functional Theory (DFT) and non-equilibrium Green's function (NEGF) formalism for their possible application as supercapacitor electrodes. Formation energy calculations reveal the increasing stability of defect with nitrogen functional doping concentration at its edges. The extracted electronic properties reveal the presence of acceptor-type energy levels at Fermi level in the defected and functionalized sheets. Transport studies portray remarkable increase in electrical conductivity of graphene sheet after the formation of single vacancy defect and its functionalization. Especially, the Single Vacancy Trimerized pyridine-type defect (SVT) configuration has demonstrated superior thermodynamic stability as well as electrical conductance in comparison to all the other configurations.

  20. Dealer model site demonstrations

    SciTech Connect

    Mann, H.C.

    1992-08-01

    Model site demonstrations are joint efforts between TVA and cooperating organizations to improve the industry's environmental stewardship. Program objectives are to develop, demonstrate, and transfer technologies and management practices to help retail fertilizer/agricultural chemical dealers minimize adverse environmental impacts. The model site demonstrations serve as 'real life' laboratories for researchers, technologists, educators and participants. The retail dealership is treated as a complete unit. The program recognizes the need to: Develop information and experience to guide others; Test numerous methods of containment, materials of construction, management practices, and monitoring techniques; Strengthen and highlight industry's commitment to envirorunental stewardship; Identify future research needs; and Provide a catalyst for cooperation across a broad spectrum of groups and organizations to identify problems and develop solutions appropriate for fertilizer and agrichemical dealers. Emphasis is on transferring current technology and developing and introducing needed new technologies. Field testing and applied research are encouraged at demonstration sites. One of the key concepts is to bridge the gap between research findings and their practical application and evaluation in field settings. Primary audiences include fertilizer dealers and professional workers in agriculture, the fertilizer industry, the environmental arena, and related institutions across the nation. Experiences at participating dealer sites are shared through organized tours, open houses, news articles and publications. Sixteen sites have been selected for demonstrations, and at least four more are planned. TVA provides assistance in engineering, design and educational forums. Dealers pay for installation of needed containment and related features.

  1. Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997-2009.

    PubMed

    Michalski, Adrian M; Richardson, Sandra D; Browne, Marilyn L; Carmichael, Suzan L; Canfield, Mark A; VanZutphen, Alissa R; Anderka, Marlene T; Marshall, Elizabeth G; Druschel, Charlotte M

    2015-05-01

    A small number of population-based studies have examined sex differences among infants with birth defects. This study presents estimates of sex ratio for both isolated cases and those with multiple congenital anomalies, as well as by race/ethnicity. Male-female sex ratios and their 95% confidence intervals were calculated for 25,952 clinically reviewed case infants included in the National Birth Defects Prevention Study (1997-2009), a large population-based case-control study of birth defects. The highest elevations in sex ratios (i.e., male preponderance) among isolated non-cardiac defects were for craniosynostosis (2.12), cleft lip with cleft palate (2.01), and cleft lip without cleft palate (1.78); the lowest sex ratios (female preponderance) were for choanal atresia (0.45), cloacal exstrophy (0.46), and holoprosencephaly (0.64). Among isolated cardiac defects, the highest sex ratios were for aortic stenosis (2.88), coarctation of the aorta (2.51), and d-transposition of the great arteries (2.34); the lowest were multiple ventricular septal defects (0.52), truncus arteriosus (0.63), and heterotaxia with congenital heart defect (0.64). Differences were observed by race/ethnicity for some but not for most types of birth defects. The sex differences we observed for specific defects, between those with isolated versus multiple defects, as well as by race/ethnicity, demonstrate patterns that may suggest etiology and improve classification.

  2. Sex ratios among infants with birth defects, National Birth Defects Prevention Study, 1997-2009.

    PubMed

    Michalski, Adrian M; Richardson, Sandra D; Browne, Marilyn L; Carmichael, Suzan L; Canfield, Mark A; VanZutphen, Alissa R; Anderka, Marlene T; Marshall, Elizabeth G; Druschel, Charlotte M

    2015-05-01

    A small number of population-based studies have examined sex differences among infants with birth defects. This study presents estimates of sex ratio for both isolated cases and those with multiple congenital anomalies, as well as by race/ethnicity. Male-female sex ratios and their 95% confidence intervals were calculated for 25,952 clinically reviewed case infants included in the National Birth Defects Prevention Study (1997-2009), a large population-based case-control study of birth defects. The highest elevations in sex ratios (i.e., male preponderance) among isolated non-cardiac defects were for craniosynostosis (2.12), cleft lip with cleft palate (2.01), and cleft lip without cleft palate (1.78); the lowest sex ratios (female preponderance) were for choanal atresia (0.45), cloacal exstrophy (0.46), and holoprosencephaly (0.64). Among isolated cardiac defects, the highest sex ratios were for aortic stenosis (2.88), coarctation of the aorta (2.51), and d-transposition of the great arteries (2.34); the lowest were multiple ventricular septal defects (0.52), truncus arteriosus (0.63), and heterotaxia with congenital heart defect (0.64). Differences were observed by race/ethnicity for some but not for most types of birth defects. The sex differences we observed for specific defects, between those with isolated versus multiple defects, as well as by race/ethnicity, demonstrate patterns that may suggest etiology and improve classification. PMID:25711982

  3. Behavior of chemically amplified resist defects in TMAH solution: III

    NASA Astrophysics Data System (ADS)

    Ono, Yuko; Shimoaoki, Takeshi; Naito, Ryoichiro; Kitano, Junichi

    2004-05-01

    As the minimum feature size of electronic devices shrinks to less than 0.25 μm, it is critically important that we reduce the defects that occur in lithography processes. Moreover, as the defects to be controlled become ever smaller, this makes them increasingly difficult to detect by conventional fault detection equipment. In order to detect these minute defects in the context of shrinking device geometries, it is essential that we develop a clear understanding of the behavior of micro defects in developer. In principle, there are three ways in which these defects might be dealt with: (1) defects can be prevented from occurring in the first place, (2) defects can be prevented from adhering to the device, or (3) defects can be eliminated after they occur. Our recent work has mainly been concerned with the first and most effective approach of preventing defects from occurring in the first place, and this motivated the present study to investigate the mechanisms by which defects occur. We believe that defects occur in chemically amplified (CA) resists that are insufficiently unprotected at boundary regions between unexposed and exposed areas or in unexposed areas, so that the de-protection reaction in the resist suns to different degrees of completion due to varying exposure doses. In this study we investigate the number of defects in various developers, and determine the size distribution of the defects. Based on analysis of the behavior of defects from their size distribution in develop we conclude that: (1) the size of defects increases when the exposure dose is reduced by appropriate Eops, (2) defects originate in the boundary area between unexposed and exposed areas, and (3) a portion of CA resist polymer that is insufficiently deprotected is dispersed in the developer, coalesces and is deposited in a form that is not very soluble, and is manifested as relatively large particle defects.

  4. Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    SciTech Connect

    Roqan, I. S. Venkatesh, S.; Zhang, Z.; Hussain, S.; Bantounas, I.; Flemban, T. H.; Schwingenschlogl, U.; Franklin, J. B.; Zou, B.; Petrov, P. K.; Ryan, M. P.; Alford, N. M.; Lee, J.-S.

    2015-02-21

    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gd{sub x}Zn{sub 1−x}O thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μ{sub B} per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

  5. Surface defect inspection for power inductor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Li; Wu, Wen-Hong; Chen, Chun-Jen; Huang, Hung-Ji

    2013-06-01

    The core of the power inductor is made by powder metallurgy. By its nature, the powder-formed part has inherent nonuniform porosity pattern and parallel tool marks on the metal surface. In the past, the surface inspection of core is usually performed by using human eyes. However, the larger uncertainty of inspection will be induced while observing the defect image using human eyes. In the automated optical inspection process, the feature of defect is not easily separated from the image background by using the simple binarization method. This study develops an image processing method and employs a uniform diffuse illumination to build up a surface defect inspection system. Experiment result shows the distinguish rate is 95.5%, therefore it is clear that this system can successfully detects a set defect of the core of inductor.

  6. Robust defect segmentation in woven fabrics

    SciTech Connect

    Sari-Sarraf, H.; Goddard, J.S. Jr.

    1997-12-01

    This paper describes a robust segmentation algorithm for the detection and localization of woven fabric defects. The essence of the presented segmentation algorithm is the localization of those events (i.e., defects) in the input images that disrupt the global homogeneity of the background texture. To this end, preprocessing modules, based on the wavelet transform and edge fusion, are employed with the objective of attenuating the background texture and accentuating the defects. Then, texture features are utilized to measure the global homogeneity of the output images. If these images are deemed to be globally nonhomogeneous (i.e., defects are present), a local roughness measure is used to localize the defects. The utility of this algorithm can be extended beyond the specific application in this work, that is, defect segmentation in woven fabrics. Indeed, in a general sense, this algorithm can be used to detect and to localize anomalies that reside in images characterized by ordered texture. The efficacy of this algorithm has been tested thoroughly under realistic conditions and as a part of an on-line fabric inspection system. Using over 3700 images of fabrics, containing 26 different types of defects, the overall detection rate of this approach was 89% with a localization accuracy of less than 0.2 inches and a false alarm rate of 2.5%.

  7. High resolution defect inspection of step and flash imprint lithography for 32 nm half-pitch patterning

    NASA Astrophysics Data System (ADS)

    McMackin, I.; Perez, J.; Selinidis, K.; Maltabes, J.; Resnick, D.; Sreenivassan, S. V.

    2008-03-01

    Imprint lithography has been shown to be an effective method for the replication of nanometer-scale structures from an imprint mask (template) or mold. Step and Flash Imprint Lithography (S-FIL®) is unique in its ability to address both resolution and alignment. Recently overlay across a 200 mm wafer of less than 20nm, 3σ has been demonstrated. Current S-FIL resolution and alignment performance motivates the consideration of nano-imprint lithography as a Next Generation Lithography (NGL) solution for IC production. During the S-FIL process, a transferable image, an imprint, is produced by mechanically molding a liquid UV-curable resist on a wafer. Acceptance of imprint lithography for CMOS manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This report summarizes the result of defect inspections of wafers patterned using S-FIL. Wafer inspections were performed with KLA Tencor- 2132 (KT-2132) and KLA Tencor eS23 (KT-eS32) automated patterned wafer inspection tools. Imprint specific defectivity was shown to be <=3 cm -2 with some wafers having defectivity of less than 1 cm -2 and many fields having 0 imprint specific defects, as measured with the KT-2132. KT eS32 inspection of 32 nm half pitch features indicated that the random defectivity resulting from the imprint process was low.

  8. Fabric defects identification based on on-line 3D measurement

    NASA Astrophysics Data System (ADS)

    Song, Limei; An, Hongwei; Dong, Xiaoxiao; Zhang, Chunbo

    2011-08-01

    This paper using on-line identification of three dimensions to solve some difficult problems of two dimensional defects identification. Different defects have different 3D structural features, thus to identify and classify defects based on 3D testing data. Compared with fabric defects processed by two-dimensional image, 3D identification can more exclude cloth wrinkles and the flying thick silk floss. So the 3D identification is of high accuracy and reliability to identify fabric defects.

  9. Defects in Metal-Organic Frameworks: Challenge or Opportunity?

    PubMed

    Sholl, David S; Lively, Ryan P

    2015-09-01

    Metal-organic framework (MOF) materials are nanoporous materials whose crystalline character has made them attractive targets for synthesis of new materials and potential use in a diverse set of applications. The vast majority of studies of MOFs envision these materials as having ideal crystal structures. This Perspective gives an overview of the current understanding of defects in MOFs. Compared to related materials such as zeolites, the ability to detect and control defects in MOFs is nascent. Nevertheless, it is likely that defects will play a vital role in a number of contexts where MOFs are of widespread interest, so advancing our understanding of these structural features will be important in coming years. Potential origins of point defects, plane defects, and surface defects are discussed. The difficulty of defect detection in metal-organic frameworks is discussed and useful paths for future work are provided. PMID:26268796

  10. Neural tube defects.

    PubMed

    Hasenau, Susan M; Covington, Chandice

    2002-01-01

    The purpose of this article is to describe the etiology of neural tube defects (NTDs) and the role of folic acid in their prevention. NTDs are all too common and devastating outcomes of many pregnancies. The brain and spinal cord malformations that develop during gestation in the NTD-affected pregnancies are expressed through various anomalies. Estimates by the Centers for Disease Control and Prevention (CDC) for 1995 reported over 4,000 occurrences of NTDs in the United States alone. Research has demonstrated that the preconception and prenatal addition of folic acid can greatly reduce the incidence of NTDs. Recent advances in genetic studies have increased awareness of the important role of folic acid in preventing NTDs. Identification of a genetic marker will allow for specific treatment of those women at high risk for NTDs. Despite recommendations from the CDC for folic acid supplementation, there is insufficient awareness of these guidelines by both the public and by healthcare providers. A National campaign to promote awareness of the role of folic acid in the prevention of NTDs has been initiated, and has been successful at reducing NTDs's by 19%. Nurses can be instrumental in the dissemination of information not only to women of childbearing age, but also to other nurses and physicians. PMID:11984276

  11. Micrograph Defect Indentifier

    SciTech Connect

    None, None

    2012-10-11

    Micrograph image defect identifier is a computer code written in MATLAB to automatically detect defects on scanned image of thin film membrane samples employing three methods: global threshold, line detection and k-means segmentation. The results are segmented binary images of thin film with defects identified. Defect area fractions are also calculated. The users may use default functional variables calculated by program, or input preferred value from user’s experience. This will empower the user to processing the image with more flexibility. MDI was designed to identify defects of thin films fabricated. It is also used in phase identification, porosity study on SEM, OM, TEM images. Different methods were applied in this software package: global threshold, line detection and k-means segmentation.

  12. Micrograph Defect Indentifier

    2012-10-11

    Micrograph image defect identifier is a computer code written in MATLAB to automatically detect defects on scanned image of thin film membrane samples employing three methods: global threshold, line detection and k-means segmentation. The results are segmented binary images of thin film with defects identified. Defect area fractions are also calculated. The users may use default functional variables calculated by program, or input preferred value from user’s experience. This will empower the user to processingmore » the image with more flexibility. MDI was designed to identify defects of thin films fabricated. It is also used in phase identification, porosity study on SEM, OM, TEM images. Different methods were applied in this software package: global threshold, line detection and k-means segmentation.« less

  13. Defect reduction for semiconductor memory applications using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Luo, Kang; Lu, Xiaoming; Fletcher, Brian; Liu, Weijun; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2012-07-01

    Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high-end memory devices. Defects occurring during imprinting can generally be broken into two categories; random defects and repeating defects. Examples of random defects include fluid phase imprint defects, such as bubbles, and solid phase imprint defects, such as line collapse. Examples of repeater defects include mask fabrication defects and particle induced defects. Previous studies indicated that soft particles cause nonrepeating defects. Hard particles, on the other hand, can cause either permanent resist plugging or mask damage. In a previous study, two specific defect types were examined; random nonfill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. We attempted to identify the different types of imprint defect types using a mask with line/space patterns at dimensions as small as 26 nm. An Imprio 500 twenty-wafer per hour development tool was used to study the various defect types. The imprint defect density was reduced nearly four orders of magnitude, down to ˜4/cm2 in a period of two years following the availability of low defect imprint masks at 26-nm half-pitch. This reduction was achieved by identifying the root cause of various defects and then taking the appropriate corrective action.

  14. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  15. Surface defect detection method for glass substrate using improved Otsu segmentation.

    PubMed

    He, Zhiyong; Sun, Lining

    2015-11-20

    The image quality degradation caused by noise makes the automatic optical inspection of surface defects difficult. This paper develops a method based on thresholding segmentation to detect the surface defects in a glass substrate. Traditional Otsu segmentation has poor anti-noise ability. In order to improve the traditional Otsu method, a straight-line intercept histogram is established directly from the two-dimensional information of an image, and then Otsu criteria can be used to find the best intercept threshold from the one-dimensional histogram established. The improved Otsu algorithm not only is simpler than the two-dimensional Otsu methods, but also has a robust anti-noise ability. In the surface defect detection, the contrast feature between object and background is simply extracted after the segmentation based on the improved Otsu method, and surface defects can be decided by the threshold of the contrast feature. The data used in the experiments include the surface images acquired by a line-scan CCD camera. The experimental results demonstrate that the proposed method is effective and computationally efficient.

  16. 10 Things You Need to Know about Birth Defects

    MedlinePlus

    ... Things You Need To Know About Birth Defects Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  17. Computational mask defect review for contamination and haze inspections

    NASA Astrophysics Data System (ADS)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh

    2013-09-01

    the mask manufacturing process. The latter characterization qualifies real defect signatures, such as pin-dots or pin-holes, extrusions or intrusions, assist-feature or dummy-fill defects, writeerrors or un-repairable defects, chrome-on-shifter or missing chrome-from-shifter defects, particles, etc., and also false defect signatures, such as those due to inspection tool registration or image alignment, interlace artifacts, CCD camera artifacts, optical shimmer, focus errors, etc. Such qualitative characterization of defects has enabled better inspection tool SPC and process defect control in the mask shop. In this paper, the same computational approach to defect review has been extended to contamination style defect inspections, including Die-to-Die reflected, and non Die-to-Die or single-die inspections. In addition to the computational methods used for transmitted aerial images, defects detected in die-to-die reflected light mode are analyzed based on special defect and background coloring in reflected-light, and other characteristics to determine the exact type and severity. For those detected in the non Die-to-Die mode, only defect images are available from the inspection tool. Without a reference, i.e., defect-free image, it is often difficult to determine the true nature or impact of the defect in question. Using a combination of inspection-tool modeling and image inversion techniques, Luminescent's LAIPHTM system generates an accurate reference image, and then proceeds with automated defect characterization as if the images were simply from a die-to-die inspection. The disposition of contamination style defects this way, filters out >90% of false and nuisance defects that otherwise would have been manually reviewed or measured on AIMSTM. Such computational defect review, unifying defect disposition across all available inspection modes, has been imperative to ensuring no yield losses due to errors in operator defect classification on one hand, and on the other

  18. Defect Chemistry of Nanocarbon

    NASA Astrophysics Data System (ADS)

    Wang, Yuhuang

    2015-03-01

    Defects can rule the properties of a crystal. This effect is particularly intriguing in atom-thick materials such as single-walled carbon nanotubes and graphene, where electrons, excitons, phonons, and spin may strongly couple at the defect sites due to reduced dimensionality. In this talk, we will discuss our recent progress in fundamental understanding and molecular control of sp3 defects in sp2 carbon lattices, and their applications. An sp3 defect (tetrahedral bonding, diamond-like) is created by covalently attaching a functional group to the sp2 carbon lattice (trigonal planar, honeycomb-like) of a carbon nanotube or graphene. The beauty of this type of defect is its well-defined structure and chemical tunability at the molecular level. Our experimental results have unraveled a series of intriguing and surprising roles of defects. Specific examples will be given to illustrate how defects may be used to drive reaction propagation on sp2 carbon lattices, brighten carbon nanotube photoluminescence, and create selective chemical sensors.

  19. Surface defects and symmetries

    NASA Astrophysics Data System (ADS)

    Fuchs, Jürgen; Schweigert, Christoph

    2015-04-01

    In quantum field theory, defects of various codimensions are natural ingredients and carry a lot of interesting information. In this contribution we concentrate on topological quantum field theories in three dimensions, with a particular focus on Dijkgraaf-Witten theories with abelian gauge group. Surface defects in Dijkgraaf-Witten theories have applications in solid state physics, topological quantum computing and conformal field theory. We explain that symmetries in these topological field theories are naturally defined in terms of invertible topological surface defects and are thus Brauer-Picard groups.

  20. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  1. Atrial Septal Defect (For Teens)

    MedlinePlus

    ... I Help a Friend Who Cuts? Atrial Septal Defect KidsHealth > For Teens > Atrial Septal Defect Print A ... Care of Yourself What Is an Atrial Septal Defect? Having a doctor listen to your heart is ...

  2. Computational defect review for actinic mask inspections

    NASA Astrophysics Data System (ADS)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  3. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; Benk, Markus P.; Goldberg, Kenneth A.; Neureuther, Andrew R.; Naulleau, Patrick P.; Waller, Laura

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  4. Phase measurements of EUV mask defects

    SciTech Connect

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; Benk, Markus P.; Goldberg, Kenneth A.; Neureuther, Andrew R.; Naulleau, Patrick P.; Waller, Laura

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than the conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.

  5. Charged local defects in extended systems

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2000-03-01

    The conventional approach to treating charged defects in extended systems in first principles calculations is via the supercell approximation using a neutralizing jellium background charge. I explicitly demonstrate shortcomings of this standard appoach and show that the resulting errors in the electrostatic potential energy surface are comparable to band gaps energies, for supercell sizes typically used in defect calculations. I present an alternate scheme, generalized from the local moment counter-charge method [P.A. Schultz, Phys. Rev. B 60, 1551 (1999)], that gives the correct electrostatic potential in the vicinity of a defect, via a mixed boundary condition approach. As examples, I present results of first principles calculations for charged defects in extended systems.

  6. Modeling of defect formation in silicon carbide during PVT growth

    NASA Astrophysics Data System (ADS)

    Drachev, Roman Victorovich

    2002-01-01

    The improvement of PVT grown SiC structural quality is crucial for the wide commercialization of SiC devices that feature superior characteristics for power conditioning and control. This is why, this dissertation is devoted to investigation and development of comprehensive models that can help to explain, understand and, then, suppress (eliminate) formation of various defects in SiC during PVT growth. The dissertation consists of six chapters. The first chapter is introductory. The second chapter considers in detail the general principles and physical bases of the SiC PVT growth technique along with the temperature dependence of pressure, composition and stoichiometry of the SiC gaseous phase. Questions related to the diffusive mass transport in the SiC growth cell are also discussed. The growth velocity as a function of the mass transport rate, the heat balance at the surface of crystallization and the growth front-crystal backside temperature difference is analyzed. Also the graphitization processes and instability of the sublimation temperature in the source material region are addressed. Chapter number three concerns generation of silicon and carbon second phase precipitates at the front of SiC crystallization. The comprehensive models concerning these phenomena are developed. The fourth chapter considers defect formation in SiC caused by the presence of carbon and/or silicon second phase particles at the growth front. Generation mechanisms of such structural defects as heterogeneous inclusions, point and planar defects, and filamentary voids are discussed in detail. Chapter number five deals with the defects caused by thermal stresses in the growing boule of SiC. Analytical estimations of the axially symmetric temperature field distribution and shear stress radial distribution in plane strain approximation are employed in order to estimate the extent to which such phenomena cause the generation of dislocations and micropipe formation in the growing ingot. The

  7. Toward defect-free fabrication of extreme ultraviolet photomasks

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rankin, Jed H.; Lawliss, Mark; Badger, Karen D.; Turley, Christina

    2016-04-01

    Defect-free fabrication of extreme ultraviolet (EUV) masks relies on the appropriate detection of native defects and subsequent strategies for their elimination. Commercial unavailability of actinic mask-blank inspection systems motivates the identification of an optical inspection methodology most suitable for finding relevant EUV blank defects. Studies showed that 193-nm wavelength inspection found the greatest number of printable defects as compared with rival higher-wavelength systems, establishing deep ultraviolet inspections as the blank defectivity baseline for subsequent mitigation strategies. Next, defect avoidance via pattern shifting was explored using representative 7-nm node metal/contact layer designs and 193-nm mask-blank inspection results. It was found that a significant percentage of native defects could be avoided only when the design was limited to active patterns (i.e., layouts without dummy fill). Total pattern-defect overlap remained ≤5 when metal layer blanks were chosen from the top 35% least defective substrates, while the majority of blanks remained suitable for contacts layers due to a lower active pattern density. Finally, nanomachining was used to address remaining native/multilayer defects. Native catastrophic defects were shown to recover 40% to 70% of target critical dimension after nanomachining, demonstrating the enormous potential for compensating multilayer defects.

  8. Anatomic uterine defects.

    PubMed

    Patton, P E

    1994-09-01

    Congenital or acquired uterine defects remain important considerations in the investigation of recurrent pregnancy loss. When repeated first or second trimester losses, preterm delivery, or abnormal fetal presentations are documented, the suspicion of a structural uterine abnormality should be high. The diagnosis of uterine defects is no longer elusive. The combination of radiologic imaging techniques, hysteroscopy, and laparoscopy enables an accurate diagnosis in nearly every case. The optimal treatment for uterine malformations is still a matter of considerable controversy. Therefore, when a uterine defect is diagnosed, tough clinical decisions must be made. When alternate causes of pregnancy loss are excluded, pregnancy potential will depend primarily on the specific type of uterine anomaly that is detected. It is important to recognize that not all uterine defects are amenable to therapy, but in carefully selected patients, reparative surgery may be rewarding.

  9. Birth defects monitoring

    SciTech Connect

    Klingberg, M.A.; Papier, C.M.; Hart, J.

    1983-01-01

    Population monitoring of birth defects provides a means for detecting relative changes in their frequency. Many varied systems have been developed throughout the world since the thalidomide tragedy of the early 1960s. Although it is difficult to pinpoint specific teratogenic agents based on rises in rates of a particular defect or a constellation of defects, monitoring systems can provide clues for hypothesis testing in epidemiological investigations. International coordination of efforts in this area resulted in the founding of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) in 1974. In this paper we will describe the functions and basic requirements of monitoring systems in general, and look at the development and activities of the ICBDMS. A review of known and suspected environmental teratogenic agents (eg, chemical, habitual, biological, physical, and nutritional) is also presented.

  10. Birth Defects (For Parents)

    MedlinePlus

    ... Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & ... defects. Clefting can be surgically repaired after birth. Cerebral palsy usually isn't found until weeks to months ...

  11. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  12. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs when ...

  13. Defect Detection in Correlated Noise

    NASA Astrophysics Data System (ADS)

    Dogandžić, Aleksandar; Eua-Anant, Nawanat

    2004-02-01

    We present methods for detecting NDE defect signals in correlated noise having unknown covariance. The proposed detectors are derived using the statistical theory of generalized likelihood ratio (GLR) tests and multivariate analysis of variance (MANOVA). We consider both real and complex data models. To allow accurate estimation of the noise covariance, we incorporate secondary data containing only noise into detector design. Probability distributions of the GLR test statistics are derived under the null hypothesis, i.e. assuming that the signal is absent, and used for detector design. We apply the proposed methods to simulated and experimental data and demonstrate their superior performance compared with the detectors that neglect noise correlation.

  14. Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Tian, GuiYun; Chen, Dixiang; Tang, Ying; Zhang, Hong

    2013-09-01

    This Letter verified eddy current pulse phase thermography through numerical and experimental studies. During the numerical studies, two characteristic features, blind frequency and min phase, were extracted from differential phase spectra, and their monotonic relationships with defects' depth under different heating time were compared. According to the numerical studies, 100 ms was employed as heating time during the improved experimental studies. The experimental results agreed with the numerical results. Based on their linear relationship with defects' depths, both features can be used to measure the defect's depth.

  15. Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control

    NASA Astrophysics Data System (ADS)

    Johns, Paul M.; Baciak, James E.; Nino, Juan C.

    2016-08-01

    Some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. We show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtained from high quality Sb:BiI3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. This work demonstrates that BiI3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.

  16. Nonlinear features for product inspection

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1999-03-01

    Classification of real-time X-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work, the MRDF is applied to standard features (rather than iconic data). The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC (receiver operating characteristic) data.

  17. Demonstrational Features of the Tuskegee Institute Retraining Project, Volume I.

    ERIC Educational Resources Information Center

    Tuskegee Inst., AL.

    This 52-week Tuskegee Institute project, undertaken in 1964 to train a sample of culturally deprived male heads of households in Alabama, included vocational skills (brickmasonry, carpentry, farm machinery, and meat processing), academic skills (mathematics, English, and remedial reading), group, individual, and family counseling, medical care,…

  18. Defect induced negative magnetoresistance and surface state immunity in topological insulator BiSbTeSe2

    NASA Astrophysics Data System (ADS)

    Banerjee, Karan; Son, Jaesung; Deorani, Praveen; Ren, Peng; Wang, Lan; Yang, Hyunsoo

    2015-03-01

    The absence of backscattering due to time reversal symmetry is one of the hallmark features of a topological insulator. However, the introduction of defects can result in diminishing the transport properties of topological insulators. In this work, we introduce defects into the topological insulator BiSbTeSe2 by subjecting it to ion milling and study the effect of disorder on the transport properties. We find that a negative contribution arises in the magnetoresistance of BiSbTeSe2 at low temperatures. However, the surface state remains remarkably robust to the introduction of disorder. We demonstrate that the negative magnetoresistance originates from an increase in the density of defect states created by the introduction of disorder. We also find the bulk contribution to remain negligible even after subjecting to ion milling.

  19. First-principles investigation of the intrinsic defects in Ti3SiC2

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xue, Jianming; Wang, Yugang; Huang, Qing

    2014-03-01

    First-principles calculations have been carried out to investigate intrinsic defects including vacancies, interstitials, antisite defects, Frenkel and Schottky defects in the 312 MAX phase Ti3SiC2. The formation energies of defects are obtained according to the elemental chemical potentials which are determined by the phase stability conditions. The most stable self-interstitials are all found in the hexahedral position surrounded by two Ti(2) and three Si atoms. For the entire elemental chemical potential range considered, our results demonstrated that Si and C related defects, including vacancies, interstitials and Frenkel defects are the most dominant defects. Besides, the present calculations also reveal that the formation energies of C and Si Frenkel defects are much lower than those of all Schottky defects considered. In addition, the calculated profiles of densities of states for the defective Ti3SiC2 indicate that these defects should have great influence on its thermal and electrical properties.

  20. Global defect topology in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.

    2016-07-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1-1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics.

  1. Global defect topology in nematic liquid crystals

    PubMed Central

    Machon, Thomas

    2016-01-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1–1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics. PMID:27493576

  2. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  3. Isolation and characterization of Pichia heedii mutants defective in xylose uptake

    SciTech Connect

    Does, A.L.; Bisson, L.F. )

    1990-11-01

    To investigate the role of xylose uptake in xylose metabolism in yeasts, we isolated a series of mutated strains of the yeast Pichia heedii which are defective in xylose utilization. Four of these demonstrated defects in xylose uptake. Overlaps between the functional or regulatory mechanisms for glucose and xylose uptake may exist in this yeast since some of the mutants defective in xylose uptake were also defective in glucose transport. None of the mutants were defective in xylose reductase or xylitol dehydrogenase activities.

  4. Birth Defects. Matrix No. 2.

    ERIC Educational Resources Information Center

    Brent, Robert L.

    This report discusses the magnitude of the problem of birth defects, outlines advances in the birth defects field in the past decade, and identifies those areas where research is needed for the prevention, treatment, and management of birth defects. The problem of birth defects has consumed a greater portion of our health care resources because of…

  5. Local and nonlocal defect-mediated electroweak baryogenesis

    SciTech Connect

    Brandenberger, R.; Davis, A.; Prokopec, T.; Trodden, M. |||

    1996-04-01

    We consider the effects of particle transport in topological defect-mediated electroweak baryogenesis scenarios. We analyze the cases of both thin and thick defects and demonstrate an enhancement of the original mechanism in both cases due to an increased effective volume in which baryogenesis occurs. This phenomenon is a result of an imperfect cancellation between the baryons and antibaryons produced on opposite faces of the defect. {copyright} {ital 1996 The American Physical Society.}

  6. Defect Tolerant Semiconductors for Solar Energy Conversion.

    PubMed

    Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan

    2014-04-01

    Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.

  7. A novel approach to mask defect inspection

    NASA Astrophysics Data System (ADS)

    Sagiv, Amir; Shirman, Yuri; Mangan, Shmoolik

    2008-10-01

    Memory chips, now constituting a major part of semiconductor market, posit a special challenge for inspection, as they are generally produced with the smallest half-pitch available with today's technology. This is true, in particular, to photomasks of advanced memory devices, which are at the forefront of the "low-k1" regime. In this paper we present a novel photomask inspection approach, that is particularly suitable for low-k1 layers of advanced memory chips, owing to their typical dense and periodic structure. The method we present can produce a very strong signal for small mask defects, by suppression of the modulation of the pattern's image. Unlike dark-field detection, however, here a single diffraction order associated with the pattern generates a constant "gray" background image, that is used for signal enhancement. We define the theoretical basis for the new detection technique, and show, both analytically and numerically, that it can easily achieve a detection line past the printability spec, and that in cases it is at least as sensitive as high-resolution based detection. We also demonstrate this claim experimentally on a customer mask, using the platform of Applied Material's newly released Aera2TM mask inspection tool. The high sensitivity demonstrates the important and often overlooked concept that resolution is not synonymous with sensitivity. The novel detection method is advantageous in several other aspects, such as the very simple implementation, the high throughput, and the relatively simple pre- and post-processing algorithms required for signal extraction. These features, and in particular the very high sensitivity, make this novel detection method an attractive inspection option for advanced memory devices.

  8. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  9. Reconstruction of Mandibular Defects

    PubMed Central

    Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi

    2010-01-01

    Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439

  10. Calvarial defect reconstruction.

    PubMed

    Jimenez, D F; Barone, C M

    1994-04-01

    The history of skull trepanation is almost as old as that of humanity. For thousands of years it has been performed for the treatment of numerous medical maladies. The Andean Incas, early Asians and South Seas Islanders, are amongst the many people to perform calvarial trepanation. Hippocrates described techniques for the use of the trepan in early Greek times. With the production of a skull opening comes the challenge of developing methods for closing the defect. It is in reality, more challenging to repair the defect than to create it. Man, with his never ending ingenuity, has tried to develop many techniques. We will discuss some of them and present our method of choice for closure of skull defects.

  11. Electronic Defect States in Polyaniline.

    NASA Astrophysics Data System (ADS)

    Ginder, John Matthew

    The electronic defect states of the conducting polymer polyaniline are studied by a variety of magnetic and optical techniques. The insulating emeraldine base form (EB) of polyaniline can be converted to the conducting emeraldine salt form (ES) by treatment with aqueous acids such as HCl. This "protonic acid doping" process occurs via the bonding of protons to the polymer chain, without altering the number of chain electrons. Magnetic susceptibility studies reveal that a roughly linear growth of the Pauli paramagnetic susceptibility, and an increase in the density of Curie-like spins, accompanies this conversion. Consequently, the protonation-induced defects are mainly spin-1/2 polarons; further, the linear growth of the Pauli susceptibility suggests that fully protonated regions--metallic islands --grow with increasing doping level. The electronic structure of the metallic phase is proposed to be that of a polaron lattice with electronic bandwidth ~0.4 eV and polaron decay length ~2 A. The defects which accomodate excess charge in EB were also studied by near-steady-state photoinduced absorption experiments. Upon photoexcitation into the 2 eV absorption band in EB, several photoinduced features evolved. Induced bleachings of the existing transitions at 2.0 and 3.7 eV were observed; induced absorptions were found at 0.9, 1.4, and 3.0 eV. The 2.0 eV bleaching is consistent with the production of molecular charge-transfer excitons, which may relax to a different ring conformation causing long-lived bleaching, or to two separate charges on a single chain. Indeed, the induced absorptions at 1.4 and 3.0 eV are, by analogy with similar protonation -induced absorptions and by their bimolecular recombination kinetics, assigned to photoexcited polarons. Light-induced electron spin resonance experiments confirm the presence of photogenerated spins upon pumping into the excitonic absorption. Near-steady-state photoconductivity measurements on EB reveal a very small induced

  12. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  13. Feature selection in bioinformatics

    NASA Astrophysics Data System (ADS)

    Wang, Lipo

    2012-06-01

    In bioinformatics, there are often a large number of input features. For example, there are millions of single nucleotide polymorphisms (SNPs) that are genetic variations which determine the dierence between any two unrelated individuals. In microarrays, thousands of genes can be proled in each test. It is important to nd out which input features (e.g., SNPs or genes) are useful in classication of a certain group of people or diagnosis of a given disease. In this paper, we investigate some powerful feature selection techniques and apply them to problems in bioinformatics. We are able to identify a very small number of input features sucient for tasks at hand and we demonstrate this with some real-world data.

  14. General features

    SciTech Connect

    Wallace, R.E.

    1990-01-01

    The San Andreas fault system, a complex of faults that display predominantly large-scale strike slip, is part of an even more complex system of faults, isolated segments of the East Pacific Rise, and scraps of plates lying east of the East Pacific Rise that collectively separate the North American plate from the Pacific plate. This chapter briefly describes the San Andreas fault system, its setting along the Pacific Ocean margin of North America, its extent, and the patterns of faulting. Only selected characteristics are described, and many features are left for depictions on maps and figures.

  15. Posterior Cortical Atrophy Presenting with Superior Arcuate Field Defect

    PubMed Central

    Wan, Sue Ling; Bukowska, Danuta M.; Ford, Stephen; Chen, Fred K.

    2015-01-01

    An 80-year-old female with reading difficulty presented with progressive arcuate field defect despite low intraocular pressure. Over a 5-year period, the field defect evolved into an incongruous homonymous hemianopia and the repeated neuroimaging revealed progressive posterior cortical atrophy. Further neuropsychiatric assessment demonstrated symptoms and signs consistent with Benson's syndrome. PMID:26417467

  16. Posterior Cortical Atrophy Presenting with Superior Arcuate Field Defect.

    PubMed

    Wan, Sue Ling; Bukowska, Danuta M; Ford, Stephen; Chen, Fred K

    2015-01-01

    An 80-year-old female with reading difficulty presented with progressive arcuate field defect despite low intraocular pressure. Over a 5-year period, the field defect evolved into an incongruous homonymous hemianopia and the repeated neuroimaging revealed progressive posterior cortical atrophy. Further neuropsychiatric assessment demonstrated symptoms and signs consistent with Benson's syndrome. PMID:26417467

  17. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation

    PubMed Central

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I.; Clark, Noel A.; Jung, Hee-Tae

    2013-01-01

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal. PMID:24218602

  18. Improve mask inspection capacity with Automatic Defect Classification (ADC)

    NASA Astrophysics Data System (ADS)

    Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong

    2013-09-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to

  19. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  20. Quantum computing with defects

    PubMed Central

    Weber, J. R.; Koehl, W. F.; Varley, J. B.; Janotti, A.; Buckley, B. B.; Van de Walle, C. G.; Awschalom, D. D.

    2010-01-01

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. PMID:20404195

  1. Defect-Induced Optoelectronic Response in Single-layer Group-VI Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Chow, Philippe K.

    The ever-evolving symbiosis between mankind and nanoelectronics-driven technology pushes the limits of its constituent materials, largely due to the dominance of undesirable hetero-interfacial physiochemical behavior at the few-nanometer length scale, which dominates over bulk material characteristics. Driven by such instabilities, research into two-dimensional (2D) van der Waals-layered materials (e.g. graphene, transition metal dichalcogenides (TMDCs), boron nitride), which have characteristically inert surface chemistry, has virtually exploded over the past few years. The discovery of an indirect- to direct-gap conversion in semiconducting group-VI TMDCs (e.g. MoS2) upon thinning to a single atomic layer provided the critical link between metallic and insulating 2D materials. While proof-of-concept demonstrations of single-layer TMDC-based devices for visible-range photodetection, light-emission and solar energy conversion have showed promising results, the exciting qualities are downplayed by poorly-understood defectinduced photocarrier traps, limiting the best-achieved external quantum efficiencies to approximately ~1%. This thesis explores the behavior of defects in atomically-thin TMDC layers in response to optical stimuli using a combination of steady-state photoluminescence, reflectance and Raman spectroscopy at room-temperature. By systematically varying the defect density using plasma-irradiation techniques, an unprecedented room-temperature defect-induced monolayer PL feature was discovered. High-resolution transmission electron microscopy correlated the defect-induced PL with plasma-generation of sulfur vacancy defects while reflectance measurements indicate defect-induced sub-bandgap light absorption. Excitation intensity-dependent PL measurements and exciton rate modeling further help elucidate the origin of the defect-induced PL response and highlights the role of non-radiative recombination on exciton conversion processes. The results in this

  2. Porous nematic microfluidics for generation of umbilic defects and umbilic defect lattices

    NASA Astrophysics Data System (ADS)

    Aplinc, Jure; Morris, Stephen; Ravnik, Miha

    2016-06-01

    We demonstrate that porous nematic microfluidics is a potential route for the generation of nematic umbilic defects and regular umbilic defect lattices. By using numerical modeling we show that the mutual (backflow) coupling between the flow velocity and the orientation director field of the nematic liquid crystal leads to the formation of positive umbilic defects at local peaks and to the formation of negative umbilic defects at the local saddles in the flow profile. The number of flow peaks and the index of the flow saddles (i.e., the number of the valleys) are shown to be directly related to the strength of the umbilic defect, effectively relating the two fields at the geometrical level. The regular arrangement of the barriers in the porous channels is demonstrated to lead to the formation of regular lattices of umbilic defects, including square, triangular, and even kagome lattices. Experimental realization of such systems is discussed, with particular focus on microfluidic-tunable birefringent photonic band structures and lattices.

  3. Phase field crystal modeling as a unified atomistic approach to defect dynamics

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Provatas, Nikolas; Rottler, Jörg; Sinclair, Chad W.

    2014-06-01

    Material properties controlled by evolving defect structures, such as mechanical response, often involve processes spanning many length and time scales which can not be modeled using a single approach. We present a variety of results that demonstrate the ability of phase field crystal (PFC) models to describe complex defect evolution phenomena on atomistic length scales and over long, diffusive time scales. Primary emphasis is given to the unification of conservative and nonconservative dislocation creation mechanisms in three-dimensional fcc and bcc materials. These include Frank-Read-type glide mechanisms involving closed dislocation loops or grain boundaries as well as Bardeen-Herring-type climb mechanisms involving precipitates, inclusions, and/or voids. Both source classes are naturally and simultaneously captured at the atomistic level by PFC descriptions, with arbitrarily complex defect configurations, types, and environments. An unexpected dipole-to-quadrupole source transformation is identified, as well as various complex geometrical features of loop nucleation via climb from spherical particles. Results for the strain required to nucleate a dislocation loop from such a particle are in agreement with analytic continuum theories. Other basic features of fcc and bcc dislocation structure and dynamics are also outlined, and initial results for dislocation-stacking fault tetrahedron interactions are presented. These findings together highlight various capabilities of the PFC approach as a coarse-grained atomistic tool for the study of three-dimensional crystal plasticity.

  4. Internal defect inspection in magnetic tile by using acoustic resonance technology

    NASA Astrophysics Data System (ADS)

    Xie, Luofeng; Yin, Ming; Huang, Qinyuan; Zhao, Yue; Deng, Zhenbo; Xiang, Zhaowei; Yin, Guofu

    2016-11-01

    This paper focuses on the validity of a nondestructive methodology for magnetic tile internal defect inspection based on acoustic resonance. The principle of this methodology is to analyze the acoustic signal collected from the collision of magnetic tile with a metal block. To accomplish the detection process, the separating part of the detection system is designed and discussed in detail in this paper. A simplified mathematical model is constructed to analyze the characteristics of the impact of magnetic tile with a metal block. The results demonstrate that calculating the power spectrum density (PSD) can diagnose the internal defect of magnetic tile. Two different data-driven multivariate algorithms are adopted to obtain the feature set, namely principal component analysis (PCA) and hierarchical nonlinear principal component analysis (h-NLPCA). Three different classifiers are then performed to deal with magnetic tile classification problem based on features extracted by PCA or h-NLPCA. The classifiers adopted in this paper are fuzzy neural networks (FNN), variable predictive model based class discrimination (VPMCD) method and support vector machine (SVM). Experimental results show that all six methods are successful in identifying the magnetic tile internal defect. In this paper, the effect of environmental noise is also considered, and the classification results show that all the methods have high immunity to background noise, especially PCA-SVM and h-NLPCA-SVM. Considering the accuracy rate, computation cost problem and the ease of implementation, PCA-SVM turns out to be the best method for this purpose.

  5. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice.

    PubMed

    Soenjaya, Y; Foster, B L; Nociti, F H; Ao, M; Holdsworth, D W; Hunter, G K; Somerman, M J; Goldberg, H A

    2015-09-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp(-/-)) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp(-/-) mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp(-/-) mice. This hypothesis was tested by comparing Bsp(-/-) and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro-computed tomography. By 8 wk of age, Bsp(-/-) mice exhibited molar and incisor malocclusion regardless of diet. Bsp(-/-) mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp(-/-) mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp(-/-) mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp(-/-) mice. Bsp(-/-) incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the

  6. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    PubMed Central

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  7. Reducing defects in remelting processes for high-performance alloys

    NASA Astrophysics Data System (ADS)

    van den Avyle, James A.; Brooks, John A.; Powell, Adam C.

    1998-03-01

    Defect reduction is one of the most important goals in continuing research to improve remelting technologies, such as vacuum arc remelting, electroslag remelting, or hearth melting (plasma or electron beam), of specialty alloys. Ingot defects may originate from several sources in these processes, such as foreign materials in the melt stock or electrode, drop-in material from the furnace interior, and solidification defects. Laboratory-and industrial-scale melting experiments are used by Sandia National Laboratories and the Specialty Metals Processing Consortium to determine relationships between melt-processing conditions and defect formation. Examples described here include freckle formation, a solidification defect in large ingots of alloy 625 (electroslag remelting), and alloy 718 (vacuum arc remelting). These examples demonstrate how integrated melting experiments, process modeling, and ingot analysis can guide the control of melting conditions to reduce defects.

  8. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  9. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  10. The emergence of defective predators who never hunt by themselves

    NASA Astrophysics Data System (ADS)

    Wang, Xueting; Pan, Qiuhui; Kang, Yibin; He, Mingfeng

    2013-06-01

    We propose a lattice Monte Carlo model of two populations, predators and prey. We divide predators into cooperative predators and defective predators. Cooperative predators participate in hunting. On the other hand, defective predators only participate to dominate, i.e. take possession of, the food when a kill has already been made by a cooperative predator. Numerous factors have been taken into account in our research, such as individual mobility, predation and hunger time. The model we have constructed displays the features of the population that evolve through time and the spatial distribution of the population. We focus on the emergence of defective predators and how the parameters affect the system. The results indicate that prey can profit from the appearance of these defective predators in some specific situations. It has even been shown that the emergence of defective predators can sometimes save endangered systems.

  11. STM fingerprints of point defects in graphene: a theoretical prediction

    SciTech Connect

    Amara, Hakim; Latil, Sylvain; Meunier, Vincent; Lambin, Philippe; Charlier, Jean Christophe

    2007-01-01

    Scanning tunneling microscopy (STM) is one of the most appropriate techniques to investigate the atomic structure of carbon nanomaterials. However, the experimental identification of topological and nontopological modifications of the hexagonal network of sp{sup 2} carbon nanostructures remains a great challenge. The goal of the present theoretical work is to predict the typical electronic features of a few defects that are likely to occur in sp{sup 2} carbon nanostructures, such as atomic vacancy, divacancy, adatom, and Stone-Wales defect. The modifications induced by those defects in the electronic properties of the graphene sheet are investigated using first-principles calculations. In addition, computed constant-current STM images of these defects are calculated within a tight-binding approach in order to facilitate the interpretation of STM images of defected carbon nanostructures.

  12. ORION II bus demonstration. Demonstration report (Final)

    SciTech Connect

    Shanley, J.

    1989-02-01

    The Central New York Regional Transportation Authority conducted an 18-month demonstration to determine how the ORION II bus operates in actual service. The ORION II vehicle is a small low floor, accessible heavy duty, diesel-powered transit bus designed to meet the needs of the elderly and handicapped. It has the capacity to seat 26 passengers with 4 wheelchair lockdowns. Side and rear doors are equipped with electrically powered ramps. Eight Thomas vehicles (22-foot, 11,500 lbs, wheelchair equipped, gasoline fueled) were also tested during the demonstration period. Operations (fuel and oil usage) and maintenance (scheduled and unscheduled) data were collected and charted-out in the report as well as driver, passenger, and maintenance surveys. This report provides descriptions, photographs, and comparison charts of both the diesel-fueled ORION II transit bus and the gasoline-fueled Thomas vehicles along with the demonstration test plan, evaluations, conclusions, and survey results.

  13. Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects

    PubMed Central

    Heideklang, René; Shokouhi, Parisa

    2016-01-01

    This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200

  14. Guidance for Preventing Birth Defects

    MedlinePlus

    ... Lip and Palate Craniosynostosis Down Syndrome Eye Defects Fetal Alcohol Syndrome Disorders Gastroschisis Heart Defects Coarctation of the Aorta ... drank alcohol during the pregnancy, are known as fetal alcohol spectrum disorders (FASDs) . The best advice for women is to ...

  15. Reducing Risks of Birth Defects

    MedlinePlus

    ... Education FAQs Reducing Risks of Birth Defects Patient Education Pamphlets - Spanish Reducing Risks of Birth Defects FAQ146, February 2016 ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  16. Adults with Congenital Heart Defects

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Web Booklet: Adults With Congenital Heart Defects Updated:Apr ... topic from the list below to learn more. Web Booklet: Adults With Congenital Heart Defects Introduction Introduction: ...

  17. Facts about Congenital Heart Defects

    MedlinePlus

    ... types of CHDs. The types marked with a star (*) are considered critical CHDs. Atrial Septal Defect Atrioventricular Septal Defect Coarctation of the Aorta * Double-outlet right ventricle* d-Transposition of the great ...

  18. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... of the heart and surrounding organs an electrocardiogram (EKG) , which records the electrical activity of the heart ... What to Expect Congenital Heart Defects Getting an EKG (Video) Heart Murmurs Atrial Septal Defect EKG (Video) ...

  19. Birth Defects Data and Statistics

    MedlinePlus

    ... Websites About Us Information For... Media Policy Makers Data & Statistics Language: English Español (Spanish) Recommend on Facebook ... of birth defects in the United States. For data on specific birth defects, please visit the specific ...

  20. Herschel's Interference Demonstration.

    ERIC Educational Resources Information Center

    Perkalskis, Benjamin S.; Freeman, J. Reuben

    2000-01-01

    Describes Herschel's demonstration of interference arising from many coherent rays. Presents a method for students to reproduce this demonstration and obtain beautiful multiple-beam interference patterns. (CCM)

  1. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  2. Molecular defects in the chondrodysplasias

    SciTech Connect

    Rimoin, D.L.

    1996-05-03

    There has been a recent explosion of knowledge concerning the biochemical and molecular defects in the skeletal dysplasia. Through both the candidate gene approach and positional cloning, specific gene defects that produce the skeletal dysplasia have been identified and may be classified into several general categories: (1) qualitative or quantitative abnormalities in the structural proteins of cartilage; (2) inborn errors of cartilage metabolism; (3) defects in local regulators of cartilage growth; and (4) systemic defects influencing cartilage development. 35 refs., 1 tab.

  3. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  4. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  5. A method of gear defect intelligent detection based on transmission noise

    NASA Astrophysics Data System (ADS)

    Chen, Hong-fang; Zhao, Yun; Lin, Jia-chun; Guo, Mian

    2015-02-01

    A new approach was proposed by combing Ensemble Empirical Mode Decomposition (EEMD) algorithm and Back Propagation (BP) neural network for detection of gear through transmission noise analysis. Then feature values of the feature signals are calculated. The feature values which have a great difference for different defect types are chosen to build an eigenvector. BP neural network is used to train and learn on the eigenvector for recognition of gear defects intelligently. In this study, a comparative experiment has been performed among normal gears, cracked gears and eccentric gears with fifteen sets of different gears. Experimental results indicate that the proposed method can detect gear defect features carried by the transmission noise effectively.

  6. In-Process Detection of Weld Defects Using Laser-Based Ultrasonic Lamb Waves

    SciTech Connect

    Kercel, S W

    2001-01-04

    Laser-based ultrasonic (LBU) measurement shows great promise for on-line monitoring of weld quality in tailor-welded blanks. Tailor-welded blanks are steel blanks made from plates of differing thickness and/or properties butt-welded together; they are used in automobile manufacturing to produce body, frame, and closure panels. LBU uses a pulsed laser to generate the ultrasound and a continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation to perform ultrasonic inspection. LBU enables in-process measurements since there is no sensor contact or near-contact with the workpiece. The authors have used laser-generated plate (Lamb) waves to propagate from one plate into the weld nugget as a means of detecting defects. This report recounts an investigation of a number of inspection architectures based on processing of signals from selected plate waves, which are either reflected from or transmitted through the weld zone. Bayesian parameter estimation and wavelet analysis (both continuous and discrete) have shown that the LBU time-series signal is readily separable into components that provide distinguishing features, which describe weld quality. The authors anticipate that, in an on-line industrial application, these measurements can be implemented just downstream from the weld cell. Then the weld quality data can be fed back to control critical weld parameters or alert the operator of a problem requiring maintenance. Internal weld defects and deviations from the desired surface profile can then be corrected before defective parts are produced. The major conclusions of this study are as follows. Bayesian parameter estimation is able to separate entangled Lamb wave modes. Pattern recognition algorithms applied to Lamb mode features have produced robust features for distinguishing between several types of weld defects. In other words, the information is present in the output of the laser ultrasonic hardware, and it is feasible to

  7. Eddy current pulsed phase thermography and feature extraction

    NASA Astrophysics Data System (ADS)

    He, Yunze; Tian, GuiYun; Pan, Mengchun; Chen, Dixiang

    2013-08-01

    This letter proposed an eddy current pulsed phase thermography technique combing eddy current excitation, infrared imaging, and phase analysis. One steel sample is selected as the material under test to avoid the influence of skin depth, which provides subsurface defects with different depths. The experimental results show that this proposed method can eliminate non-uniform heating and improve defect detectability. Several features are extracted from differential phase spectra and the preliminary linear relationships are built to measure these subsurface defects' depth.

  8. The importance of defects for carbon nanoribbon based electronics

    SciTech Connect

    Cruz Silva, Eduardo; Meunier, Vincent; Lopez, Florentino; Terrones Maldonado, Mauricio; Terrones Maldonado, Humberto; Bonilla, Andres D; Sumpter, Bobby G

    2009-01-01

    The utilization of graphene nanoribbons for next generation nanoelectronics is commonly expected to depend on controlled synthesis that yields a low density of defects. Edge roughness and vacancies have been shown to have large impact on the performance of graphene nanoribbon transistors. In fact, we show how certain defects can be used to enhance the electronic and magnetic properties of graphene nanoribbons. We explore the properties of hybrid graphene nanoribbons with armchair and zigzag features joined by an array of pentagon-heptagon structural defects. The graphene nanoribbons display an increased density of states at the Fermi level, and half metallicity in absence of external fields.

  9. Why Demonstrations Matter

    ERIC Educational Resources Information Center

    Black, Richard

    2005-01-01

    With the current focus on constructivist perspectives, science demonstrations have fallen out of favor in some circles. Demonstrations are easy to do and offer many benefits and unique opportunities in the constructivist classroom. With careful use, demonstrations can be powerful teaching tools. A wonderful quality of a demonstration (or a series…

  10. Feature extraction and integration for the quantification of PMFL data

    NASA Astrophysics Data System (ADS)

    Wilson, John W.; Kaba, Muma; Tian, Gui Yun; Licciardi, Steven

    2010-06-01

    If the vast networks of aging iron and steel, oil, gas and water pipelines are to be kept in operation, efficient and accurate pipeline inspection techniques are needed. Magnetic flux leakage (MFL) systems are widely used for ferromagnetic pipeline inspection and although MFL offers reasonable defect detection capabilities, characterisation of defects can be problematic and time consuming. The newly developed pulsed magnetic flux leakage (PMFL) system offers an inspection technique which equals the defect detection capabilities of traditional MFL, but also provides an opportunity to automatically extract defect characterisation information through analysis of the transient sections of the measured signals. In this paper internal and external defects in rolled steel water pipes are examined using PMFL, and feature extraction and integration techniques are explored to both provide defect depth information and to discriminate between internal and external defects. Feature combinations are recommended for defect characterisation and the paper concludes that PMFL can provide enhanced defect characterisation capabilities for flux leakage based inspection systems using feature extraction and integration.

  11. Image feature localization by multiple hypothesis testing of Gabor features.

    PubMed

    Ilonen, Jarmo; Kamarainen, Joni-Kristian; Paalanen, Pekka; Hamouz, Miroslav; Kittler, Josef; Kälviäinen, Heikki

    2008-03-01

    Several novel and particularly successful object and object category detection and recognition methods based on image features, local descriptions of object appearance, have recently been proposed. The methods are based on a localization of image features and a spatial constellation search over the localized features. The accuracy and reliability of the methods depend on the success of both tasks: image feature localization and spatial constellation model search. In this paper, we present an improved algorithm for image feature localization. The method is based on complex-valued multi resolution Gabor features and their ranking using multiple hypothesis testing. The algorithm provides very accurate local image features over arbitrary scale and rotation. We discuss in detail issues such as selection of filter parameters, confidence measure, and the magnitude versus complex representation, and show on a large test sample how these influence the performance. The versatility and accuracy of the method is demonstrated on two profoundly different challenging problems (faces and license plates).

  12. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    SciTech Connect

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-11-15

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  13. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  14. A mechanistic code for intact and defective nuclear fuel element performance

    NASA Astrophysics Data System (ADS)

    Shaheen, Khaled

    During reactor operation, nuclear fuel elements experience an environment featuring high radiation, temperature, and pressure. Predicting in-reactor performance of nuclear fuel elements constitutes a complex multi-physics problem, one that requires numerical codes to be solved. Fuel element performance codes have been developed for different reactor and fuel designs. Most of these codes simulate fuel elements using one-or quasi-two-dimensional geometries, and some codes are only applicable to steady state but not transient behaviour and vice versa. Moreover, while many conceptual and empirical separate-effects models exist for defective fuel behaviour, wherein the sheath is breached allowing coolant ingress and fission gas escape, there have been few attempts to predict defective fuel behaviour in the context of a mechanistic fuel performance code. Therefore, a mechanistic fuel performance code, called FORCE (Fuel Operational peRformance Computations in an Element) is proposed for the time-dependent behaviour of intact and defective CANDU nuclear fuel elements. The code, which is implemented in the COMSOL Multiphysics commercial software package, simulates the fuel, sheath, and fuel-to-sheath gap in a radial-axial geometry. For intact fuel performance, the code couples models for heat transport, fission gas production and diffusion, and structural deformation of the fuel and sheath. The code is extended to defective fuel performance by integrating an adapted version of a previously developed fuel oxidation model, and a model for the release of radioactive fission product gases from the fuel to the coolant. The FORCE code has been verified against the ELESTRES-IST and ELESIM industrial code for its predictions of intact fuel performance. For defective fuel behaviour, the code has been validated against coulometric titration data for oxygen-to-metal ratio in defective fuel elements from commercial reactors, while also being compared to a conceptual oxidation model

  15. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  16. Understanding of Defect Physics in Polycrystalline Photovoltaic Materials: Preprint

    SciTech Connect

    Yan, Y.

    2011-07-01

    The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In,Ga)Se2 (CIGS), Cu2ZnSnSe2 (CZTSe), and Cu2ZnSnS2 (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure based - the defect physics in them could be very different. Some defects, such as stacking faults and special twins, have similar electronic properties in these thin-film materials. However, some other defects, such as grain boundaries and interfaces, have very different electronic properties in these materials. For example, grain boundaries produce harmful deep levels in Si and CdTe, but they do not produce significant deep levels in CIGS, CZTSe, and CZTS. These explain why passivation is critical for Si and CdTe solar cells, but is less important in CIS and CZTS solar cells. We further provide understanding of the effects of interfaces on the performance of solar cells made of these PV materials.

  17. Understanding of Defect Physics in Polycrystalline Photovoltaic Materials

    SciTech Connect

    Yan, Y.

    2011-01-01

    The performance of thin-film solar cells is influenced by the quality of interfaces and formation of defects such as point defects, stacking faults, twins, dislocations, and grain boundaries. It is important to understand the defect physics so that appropriate methods may be developed to suppress the formation of harmful defects. Here, we review our understanding of defect physics in thin-film photovoltaic (PV) materials such as Si, CdTe, Cu(In, Ga)Se{sub 2} (CIGS), Cu{sub 2}ZnSnSe{sub 2} (CZTSe), and Cu{sub 2}ZnSnS{sub 2} (CZTS) using the combination of nanoscale electron microscopy characterization and density-functional theory (DFT). Although these thin-film PV materials share the same basic structural feature - diamond structure based - the defect physics in them could be very different. Some defects, such as stacking faults and special twins, have similar electronic properties in these thin-film materials. However, some other defects, such as grain boundaries and interfaces, have very different electronic properties in these materials. For example, grain boundaries produce harmful deep levels in Si and CdTe, but they do not produce significant deep levels in CIGS, CZTSe, and CZTS. These explain why passivation is critical for Si and CdTe solar cells, but is less important in CIS and CZTS solar cells. We further provide understanding of the effects of interfaces on the performance of solar cells made of these PV materials.

  18. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    PubMed

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  19. Invisible defects in complex crystals

    SciTech Connect

    Longhi, Stefano Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out to be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.

  20. Report on modular hydropower demonstration

    SciTech Connect

    Pelton, F.

    1988-09-01

    This report describes an Energy Authority project to demonstrate the use of modular small hydropower systems at two sites. The project demonstrated that 'off-the-shelf' components can be used to construct a functionally reliable, cost-effective hydropower system at a significant savings over custom-designed systems. A key feature of the modular system is the replacement of the conventional hydroelectric turbine with a pump operated in reverse. Also, the construction of a water-intake system in the dam is replaced with a siphon penstock. Further cost and time savings are gained from the use of a prefabricated powerhouse and automated control equipment. The project demonstrated that modular systems are an attractive option for sites with capacities from under 100 to 500 kilowatts. The modular concept is applicable at about 250 sites Statewide, with a combined capacity of up to 400 MW.

  1. Laithwaite's Heavy Spinning Disk Demonstration

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2014-09-01

    In 1974, Professor Eric Laithwaite demonstrated an unusually heavy gyroscope at a Royal Institution lecture in London. The demonstration was televised and can be viewed on YouTube.1 A recent version of the same experiment, together with partial explanations, attracted two million YouTube views in the first few months.2 In both cases, the gyroscope consisted of a 40-lb (18-kg) spinning disk on the end of a 3-ft (0.91-m) long axle. The most remarkable feature of the demonstration was that Laithwaite was able to lift the disk over his head with one hand, holding onto the far end of the axle. The impression was given that the 40-lb disk was almost weightless, or "as light as a feather" according to Laithwaite.

  2. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1987-01-01

    Describes several chemistry demonstrations that use an overhead projector. Some of the demonstrations deal with electrochemistry, and another deals with the reactions of nonvolatile immiscible liquid in water. (TW)

  3. Traveling Wave Demonstration.

    ERIC Educational Resources Information Center

    Kluger-Bell, Barry

    1995-01-01

    Describes a traveling-wave demonstration that uses inexpensive materials (crepe-paper streamers) and is simple to assemble and perform. Explains how the properties of light waves are illustrated using the demonstration apparatus. (LZ)

  4. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  5. Adolescents' Demonstrative Behavior Research

    ERIC Educational Resources Information Center

    Parfilova, Gulfiya G.; Karimova, Lilia Sh.

    2016-01-01

    The problem of demonstrative behavior is very topical among teenagers and this issue has become the subject of systematic scientific research. Demonstrative manifestations in adolescents disrupt the favorable socialization; therefore, understanding, prevention and correction of demonstrative behavior at this age is relevant and requires special…

  6. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1988-01-01

    Details two demonstrations for use with an overhead projector in a chemistry lecture. Includes "A Very Rapidly Growing Silicate Crystal" and "A Colorful Demonstration to Simulate Orbital Hybridization." The materials and directions for each demonstration are included as well as a brief explanation of the essential learning involved. (CW)

  7. A Boyle's Law Demonstrator.

    ERIC Educational Resources Information Center

    Sathe, Dileep V.

    1984-01-01

    The usual apparatus for demonstrating Boyle's law produces reasonably accurate results, but is not impressive as a demonstration because students cannot easily appreciate the change in pressure. An apparatus designed to produce a more effective demonstration is described. Procedures employed are also described. (JN)

  8. Classroom Demonstrations: Individual Differences.

    ERIC Educational Resources Information Center

    Singer, Sandra M.

    These demonstrations stress individual differences, a concept becoming increasingly important in psychological research. Intended for use in undergraduate psychology courses, four demonstrations that illustrate common examples of human variation are described. The demonstrations deal with the following individual differences: taste blindness,…

  9. Defect Depth Measurement Using White Light Interferometry

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.

  10. Predicting radiotherapy-induced cardiac perfusion defects

    SciTech Connect

    Das, Shiva K.; Baydush, Alan H.; Zhou Sumin; Miften, Moyed; Yu Xiaoli; Craciunescu, Oana; Oldham, Mark; Light, Kim; Wong, Terence; Blazing, Michael; Borges-Neto, Salvador; Dewhirst, Mark W.; Marks, Lawrence B.

    2005-01-01

    The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy-induced left ventricular perfusion defects assessed using single-photon emission computed tomography (SPECT). The basis of this study is data from 73 left-sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis--LDA). Data used by the models were the left ventricular dose--volume histograms, or SPECT-based dose-function histograms, and the presence/absence of SPECT perfusion defects 6 months postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F-tests were used to fit the model parameters. The nonparametric LDA model step-wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has area=1). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose-volume histogram/dose-function histogram inputs, in order of increasing prediction accuracy, were LNTCP (0.79/0.75), RS (0.80/0.77), gEUD (0.81/0.78), and LDA (0.84/0.86). Only the LDA model benefited from SPECT-based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above

  11. Edible Astronomy Demonstrations

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.

    2006-08-01

    By using astronomy demonstrations with edible ingredients, I have been able to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students. I will present some of the edible demonstrations I have created including using popcorn to simulate radioactivity; using chocolate, nuts, and marshmallows to illustrate density and differentiation during the formation of the planets; and making big-bang brownies or chocolate chip-cookies to illustrate the expansion of the Universe. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and the students remember these demonstrations after they are presented.

  12. Strategy Guideline. Demonstration Home

    SciTech Connect

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  13. Strategy Guideline: Demonstration Home

    SciTech Connect

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  14. Dipole defects in beryl

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Cordeiro, R. C.; Blak, A. R.

    2010-11-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be3Al2Si6O18) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  15. HDL genetic defects.

    PubMed

    Nair, Devaki R; Nair, Arun; Jain, Anjly

    2014-01-01

    High density lipoprotein cholesterol (HDL-C) and its related apolipoproteins form part of the reverse cholesterol transport system that removes excessive cholesterol from the periphery to the liver. Many transport proteins and enzymes that are involved in this process are susceptible to genetic defects that influence plasma HDL-C concentrations and HDL function. The HDL-C concentration in the blood may not be as important as the function of this lipid fraction. The genetic defects affecting plasma HDL-C concentrations do not always show a consistent relationship with atherosclerosis. Familial hypoalphalipoproteinaemia is associated with mutations in genes responsible for the transport proteins or the enzymes involved in the biogenesis of HDL-C. Inheritance of a Milano mutation of apolipoprotein A1 decreases the risk of atherosclerotic disease despite low circulating levels of HDL-C. Tangier disease and Fish Eye disease are caused by mutations in the ATP binding cassette A1 (ABCA1), a transport protein, and lecithin cholesterol acyl transferase (LCAT), an enzyme, involved in the esterification of cholesterol, respectively. Patients with these conditions have very low levels of HDL-C concentration. The association between both these conditions and the risk of cardiovascular disease (CVD) is variable and inconsistent. Understanding the molecular mechanism of HDL biogenesis not only helped in defining the pathophysiology of low and high HDL-C syndromes, but also in developing new treatment options to raise HDL-C levels. PMID:24953397

  16. The effect of defect cluster size and interpolation on radiographic image quality

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Yip, Kwok L.

    2011-03-01

    For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.

  17. Surface-assisted defect engineering of point defects in ZnO

    NASA Astrophysics Data System (ADS)

    Gorai, Prashun; Ertekin, Elif; Seebauer, Edmund G.

    2016-06-01

    Semiconductor surfaces facilitate the injection of highly mobile point defects into the underlying bulk, thereby offering a special means to manipulate bulk defect concentrations. The present work combines diffusion experiments and first-principles calculations for polar ZnO (0001) surface to demonstrate such manipulation. The rate behavior of oxygen interstitial injection varies dramatically between the Zn- and O-terminated ZnO surfaces. A specific injection pathway for the Zn-terminated surface is identified, and activation barrier determined from the first-principles calculations agrees closely with the experimental activation energy of 1.7 eV.

  18. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    PubMed

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  19. Biomimetic approaches to complex craniofacial defects

    PubMed Central

    Teven, Chad M.; Fisher, Sean; Ameer, Guillermo A.; He, Tong-Chuan; Reid, Russell R.

    2015-01-01

    The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton. PMID:26389027

  20. Defective sumoylation pathway directs congenital heart disease

    PubMed Central

    Wang, Jun; Chen, Li; Wen, Shu; Zhu, Huiping; Yu, Wei; Moskowitz, Ivan P.; Shaw, Gary M.; Finnell, Richard H.; Schwartz, Robert J

    2016-01-01

    Congenital heart defects (CHDs) are the most common of all birth defects, yet molecular mechanism(s) underlying highly prevalent atrial septal defects (ASDs) and ventricular septal defects (VSDs) have remained elusive. We demonstrate the indispensability of “balanced” post-translational SUMO conjugation-deconjugation pathway for normal cardiac development. Both hetero- and homo-zygous SUMO-1 knockout mice exhibited ASDs and VSDs with high mortality rates, which were rescued by cardiac re-expression of the SUMO-1 transgene. Since SUMO-1 was also involved in cleft lip/palate in human patients, the above findings provided a powerful rationale to question whether SUMO-1 was mutated in babies born with cleft palates and ASDs. Sequence analysis of DNA from newborn screening blood spots revealed a single 16 bp substitution in the SUMO-1 regulatory promoter of a patient displaying both oral-facial clefts and ASDs. Diminished sumoylation activity whether by genetics, environmental toxins and/or pharmaceuticals may significantly contribute to susceptibility to the induction of congenital heart disease worldwide. PMID:21563299

  1. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  2. Exploration Technology Development & Demonstration

    NASA Video Gallery

    Chris Moore delivers a presentation from the Exploration Technology Development & Demonstration (ETDD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX....

  3. LIMB demonstration project extension

    SciTech Connect

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  4. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  5. The study of develop optimization to control various resist defect in Photomask fabrication

    NASA Astrophysics Data System (ADS)

    Lim, JongHoon; Kim, ByungJu; Son, JaeSik; Park, EuiSang; Kim, SangPyo; Yim, DongGyu

    2015-07-01

    To reduce the pattern size in photomask is an inevitable trend because of the minimization of chip size. So it makes a big challenge to control defects in photomask industry. Defects below a certain size that had not been any problem in previous technology node are becoming an issue as the patterns are smaller. Therefore, the acceptable tolerance levels for current defect size and quantity are dramatically reduced. Because these defects on photomask can be the sources of the repeating defects on wafer, small size defects smaller than 200nm should not be ignored any more. Generally, almost defects are generated during develop process and etch process. Especially it is difficult to find the root cause of defects formed during the develop process because of their various types and very small size. In this paper, we studied how these small defects can be eliminated by analyzing the defects and tuning the develop process. There are 3 types of resist defects which are named as follows. The first type is `Popcorn' defect which is mainly occurred in negative resist and exists on the dark features. The second type is `Frog eggs' defect which is occurred in 2nd process of HTPSM and exists on the wide space area. The last type is `Spot' defect which also exists on the wide space area. These defects are generally appeared on the entire area of a plate and the number of these defects is about several hundred. It is thought that the original source is the surface's hydrophilic state before develop process or the incongruity between resist and developer. This study shows that the optimizing the develop process can be a good solution for some resist defects.

  6. The RF performance of cavity made from defective niobium material determined by Eddy Current Scanning

    SciTech Connect

    Wu, G.; Cooley, L.; Sergatskov, D.; Ozelis, J.; Brinkmann, A.; Singer, W.; Singer, X.; Pekeler, M.

    2010-10-01

    Eddy current scanning (ECS) has been used to screen niobium sheets to avoid defective material being used in costly cavity fabrication. The evaluation criterion of this quality control tool is not well understood. Past surface studies showed some features were shallow enough to be removed by chemical etching. The remaining features were identified to be small number of deeper inclusions, but mostly unidentifiable features (by chemical analysis). A real cavity made of defective niobium material has been tested. The cavity achieved high performance with comparable results to the cavities made from defect free cavities. Temperature mapping could help to define the control standard clearly.

  7. Genetics of Atrial Septal Defect

    PubMed Central

    Cascos, Andrés Sánchez

    1972-01-01

    Of 109 cases of atrial septal defect, cases with an isolated defect (92 cases) showed a female preponderance (sex ratio 0·64), but there was a higher risk to the sibs of the male patients, suggesting a multifactorial mechanism. Dermatoglyphs showed a large number of whorls on the fingers. In 17 cases there were multiple malformations, such as Holt-Oram syndrome (hypoplastic and triphalangic thumb, with ostium secundum atrial septal defect), polydactyly plus ostium primum defect, and tracheo-oesophageal fistula. ImagesFIG. 1.FIG. 2.FIG. 3. PMID:4261647

  8. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    PubMed

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice.

  9. Detection of electrical defects with SEMVision in semiconductor production mode manufacturing

    NASA Astrophysics Data System (ADS)

    Newell, Travis; Tillotson, Brock; Pearl, Haim; Miller, Andrei

    2016-03-01

    In the semiconductor manufacturing process, defects often occur due to a marginal process window that affects the lithography and etch processes. These defects can result in bridging patterns and overlay issues, which consequently cause electrical shorts and partially etched vias producing electrical opens. SEM tools are used to find electrical failures through voltage contrast techniques. Manufacturers who fabricate with older process technology nodes often need to use their tool set more efficiently. This paper demonstrates an application of conventional SEM review with image to golden reference image inspection capabilities in Automatic Process Inspection (API ) mode to perform electrical inspections of die features. This paper details how to use a SEM review tool to detect systematic electrical defects. This methodology can prove beneficial while monitoring and developing patterning techniques for a specific design rule by catching electrical shorts and opens that are more visible at a lower resolution inspection used in process monitoring. Outcomes of this effort show that conventional review SEM techniques, using known areas prone to process inconsistencies derived from features pushing the design rule, have the capability to effectively and efficiently monitor fabrication process while implemented in a production setting at process nodes between 100 to 200 nm. Using e-beam review tools offers several advantages and disadvantages. This paper demonstrates that by using a SEM review tool and selecting die locations for imaging that are more likely to fail electrically, manufacturers can use SEM automatic review capabilities more effectively and efficiently. The application developed may also be applied in fabrication facilities that have limited yield monitoring capacity. This paper is a result of collaboration between Applied Materials and Microchip Technology Inc.

  10. Tested Demonstrations: Spectroscopy Illustrated.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Background information and procedures are provided for an experiment to prepare three metal derivatives of dimethyl sulfoxide (DMSO) and to determine some structural features of these derivatives based on their infrared spectra. Results and discussion of reactions involved are also provided. (JN)

  11. Microgravity Plant Growth Demonstration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  12. Detection of vascular defects during operation by imaging ultrasound.

    PubMed Central

    Sigel, B; Coelho, J C; Flanigan, D P; Schuler, J J; Machi, J; Beitler, J C

    1982-01-01

    Real-time high resolution ultrasound imaging was employed during reconstructive vascular operation in 165 patients. The purpose of this diagnostic procedure was to detect unrecognized strictures, thrombi, and intimal flaps in order to permit their surgical correction at the primary operation. Defects were discovered in 48 patients (29%). In 34 patients (21%), because of size and location, defects were not considered sufficiently significant to warrant re-exploration. In 14 patients (8%), ultrasound revealed defects that prompted immediate re-exploration. Patients with ultrasound defects considered to be insignificant did as well as patients with no demonstrable defects. In the 14 patients who were re-explored, 12 had major defects that were corrected. These 12 patients also did well after operation. In two of the 14 patients, defects could not be found at re-exploration. Both these patients experienced early thrombosis of bypass grafts. In 56 patients, ultrasound was compared with arteriography at the same operation. The accuracy of operative ultrasound and operative arteriography was 96% and 85%, respectively. Operative ultrasound is more accurate, simpler and safer than arteriography and may be the preferred method for detection of vascular defects at reconstructive surgery. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7125733

  13. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  14. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  15. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  16. USFWS demonstration fees

    USGS Publications Warehouse

    Taylor, Jonathan; Vaske, Jerry; Donnelly, Maureen; Shelby, Lori

    2002-01-01

    This study examined National Wildlife Refuge (NWR) visitors' reactions to changes in fees implemented as part of the fee demonstration program. Visitors' evaluations of the fees paid were examined in addition to their beliefs about fees and the fee demonstration program, and the impact of fees paid on their intention to return. All results were analyzed relative to socio-demographic characteristics.

  17. A Stellar Demonstrator

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2009-01-01

    The main purpose of the stellar demonstrator is to help explain the movement of stars. In particular, students have difficulties understanding why, if they are living in the Northern Hemisphere, they may observe starts in the Southern Hemisphere, or why circumpolar stars are not the same in different parts of Europe. Using the demonstrator, these…

  18. Toy Demonstrator's "VISIT" Handbook.

    ERIC Educational Resources Information Center

    Levenstein, Phyllis

    The role of the toy demonstrator in a home-based, mother-involved intervention effort (Verbal Interaction Project) is presented in this handbook for staff members. It is believed that the prerequisites for functioning in the toy demonstrator's role are a sense of responsibility, patience with the children and their mothers, and willingness to be…

  19. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  20. Better Ira Remsen Demonstration

    ERIC Educational Resources Information Center

    Dalby, David K.; Maynard, James H.; Moore, John W.

    2011-01-01

    Many versions of the classic Ira Remsen experience involving copper and concentrated nitric acid have been used as lecture demonstrations. Remsen's original reminiscence from 150 years ago is included in the Supporting Information, and his biography can be found on the Internet. This article presents a new version that makes the demonstration more…

  1. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  2. A Greener Chemiluminescence Demonstration

    ERIC Educational Resources Information Center

    Jilani, Osman; Donahue, Trisha M.; Mitchell, Miguel O.

    2011-01-01

    Because they are dramatic and intriguing, chemiluminescence demonstrations have been used for decades to stimulate interest in chemistry. One of the most intense chemiluminescent reactions is the oxidation of diaryl oxalate diesters with hydrogen peroxide in the presence of a fluorescer. In typical lecture demonstrations, the commercially…

  3. Demonstration Experiments in Physics

    ERIC Educational Resources Information Center

    Sutton, Richard M.

    2003-01-01

    This book represents a "cookbook" for teachers of physics, a book of recipes for the preparation of demonstration experiments to illustrate the principles that make the subject of physics so fascinating. Illustrations and explanations of each demonstration are done in an easy-to-understand format. Each can be adapted to be used as a demonstration…

  4. The Microgravity Demonstrator.

    ERIC Educational Resources Information Center

    Rogers, Melissa J. B.; Wargo, Michael J.

    The Microgravity Demonstrator is a tool used to create microgravity conditions in the classroom. A series of demonstrations is used to provide a dramatically visual, physical connection between free-fall and microgravity conditions in order to understand why various types of experiments are performed under microgravity conditions. The manual is…

  5. Demonstrating Newton's Second Law.

    ERIC Educational Resources Information Center

    Fricker, H. S.

    1994-01-01

    Describes an apparatus for demonstrating the second law of motion. Provides sample data and discusses the merits of this method over traditional methods of supplying a constant force. The method produces empirical best-fit lines which convincingly demonstrate that for a fixed mass, acceleration is proportional to force. (DDR)

  6. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.

    PubMed

    Harris, M J; Juriloff, D M

    1999-11-01

    We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other defects may be present, but affected fetuses can survive to birth. Multifactorial genetic causes, as are present in the curly tail stock (15-20% spina bifida), or the SELH/Bc strain (15-20% exencephaly), lead to nonsyndromic NTDs. The mutations indicate that "spina bifida occulta," a dorsal gap in the vertebral arches over an intact neural tube, is usually genetically and developmentally unrelated to exencephaly or "spina bifida" (aperta). Almost all exencephaly or spina bifida aperta of genetic origin is caused by failure of neural fold elevation. The developmental mechanisms in genetic NTDs are considered in terms of distinct rostro-caudal zones along the neural folds that likely differ in mechanism of elevation. Failure of elevation leads to: split face (zone A), exencephaly (zone B), rachischisis (all of zone D), or spina bifida (caudal zone D). The developmental mechanisms leading to these genetic NTDs are heterogeneous, even within one zone. At the tissue level, the mutants show that the mechanism of failure of elevation can involve, e.g., (1) slow growth of adjacent tethered tissue (curly tail), (2) defective forebrain mesenchyme (Cart1 or twist), (3) defective basal lamina in surface ectoderm (Lama5), (4) excessive breadth of floorplate and notochord (Lp), (5) abnormal neuroepithelium (Apob, Sp, Tcfap2a), (6) morphological deformation of neural folds (jmj), (7) abnormal neuroepithelial and neural crest cell gap-junction communication (Gja1), or (8) incomplete compensation for a defective step in the elevation sequence (SELH/Bc). At the biochemical level, mutants suggest involvement of: (1) faulty regulation

  7. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ∼560–720 nm and typically exhibits two broad spectral peaks separated by ∼150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  8. Defects in Silicene: Vacancy Clusters, Extended Line Defects, and Di-adatoms

    PubMed Central

    Li, Shuang; Wu, Yifeng; Tu, Yi; Wang, Yonghui; Jiang, Tong; Liu, Wei; Zhao, Yonghao

    2015-01-01

    Defects are almost inevitable during the fabrication process, and their existence strongly affects thermodynamic and (opto)electronic properties of two-dimensional materials. Very recent experiments have provided clear evidence for the presence of larger multi-vacancies in silicene, but their structure, stability, and formation mechanism remain largely unexplored. Here, we present a detailed theoretical study of silicene monolayer containing three types of defects: vacancy clusters, extended line defects (ELDs), and di-adatoms. First-principles calculations, along with ab initio molecular dynamics simulations, revealed the coalescence tendency of small defects and formation of highly stable vacancy clusters. The 5|8|5 ELD – the most favorable extended defect in both graphene and silicene sheets – is found to be easier to form in the latter case due to the mixed sp2/sp3 hybridization of silicon. In addition, hybrid functional calculations that contain part of the Hatree-Fock exchange energy demonstrated that the introduction of single and double silicon adatoms significantly enhances the stability of the system, and provides an effective approach on tuning the magnetic moment and band gap of silicene. PMID:25619941

  9. Defects in silicene: vacancy clusters, extended line defects, and Di-adatoms.

    PubMed

    Li, Shuang; Wu, Yifeng; Tu, Yi; Wang, Yonghui; Jiang, Tong; Liu, Wei; Zhao, Yonghao

    2015-01-26

    Defects are almost inevitable during the fabrication process, and their existence strongly affects thermodynamic and (opto)electronic properties of two-dimensional materials. Very recent experiments have provided clear evidence for the presence of larger multi-vacancies in silicene, but their structure, stability, and formation mechanism remain largely unexplored. Here, we present a detailed theoretical study of silicene monolayer containing three types of defects: vacancy clusters, extended line defects (ELDs), and di-adatoms. First-principles calculations, along with ab initio molecular dynamics simulations, revealed the coalescence tendency of small defects and formation of highly stable vacancy clusters. The 5|8|5 ELD - the most favorable extended defect in both graphene and silicene sheets - is found to be easier to form in the latter case due to the mixed sp(2)/sp(3) hybridization of silicon. In addition, hybrid functional calculations that contain part of the Hatree-Fock exchange energy demonstrated that the introduction of single and double silicon adatoms significantly enhances the stability of the system, and provides an effective approach on tuning the magnetic moment and band gap of silicene.

  10. Using an OHP to Demonstrate Wave Motion.

    ERIC Educational Resources Information Center

    Jacobs, F.

    1985-01-01

    Describes how, using an overhead projector (OHP) and a transparent roll of acetate film, it is possible to demonstrate: (1) travelling waves; (2) standing waves; and (3) phase and group velocity applied to waves. The set-ups provide a way to demonstrate features which are normally difficult to visualize and understand. (JN)

  11. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  12. METCAN demonstration manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Lee, H.-J.; Murthy, P. L. N.

    1992-01-01

    The various features of the Metal Matrix Composite Analyzer (METCAN) computer program to simulate the high temperature nonlinear behavior of continuous fiber reinforced metal matrix composites are demonstrated. Different problems are used to demonstrate various capabilities of METCAN for both static and cyclic analyses. A complete description of the METCAN output file is also included to help interpret results.

  13. Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots.

    PubMed

    Zhang, Wenkai; Liu, Yingqiu; Meng, Xianrui; Ding, Tao; Xu, Yuanqing; Xu, Hao; Ren, Yanrong; Liu, Baoying; Huang, Jiajia; Yang, Jinghe; Fang, Xiaomin

    2015-09-14

    In this work, few layer graphene quantum dots (GQDs) with a size of 3-5 nm are purposely treated with highly concentrated aqueous NaBH4 solutions to obtain the reduced graphene quantum dots (rGQDs). Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy demonstrate that the number of carbonyl groups decreases but -OH related defects increase during chemical reduction. Green and weak emissions of original GQDs originate from carrier recombination in the disorder-induced localized state (mainly including carbonyl and carboxyl and epoxy groups). As the reduction degree increases, the photoluminescence (PL) quantum efficiency of GQDs increases dramatically from 2.6% to 10.1%. In the meantime, the PL peak position blue shifts rapidly, and full width at half maximum (FWHM) becomes narrower. Thus we can infer that graphenol topological defects (hydroxyl functionalized graphene) are gradually formed during reduction. Besides, graphenol defect related PL features a longer fluorescence lifetime, excitation wavelength dependence but less pH sensitivity. PMID:26247890

  14. Background Defect Density Reduction Using Automated Defect Inspection And Analysis

    NASA Astrophysics Data System (ADS)

    Weirauch, Steven C.

    1988-01-01

    Yield maintenance and improvement is a major area of concern in any integrated circuit manufacturing operation. A major aspect of this concern is controlling and reducing defect density. Obviously, large defect excursions must be immediately addressed in order to maintain yield levels. However, to enhance yields, the subtle defect mechanisms must be reduced or eliminated as well. In-line process control inspections are effective for detecting large variations in the defect density on a real time basis. Examples of in-line inspection strategies include after develop or after etch inspections. They are usually effective for detecting when a particular process segment has gone out of control. However, when a process is running normally, there exists a background defect density that is generally not resolved by in-line process control inspections. The inspection strategies that are frequently used to monitor the background defect density are offline inspections. Offline inspections are used to identify the magnitude and characteristics of the background defect density. These inspections sample larger areas of product wafers than the in-line inspections to allow identification of the defect generating mechanisms that normally occur in the process. They are used to construct a database over a period of time so that trends may be studied. This information enables engineering efforts to be focused on the mechanisms that have the greatest impact on device yield. Once trouble spots in the process are identified, the data base supplies the information needed to isolate and solve them. The key aspect to the entire program is to utilize a reliable data gathering mechanism coupled with a flexible information processing system. This paper describes one method of reducing the background defect density using automated wafer inspection and analysis. The tools used in this evaluation were the KLA 2020 Wafer Inspector, KLA Utility Terminal (KLAUT), and a new software package developed

  15. Tunable Bragg filters with a phase transition material defect layer.

    PubMed

    Wang, Xi; Gong, Zilun; Dong, Kaichen; Lou, Shuai; Slack, Jonathan; Anders, Andre; Yao, Jie

    2016-09-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities. PMID:27607643

  16. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-27

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  17. The afferent pupillary defect in acute optic neuritis.

    PubMed Central

    Ellis, C J

    1979-01-01

    Twenty-two patients with acute optic neuritis were studied by the techniques of infrared pupillometry and visual evoked responses (VER) to pattern reversal. A relative afferent pupillary defect was found in all cases and the magnitude of this defect was found to be related to the amplitude, but not to the latency, of the VER. During follow-up the afferent defect was found to remain persistently abnormal while other methods of clinical evaluation could not demonstrate abnormality reliably. The amplitude of the VER also remained low. PMID:501365

  18. Ventricular septal defect in a houbara bustard (Chlamydotis undulata macqueenii).

    PubMed

    Bailey, T A; Kinne, J

    2001-01-01

    A ventricular septal defect was found in a juvenile captive-bred houbara bustard (Chlamydotis undulata) that died suddenly. The case history indicated that the bird had a retarded growth and maturation rate. Gross pathology demonstrated massive internal hemorrhage, an enlarged heart with an interventricular septal defect, one shrunken liver lobe, and hypoplastic kidneys. Histologically, the liver was characterized by fatty degeneration, and there was hydropic degeneration of the cardiac muscle fibers. We suggest that the occurrence of this defect led to cardiac insufficiency, which resulted in sudden death caused by hemorrhage from the liver.

  19. Nondestructive Superresolution Imaging of Defects and Nonuniformities in Metals, Semiconductors, Dielectrics, Composites, and Plants Using Evanescent Microwaves

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Pathak, P. S.; Ponchak, G.; LeClair, S.

    1999-01-01

    We have imaged and mapped material nonuniformities and defects using microwaves generated at the end of a microstripline resonator with 0.4 micrometer lateral spatial resolution at 1 GHz. Here we experimentally examine the effect of microstripline substrate permittivity, the feedline-to-resonator coupling strength, and probe tip geometry on the spatial resolution of the probe. Carbon composites, dielectrics, semiconductors, metals, and botanical samples were scanned for defects, residual stresses, subsurface features, areas of different film thickness, and moisture content. The resulting evanescent microwave probe (EMP) images are discussed. The main objective of this work is to demonstrate the overall capabilities of the EMP imaging technique as well as to discuss various probe parameters that can be used to design EMPs for different applications.

  20. Live demonstration of microcirculation in the deep fascia and its implication.

    PubMed

    Bhattacharya, V; Watts, Rajesh Kumar; Reddy, G R

    2005-02-01

    The rich vascular network in the deep fascia has been emphasized by various scientists, but the actual demonstration of live circulation in the deep fascia has not previously been witnessed. Encouraged by the sight of live circulation in the web membrane of toad hind limb, a successful attempt was made to demonstrate the live circulation in the vascular network of the deep fascia. Fascial extensions of inferiorly based fasciocutaneous flaps were dissected in five patients with distal leg and heel defects. The fascial extension in continuity with a proximal retrograde fasciocutaneous flap was mounted on a glass slide and examined under a microscope. The authors witnessed the live microcirculation and the movement of individual red blood corpuscles in vascular channels of the deep fascia. The authors also noticed that the deep fascia has two layers with circulations that are independent of one other. A video recording was made to document these important features.

  1. An association between left axis deviation and an aneurysmal defect in children with a perimembranous ventricular septal defect.

    PubMed Central

    Farrú-Albohaire, O; Arcil, G; Hernández, I

    1990-01-01

    Conspicuous left axis deviation was found in two thirds (27 patients) of 44 children with a perimembranous ventricular septal defect, echocardiographic signs of apposition of the septal tricuspid valve leaflet, and an aneurysm of the membranous septum. In 10 patients earlier electrocardiograms did not show left axis deviation; this feature appeared when the aneurysm of the membranous septum was first seen on the echocardiogram. None of the 44 controls with perimembranous ventricular septal defect but without an aneurysm had left axis deviation. This study suggests that the appearances of conspicuous left axis deviation in a patient with ventricular septal defect indicate a spontaneous reduction in the defect by apposition of the septal tricuspid valve leaflet and by the formation of an aneurysm of the membranous septum. Images PMID:2393613

  2. Time scale for point-defect equilibration in nanostructures

    SciTech Connect

    Millett, Paul C.; Wolf, Dieter; Desai, Tapan; Yamakov, Vesselin

    2008-10-20

    Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.

  3. Light manipulation of nanoparticles in arrays of topological defects.

    PubMed

    Kasyanyuk, D; Pagliusi, P; Mazzulla, A; Reshetnyak, V; Reznikov, Yu; Provenzano, C; Giocondo, M; Vasnetsov, M; Yaroshchuk, O; Cipparrone, G

    2016-01-01

    We report a strategy to assemble and manipulate nanoparticles arrays. The approach is based on the use of topological defects, namely disclination lines, created in chiral liquid crystals. The control of nanoparticle-loaded topological defects by low power light is demonstrated. Large-scale rotation, translation and deformation of quantum dots light-emitting chains is achieved by homogeneous LED illumination. Full reconfigurability and time stability make this approach attractive for future developments and applications. PMID:26882826

  4. Tuning micropillar cavity birefringence by laser induced surface defects

    SciTech Connect

    Bonato, Cristian; Ding Dapeng; Gudat, Jan; Exter, Martin P. van; Thon, Susanna; Kim, Hyochul; Petroff, Pierre M.; Bouwmeester, Dirk

    2009-12-21

    We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.

  5. Light manipulation of nanoparticles in arrays of topological defects

    PubMed Central

    Kasyanyuk, D.; Pagliusi, P.; Mazzulla, A.; Reshetnyak, V.; Reznikov, Yu.; Provenzano, C.; Giocondo, M.; Vasnetsov, M.; Yaroshchuk, O.; Cipparrone, G.

    2016-01-01

    We report a strategy to assemble and manipulate nanoparticles arrays. The approach is based on the use of topological defects, namely disclination lines, created in chiral liquid crystals. The control of nanoparticle-loaded topological defects by low power light is demonstrated. Large-scale rotation, translation and deformation of quantum dots light-emitting chains is achieved by homogeneous LED illumination. Full reconfigurability and time stability make this approach attractive for future developments and applications. PMID:26882826

  6. Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties

    SciTech Connect

    Barin, G; Krungleviciute, V; Gutov, O; Hupp, JT; Yildirim, T; Farha, OK

    2014-07-07

    We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range for different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.

  7. Improving reticle defect disposition via fully automated lithography simulation

    NASA Astrophysics Data System (ADS)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in

  8. Advanced ultrasound activated lockin-thermography for defect selective depth-resolved imaging

    NASA Astrophysics Data System (ADS)

    Gleiter, A.; Riegert, G.; Zweschper, Th.; Degenhardt, R.; Busse, G.

    2006-04-01

    Ultrasound activated Lockin-Thermography ("ultrasound attenuation mapping") is a defect selective NDT-technique. Its main advantage is a high probability of defect detection ("POD") since only defects produce a signal while all other features are suppressed. The mechanism involved is local sound absorption which turns a variably loaded defect into a heat source. Thermographic monitoring of elastic wave attenuation in defects was reported for the first time in 1979 by Henneke and colleagues for continuous and pulsed ultrasound injection. Later, amplitude modulated ultrasound was used to derive frequency coded phase angle images combining defect-selectivity with robustness of measurement. With mono-frequent ultrasound excitation a standing wave pattern might hide defects. With additional modulation of the ultrasound frequency such a misleading pattern can be minimized. Applications related to quality maintenance (aerospace, automotive industry) will be presented in order to illustrate the potential of frequency modulated ultrasound excitation and its applications.

  9. Facts about Atrial Septal Defect

    MedlinePlus

    ... prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol. 2010;88(12):1008-16. Related Links Disability & Health Family Health History & Genetics Healthy Pregnancy Planning for Pregnancy A-Z ...

  10. Demonstrating Natural Selection

    ERIC Educational Resources Information Center

    Hinds, David S.; Amundson, John C.

    1975-01-01

    Describes laboratory exercises with chickens selecting their food from dyed and natural corn kernels as a method of demonstrating natural selection. The procedure is based on the fact that organisms that blend into their surroundings escape predation. (BR)

  11. Flagship Technology Demonstrations (FTD)

    NASA Video Gallery

    Mike Conley delivers a presentation from the Flagship Technology Demonstrations (FTD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of t...

  12. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  13. Floating Magnet Demonstration.

    ERIC Educational Resources Information Center

    Wake, Masayoshi

    1990-01-01

    A room-temperature demonstration of a floating magnet using a high-temperature superconductor is described. The setup and operation of the apparatus are described. The technical details of the effect are discussed. (CW)

  14. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  15. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  16. Commissioning the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Majorana Collaboration

    2016-03-01

    The Majorana Demonstrator deploys high purity germanium (HPGe) detector modules to search for neutrinoless double beta (0 νββ) decay in 76Ge. The experiment is aimed at demonstrating the technical feasibility and low backgrounds for a next generation Ge-based BBz experiment. The program of testing and commissioning the Demonstrator modules is a critical step to debug and improve the experimental apparatus, to establish and refine operational procedures, and to develop data analysis tools. In this talk, we will discuss our experience commissioning the Demonstrator modules and show how this program leads to successful data-taking. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  17. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  18. Five amazing physics demonstrations

    NASA Astrophysics Data System (ADS)

    Downie, Neil

    2015-04-01

    There's nothing better than a good physics demonstration to illustrate the subject's fundamental principles. Neil Downie, who has run Saturday science clubs for children for more than two decades, presents his five best demos of all time.

  19. Demonstration of Surface Tension.

    ERIC Educational Resources Information Center

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  20. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Hambly, Gordon F.; Goldsmith, Robert H.

    1988-01-01

    Presented is a method of demonstrating the optical activity of glucose using an overhead projector and easily obtainable materials. Explores the difference between reflected and transmitted light (Tyndall Effect) using sodium thiosulfate, hydrochloric acid, and an overhead projector. (ML)

  1. Classroom Demonstration of Sunspots.

    ERIC Educational Resources Information Center

    Callaway, Thomas O.; And Others

    1982-01-01

    An overhead projector, projection screen, and clear tungsten Filament light bulb operated through a dimmer or variac switch are used to demonstrate the fact that black appearance of sunspots is due only to contrast and that sunspots are bright. (SK)

  2. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  3. Feature++: Automatic Feature Construction for Clinical Data Analysis.

    PubMed

    Sun, Wen; Hao, Bibo; Yu, Yiqin; Li, Jing; Hu, Gang; Xie, Guotong

    2016-01-01

    With the rapid growth of clinical data and knowledge, feature construction for clinical analysis becomes increasingly important and challenging. Given a clinical dataset with up to hundreds or thousands of columns, the traditional manual feature construction process is usually too labour intensive to generate a full spectrum of features with potential values. As a result, advanced large-scale data analysis technologies, such as feature selection for predictive modelling, cannot be fully utilized for clinical data analysis. In this paper, we propose an automatic feature construction framework for clinical data analysis, namely, Feature++. It leverages available public knowledge to understand the semantics of the clinical data, and is able to integrate external data sources to automatically construct new features based on predefined rules and clinical knowledge. We demonstrate the effectiveness of Feature++ in a typical predictive modelling use case with a public clinical dataset, and the results suggest that the proposed approach is able to fulfil typical feature construction tasks with minimal dataset specific configurations, so that more accurate models can be obtained from various clinical datasets in a more efficient way. PMID:27577443

  4. Education Payload Operation - Demonstrations

    NASA Technical Reports Server (NTRS)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  5. Edible Astronomy Demonstrations

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  6. Topological Point Defects in Relaxor Ferroelectrics.

    PubMed

    Nahas, Y; Prokhorenko, S; Kornev, I; Bellaiche, L

    2016-03-25

    First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects are discovered to predominantly lie at the border of polar nanoregions in both Ba(Zr_{0.5}Ti_{0.5})O_{3} (BZT) and Pb(Sc_{0.5}Nb_{0.5})O_{3} (PSN) systems, and the temperature dependency of their density allows us to distinguish between noncanonical (PSN) and canonical (BZT) relaxor behaviors (via the presence or absence of a crossing of a percolation threshold). This density also possesses an inflection point at precisely the temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are found to be mobile excitations, and the dynamical nature of their annihilation is demonstrated (using simple hydrodynamical arguments) to follows laws, such as those of Vogel-Fulcher and Arrhenius, that are characteristic of dipolar relaxation kinetics of relaxor ferroelectrics. PMID:27058101

  7. Topological Point Defects in Relaxor Ferroelectrics.

    PubMed

    Nahas, Y; Prokhorenko, S; Kornev, I; Bellaiche, L

    2016-03-25

    First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects are discovered to predominantly lie at the border of polar nanoregions in both Ba(Zr_{0.5}Ti_{0.5})O_{3} (BZT) and Pb(Sc_{0.5}Nb_{0.5})O_{3} (PSN) systems, and the temperature dependency of their density allows us to distinguish between noncanonical (PSN) and canonical (BZT) relaxor behaviors (via the presence or absence of a crossing of a percolation threshold). This density also possesses an inflection point at precisely the temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are found to be mobile excitations, and the dynamical nature of their annihilation is demonstrated (using simple hydrodynamical arguments) to follows laws, such as those of Vogel-Fulcher and Arrhenius, that are characteristic of dipolar relaxation kinetics of relaxor ferroelectrics.

  8. Topological Point Defects in Relaxor Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Nahas, Y.; Prokhorenko, S.; Kornev, I.; Bellaiche, L.

    2016-03-01

    First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects are discovered to predominantly lie at the border of polar nanoregions in both Ba (Zr0.5 Ti0.5 )O3 (BZT) and Pb (Sc0.5 Nb0.5 )O3 (PSN) systems, and the temperature dependency of their density allows us to distinguish between noncanonical (PSN) and canonical (BZT) relaxor behaviors (via the presence or absence of a crossing of a percolation threshold). This density also possesses an inflection point at precisely the temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are found to be mobile excitations, and the dynamical nature of their annihilation is demonstrated (using simple hydrodynamical arguments) to follows laws, such as those of Vogel-Fulcher and Arrhenius, that are characteristic of dipolar relaxation kinetics of relaxor ferroelectrics.

  9. Defective skeletal mineralization in pediatric CKD.

    PubMed

    Wesseling-Perry, Katherine

    2015-04-01

    Although traditional diagnosis and treatment of renal osteodystrophy focused on changes in bone turnover, current data demonstrate that abnormalities in skeletal mineralization are also prevalent in pediatric chronic kidney disease (CKD) and likely contribute to skeletal morbidities that continue to plague this population. It is now clear that alterations in osteocyte biology, manifested by changes in osteocytic protein expression, occur in early CKD before abnormalities in traditional measures of mineral metabolism are apparent and may contribute to defective skeletal mineralization. Current treatment paradigms advocate the use of 1,25(OH)2vitamin D for the control of secondary hyperparathyroidism; however, these agents fail to correct defective skeletal mineralization and may exacerbate already altered osteocyte biology. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization as well as the potential effects that current therapeutic options may have on osteocyte biology and bone mineralization. PMID:25638580

  10. Transport on a lattice with dynamical defects

    NASA Astrophysics Data System (ADS)

    Turci, Francesco; Parmeggiani, Andrea; Pitard, Estelle; Romano, M. Carmen; Ciandrini, Luca

    2013-01-01

    Many transport processes in nature take place on substrates, often considered as unidimensional lanes. These unidimensional substrates are typically nonstatic: Affected by a fluctuating environment, they can undergo conformational changes. This is particularly true in biological cells, where the state of the substrate is often coupled to the active motion of macromolecular complexes, such as motor proteins on microtubules or ribosomes on mRNAs, causing new interesting phenomena. Inspired by biological processes such as protein synthesis by ribosomes and motor protein transport, we introduce the concept of localized dynamical sites coupled to a driven lattice gas dynamics. We investigate the phenomenology of transport in the presence of dynamical defects and find a regime characterized by an intermittent current and subject to severe finite-size effects. Our results demonstrate the impact of the regulatory role of the dynamical defects in transport not only in biology but also in more general contexts.

  11. Multichannel quantum defect theory for polar molecules

    NASA Astrophysics Data System (ADS)

    Elfimov, Sergei V.; Dorofeev, Dmitrii L.; Zon, Boris A.

    2014-02-01

    Our work is devoted to developing a general approach for nonpenetrating Rydberg states of polar molecules. We propose a method to estimate the accuracy of calculation of their wave functions and quantum defects. Basing on this method we estimate the accuracy of Born-Oppenheimer (BO) and inverse Born-Oppenheimer (IBO) approximations for these states. This estimation enables us to determine the space and energy regions where BO and IBO approximations are valid. It depends on the interplay between l coupling (due to dipole potential of the core) and l uncoupling (due to rotation the core). Next we consider the intermediate region where both BO and IBO are not valid. For this intermediate region we propose a modification of Fano's multichannel quantum defect theory to match BO and IBO wave functions and show that it gives more reliable results. They are demonstrated on the example of SO molecule.

  12. Defective skeletal mineralization in pediatric CKD.

    PubMed

    Wesseling-Perry, Katherine

    2015-04-01

    Although traditional diagnosis and treatment of renal osteodystrophy focused on changes in bone turnover, current data demonstrate that abnormalities in skeletal mineralization are also prevalent in pediatric chronic kidney disease (CKD) and likely contribute to skeletal morbidities that continue to plague this population. It is now clear that alterations in osteocyte biology, manifested by changes in osteocytic protein expression, occur in early CKD before abnormalities in traditional measures of mineral metabolism are apparent and may contribute to defective skeletal mineralization. Current treatment paradigms advocate the use of 1,25(OH)2vitamin D for the control of secondary hyperparathyroidism; however, these agents fail to correct defective skeletal mineralization and may exacerbate already altered osteocyte biology. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization as well as the potential effects that current therapeutic options may have on osteocyte biology and bone mineralization.

  13. Toward Intelligent Software Defect Detection

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  14. Global topological k-defects

    SciTech Connect

    Babichev, E.

    2006-10-15

    We consider global topological defects in symmetry-breaking models with a noncanonical kinetic term. Apart from a mass parameter entering the potential, one additional dimensional parameter arises in such models - a kinetic mass. The properties of defects in these models are quite different from standard global domain walls, vortices, and monopoles, if their kinetic mass scale is smaller than their symmetry-breaking scale. In particular, depending on the concrete form of the kinetic term, the typical size of such a defect can be either much larger or much smaller than the size of a standard defect with the same potential term. The characteristic mass of a nonstandard defect, which might have been formed during a phase transition in the early universe, depends on both the temperature of a phase transition and the kinetic mass.

  15. Holographic Chern-Simons defects

    NASA Astrophysics Data System (ADS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-01

    We study SU( N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  16. Holographic Chern-Simons defects

    DOE PAGES

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less

  17. Classification of weld defect based on information fusion technology for radiographic testing system

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  18. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification. PMID:27036822

  19. Local charge states in hexagonal boron nitride with Stone-Wales defects.

    PubMed

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-21

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices. PMID:27030259

  20. Local charge states in hexagonal boron nitride with Stone-Wales defects

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-01

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices.

  1. Low-defect reflective mask blanks for extreme ultraviolet lithography

    SciTech Connect

    Burkhart, S C; Cerjarn, C; Kearney, P; Mirkarimi, P; Walton, C; Ray-Chaudhuri, A

    1999-03-11

    Extreme Ultraviolet Lithgraphy (EUVL) is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA roadmap well into the 21st century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme ultraviolet at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80% of the exposure plane CD (for 4:1 reduction) will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm² @ 80nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm² for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm² in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the 10-2/cm² level on the next generation of mask blank deposition systems. In this paper we will discuss issues and results from the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling.

  2. Mask defect verification using actinic inspection and defect mitigation technology

    SciTech Connect

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Goldberg, Kenneth; Mochi, Iacopo; Gullikson, Eric

    2009-04-14

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. The successful production of defect-free masks will depend on the timely development of defect inspection tools, including both mask blank inspection tools and absorber pattern inspection tools to meet the 22 nm half-pitch node. EUV mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360 is operated at SEMA TECH's Mask blank Development Center (MBDC) in Albany, with sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for the next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. This paper will also discuss the kind of infrastructure that will be required in the development and mass production stages.

  3. Surface splicing defect analysis and application of polarization maintaining fiber using graph cut with illumination priors

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Wang, Wei; Gao, Feng; Li, Jie; Chen, Kai

    2014-09-01

    A new surface splicing defect analysis and application technique of Polarization Maintaining (PM) fiber is proposed. In contrast to the traditional artificial experience based analysis method, we not only develop an automatic defect segmentation technique for the fiber splicer but utilize the image features of splicing defect to assist evaluation of the splicing effect. First, we employ a standard fiber splicer to implement the splicing operation. Both the visible and the hot (infrared) images are captured during that processes. Second, we use the image processing techniques to analyze the image features for both the visible and the hot images. The Hough line detection is used to monitor the core-offset or the angle tilt problems of spliced fibers in visible image. A new Graph Cut Model (GCM), which uses the Multivariate Gaussian Mixture Model (MGMM) as the illumination prior of transmitted rays, is employed to segment the splicing defect in hot image. Third, multiple defect image features, such as the linear edge, the defect shape, and the inertia moment are all computed for the description of defective region. Finally, the SVM classifier is employed to evaluate the fiber splicing effect. The defect features, the splice loss, the extinction ratio, together with the final precision output of optical component are utilized to train the SVM. By using this method, a reliable quality control measurement for the optical component of aerospace optoelectronic apparatus is developed. Many experiments have verified the validity of the proposed method.

  4. Demonstrations in Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Stein, S.; van der Lee, S.; Swafford, L.; Klosko, E.; Delaughter, J.; Wysession, M.

    2005-12-01

    Geophysical concepts are challenging to teach at introductory levels, because students need to understand both the underlying physics and its geological application. To address this, our introductory courses include class demonstrations and experiments to demonstrate underlying physical principles and their geological applications. Demonstrations and experiments have several advantages over computer simulations. First, computer simulations "work" even if the basic principle is wrong. In contrast, simple demonstrations show that a principle is physically correct, rather than a product of computer graphics. Second, many students are unfamiliar with once-standard experiments demonstrating ideas of classical physics used in geophysics. Demonstrations are chosen that we consider stimulating, relevant, inexpensive, and easy to conduct in a non-lab classroom. These come in several groups. Many deal with aspects of seismic waves, using springs, light beams, and other methods such as talking from outside the room to illustrate the frequency dependence of diffraction (hearing but not seeing around a corner). Others deal with heat and mass transfer, such as illustrating fractional crystallization with apple juice and the surface/volume effect in planetary evolution with ice. Plate motions are illustrated with paper cutouts showing effects like motion on transform faults and how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence along the Pacific-North America boundary from the Gulf of California to Alaska. Radioactive decay is simulated by having the class rise and sit down as a result of coin flips (one tail versus two gives different decay rates and hence half lives). This sessions' goal of exchanging information about demonstrations is an excellent idea: some of ours are described on http://www.earth.nwu.edu/people/seth/202.

  5. Nonconsecutive Pars Interarticularis Defects.

    PubMed

    Elgafy, Hossein; Hart, Ryan C; Tanios, Mina

    2015-12-01

    Lumbar spondylolysis is a well-recognized condition occurring in adolescents because of repetitive overuse in sports. Nonconsecutive spondylolysis involving the lumbar spine is rare. In contrast to single-level pars defects that respond well to conservative treatment, there is no consensus about the management of multiple-level pars fractures; a few reports indicated that conservative management is successful, and the majority acknowledged that surgery is often required. The current study presents a rare case of pars fracture involving nonconsecutive segments and discusses the management options. In this case report, we review the patient's history, clinical examination, radiologic findings, and management, as well as the relevant literature. An 18-year-old man presented to the clinic with worsening lower back pain related to nonconsecutive pars fractures at L2 and L5. After 6 months of conservative management, diagnostic computed tomography-guided pars block was used to localize the symptomatic level at L2, which was treated surgically; the L5 asymptomatic pars fracture did not require surgery. At the last follow-up 2 years after surgery, the patient was playing baseball and basketball, and denied any back pain. This article reports a case of rare nonconsecutive pars fractures. Conservative management for at least 6 months is recommended. Successful management depends on the choice of appropriate treatment for each level. Single-photon emission computed tomography scan, and computed tomography-guided pars block are valuable preoperative tools to identify the symptomatic level in such a case. PMID:26665257

  6. Nonconsecutive Pars Interarticularis Defects.

    PubMed

    Elgafy, Hossein; Hart, Ryan C; Tanios, Mina

    2015-12-01

    Lumbar spondylolysis is a well-recognized condition occurring in adolescents because of repetitive overuse in sports. Nonconsecutive spondylolysis involving the lumbar spine is rare. In contrast to single-level pars defects that respond well to conservative treatment, there is no consensus about the management of multiple-level pars fractures; a few reports indicated that conservative management is successful, and the majority acknowledged that surgery is often required. The current study presents a rare case of pars fracture involving nonconsecutive segments and discusses the management options. In this case report, we review the patient's history, clinical examination, radiologic findings, and management, as well as the relevant literature. An 18-year-old man presented to the clinic with worsening lower back pain related to nonconsecutive pars fractures at L2 and L5. After 6 months of conservative management, diagnostic computed tomography-guided pars block was used to localize the symptomatic level at L2, which was treated surgically; the L5 asymptomatic pars fracture did not require surgery. At the last follow-up 2 years after surgery, the patient was playing baseball and basketball, and denied any back pain. This article reports a case of rare nonconsecutive pars fractures. Conservative management for at least 6 months is recommended. Successful management depends on the choice of appropriate treatment for each level. Single-photon emission computed tomography scan, and computed tomography-guided pars block are valuable preoperative tools to identify the symptomatic level in such a case.

  7. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique

    PubMed Central

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  8. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique.

    PubMed

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-05-07

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.

  9. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique.

    PubMed

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  10. Solar Energy Demonstrations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  11. TRUEX hot demonstration

    SciTech Connect

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  12. Observation of lattice defects in orthorhombic hen-egg white lysozyme crystals with laser scattering tomography

    NASA Astrophysics Data System (ADS)

    Sato, K.; Fukuba, Y.; Mitsuda, T.; Hirai, K.; Moriya, K.

    1992-08-01

    The effectivity of using laser scattering tomography (LST) as a nondestructive technique for finding lattice defects in protein crystals is demonstrated using an orthorhombic egg-white lysozyme crystal grown by a batch method. It was found that LST figures could be observed from the crystal portions where no defects were detectable by the naked eye or optical microscopy; the number of microdefects revealed in the LST patterns increased on approaching the crystal surface. Two types of defects were differentiated by polarization analysis: (1) point-type defects, assumed to be microdefects such as vacancies, precipitates, or impurities, and (2) bulk-type defects, assumed to correspond to inclusions.

  13. Demonstrating marketing accountability.

    PubMed

    Gombeski, William R; Britt, Jason; Taylor, Jan; Riggs, Karen; Wray, Tanya; Adkins, Wanda; Springate, Suzanne

    2008-01-01

    Pressure on health care marketers to demonstrate effectiveness of their strategies and show their contribution to organizational goals is growing. A seven-tiered model based on the concepts of structure (having the right people, systems), process (doing the right things in the right way), and outcomes (results) is discussed. Examples of measures for each tier are provided and the benefits of using the model as a tool for measuring, organizing, tracking, and communicating appropriate information are provided. The model also provides a framework for helping management understand marketing's value and can serve as a vehicle for demonstrating marketing accountability.

  14. Gigashot Optical Laser Demonstrator

    SciTech Connect

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  15. 2010 Defects in Semiconductors GRC

    SciTech Connect

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  16. Serine biosynthesis and transport defects.

    PubMed

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. PMID:27161889

  17. Biomaterials in periodontal osseous defects

    PubMed Central

    Lal, Nand; Dixit, Jaya

    2012-01-01

    Introduction Osseous defects in periodontal diseases require osseous grafts and guided tissue regeneration (GTR) using barrier membranes. The present study was undertaken with the objectives to clinically evaluate the osteogenic potential of hydroxyapatite (HA), cissus quadrangularis (CQ), and oxidized cellulose membrane (OCM) and compare with normal bone healing. Materials and Methods Twenty subjects with periodontitis in the age group ranging from 20 years to 40 years were selected from our outpatient department on the basis of presence of deep periodontal pockets, clinical probing depth ≥5 mm, vertical osseous defects obvious on radiograph and two- or three-walled involvement seen on surgical exposure. Infrabony defects were randomly divided into four groups on the basis of treatment to be executed, such that each group comprised 5 defects. Group I was control, II received HA, III received CQ and IV received OCM. Probing depth and attachment level were measured at regular months after surgery. Defects were re-exposed using crevicular incisions at 6 months. Results There was gradual reduction in the mean probing pocket depth in all groups, but highly significant in the site treated with HA. Gain in attachment level was higher in sites treated with HA, 3.2 mm at 6 months. Conclusion Hydroxyapatite and OCM showed good reduction in pocket depth, attachment level gain and osseous defect fill. Further study should be conducted by using a combination of HA and OCM in periodontal osseous defects with growth factors and stem cells. PMID:25756030

  18. Modular hydropower demonstration

    SciTech Connect

    Not Available

    1988-09-01

    The modular approach has been developed for the construction of small hydro projects in order to reduce the costs and to shorten procurement and construction schedules that occur when designs and equipment selection more applicable to large projects are used. The modular approach aims to maximize the use of ''off-the-shelf'' and readily available components. A key feature is the replacement of the conventional purpose-designed hydroelectric turbine by a pump used in reverse as a turbine with fixed blades and vanes. Other features are the use of siphon penstocks, induction generators, prefabricated structures, and automated control equipment. The New York State Energy Research and Development Authority contracted with Acres International Corporation to study two small hydro projects designed and built using the modular approach, and compare each one with an equivalent conventional design. Equipment procurement and installation costs, general construction costs, and energy production were estimated. Economic analyses were prepared. Preliminary data on operation and maintenance was recorded. The methodology and results of the study are contained in this report. 18 figs., 20 tabs.

  19. Phenolphthalein—Pink Tornado Demonstration

    NASA Astrophysics Data System (ADS)

    Prall, Bruce R.

    2008-04-01

    The phenolphthalein-pink tornado demonstration utilizes the vortex generated by a spinning magnetic stirring bar in a 1 L graduated cylinder containing 0.01 M HCl to demonstrate Le Châtelier's principle as it applies to the phenolphthalein equilibrium in water H 2 In + 2H 2 O 2H 2 O + + In 2 - where H 2 In is phenophthalein. The addition of 3-4 drops of phenolphthalein indicator solution followed immediately by 3-4 drops of 50% (w/w) NaOH to the vortex of the HCl solution results in a shift to the right in the equilibrium owing to the reaction of OH - + H 3 O + to form water. This shift is accompanied by the vortex becoming visible by the appearance of a pinkish-red color caused by an increase in In 2- concentration within the localized region of the vortex. The demonstration also provides one an excellent opportunity to discuss the topics of limiting reagent and reagent in excess. Some insight regarding the extent to which uniform mixing is achieved when using a magnetic stirrer is also provided. Included is a note from the Feature Editor, Ed Vitz.

  20. Organic Lecture Demonstrations.

    ERIC Educational Resources Information Center

    Silversmith, Ernest F.

    1988-01-01

    Provides a listing of 35 demonstrations designed to generate interest in organic chemistry and help put points across. Topics include opening lecture; molecular structure and properties; halogenation; nucleophilic substitution, alkenes and dienes, stereochemistry, spectroscopy, alcohols and phenols, aldehydes and ketones; carboxylic acids, amines,…

  1. Calculus Demonstrations Using MATLAB

    ERIC Educational Resources Information Center

    Dunn, Peter K.; Harman, Chris

    2002-01-01

    The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…

  2. A Magnetic Circuit Demonstration.

    ERIC Educational Resources Information Center

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  3. Participatory Lecture Demonstrations.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1979-01-01

    The use of participatory lecture demonstrations in the classroom is described. Examples are given for the following topics: chromatography, chemical kinetics, balancing equations, the gas laws, kinetic molecular theory, Henry's law of gas solubility, electronic energy levels in atoms, and translational, vibrational, and rotational energies of…

  4. Demonstrating carbon capture

    SciTech Connect

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  5. Demonstrating Poisson Statistics.

    ERIC Educational Resources Information Center

    Vetterling, William T.

    1980-01-01

    Describes an apparatus that offers a very lucid demonstration of Poisson statistics as applied to electrical currents, and the manner in which such statistics account for shot noise when applied to macroscopic currents. The experiment described is intended for undergraduate physics students. (HM)

  6. Passive damping technology demonstration

    NASA Astrophysics Data System (ADS)

    Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.

    1995-05-01

    A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.

  7. The "Golden Penny" Demonstration.

    ERIC Educational Resources Information Center

    Szczepankiewicz, Steven H.; And Others

    1995-01-01

    Presents the view that the explanation of the Golden Penny Experiment found in popular chemistry textbooks is insufficient or incorrect in part. Reports a series of electrochemical measurements that lead to a logical explanation for this demonstration and to a simplified design that makes it safer. (DDR)

  8. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1988-01-01

    Provides two demonstrations: (1) electrolyte migration of ions using colored ions which cross a strip of gelatin allowing for noticeable migration; and (2) photochemical reduction of Fe+3 by the citrate ion. Points out both reactions can be done in a Petri dish using common lab materials. (MVL)

  9. Astronomy Demonstrations and Models.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    Demonstrations in astronomy classes seem to be more necessary than in physics classes for three reasons. First, many of the events are very large scale and impossibly remote from human senses. Secondly, while physics courses use discussions of one- and two-dimensional motion, three-dimensional motion is the normal situation in astronomy; thus,…

  10. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1989-01-01

    Described are three chemistry demonstrations: (1) a simple qualitative technique for taste pattern recognition in structure-activity relationships; (2) a microscale study of gaseous diffusion using bleach, HCl, ammonia, and phenolphthalein; and (3) the rotation of polarized light by stereoisomers of limonene. (MVL)

  11. Why Demonstrations Matter

    ERIC Educational Resources Information Center

    Black, Richard

    2005-01-01

    The author remembers how exciting it was when the teacher had "stuff" on the front desk: unfamiliar objects and other things out of place in the traditional classroom. Years later, as a new teacher, the author learned the importance of building lessons around concepts and that demonstrations are an integral part of concept development in science.…

  12. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1989-01-01

    Presents two demonstrations using the overhead projector: (1) describes how to build a projecting voltmeter and presents uses for the classroom; and (2) investigates the color of fluorescent solutions by studying the absorption and transmission of light through the solutions. (MVL)

  13. Demonstrating the Gas Laws.

    ERIC Educational Resources Information Center

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  14. A Biofeedback Demonstration.

    ERIC Educational Resources Information Center

    Garrity, Michael K.

    1978-01-01

    Describes a demonstration for measurement of biophysical signals produced by the human body. The signals, after amplification, could provide acoustical feedback through a voltage-controlled oscillator (VCO), or they could be seen either with an oscilloscope or a high speed chart recorder. (GA)

  15. A Fruity Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Shmaefsky, Brian R.

    2005-01-01

    Classroom demonstrations are a great vehicle for getting students to apply information they have heard in a lecture. Educational research is replete with data showing that concept application in an inquiry setting reinforces long-term science content retention. This means that students learn best when they experience applications of concepts and…

  16. The Breaking Broomstick Demonstration.

    ERIC Educational Resources Information Center

    Mamola, Karl C.; Pollock, Joseph T.

    1993-01-01

    Describes and explains the breaking broomstick demonstration first reported in 1532. A needle is fixed at each end of the broomstick, and these needles are made to rest on two glasses, placed on chairs. If the broomstick is struck violently with another stout stick, the former will be broken, but the glasses will remain intact. (PR)

  17. Gate dielectric degradation: Pre-existing vs. generated defects

    NASA Astrophysics Data System (ADS)

    Veksler, Dmitry; Bersuker, Gennadi

    2014-01-01

    We consider the possibility that degradation of the electrical characteristics of high-k gate stacks under low voltage stresses of practical interest is caused primarily by activation of pre-existing defects rather than generation of new ones. In nFETs in inversion, in particular, defect activation is suggested to be associated with the capture of an injected electron: in this charged state, defects can participate in a fast exchange of charge carriers with the carrier reservoir (substrate or gate electrode) that constitutes the physical process underlying a variety of electrical measurements. The degradation caused by the activation of pre-existing defects, as opposed to that of new defect generation, is both reversible and exhibits a tendency to saturate through the duration of stress. By using the multi-phonon assisted charge transport description, it is demonstrated that the trap activation concept allows reproducing a variety of experimental results including stress time dependency of the threshold voltage, leakage current, charge pumping current, and low frequency noise. Continuous, long-term degradation described by the power law time dependency is shown to be determined by the activation of defects located in the interfacial SiO2 layer of the high-k gate stacks. The findings of this study can direct process optimization efforts towards reduction of as-grown precursors of the charge trapping defects as the major factor affecting reliability.

  18. The effect of UPW quality on photolithography defect

    NASA Astrophysics Data System (ADS)

    Ng, Wah Hoo; Yet, Siew Ing; Liau, Chu Yaw

    2009-12-01

    Photolithography resist process consists of priming, resist coating, post-apply bake, exposure, post-exposure bake develop, and post bake; advanced RETs and immersion photolithography has more critical resist process steps. Materials used in the resist process require the utmost in cleanliness, especially coating & develop process. In photolithography, De-Ionized Water (DIW) or Ultra Pure Water (UPW) is used during resist developing process as the pre-wet and rinsing material. UPW is supplied by a centralized auto supply system in a semiconductor fabrication; the UPW is controlled for temperature, pH, resistivity, TOC, ions, and etc. State of the art semiconductor design continues to shrink; defect control becomes essential for high yields in semiconductor fabrication. In this paper, effect of UPW quality on resist process defect is revealed. Low resistivity DIW used in resist developing process generates residue defects, which created killing block etch defect after the subsequent etching process. Different measurements for DIW quality are demonstrated; water pH, conductivity, and Total Organic Carbon (TOC) in this case reflected the quality issue of UPW. Detail study on the residue defect and the cause-and-effect with UPW's quality is shown and discussed; the hypothesis is explained with experimental results. High quality UPW is required to eliminate the residue defect, hence minimal defective wafer is obtained. Additionally, resist developing process optimization to improve process robustness is also important.

  19. Birth defects in the Seveso area after TCDD contamination

    SciTech Connect

    Mastroiacovo, P.; Spagnolo, A.; Marni, E.; Meazza, L.; Bertollini, R.; Segni, G.

    1988-03-18

    A study on the frequency of birth defects was conducted in the area around Seveso, Italy, which was contaminated by 2,3,7,8-tetrachlorodibenzo-p-dioxin in July 1976; this has been the largest population ever exposed to dioxin. From Jan 1, 1977, to Dec 31, 1982, a total of 15,291 births (still and live) were examined, and malformations were reported to an ad hoc birth defects registry. In the most highly contaminated area, 26 births were observed. None of these infants had any major structural defect. Two infants had mild defects. The frequencies of major defects detected in the areas of low or very low contamination were 29.9/1000 and 22.1/1000, respectively. A frequency of 27.7/1000 was registered in the control area. Relative risks were calculated for specific categories of birth defects and for grouped malformations. Although the data collected failed to demonstrate any increased risk of birth defects associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin, the number of exposed pregnancies was not big enough to show a low and specific teratogenic risk increase.

  20. The spatial evaluation of neighborhood clusters of birth defects

    SciTech Connect

    Frisch, J.D.

    1990-04-16

    Spatial statistics have recently been applied in epidemiology to evaluate clusters of cancer and birth defects. Their use requires a comparison population, drawn from the population at risk for disease, that may not always be readily available. In this dissertation the plausibility of using data on all birth defects, available from birth defects registries, as a surrogate for the spatial distribution of all live births in the analysis of clusters is assessed. Three spatial statistics that have been applied in epidemiologic investigations of clusters, nearest neighbor distance, average interpoint distance, and average distance to a fixed point, were evaluated by computer simulation for their properties in a unit square, and in a zip code region. Comparison of spatial distributions of live births and birth defects was performed by drawing samples of live births and birth defects from Santa Clara County, determining the street address at birth, geocoding this address and evaluating the resultant maps using various statistical techniques. The proposed method was then demonstrated on a previously confirmed cluster of oral cleft cases. All live births for the neighborhood were geocoded, as were all birth defects. Evaluation of this cluster using the nearest neighbor and average interpoint distance statistics was performed using randomization techniques with both the live births population and the birth defect population as comparison groups. 113 refs., 36 figs., 16 tabs.

  1. Self healing of defected graphene

    SciTech Connect

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng; Wu, Xiaosong; Yu, Dapeng; Xu, Tao; Sun, Litao

    2013-03-11

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  2. Defect dynamics in active nematics

    PubMed Central

    Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M

    2014-01-01

    Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389

  3. Care and Treatment for Congenital Heart Defects

    MedlinePlus

    ... Physical Activity Recommendations for Heart Health • Tools & Resources Web Booklets on Congenital Heart Defects These online publications ... to you or your child’s defect and concerns. Web Booklet: Adults With Congenital Heart Defects Web Booklet: ...

  4. Effects of defects in composite structures

    NASA Technical Reports Server (NTRS)

    Sendeckyj, G. P.

    1983-01-01

    The effect of defects in composite structures is addressed. Defects in laminates such as wrinkles, foreign particles, scratches and breaks are discussed. Effects of plygap plywaviness and machining defects are also studied.

  5. Folic acid and birth defect prevention

    MedlinePlus

    ... of certain birth defects. These include spina bifida, anencephaly, and some heart defects. Experts recommend women who ... Women who have had a baby with a neural tube defect may need a higher dose of folic acid. ...

  6. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos.

  7. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  8. Nucla CFB Demonstration Project

    SciTech Connect

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  9. AVNG system demonstration

    SciTech Connect

    Thron, Jonathan Louis; Mac Arthur, Duncan W; Kondratov, Sergey; Livke, Alexander; Razinkov, Sergey

    2010-01-01

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  10. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1989-11-15

    The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  11. Chemical Domino Demonstration

    NASA Astrophysics Data System (ADS)

    Alexander, M. Dale

    1998-04-01

    The Chemical Domino Demonstration is both educational and entertaining. It provides an excellent means for a review of chemical concepts at the conclusion of a general chemistry course. This demonstration consists of a number of different chemical reactions occurring in sequence in a Rube Goldberg-type apparatus. These reactions include the reduction of water by an active metal, the oxidation of a moderately active metal by an acid, reduction of metallic ions by a metal of greater activity, acid-base neutralization reactions in solution monitored with indicators, a gas-phase acid-base neutralization reaction, decomposition of a compound, precipitation of an insoluble salt, substitution reactions of coordination complexes, and pyrotechnic oxidation-reduction reactions including a hypergolic oxidation-reduction reaction, an intramolecular oxidation-reduction reaction, and the combustion of a flammable gas.

  12. Automatic lighting controls demonstration

    SciTech Connect

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  13. Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    PubMed Central

    Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.

    2013-01-01

    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687

  14. Transforming graphene nanoribbons into nanotubes by use of point defects.

    PubMed

    Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G

    2014-03-26

    Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.

  15. Twist Defects in Topological Systems with Anyonic Symmetries

    NASA Astrophysics Data System (ADS)

    Teo, Jeffrey; Roy, Abhishek; Chen, Xiao

    2014-03-01

    Twist defects are point-like objects that support robust non-local storage of quantum information and non-abelian unitary operations. Unlike quantum deconfined anyonic excitations, they rely on symmetry rather than a non-abelian topological order. Zero energy Majorana bound states can arise at lattice defects, such as disclinations and dislocations, in a topological crystalline superconductor. More general parafermion bound state can appear as twist defects in a topological phase with an anyonic symmetry, such as a bilayer fractional quantum Hall state and the Kitaev toric code. They are however fundamentally different from quantum anyonic excitations in a true topological phase. This is demonstrated by their unconventional exchange and braiding behavior, which is characterized by a modified spin statistics theorem and modular invariance. Gauging anyonic symmetries by treating twist defects as quantum excitations provides a connection between some non-abelian topological states and abelian ones. Simons Foundation

  16. Freestanding silicon nanocrystals with extremely low defect content

    NASA Astrophysics Data System (ADS)

    Pereira, R. N.; Rowe, D. J.; Anthony, R. J.; Kortshagen, U.

    2012-08-01

    The future exploitation of the exceptional properties of freestanding silicon nanocrystals (Si NCs) in marketable applications relies upon our ability to produce large amounts of defect-free Si NCs by means of a low-cost method. Here, we demonstrate that Si NCs fabricated by scalable rf plasma-assisted decomposition of silane with additional hydrogen gas injected into the afterglow region of the plasma exhibit immediately after synthesis the lowest reported defect density, corresponding to a value of only about 0.002-0.005 defects per NC for Si NCs of 4 nm size. In addition, the virtually perfect hydrogen termination of these Si NCs yields an enhanced resistance against natural oxidation in comparison to Si NCs with nearly one order of magnitude larger initial defect density.

  17. Study of defect verification based on lithography simulation with a SEM system

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong

    2015-07-01

    In a Photomask manufacturing process, mask defect inspection is an increasingly important topic for 193nm optical lithography. Further extension of 193nm optical lithography to the next technology nodes, staying at a maximum numerical aperture (NA) of 1.35, pushes lithography to its utmost limits. This extension from technologies like ILT and SMO requires more complex mask patterns. In mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask features. One of the solutions is lithography simulation like AIMS. An issue with AIMS, however, is the low throughput of measurement, analysis etc.

  18. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.

  19. The Blowgun Demonstration Experiment

    ERIC Educational Resources Information Center

    Tsukamoto, Koji; Uchino, Masanori

    2008-01-01

    We have found that a simple demonstration experiment using a match or a cotton swab and a drinking straw or an acrylic pipe serves as an effective introduction to dynamics. The most basic apparatus has a cotton swab serving as a dart and the straw as the blowgun. When blown from a starting point near the exit end of the straw, the cotton swab does…

  20. The Majorana Demonstrator

    SciTech Connect

    Aguayo, Estanislao; Fast, James E.; Hoppe, Eric W.; Keillor, Martin E.; Kephart, Jeremy D.; Kouzes, Richard T.; LaFerriere, Brian D.; Merriman, Jason H.; Orrell, John L.; Overman, Nicole R.; Avignone, Frank T.; Back, Henning O.; Combs, Dustin C.; Leviner, L.; Young, A.; Barabash, Alexander S.; Konovalov, S.; Vanyushin, I.; Yumatov, Vladimir; Bergevin, M.; Chan, Yuen-Dat; Detwiler, Jason A.; Loach, J. C.; Martin, R. D.; Poon, Alan; Prior, Gersende; Vetter, Kai; Bertrand, F.; Cooper, R. J.; Radford, D. C.; Varner, R. L.; Yu, Chang-Hong; Boswell, M.; Elliott, S.; Gehman, Victor M.; Hime, Andrew; Kidd, M. F.; LaRoque, B. H.; Rielage, Keith; Ronquest, M. C.; Steele, David; Brudanin, V.; Egorov, Viatcheslav; Gusey, K.; Kochetov, Oleg; Shirchenko, M.; Timkin, V.; Yakushev, E.; Busch, Matthew; Esterline, James H.; Tornow, Werner; Christofferson, Cabot-Ann; Horton, Mark; Howard, S.; Sobolev, V.; Collar, J. I.; Fields, N.; Creswick, R.; Doe, Peter J.; Johnson, R. A.; Knecht, A.; Leon, Jonathan D.; Marino, Michael G.; Miller, M. L.; Robertson, R. G. H.; Schubert, Alexis G.; Wolfe, B. A.; Efremenko, Yuri; Ejiri, H.; Hazama, R.; Nomachi, Masaharu; Shima, T.; Finnerty, P.; Fraenkle, Florian; Giovanetti, G. K.; Green, M.; Henning, Reyco; Howe, M. A.; MacMullin, S.; Phillips, D.; Snavely, Kyle J.; Strain, J.; Vorren, Kris R.; Guiseppe, Vincente; Keller, C.; Mei, Dong-Ming; Perumpilly, Gopakumar; Thomas, K.; Zhang, C.; Hallin, A. L.; Keeter, K.; Mizouni, Leila; Wilkerson, J. F.

    2011-09-03

    A brief review of the history and neutrino physics of double beta decay is given. A description of the MAJORANA DEMONSTRATOR research and development program, including background reduction techniques, is presented in some detail. The application of point contact (PC) detectors to the experiment is discussed, including the effectiveness of pulse shape analysis. The predicted sensitivity of a PC detector array enriched to 86% to 76Ge is given.

  1. Projectile Motion Demonstration

    NASA Astrophysics Data System (ADS)

    Graf, Erlend H.

    2008-12-01

    For a recent lecture, I went to our apparatus stock room and took out our venerable Sargent-Welch projectile apparatus that demonstrates that a dropped ball and a horizontally launched ball hit the floor at the same time, if they are simultaneously released. A problem with this apparatus is that its small size makes it difficult for a large class to see what is going on. Furthermore, the projectiles are ball bearings, which tend to roll under chairs, benches, etc.

  2. Carbohydrate Dehydration Demonstrations

    NASA Astrophysics Data System (ADS)

    Dolson, David A.; Battino, Rubin; Letcher, Trevor M.; Pegel, K. H.; Revaprasadu, N.

    1995-10-01

    The "charring reaction" of a carbohydrate with concentrated H2SO4 is a demonstration of the dehydrating power of H2SO4. In this paper several sugars and supermarket carbohydrates are systematically studied with respect to size of particles, addition of water, and amount of H2SO4 added. The results are tabulated as to the amount of time to blackening and to the attainment of a particular volume of the charred material. Detailed safety precautions are included.

  3. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  4. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris

    1988-01-01

    Describes two oscillating reactions: the Briggs-Raucher reaction using H202, KIO3, malonic acid, and MnSO4 which changes from yellow to blue, and the Belousov-Zhabotinskii reaction uses NaBrO3, NaBr, malonic acid, and ferroin solution and changes from red to blue. Includes a third color demonstration on the six oxidation states of manganese. (MVL)

  5. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  6. Defect structure around two colloids in a liquid crystal.

    PubMed

    Guzmán, O; Kim, E B; Grollau, S; Abbott, N L; de Pablo, J J

    2003-12-01

    This Letter investigates the defect structures that arise between two colloidal spheres immersed in a nematic liquid crystal. Molecular simulations and a dynamic field theory are employed to arrive at molecular-level and mesoscopic descriptions of the systems of interest. At large separations, each sphere is surrounded by a Saturn ring defect. However, at short separations both theory and simulation predict that a third disclination ring appears in between the spheres, in a plane normal to the Saturn rings. This feature gives rise to an effective binding of the particles. The structures predicted by field theory and molecular simulations are consistent with each other.

  7. Congenital Heart Defects (For Parents)

    MedlinePlus

    ... in utero. previous continue Common Heart Defects (cont.) Patent Ductus Arteriosus (PDA) The ductus arteriosus is a ... newborn's lungs. PDA is common in premature babies . Patent Foramen Ovale (PFO) The patent foramen ovale is ...

  8. Sequential detection of web defects

    DOEpatents

    Eichel, Paul H.; Sleefe, Gerard E.; Stalker, K. Terry; Yee, Amy A.

    2001-01-01

    A system for detecting defects on a moving web having a sequential series of identical frames uses an imaging device to form a real-time camera image of a frame and a comparitor to comparing elements of the camera image with corresponding elements of an image of an exemplar frame. The comparitor provides an acceptable indication if the pair of elements are determined to be statistically identical; and a defective indication if the pair of elements are determined to be statistically not identical. If the pair of elements is neither acceptable nor defective, the comparitor recursively compares the element of said exemplar frame with corresponding elements of other frames on said web until one of the acceptable or defective indications occur.

  9. Facts about Ventricular Septal Defect

    MedlinePlus

    ... The size of the ventricular septal defect will influence what symptoms, if any, are present, and whether ... this image. Close Information For... Media Policy Makers Language: English Español (Spanish) File Formats Help: How do ...

  10. Disorder and defects are not intrinsic to boron carbide.

    PubMed

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials. PMID:26777140

  11. Disorder and defects are not intrinsic to boron carbide

    NASA Astrophysics Data System (ADS)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure–high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C–B–C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  12. Disorder and defects are not intrinsic to boron carbide.

    PubMed

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-18

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  13. Disorder and defects are not intrinsic to boron carbide

    PubMed Central

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure–high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C–B–C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials. PMID:26777140

  14. Stable line defects in silicene

    NASA Astrophysics Data System (ADS)

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-11-01

    Line defects in two-dimensional (2D) materials greatly modulate various properties of their pristine form. Using ab initio molecular dynamics (AIMD) simulations, we investigate the structural reconstructions of different kinds of grain boundaries in the silicene sheets. It is evident that depending upon the presence of silicon adatoms and edge shape of grain boundaries (i.e., armchair or zigzag), stable extended line defects (ELDs) can be introduced in a controlled way. Further studies show the stability of these line-defects in silicene, grown on Ag(111) surface at room-temperature. Importantly, unlike most of the 2D sheet materials such as graphene and hexagonal boron nitride, 5-5-8 line defects modify the nonmagnetic semimetallic pristine silicene sheet to spin-polarized metal. As ferromagnetically ordered magnetic moments remain strongly localized at the line defect, a one-dimensional spin channel gets created in silicene. Interestingly, these spin channels are quite stable because, unlike the edge of nanoribbons, structural reconstruction or contamination cannot destroy the ordering of magnetic moments here. Zigzag silicene nanoribbons with a 5-5-8 line defect also exhibit various interesting electronic and magnetic properties depending upon their width as well as the nature of the magnetic coupling between edge and defect spin states. Upon incorporation of other ELDs, such as 4-4-4 and 4-8 defects, 2D sheets and nanoribbons of silicene show a nonmagnetic metallic or semiconducting ground state. Highlighting the controlled formation of ELDs and consequent emergence of technologically important properties in silicene, we propose new routes to realize silicene-based nanoelectronic and spintronic devices.

  15. Evaluating Printability of Buried Native EUV Mask Phase Defects through a Modeling and Simulation Approach

    SciTech Connect

    Upadhyaya, Mihir; Jindal, Vibhu; Basavalingappa, Adarsh; Herbol, Henry; Harris-Jones, Jenah; Jang, Il-Yong; Goldberg, Kenneth A.; Mochi, Iacopo; Marokkey, Sajan; Demmerle, Wolfgang; Pistor, Thomas V.; Denbeaux, Gregory

    2015-03-16

    The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model the multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.

  16. Core hysteresis in nematic defects

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Virga, Epifanio G.

    2002-08-01

    We study field-induced transformations in the biaxial core of a nematic disclination with strength m=1, employing the Landau-de Gennes order tensor parameter Q. We first consider the transition from the defectless escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter along the axis of a cylinder of radius R. The critical field of the transition monotonically increases with R and asymptotically approaches a value corresponding to ξb/ξf~0.3, where the correlation lengths ξb and ξf are related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line defect structure with a positive uniaxial ordering along the axis, surrounded by the uniaxial sheath, the uniaxial cylinder of radius ξu with negative order parameter and director in the transverse direction. We study the hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general, two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The uniaxial sheath is for a line defect what the uniaxial ring is for a point defect: by resorting to an approximate analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to occur at the uniaxial ring in the core structure of a point defect.

  17. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  18. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  19. Observation of 3D defect mediated dust acoustic wave turbulence with fluctuating defects and amplitude hole filaments

    SciTech Connect

    Chang, Mei-Chu; Tsai, Ya-Yi; I, Lin

    2013-08-15

    We experimentally demonstrate the direct observation of defect mediated wave turbulence with fluctuating defects and low amplitude hole filaments, from a 3D self-excited plane dust acoustic wave in a dusty plasma by reducing dissipation. The waveform undulation is found to be the origin for the amplitude and the phase modulations of the local dust density oscillation, the broadening of the sharp peaks in the frequency spectrum, and the fluctuating defects. The corrugated wave crest surface also causes the observed high and low density patches in the transverse (xy) plane. Low oscillation amplitude spots (holes) share the same positions with the defects. Their trajectories in the xyt space appear in the form of chaotic filaments without long term predictability, through uncertain pair generation, propagation, and pair annihilation.

  20. Gene-environment interactions in rare diseases that include common birth defects.

    PubMed

    Graham, John M; Shaw, Gary M

    2005-11-01

    Rare syndromes often feature specific types of birth defects that frequently are major diagnostic clues to the presence of a given disorder. Despite this specificity, not everyone with the same syndrome is equally or comparably affected, and not everyone with a specific birth defect manifests the same syndrome or is affected with all the features of a particular syndrome. A symposium sponsored by the National Institutes of Health Office of Rare Diseases, and the National Toxicology Program Center for the Evaluation of Risks to Human Reproduction attempted to explore how much of this variability is due to genetic factors and how much is due to environmental factors. The specific types of birth defects examined included cardiovascular defects, holoprosencephaly, clefts of the lip and/or palate, neural tube defects, and diaphragmatic hernias.

  1. Patterned fabric defect detection via convolutional matching pursuit dual-dictionary

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Fan, Xiaoting; Li, Pengfei

    2016-05-01

    Automatic patterned fabric defect detection is a promising technique for textile manufacturing due to its low cost and high efficiency. The applicability of most existing algorithms, however, is limited by their intensive computation. To overcome or alleviate the problem, this paper presents a convolutional matching pursuit (CMP) dual-dictionary algorithm for patterned fabric defect detection. A preprocessing with mean sampling is performed to eliminate the influence of background texture of fabric defects. Subsequently, a set of defect-free image blocks are selected as a sample set by sliding window. Dual-dictionary and sparse coefficiencies of the defect-free sample set are obtained via CMP and the K-singular value decomposition (K-SVD) based on a Gabor filter. Then we employ the defect-free and defective fabric image's projections onto the dual-dictionary as features for defect detection. Finally, the test results are determined by comparing the distance between the features to be measured. Experimental results reveal that the proposed algorithm is effective for patterned fabric defect detection and an acceptable average detection rate reaches by 94.2%.

  2. TRW utility demonstration unit

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. During this report period, activity continued to address the total program funding shortfall. Ideas and responsibilities for further evaluation have been put forward to reduce the shortfall. In addition, an effort aimed at gaining additional program sponsorships, was initiated.

  3. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  4. Demonstrating induced recharge

    SciTech Connect

    Caswell, B. )

    1990-03-01

    This paper describes an attempt by a New England community to explore for an aquifer that would yield 1 million gallons of ground water per day. After the discovery of a glacial sand and gravel aquifer, a demonstration of a hydraulic coupling between the aquifer and an adjacent stream was undertaken. This connection was needed to maintain recharge capacity of the well. The paper goes on to describe the techniques needed and used to determine the induced recharge caused by drawdown in these test wells.

  5. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  6. Space Research Benefits Demonstrated

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Angie Jackman, a NASA project manager in microgravity research, demonstrates the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  7. The Blowgun Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Koji; Uchino, Masanori

    2008-09-01

    We have found that a simple demonstration experiment using a match or a cotton swab and a drinking straw or an acrylic pipe serves as an effective introduction to dynamics. The most basic apparatus has a cotton swab serving as a dart and the straw as the blowgun. When blown from a starting point near the exit end of the straw, the cotton swab does not fly a significant distance. When the starting point is closer to the lips, the straw is projected 2-3 m. If two or three straws are connected to form a longer blowgun, the cotton swab flies even farther.

  8. EUV mask defect mitigation through pattern placement

    NASA Astrophysics Data System (ADS)

    Burns, John; Abbas, Mansoor

    2010-09-01

    One of the challenges of EUVL is to bring EUV mask blank defect levels to zero. With uncertainty on when defect free masks may be routinely available, we explore a possibility for effectively using defective EUV mask blanks in production with a defect avoidance strategy. The key idea is to position the pattern/layout on the blank where the defects do not impact the final wafer image. Assuming that layout designs contain some non-critical areas in which defects can be safely positioned, it may be possible to align these regions with a given, small set of defect positions mapped from an imperfect mask blank. Using a few representative assortment of current-node, full-chip layout patterns we run multiple trials against real blank defect maps with various defect counts successfully. Our goal is to assess the probabilities that defect avoidance will work as a function of mask blank defect count, and by lithography layer.

  9. Repairing native defects on EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Lawliss, Mark; Gallagher, Emily; Hibbs, Michael; Seki, Kazunori; Isogawa, Takeshi; Robinson, Tod; LeClaire, Jeff

    2014-10-01

    Mask defectivity is a serious problem for all lithographic masks, but especially for EUV masks. Defects in the EUV blank are particularly challenging because their elimination is beyond control of the mask fab. If defects have been identified on a mask blank, patterns can be shifted to place as many blank defects as possible in regions where printing impact will be eliminated or become unimportant. For those defects that cannot be mitigated through pattern shift, repair strategies must be developed. Repairing defects that occur naturally in the EUV blank is challenging because the printability of these defects varies widely. This paper describes some types of native defects commonly found and begins to outline a triage strategy for defects that are identified on the blank. Sample defects best suited to nanomachining repair are treated in detail: repairs are attempted, characterized using mask metrology and then tested for printability. Based on the initial results, the viability of repairing EUV blank native defects is discussed.

  10. Solar Thermal Demonstration Project

    SciTech Connect

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  11. Vortex Apparatus and Demonstrations

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  12. PFBC Utility Demonstration Project

    SciTech Connect

    Not Available

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  13. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  14. Suppression effects in feature-based attention

    PubMed Central

    Wang, Yixue; Miller, James; Liu, Taosheng

    2015-01-01

    Attending to a feature enhances visual processing of that feature, but it is less clear what occurs to unattended features. Single-unit recording studies in middle temporal (MT) have shown that neuronal modulation is a monotonic function of the difference between the attended and neuron's preferred direction. Such a relationship should predict a monotonic suppressive effect in psychophysical performance. However, past research on suppressive effects of feature-based attention has remained inconclusive. We investigated the suppressive effect for motion direction, orientation, and color in three experiments. We asked participants to detect a weak signal among noise and provided a partially valid feature cue to manipulate attention. We measured performance as a function of the offset between the cued and signal feature. We also included neutral trials where no feature cues were presented to provide a baseline measure of performance. Across three experiments, we consistently observed enhancement effects when the target feature and cued feature coincided and suppression effects when the target feature deviated from the cued feature. The exact profile of suppression was different across feature dimensions: Whereas the profile for direction exhibited a “rebound” effect, the profiles for orientation and color were monotonic. These results demonstrate that unattended features are suppressed during feature-based attention, but the exact suppression profile depends on the specific feature. Overall, the results are largely consistent with neurophysiological data and support the feature-similarity gain model of attention. PMID:26067533

  15. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  16. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Conclusions Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils. PMID:27658310

  17. Automated inspection of micro-defect recognition system for color filter

    NASA Astrophysics Data System (ADS)

    Jeffrey Kuo, Chung-Feng; Peng, Kai-Ching; Wu, Han-Cheng; Wang, Ching-Chin

    2015-07-01

    This study focused on micro-defect recognition and classification in color filters. First, six types of defects were examined, namely grain, black matrix hole (BMH), indium tin oxide (ITO) defect, missing edge and shape (MES), highlights, and particle. Orthogonal projection was applied to locate each pixel in a test image. Then, an image comparison was performed to mark similar blocks on the test image. The block that best resembled the template was chosen as the new template (or matching adaptive template). Afterwards, image subtraction was applied to subtract the pixels at the same location in each block of the test image from the matching adaptive template. The control limit law employed logic operation to separate the defect from the background region. The complete defect structure was obtained by the morphology method. Next, feature values, including defect gray value, red, green, and blue (RGB) color components, and aspect ratio were obtained as the classifier input. The experimental results showed that defect recognition could be completed as fast as 0.154 s using the proposed recognition system and software. In micro-defect classification, back-propagation neural network (BPNN) and minimum distance classifier (MDC) served as the defect classification decision theories for the five acquired feature values. To validate the proposed system, this study used 41 defects as training samples, and treated the feature values of 307 test samples as the BPNN classifier inputs. The total recognition rate was 93.7%. When an MDC was used, the total recognition rate was 96.8%, indicating that the MDC method is feasible in applying automatic optical inspection technology to classify micro-defects of color filters. The proposed system is proven to successfully improve the production yield and lower costs.

  18. Teaching Chemistry through Observation--The Exploding Can Demonstration.

    ERIC Educational Resources Information Center

    Golestaneh, Kamran

    1998-01-01

    Describes procedures for a demonstration that features an exploding can. This demonstration prompts students to critically analyze the release of energy in an exothermic reaction, the work done in such a reaction, and the enthalpy. (DDR)

  19. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  20. Demonstration of microfiltration technology

    SciTech Connect

    Martin, J.F.; Topudurti, K.; Labunski, S.

    1991-01-01

    The U.S. Environmental Protection Agency, under the Superfund Innovative Technology Evaluation (SITE) program in cooperation with E.I. DuPont de Nemours and Company, Inc. (DuPont) and the Oberlin Filter Company (Oberlin), undertook a field demonstration project to evaluate microfiltration technology for removal of zinc and suspended solids from wastewater. The microfiltration system utilized DuPont's Tyvek T-980 membrane filter media in conjunction with the Oberlin automatic pressure filter. The project was undertaken at the Palmerton Zinc Superfund site in April, 1990. Analysis of the treated filtrate indicated that the system removed precipitated zinc and other suspended solids at an efficiency greater than 99.9 percent. (Copyright (c) 1991--Air and Waste Management Association.)