Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Evidence of tampering in watermark identification
NASA Astrophysics Data System (ADS)
McLauchlan, Lifford; Mehrübeoglu, Mehrübe
2009-08-01
In this work, watermarks are embedded in digital images in the discrete wavelet transform (DWT) domain. Principal component analysis (PCA) is performed on the DWT coefficients. Next higher order statistics based on the principal components and the eigenvalues are determined for different sets of images. Feature sets are analyzed for different types of attacks in m dimensional space. The results demonstrate the separability of the features for the tampered digital copies. Different feature sets are studied to determine more effective tamper evident feature sets. The digital forensics, the probable manipulation(s) or modification(s) performed on the digital information can be identified using the described technique.
Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao
2012-01-01
Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
Kurosumi, M; Mizukoshi, K
2018-05-01
The types of shape feature that constitutes a face have not been comprehensively established, and most previous studies of age-related changes in facial shape have focused on individual characteristics, such as wrinkle, sagging skin, etc. In this study, we quantitatively measured differences in face shape between individuals and investigated how shape features changed with age. We analyzed three-dimensionally the faces of 280 Japanese women aged 20-69 years and used principal component analysis to establish the shape features that characterized individual differences. We also evaluated the relationships between each feature and age, clarifying the shape features characteristic of different age groups. Changes in facial shape in middle age were a decreased volume of the upper face and increased volume of the whole cheeks and around the chin. Changes in older people were an increased volume of the lower cheeks and around the chin, sagging skin, and jaw distortion. Principal component analysis was effective for identifying facial shape features that represent individual and age-related differences. This method allowed straightforward measurements, such as the increase or decrease in cheeks caused by soft tissue changes or skeletal-based changes to the forehead or jaw, simply by acquiring three-dimensional facial images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Intelligence, Surveillance, and Reconnaissance Fusion for Coalition Operations
2008-07-01
classification of the targets of interest. The MMI features extracted in this manner have two properties that provide a sound justification for...are generalizations of well- known feature extraction methods such as Principal Components Analysis (PCA) and Independent Component Analysis (ICA...augment (without degrading performance) a large class of generic fusion processes. Ontologies Classifications Feature extraction Feature analysis
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao
2012-01-01
Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong
2013-02-01
Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.
Maisuradze, Gia G; Leitner, David M
2007-05-15
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.
Kesharaju, Manasa; Nagarajah, Romesh
2015-09-01
The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
NASA Astrophysics Data System (ADS)
Shah, Syed Muhammad Saqlain; Batool, Safeera; Khan, Imran; Ashraf, Muhammad Usman; Abbas, Syed Hussnain; Hussain, Syed Adnan
2017-09-01
Automatic diagnosis of human diseases are mostly achieved through decision support systems. The performance of these systems is mainly dependent on the selection of the most relevant features. This becomes harder when the dataset contains missing values for the different features. Probabilistic Principal Component Analysis (PPCA) has reputation to deal with the problem of missing values of attributes. This research presents a methodology which uses the results of medical tests as input, extracts a reduced dimensional feature subset and provides diagnosis of heart disease. The proposed methodology extracts high impact features in new projection by using Probabilistic Principal Component Analysis (PPCA). PPCA extracts projection vectors which contribute in highest covariance and these projection vectors are used to reduce feature dimension. The selection of projection vectors is done through Parallel Analysis (PA). The feature subset with the reduced dimension is provided to radial basis function (RBF) kernel based Support Vector Machines (SVM). The RBF based SVM serves the purpose of classification into two categories i.e., Heart Patient (HP) and Normal Subject (NS). The proposed methodology is evaluated through accuracy, specificity and sensitivity over the three datasets of UCI i.e., Cleveland, Switzerland and Hungarian. The statistical results achieved through the proposed technique are presented in comparison to the existing research showing its impact. The proposed technique achieved an accuracy of 82.18%, 85.82% and 91.30% for Cleveland, Hungarian and Switzerland dataset respectively.
Multiple mechanisms in the perception of face gender: Effect of sex-irrelevant features.
Komori, Masashi; Kawamura, Satoru; Ishihara, Shigekazu
2011-06-01
Effects of sex-relevant and sex-irrelevant facial features on the evaluation of facial gender were investigated. Participants rated masculinity of 48 male facial photographs and femininity of 48 female facial photographs. Eighty feature points were measured on each of the facial photographs. Using a generalized Procrustes analysis, facial shapes were converted into multidimensional vectors, with the average face as a starting point. Each vector was decomposed into a sex-relevant subvector and a sex-irrelevant subvector which were, respectively, parallel and orthogonal to the main male-female axis. Principal components analysis (PCA) was performed on the sex-irrelevant subvectors. One principal component was negatively correlated with both perceived masculinity and femininity, and another was correlated only with femininity, though both components were orthogonal to the male-female dimension (and thus by definition sex-irrelevant). These results indicate that evaluation of facial gender depends on sex-irrelevant as well as sex-relevant facial features.
Salvatore, Stefania; Røislien, Jo; Baz-Lomba, Jose A; Bramness, Jørgen G
2017-03-01
Wastewater-based epidemiology is an alternative method for estimating the collective drug use in a community. We applied functional data analysis, a statistical framework developed for analysing curve data, to investigate weekly temporal patterns in wastewater measurements of three prescription drugs with known abuse potential: methadone, oxazepam and methylphenidate, comparing them to positive and negative control drugs. Sewage samples were collected in February 2014 from a wastewater treatment plant in Oslo, Norway. The weekly pattern of each drug was extracted by fitting of generalized additive models, using trigonometric functions to model the cyclic behaviour. From the weekly component, the main temporal features were then extracted using functional principal component analysis. Results are presented through the functional principal components (FPCs) and corresponding FPC scores. Clinically, the most important weekly feature of the wastewater-based epidemiology data was the second FPC, representing the difference between average midweek level and a peak during the weekend, representing possible recreational use of a drug in the weekend. Estimated scores on this FPC indicated recreational use of methylphenidate, with a high weekend peak, but not for methadone and oxazepam. The functional principal component analysis uncovered clinically important temporal features of the weekly patterns of the use of prescription drugs detected from wastewater analysis. This may be used as a post-marketing surveillance method to monitor prescription drugs with abuse potential. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Finger crease pattern recognition using Legendre moments and principal component analysis
NASA Astrophysics Data System (ADS)
Luo, Rongfang; Lin, Tusheng
2007-03-01
The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.
Radar fall detection using principal component analysis
NASA Astrophysics Data System (ADS)
Jokanovic, Branka; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem
2016-05-01
Falls are a major cause of fatal and nonfatal injuries in people aged 65 years and older. Radar has the potential to become one of the leading technologies for fall detection, thereby enabling the elderly to live independently. Existing techniques for fall detection using radar are based on manual feature extraction and require significant parameter tuning in order to provide successful detections. In this paper, we employ principal component analysis for fall detection, wherein eigen images of observed motions are employed for classification. Using real data, we demonstrate that the PCA based technique provides performance improvement over the conventional feature extraction methods.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Modulated Hebb-Oja learning rule--a method for principal subspace analysis.
Jankovic, Marko V; Ogawa, Hidemitsu
2006-03-01
This paper presents analysis of the recently proposed modulated Hebb-Oja (MHO) method that performs linear mapping to a lower-dimensional subspace. Principal component subspace is the method that will be analyzed. Comparing to some other well-known methods for yielding principal component subspace (e.g., Oja's Subspace Learning Algorithm), the proposed method has one feature that could be seen as desirable from the biological point of view--synaptic efficacy learning rule does not need the explicit information about the value of the other efficacies to make individual efficacy modification. Also, the simplicity of the "neural circuits" that perform global computations and a fact that their number does not depend on the number of input and output neurons, could be seen as good features of the proposed method.
2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.
Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen
2017-09-19
A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.
Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao
2015-01-01
Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483
Performance evaluation of PCA-based spike sorting algorithms.
Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George
2008-09-01
Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.
NASA Technical Reports Server (NTRS)
Boyd, R. K.; Brumfield, J. O.; Campbell, W. J.
1984-01-01
Three feature extraction methods, canonical analysis (CA), principal component analysis (PCA), and band selection, have been applied to Thematic Mapper Simulator (TMS) data in order to evaluate the relative performance of the methods. The results obtained show that CA is capable of providing a transformation of TMS data which leads to better classification results than provided by all seven bands, by PCA, or by band selection. A second conclusion drawn from the study is that TMS bands 2, 3, 4, and 7 (thermal) are most important for landcover classification.
The use of multidate multichannel radiance data in urban feature analysis
NASA Technical Reports Server (NTRS)
Duggin, M. J.; Rowntree, R.; Emmons, M.; Hubbard, N.; Odell, A. W.
1986-01-01
Two images were obtained from thematic mappers on Landsats 4 and 5 over the Washington, DC area during November 1982 and March 1984. Selected training areas containing different types of urban land use were examined,one area consisting entirely of forest. Mean digital radiance values for each bandpass in each image were examined, and variances, standard deviations, and covariances between bandpasses were calculated. It has been found that two bandpasses caused forested areas to stand out from other land use types, especially for the November 1982 image. In order to evaluate quantitatively the possible utility of the principal components analysis in selected feature extraction, the eigenvectors were evaluated for principal axes rotations which rendered each selected land use type most separable from all other land use types. The evaluated eigenvectors were plotted as a function of land use type, whose order was decided by considering anticipated shadow component and by examining the relative loadings indicative of vegetation for each of the principal components for the different features considered. The analysis was performed for each seven-band image separately and for the two combined images. It was found that by combining the two images, more dramatic land use type separation could be obtained.
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
Hoang, Tuan; Tran, Dat; Huang, Xu
2013-01-01
Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.
[Research on spectra recognition method for cabbages and weeds based on PCA and SIMCA].
Zu, Qin; Deng, Wei; Wang, Xiu; Zhao, Chun-Jiang
2013-10-01
In order to improve the accuracy and efficiency of weed identification, the difference of spectral reflectance was employed to distinguish between crops and weeds. Firstly, the different combinations of Savitzky-Golay (SG) convolutional derivation and multiplicative scattering correction (MSC) method were applied to preprocess the raw spectral data. Then the clustering analysis of various types of plants was completed by using principal component analysis (PCA) method, and the feature wavelengths which were sensitive for classifying various types of plants were extracted according to the corresponding loading plots of the optimal principal components in PCA results. Finally, setting the feature wavelengths as the input variables, the soft independent modeling of class analogy (SIMCA) classification method was used to identify the various types of plants. The experimental results of classifying cabbages and weeds showed that on the basis of the optimal pretreatment by a synthetic application of MSC and SG convolutional derivation with SG's parameters set as 1rd order derivation, 3th degree polynomial and 51 smoothing points, 23 feature wavelengths were extracted in accordance with the top three principal components in PCA results. When SIMCA method was used for classification while the previously selected 23 feature wavelengths were set as the input variables, the classification rates of the modeling set and the prediction set were respectively up to 98.6% and 100%.
Component Structure of Individual Differences in True and False Recognition of Faces
ERIC Educational Resources Information Center
Bartlett, James C.; Shastri, Kalyan K.; Abdi, Herve; Neville-Smith, Marsha
2009-01-01
Principal-component analyses of 4 face-recognition studies uncovered 2 independent components. The first component was strongly related to false-alarm errors with new faces as well as to facial "conjunctions" that recombine features of previously studied faces. The second component was strongly related to hits as well as to the conjunction/new…
Using principal component analysis to understand the variability of PDS 456
NASA Astrophysics Data System (ADS)
Parker, M. L.; Reeves, J. N.; Matzeu, G. A.; Buisson, D. J. K.; Fabian, A. C.
2018-02-01
We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anticorrelated and un-correlated with the continuum flux. Here, the observed anticorrelation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization.
Dimensionality reduction for the quantitative evaluation of a smartphone-based Timed Up and Go test.
Palmerini, Luca; Mellone, Sabato; Rocchi, Laura; Chiari, Lorenzo
2011-01-01
The Timed Up and Go is a clinical test to assess mobility in the elderly and in Parkinson's disease. Lately instrumented versions of the test are being considered, where inertial sensors assess motion. To improve the pervasiveness, ease of use, and cost, we consider a smartphone's accelerometer as the measurement system. Several parameters (usually highly correlated) can be computed from the signals recorded during the test. To avoid redundancy and obtain the features that are most sensitive to the locomotor performance, a dimensionality reduction was performed through principal component analysis (PCA). Forty-nine healthy subjects of different ages were tested. PCA was performed to extract new features (principal components) which are not redundant combinations of the original parameters and account for most of the data variability. They can be useful for exploratory analysis and outlier detection. Then, a reduced set of the original parameters was selected through correlation analysis with the principal components. This set could be recommended for studies based on healthy adults. The proposed procedure could be used as a first-level feature selection in classification studies (i.e. healthy-Parkinson's disease, fallers-non fallers) and could allow, in the future, a complete system for movement analysis to be incorporated in a smartphone.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan
2015-02-15
Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less
ERIC Educational Resources Information Center
Kim, Minkyung; Crossley, Scott A.; Kyle, Kristopher
2018-01-01
This study conceptualizes lexical sophistication as a multidimensional phenomenon by reducing numerous lexical features of lexical sophistication into 12 aggregated components (i.e., dimensions) via a principal component analysis approach. These components were then used to predict second language (L2) writing proficiency levels, holistic lexical…
NASA Astrophysics Data System (ADS)
Farsadnia, Farhad; Ghahreman, Bijan
2016-04-01
Hydrologic homogeneous group identification is considered both fundamental and applied research in hydrology. Clustering methods are among conventional methods to assess the hydrological homogeneous regions. Recently, Self-Organizing feature Map (SOM) method has been applied in some studies. However, the main problem of this method is the interpretation on the output map of this approach. Therefore, SOM is used as input to other clustering algorithms. The aim of this study is to apply a two-level Self-Organizing feature map and Ward hierarchical clustering method to determine the hydrologic homogenous regions in North and Razavi Khorasan provinces. At first by principal component analysis, we reduced SOM input matrix dimension, then the SOM was used to form a two-dimensional features map. To determine homogeneous regions for flood frequency analysis, SOM output nodes were used as input into the Ward method. Generally, the regions identified by the clustering algorithms are not statistically homogeneous. Consequently, they have to be adjusted to improve their homogeneity. After adjustment of the homogeneity regions by L-moment tests, five hydrologic homogeneous regions were identified. Finally, adjusted regions were created by a two-level SOM and then the best regional distribution function and associated parameters were selected by the L-moment approach. The results showed that the combination of self-organizing maps and Ward hierarchical clustering by principal components as input is more effective than the hierarchical method, by principal components or standardized inputs to achieve hydrologic homogeneous regions.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Learning representative features for facial images based on a modified principal component analysis
NASA Astrophysics Data System (ADS)
Averkin, Anton; Potapov, Alexey
2013-05-01
The paper is devoted to facial image analysis and particularly deals with the problem of automatic evaluation of the attractiveness of human faces. We propose a new approach for automatic construction of feature space based on a modified principal component analysis. Input data sets for the algorithm are the learning data sets of facial images, which are rated by one person. The proposed approach allows one to extract features of the individual subjective face beauty perception and to predict attractiveness values for new facial images, which were not included into a learning data set. The Pearson correlation coefficient between values predicted by our method for new facial images and personal attractiveness estimation values equals to 0.89. This means that the new approach proposed is promising and can be used for predicting subjective face attractiveness values in real systems of the facial images analysis.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
10 CFR 50.35 - Issuance of construction permits. 1
Code of Federal Regulations, 2011 CFR
2011-01-01
... principal architectural and engineering criteria for the design, and has identified the major features or... features or components, if any, which require research and development have been described by the applicant and the applicant has identified, and there will be conducted, a research and development program...
10 CFR 50.35 - Issuance of construction permits. 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... principal architectural and engineering criteria for the design, and has identified the major features or... features or components, if any, which require research and development have been described by the applicant and the applicant has identified, and there will be conducted, a research and development program...
Gürgen, Fikret; Gürgen, Nurgül
2003-01-01
This study proposes an intelligent data analysis approach to investigate and interpret the distinctive factors of diabetes mellitus patients with and without ischemic (non-embolic type) stroke in a small population. The database consists of a total of 16 features collected from 44 diabetic patients. Features include age, gender, duration of diabetes, cholesterol, high density lipoprotein, triglyceride levels, neuropathy, nephropathy, retinopathy, peripheral vascular disease, myocardial infarction rate, glucose level, medication and blood pressure. Metric and non-metric features are distinguished. First, the mean and covariance of the data are estimated and the correlated components are observed. Second, major components are extracted by principal component analysis. Finally, as common examples of local and global classification approach, a k-nearest neighbor and a high-degree polynomial classifier such as multilayer perceptron are employed for classification with all the components and major components case. Macrovascular changes emerged as the principal distinctive factors of ischemic-stroke in diabetes mellitus. Microvascular changes were generally ineffective discriminators. Recommendations were made according to the rules of evidence-based medicine. Briefly, this case study, based on a small population, supports theories of stroke in diabetes mellitus patients and also concludes that the use of intelligent data analysis improves personalized preventive intervention. PMID:12685939
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Dynamic of consumer groups and response of commodity markets by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Alam, Shafiqul; Lee, Jae Woo
2017-09-01
This study investigates financial states and group dynamics by applying principal component analysis to the cross-correlation coefficients of the daily returns of commodity futures. The eigenvalues of the cross-correlation matrix in the 6-month timeframe displays similar values during 2010-2011, but decline following 2012. A sharp drop in eigenvalue implies the significant change of the market state. Three commodity sectors, energy, metals and agriculture, are projected into two dimensional spaces consisting of two principal components (PC). We observe that they form three distinct clusters in relation to various sectors. However, commodities with distinct features have intermingled with one another and scattered during severe crises, such as the European sovereign debt crises. We observe the notable change of the position of two dimensional spaces of groups during financial crises. By considering the first principal component (PC1) within the 6-month moving timeframe, we observe that commodities of the same group change states in a similar pattern, and the change of states of one group can be used as a warning for other group.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
Li, Ziyi; Safo, Sandra E; Long, Qi
2017-07-11
Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.
Automated Analysis, Classification, and Display of Waveforms
NASA Technical Reports Server (NTRS)
Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff
2004-01-01
A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.
Boubaker, Moez Ben; Picard, Donald; Duchesne, Carl; Tessier, Jayson; Alamdari, Houshang; Fafard, Mario
2018-05-17
This paper reports on the application of an acousto-ultrasonic (AU) scheme for the inspection of industrial-size carbon anode blocks used in the production of primary aluminium by the Hall-Héroult process. A frequency-modulated wave is used to excite the anode blocks at multiple points. The collected attenuated AU signals are decomposed using the Discrete Wavelet Transform (DTW) after which vectors of features are calculated. Principal Component Analysis (PCA) is utilized to cluster the AU responses of the anodes. The approach allows locating cracks in the blocks and the AU features were found sensitive to crack severity. The results are validated using images collected after cutting some anodes. Copyright © 2018 Elsevier B.V. All rights reserved.
Caggiano, Alessandra
2018-03-09
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.
2018-01-01
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443
Web document ranking via active learning and kernel principal component analysis
NASA Astrophysics Data System (ADS)
Cai, Fei; Chen, Honghui; Shu, Zhen
2015-09-01
Web document ranking arises in many information retrieval (IR) applications, such as the search engine, recommendation system and online advertising. A challenging issue is how to select the representative query-document pairs and informative features as well for better learning and exploring new ranking models to produce an acceptable ranking list of candidate documents of each query. In this study, we propose an active sampling (AS) plus kernel principal component analysis (KPCA) based ranking model, viz. AS-KPCA Regression, to study the document ranking for a retrieval system, i.e. how to choose the representative query-document pairs and features for learning. More precisely, we fill those documents gradually into the training set by AS such that each of which will incur the highest expected DCG loss if unselected. Then, the KPCA is performed via projecting the selected query-document pairs onto p-principal components in the feature space to complete the regression. Hence, we can cut down the computational overhead and depress the impact incurred by noise simultaneously. To the best of our knowledge, we are the first to perform the document ranking via dimension reductions in two dimensions, namely, the number of documents and features simultaneously. Our experiments demonstrate that the performance of our approach is better than that of the baseline methods on the public LETOR 4.0 datasets. Our approach brings an improvement against RankBoost as well as other baselines near 20% in terms of MAP metric and less improvements using P@K and NDCG@K, respectively. Moreover, our approach is particularly suitable for document ranking on the noisy dataset in practice.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Long, J.M.; Fisher, W.L.
2006-01-01
We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.
Røislien, Jo; Winje, Brita
2013-09-20
Clinical studies frequently include repeated measurements of individuals, often for long periods. We present a methodology for extracting common temporal features across a set of individual time series observations. In particular, the methodology explores extreme observations within the time series, such as spikes, as a possible common temporal phenomenon. Wavelet basis functions are attractive in this sense, as they are localized in both time and frequency domains simultaneously, allowing for localized feature extraction from a time-varying signal. We apply wavelet basis function decomposition of individual time series, with corresponding wavelet shrinkage to remove noise. We then extract common temporal features using linear principal component analysis on the wavelet coefficients, before inverse transformation back to the time domain for clinical interpretation. We demonstrate the methodology on a subset of a large fetal activity study aiming to identify temporal patterns in fetal movement (FM) count data in order to explore formal FM counting as a screening tool for identifying fetal compromise and thus preventing adverse birth outcomes. Copyright © 2013 John Wiley & Sons, Ltd.
Assessing Footwear Effects from Principal Features of Plantar Loading during Running.
Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M
2015-09-01
The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
Latifoğlu, Fatma; Polat, Kemal; Kara, Sadik; Güneş, Salih
2008-02-01
In this study, we proposed a new medical diagnosis system based on principal component analysis (PCA), k-NN based weighting pre-processing, and Artificial Immune Recognition System (AIRS) for diagnosis of atherosclerosis from Carotid Artery Doppler Signals. The suggested system consists of four stages. First, in the feature extraction stage, we have obtained the features related with atherosclerosis disease using Fast Fourier Transformation (FFT) modeling and by calculating of maximum frequency envelope of sonograms. Second, in the dimensionality reduction stage, the 61 features of atherosclerosis disease have been reduced to 4 features using PCA. Third, in the pre-processing stage, we have weighted these 4 features using different values of k in a new weighting scheme based on k-NN based weighting pre-processing. Finally, in the classification stage, AIRS classifier has been used to classify subjects as healthy or having atherosclerosis. Hundred percent of classification accuracy has been obtained by the proposed system using 10-fold cross validation. This success shows that the proposed system is a robust and effective system in diagnosis of atherosclerosis disease.
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee
2015-03-01
Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.
Relationship between polycystic ovary syndrome and ancestry in European Americans.
Bjonnes, Andrew C; Saxena, Richa; Welt, Corrine K
2016-12-01
To determine whether European Americans with polycystic ovary syndrome (PCOS) exhibit genetic differences associated with PCOS status and phenotypic features. Case-control association study in European Americans. Academic center. Women with PCOS diagnosed with the use of the National Institutes of Health criteria (n = 532) and control women with regular menstrual cycles and no evidence of hyperandrogenism (n = 432). Blood was drawn for measurement of sex steroids, metabolic parameters, and genotyping. Associations among PCOS status, phenotype, and genetic background identified with the use of principal component analysis. Principal component analysis identified five principal components (PCs). PC1 captured northwest-to-southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, and larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east-to-west European genetic variation and cholesterol levels. These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The Relationship Between Polycystic Ovary Syndrome and Ancestry in European Americans
Bjonnes, Andrew C.; Saxena, Richa; Welt, Corrine K.
2016-01-01
Objective To determine whether European Americans with PCOS would exhibit genetic differences associated with PCOS status and phenotypic features. Design The study was a case-control association study in European Americans. Setting Subjects were studied in an academic center. Subjects Women with PCOS diagnosed using the NIH criteria (n=532) and controls with regular menstrual cycles and no evidence of hyperandrogenism (n=432) were studied. Interventions Blood was drawn for measurement of sex steroids, metabolic parameters and genotyping. Main outcome measure Associations were identified between PCOS status, phenotype and genetic background determined using principal components. Results Principal component analysis identified 5 principal components (PCs). PC1 captured northwest to southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, while larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east to west European genetic variation and cholesterol levels. Conclusions These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. PMID:27666562
NASA Astrophysics Data System (ADS)
Hirose, Misa; Toyota, Saori; Ojima, Nobutoshi; Ogawa-Ochiai, Keiko; Tsumura, Norimichi
2017-08-01
In this paper, principal component analysis is applied to the distribution of pigmentation, surface reflectance, and landmarks in whole facial images to obtain feature values. The relationship between the obtained feature vectors and the age of the face is then estimated by multiple regression analysis so that facial images can be modulated for woman aged 10-70. In a previous study, we analyzed only the distribution of pigmentation, and the reproduced images appeared to be younger than the apparent age of the initial images. We believe that this happened because we did not modulate the facial structures and detailed surfaces, such as wrinkles. By considering landmarks and surface reflectance over the entire face, we were able to analyze the variation in the distributions of facial structures and fine asperity, and pigmentation. As a result, our method is able to appropriately modulate the appearance of a face so that it appears to be the correct age.
Wang, Xin; Deng, Zhongliang
2017-01-01
In order to recognize indoor scenarios, we extract image features for detecting objects, however, computers can make some unexpected mistakes. After visualizing the histogram of oriented gradient (HOG) features, we find that the world through the eyes of a computer is indeed different from human eyes, which assists researchers to see the reasons that cause a computer to make errors. Additionally, according to the visualization, we notice that the HOG features can obtain rich texture information. However, a large amount of background interference is also introduced. In order to enhance the robustness of the HOG feature, we propose an improved method for suppressing the background interference. On the basis of the original HOG feature, we introduce a principal component analysis (PCA) to extract the principal components of the image colour information. Then, a new hybrid feature descriptor, which is named HOG–PCA (HOGP), is made by deeply fusing these two features. Finally, the HOGP is compared to the state-of-the-art HOG feature descriptor in four scenes under different illumination. In the simulation and experimental tests, the qualitative and quantitative assessments indicate that the visualizing images of the HOGP feature are close to the observation results obtained by human eyes, which is better than the original HOG feature for object detection. Furthermore, the runtime of our proposed algorithm is hardly increased in comparison to the classic HOG feature. PMID:28677635
Wenderski, Todd A; Stratton, Christopher F; Bauer, Renato A; Kopp, Felix; Tan, Derek S
2015-01-01
Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.
Wenderski, Todd A.; Stratton, Christopher F.; Bauer, Renato A.; Kopp, Felix; Tan, Derek S.
2015-01-01
Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design. PMID:25618349
Principal component analysis of Raman spectra for TiO2 nanoparticle characterization
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion
2017-09-01
The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Feature extraction for ultrasonic sensor based defect detection in ceramic components
NASA Astrophysics Data System (ADS)
Kesharaju, Manasa; Nagarajah, Romesh
2014-02-01
High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.
Identification and classification of upper limb motions using PCA.
Veer, Karan; Vig, Renu
2018-03-28
This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Wang, Jing-Jing; Wu, Hai-Feng; Sun, Tao; Li, Xia; Wang, Wei; Tao, Li-Xin; Huo, Da; Lv, Ping-Xin; He, Wen; Guo, Xiu-Hua
2013-01-01
Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.
A Review of Feature Extraction Software for Microarray Gene Expression Data
Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini
2014-01-01
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315
Method of Real-Time Principal-Component Analysis
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu
2005-01-01
Dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN) is a method of sequential principal-component analysis (PCA) that is well suited for such applications as data compression and extraction of features from sets of data. In comparison with a prior method of gradient-descent-based sequential PCA, this method offers a greater rate of learning convergence. Like the prior method, DOGEDYN can be implemented in software. However, the main advantage of DOGEDYN over the prior method lies in the facts that it requires less computation and can be implemented in simpler hardware. It should be possible to implement DOGEDYN in compact, low-power, very-large-scale integrated (VLSI) circuitry that could process data in real time.
Iris recognition based on robust principal component analysis
NASA Astrophysics Data System (ADS)
Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong
2014-11-01
Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, L; Lin, A; Ahn, P
Purpose: To utilize online CBCT scans to develop models for predicting DVH metrics in proton therapy of head and neck tumors. Methods: Nine patients with locally advanced oropharyngeal cancer were retrospectively selected in this study. Deformable image registration was applied to the simulation CT, target volumes, and organs at risk (OARs) contours onto each weekly CBCT scan. Intensity modulated proton therapy (IMPT) treatment plans were created on the simulation CT and forward calculated onto each corrected CBCT scan. Thirty six potentially predictive metrics were extracted from each corrected CBCT. These features include minimum/maximum/mean over and under-ranges at the proximal andmore » distal surface of PTV volumes, and geometrical and water equivalent distance between PTV and each OARs. Principal component analysis (PCA) was used to reduce the dimension of the extracted features. Three principal components were found to account for over 90% of variances in those features. Datasets from eight patients were used to train a machine learning model to fit these principal components with DVH metrics (dose to 95% and 5% of PTV, mean dose or max dose to OARs) from the forward calculated dose on each corrected CBCT. The accuracy of this model was verified on the datasets from the 9th patient. Results: The predicted changes of DVH metrics from the model were in good agreement with actual values calculated on corrected CBCT images. Median differences were within 1 Gy for most DVH metrics except for larynx and constrictor mean dose. However, a large spread of the differences was observed, indicating additional training datasets and predictive features are needed to improve the model. Conclusion: Intensity corrected CBCT scans hold the potential to be used for online verification of proton therapy and prediction of delivered dose distributions.« less
Jankovic, Marko; Ogawa, Hidemitsu
2003-08-01
This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.
Ciucci, Sara; Ge, Yan; Durán, Claudio; Palladini, Alessandra; Jiménez-Jiménez, Víctor; Martínez-Sánchez, Luisa María; Wang, Yuting; Sales, Susanne; Shevchenko, Andrej; Poser, Steven W.; Herbig, Maik; Otto, Oliver; Androutsellis-Theotokis, Andreas; Guck, Jochen; Gerl, Mathias J.; Cannistraci, Carlo Vittorio
2017-01-01
Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics. PMID:28287094
Sengur, Abdulkadir
2008-03-01
In the last two decades, the use of artificial intelligence methods in medical analysis is increasing. This is mainly because the effectiveness of classification and detection systems have improved a great deal to help the medical experts in diagnosing. In this work, we investigate the use of principal component analysis (PCA), artificial immune system (AIS) and fuzzy k-NN to determine the normal and abnormal heart valves from the Doppler heart sounds. The proposed heart valve disorder detection system is composed of three stages. The first stage is the pre-processing stage. Filtering, normalization and white de-noising are the processes that were used in this stage. The feature extraction is the second stage. During feature extraction stage, wavelet packet decomposition was used. As a next step, wavelet entropy was considered as features. For reducing the complexity of the system, PCA was used for feature reduction. In the classification stage, AIS and fuzzy k-NN were used. To evaluate the performance of the proposed methodology, a comparative study is realized by using a data set containing 215 samples. The validation of the proposed method is measured by using the sensitivity and specificity parameters; 95.9% sensitivity and 96% specificity rate was obtained.
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.
2010-01-01
The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis
2010-02-03
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.
2017-09-01
We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.
A Cognitive Perspective in the Treatment of Incarcerated Clients.
ERIC Educational Resources Information Center
Walsh, Thomas C.
1990-01-01
Proposes a cognitive therapy model as a workable approach in treating incarcerated clients. Reviews principal components and techniques of cognitive theory. Uses case vignettes to illustrate application of this approach. Delineates key features of cognitive model which relate to treatment of incarcerated population. (Author/ABL)
Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo
2017-05-01
The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.
A novel automated spike sorting algorithm with adaptable feature extraction.
Bestel, Robert; Daus, Andreas W; Thielemann, Christiane
2012-10-15
To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Learning Molecular Behaviour May Improve Student Explanatory Models of the Greenhouse Effect
ERIC Educational Resources Information Center
Harris, Sara E.; Gold, Anne U.
2018-01-01
We assessed undergraduates' representations of the greenhouse effect, based on student-generated concept sketches, before and after a 30-min constructivist lesson. Principal component analysis of features in student sketches revealed seven distinct and coherent explanatory models including a new "Molecular Details" model. After the…
[Research Progress of Multi-Model Medical Image Fusion at Feature Level].
Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun
2016-04-01
Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.
Demixed principal component analysis of neural population data.
Kobak, Dmitry; Brendel, Wieland; Constantinidis, Christos; Feierstein, Claudia E; Kepecs, Adam; Mainen, Zachary F; Qi, Xue-Lian; Romo, Ranulfo; Uchida, Naoshige; Machens, Christian K
2016-04-12
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
Feature extraction via KPCA for classification of gait patterns.
Wu, Jianning; Wang, Jue; Liu, Li
2007-06-01
Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.
Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.
2013-01-01
Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398
Modelling above Ground Biomass of Mangrove Forest Using SENTINEL-1 Imagery
NASA Astrophysics Data System (ADS)
Labadisos Argamosa, Reginald Jay; Conferido Blanco, Ariel; Balidoy Baloloy, Alvin; Gumbao Candido, Christian; Lovern Caboboy Dumalag, John Bart; Carandang Dimapilis, Lee, , Lady; Camero Paringit, Enrico
2018-04-01
Many studies have been conducted in the estimation of forest above ground biomass (AGB) using features from synthetic aperture radar (SAR). Specifically, L-band ALOS/PALSAR (wavelength 23 cm) data is often used. However, few studies have been made on the use of shorter wavelengths (e.g., C-band, 3.75 cm to 7.5 cm) for forest mapping especially in tropical forests since higher attenuation is observed for volumetric objects where energy propagated is absorbed. This study aims to model AGB estimates of mangrove forest using information derived from Sentinel-1 C-band SAR data. Combinations of polarisations (VV, VH), its derivatives, grey level co-occurrence matrix (GLCM), and its principal components were used as features for modelling AGB. Five models were tested with varying combinations of features; a) sigma nought polarisations and its derivatives; b) GLCM textures; c) the first five principal components; d) combination of models a-c; and e) the identified important features by Random Forest variable importance algorithm. Random Forest was used as regressor to compute for the AGB estimates to avoid over fitting caused by the introduction of too many features in the model. Model e obtained the highest r2 of 0.79 and an RMSE of 0.44 Mg using only four features, namely, σ°VH GLCM variance, σ°VH GLCM contrast, PC1, and PC2. This study shows that Sentinel-1 C-band SAR data could be used to produce acceptable AGB estimates in mangrove forest to compensate for the unavailability of longer wavelength SAR.
An explorative childhood pneumonia analysis based on ultrasonic imaging texture features
NASA Astrophysics Data System (ADS)
Zenteno, Omar; Diaz, Kristians; Lavarello, Roberto; Zimic, Mirko; Correa, Malena; Mayta, Holger; Anticona, Cynthia; Pajuelo, Monica; Oberhelman, Richard; Checkley, William; Gilman, Robert H.; Figueroa, Dante; Castañeda, Benjamín.
2015-12-01
According to World Health Organization, pneumonia is the respiratory disease with the highest pediatric mortality rate accounting for 15% of all deaths of children under 5 years old worldwide. The diagnosis of pneumonia is commonly made by clinical criteria with support from ancillary studies and also laboratory findings. Chest imaging is commonly done with chest X-rays and occasionally with a chest CT scan. Lung ultrasound is a promising alternative for chest imaging; however, interpretation is subjective and requires adequate training. In the present work, a two-class classification algorithm based on four Gray-level co-occurrence matrix texture features (i.e., Contrast, Correlation, Energy and Homogeneity) extracted from lung ultrasound images from children aged between six months and five years is presented. Ultrasound data was collected using a L14-5/38 linear transducer. The data consisted of 22 positive- and 68 negative-diagnosed B-mode cine-loops selected by a medical expert and captured in the facilities of the Instituto Nacional de Salud del Niño (Lima, Peru), for a total number of 90 videos obtained from twelve children diagnosed with pneumonia. The classification capacity of each feature was explored independently and the optimal threshold was selected by a receiver operator characteristic (ROC) curve analysis. In addition, a principal component analysis was performed to evaluate the combined performance of all the features. Contrast and correlation resulted the two more significant features. The classification performance of these two features by principal components was evaluated. The results revealed 82% sensitivity, 76% specificity, 78% accuracy and 0.85 area under the ROC.
NASA Technical Reports Server (NTRS)
Pelletier, R. E.
1984-01-01
A need exists for digitized information pertaining to linear features such as roads, streams, water bodies and agricultural field boundaries as component parts of a data base. For many areas where this data may not yet exist or is in need of updating, these features may be extracted from remotely sensed digital data. This paper examines two approaches for identifying linear features, one utilizing raw data and the other classified data. Each approach uses a series of data enhancement procedures including derivation of standard deviation values, principal component analysis and filtering procedures using a high-pass window matrix. Just as certain bands better classify different land covers, so too do these bands exhibit high spectral contrast by which boundaries between land covers can be delineated. A few applications for this kind of data are briefly discussed, including its potential in a Universal Soil Loss Equation Model.
Feature Extraction and Selection Strategies for Automated Target Recognition
NASA Technical Reports Server (NTRS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-01-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Feature extraction and selection strategies for automated target recognition
NASA Astrophysics Data System (ADS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-04-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Chang, Chi-Ying; Chang, Chia-Chi; Hsiao, Tzu-Chien
2013-01-01
Excitation-emission matrix (EEM) fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA) for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD) was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes. PMID:24240806
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-01
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable. PMID:29342908
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-14
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nee, K.; Bryan, S.; Levitskaia, T.
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
A Multi-Dimensional Functional Principal Components Analysis of EEG Data
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A.; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-01-01
Summary The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. PMID:28072468
Nee, K.; Bryan, S.; Levitskaia, T.; ...
2017-12-28
The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less
A multi-dimensional functional principal components analysis of EEG data.
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-09-01
The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.
Nuclear norm-based 2-DPCA for extracting features from images.
Zhang, Fanlong; Yang, Jian; Qian, Jianjun; Xu, Yong
2015-10-01
The 2-D principal component analysis (2-DPCA) is a widely used method for image feature extraction. However, it can be equivalently implemented via image-row-based principal component analysis. This paper presents a structured 2-D method called nuclear norm-based 2-DPCA (N-2-DPCA), which uses a nuclear norm-based reconstruction error criterion. The nuclear norm is a matrix norm, which can provide a structured 2-D characterization for the reconstruction error image. The reconstruction error criterion is minimized by converting the nuclear norm-based optimization problem into a series of F-norm-based optimization problems. In addition, N-2-DPCA is extended to a bilateral projection-based N-2-DPCA (N-B2-DPCA). The virtue of N-B2-DPCA over N-2-DPCA is that an image can be represented with fewer coefficients. N-2-DPCA and N-B2-DPCA are applied to face recognition and reconstruction and evaluated using the Extended Yale B, CMU PIE, FRGC, and AR databases. Experimental results demonstrate the effectiveness of the proposed methods.
Kumar, Raj; Kumar, Vinay; Sharma, Vishal
2015-06-01
Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between PC1 and PC2. It is therefore concluded that maximum discrimination of writing, office, and photocopy paper could be achieved on the basis of the second approach. Hence, the present inexpensive analytical method can be appropriate for application to routine questioned document examination work in forensic laboratories because it provides nondestructive, quantitative, reliable, and repeatable results.
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping
2015-01-01
As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.
Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie
2014-08-01
Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of deformable image registration and a motion model in CT images with limited features.
Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S
2012-05-07
Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
Mallapragada, Goutham; Ray, Asok; Jin, Xin
2012-06-01
This paper presents a procedure for behavior identification of mobile robots, which requires limited or no domain knowledge of the underlying process. While the features of robot behavior are extracted by symbolic dynamic filtering of the observed time series, the behavior patterns are classified based on language measure theory. The behavior identification procedure has been experimentally validated on a networked robotic test bed by comparison with commonly used tools, namely, principal component analysis for feature extraction and Bayesian risk analysis for pattern classification.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Meng, Peng; Xu, Feifei
2013-08-01
Hyperspectral data, consisting of hundreds of spectral bands with a high spectral resolution, enables acquisition of continuous spectral characteristic curves, and therefore have served as a powerful tool for vegetation classification. The difficulty of using hyperspectral data is that they are usually redundant, strongly correlated and subject to Hughes phenomenon where classification accuracy increases gradually in the beginning as the number of spectral bands or dimensions increases, but decreases dramatically when the band number reaches some value. In recent years,some algorithms have been proposed to overcome the Hughes phenomenon in classification, such as selecting several bands from full bands, PCA- and MNF-based feature transformations. Up to date, however, few studies have been conducted to investigate the turning point of Hughes phenomenon (i.e., the point at which the classification accuracy begins to decline). In this paper, we firstly analyze reasons for occurrence of Hughes phenomenon, and then based on the Mahalanobis classifier, classify the ground spectrum of several grasslands which were recorded in September 2012 using FieldSpec3 spectrometer in the regions around Qinghai Lake,a important pasturing area in the north of China. Before classification, we extract features from hyperspectral data by bands selecting and PCA- based feature transformations, and In the process of classification, we analyze how the correlation coefficient between wavebands, the number of waveband channels and the number of principal components affect the classification result. The results show that Hushes phenomenon may occur when the correlation coefficient between wavebands is greater than 94%,the number of wavebands is greater than 6, or the number of principal components is greater than 6. Best classification result can be achieved (overall accuracy of grasslands 90%) if the number of wavebands equals to 3 (the band positions are 370nm, 509nm and 886nm respectively) or the number of principal components ranges from 4 to 6.
Confocal Raman imaging for cancer cell classification
NASA Astrophysics Data System (ADS)
Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet
2014-05-01
We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.
Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J
2018-05-29
Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.
Parallel-plate transmission line type of EMP simulators: Systematic review and recommendations
NASA Astrophysics Data System (ADS)
Giri, D. V.; Liu, T. K.; Tesche, F. M.; King, R. W. P.
1980-05-01
This report presents various aspects of the two-parallel-plate transmission line type of EMP simulator. Much of the work is the result of research efforts conducted during the last two decades at the Air Force Weapons Laboratory, and in industries/universities as well. The principal features of individual simulator components are discussed. The report also emphasizes that it is imperative to hybridize our understanding of individual components so that we can draw meaningful conclusions of simulator performance as a whole.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Structural aspects of face recognition and the other-race effect.
O'Toole, A J; Deffenbacher, K A; Valentin, D; Abdi, H
1994-03-01
The other-race effect was examined in a series of experiments and simulations that looked at the relationships among observer ratings of typicality, familiarity, attractiveness, memorability, and the performance variables of d' and criterion. Experiment 1 replicated the other-race effect with our Caucasian and Japanese stimuli for both Caucasian and Asian observers. In Experiment 2, we collected ratings from Caucasian observers on the faces used in the recognition task. A Varimax-rotated principal components analysis on the rating and performance data for the Caucasian faces replicated Vokey and Read's (1992) finding that typicality is composed of two orthogonal components, dissociable via their independent relationships to: (1) attractiveness and familiarity ratings and (2) memorability ratings. For Japanese faces, however, we found that typicality was related only to memorability. Where performance measures were concerned, two additional principal components dominated by criterion and by d' emerged for Caucasian faces. For the Japanese faces, however, the performance measures of d' and criterion merged into a single component that represented a second component of typicality, one orthogonal to the memorability-dominated component. A measure of face representation quality extracted from an autoassociative neural network trained with a majority of Caucasian faces and a minority of Japanese faces was incorporated into the principal components analysis. For both Caucasian and Japanese faces, the neural network measure related both to memorability ratings and to human accuracy measures. Combined, the human data and simulation results indicate that the memorability component of typicality may be related to small, local, distinctive features, whereas the attractiveness/familiarity component may be more related to the global, shape-based properties of the face.
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong
2009-07-01
A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Anatomical curve identification
Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise
2015-01-01
Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943
Latent feature decompositions for integrative analysis of multi-platform genomic data
Gregory, Karl B.; Momin, Amin A.; Coombes, Kevin R.; Baladandayuthapani, Veerabhadran
2015-01-01
Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to, a glioblastoma multiforme dataset from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between genomic platforms to aid accurate prediction and variable selection. Our methods perform best when principal components are used to define the latent features. PMID:26146492
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Demixed principal component analysis of neural population data
Kobak, Dmitry; Brendel, Wieland; Constantinidis, Christos; Feierstein, Claudia E; Kepecs, Adam; Mainen, Zachary F; Qi, Xue-Lian; Romo, Ranulfo; Uchida, Naoshige; Machens, Christian K
2016-01-01
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure. DOI: http://dx.doi.org/10.7554/eLife.10989.001 PMID:27067378
NASA Astrophysics Data System (ADS)
Deraemaeker, A.; Worden, K.
2018-05-01
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases.
Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.
1981-01-01
A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Optimized Kernel Entropy Components.
Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau
2017-06-01
This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Taguchi, Y-H
2016-05-10
MicroRNA(miRNA)-mRNA interactions are important for understanding many biological processes, including development, differentiation and disease progression, but their identification is highly context-dependent. When computationally derived from sequence information alone, the identification should be verified by integrated analyses of mRNA and miRNA expression. The drawback of this strategy is the vast number of identified interactions, which prevents an experimental or detailed investigation of each pair. In this paper, we overcome this difficulty by the recently proposed principal component analysis (PCA)-based unsupervised feature extraction (FE), which reduces the number of identified miRNA-mRNA interactions that properly discriminate between patients and healthy controls without losing biological feasibility. The approach is applied to six cancers: hepatocellular carcinoma, non-small cell lung cancer, esophageal squamous cell carcinoma, prostate cancer, colorectal/colon cancer and breast cancer. In PCA-based unsupervised FE, the significance does not depend on the number of samples (as in the standard case) but on the number of features, which approximates the number of miRNAs/mRNAs. To our knowledge, we have newly identified miRNA-mRNA interactions in multiple cancers based on a single common (universal) criterion. Moreover, the number of identified interactions was sufficiently small to be sequentially curated by literature searches.
A comparison of the history and management of oak woodlands in Britain and California
Douglas McCreary; Gary Kerr
2002-01-01
Hardwood forests are principal features of the landscape of both California and Britain and indigenous oak species are important components. In both locales these "oak woodlands" have historically provided a wide variety of commercial and non-commercial products and benefits and are deeply valued and appreciated by those who live in and around them. However,...
The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason L. Wright; Milos Manic
2010-05-01
This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.
Automated diagnosis of Alzheimer's disease with multi-atlas based whole brain segmentations
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tang, Xiaoying
2017-03-01
Voxel-based analysis is widely used in quantitative analysis of structural brain magnetic resonance imaging (MRI) and automated disease detection, such as Alzheimer's disease (AD). However, noise at the voxel level may cause low sensitivity to AD-induced structural abnormalities. This can be addressed with the use of a whole brain structural segmentation approach which greatly reduces the dimension of features (the number of voxels). In this paper, we propose an automatic AD diagnosis system that combines such whole brain segmen- tations with advanced machine learning methods. We used a multi-atlas segmentation technique to parcellate T1-weighted images into 54 distinct brain regions and extract their structural volumes to serve as the features for principal-component-analysis-based dimension reduction and support-vector-machine-based classification. The relationship between the number of retained principal components (PCs) and the diagnosis accuracy was systematically evaluated, in a leave-one-out fashion, based on 28 AD subjects and 23 age-matched healthy subjects. Our approach yielded pretty good classification results with 96.08% overall accuracy being achieved using the three foremost PCs. In addition, our approach yielded 96.43% specificity, 100% sensitivity, and 0.9891 area under the receiver operating characteristic curve.
Improving KPCA Online Extraction by Orthonormalization in the Feature Space.
Souza Filho, Joao B O; Diniz, Paulo S R
2018-04-01
Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.
Yamamoto, Norifumi
2014-08-21
The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.
Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki
2017-02-01
To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kalegowda, Yogesh; Harmer, Sarah L
2013-01-08
Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lianjie; Cheng, Long
2017-10-01
There are many areas in the world have terraced fields, Yuanyang Rani's terraced fields are examples in the world, and their unique ecological diversity is beyond other terraced fields, rice landraces are very rich. In order to provide useful information for protection and utilization of red-grained rice landraces from Rani's terraced fields, 61 red-grained rice landraces were assessed based 20 quantitative traits. Principal component analysis (PCA) suggested that 20 quantitative characters could be simplified to seven principal components, and their accumulative contribution ration amounted to 78.699%. The first principal component (PC1) explained 18.375% of the total variance, which was contributed by filled grain number, 1000-grain weight, spikelets per panicle, secondary branch number, grain length, and grain thickness. PC2 accounted for 16.548% of the variance and featured flag leaf width, flag leaf area, panicle neck length and primary branch number. These traits were the most effective parameters to discriminate individuals. At the request of the proceedings editor and with the approval of all authors, article 040111 titled, "Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China," is being retracted from the public record due to the fact that it is a duplication of article 040110 published in the same volume.
Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian
2015-01-01
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
Regionalization of precipitation characteristics in Iran's Lake Urmia basin
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn
2018-04-01
Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.
Research of facial feature extraction based on MMC
NASA Astrophysics Data System (ADS)
Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun
2017-07-01
Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
NASA Astrophysics Data System (ADS)
Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.
2010-04-01
The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.
Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili
2015-05-01
In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.
Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K
2011-08-01
Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.
Jin, Mingwu; Deng, Weishu
2018-05-15
There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.
John M. Frank; William J. Massman; Brent E. Ewers
2016-01-01
Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...
On the Fallibility of Principal Components in Research
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Li, Tenglong
2017-01-01
The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.
The assessment of facial variation in 4747 British school children.
Toma, Arshed M; Zhurov, Alexei I; Playle, Rebecca; Marshall, David; Rosin, Paul L; Richmond, Stephen
2012-12-01
The aim of this study is to identify key components contributing to facial variation in a large population-based sample of 15.5-year-old children (2514 females and 2233 males). The subjects were recruited from the Avon Longitudinal Study of Parents and Children. Three-dimensional facial images were obtained for each subject using two high-resolution Konica Minolta laser scanners. Twenty-one reproducible facial landmarks were identified and their coordinates were recorded. The facial images were registered using Procrustes analysis. Principal component analysis was then employed to identify independent groups of correlated coordinates. For the total data set, 14 principal components (PCs) were identified which explained 82 per cent of the total variance, with the first three components accounting for 46 per cent of the variance. Similar results were obtained for males and females separately with only subtle gender differences in some PCs. Facial features may be treated as a multidimensional statistical continuum with respect to the PCs. The first three PCs characterize the face in terms of height, width, and prominence of the nose. The derived PCs may be useful to identify and classify faces according to a scale of normality.
NASA Astrophysics Data System (ADS)
Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.
2016-12-01
The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.
Diagnostic analysis of liver B ultrasonic texture features based on LM neural network
NASA Astrophysics Data System (ADS)
Chi, Qingyun; Hua, Hu; Liu, Menglin; Jiang, Xiuying
2017-03-01
In this study, B ultrasound images of 124 benign and malignant patients were randomly selected as the study objects. The B ultrasound images of the liver were treated by enhanced de-noising. By constructing the gray level co-occurrence matrix which reflects the information of each angle, Principal Component Analysis of 22 texture features were extracted and combined with LM neural network for diagnosis and classification. Experimental results show that this method is a rapid and effective diagnostic method for liver imaging, which provides a quantitative basis for clinical diagnosis of liver diseases.
NASA Astrophysics Data System (ADS)
Fursdon, M.; Barrett, T.; Domptail, F.; Evans, Ll M.; Luzginova, N.; Greuner, N. H.; You, J.-H.; Li, M.; Richou, M.; Gallay, F.; Visca, E.
2017-12-01
The design and development of a novel plasma facing component (for fusion power plants) is described. The component uses the existing ‘monoblock’ construction which consists of a tungsten ‘block’ joined via a copper interlayer to a through CuCrZr cooling pipe. In the new concept the interlayer stiffness and conductivity properties are tuned so that stress in the principal structural element of the component (the cooling pipe) is reduced. Following initial trials with off-the-shelf materials, the concept was realized by machined features in an otherwise solid copper interlayer. The shape and distribution of the features were tuned by finite element analyses subject to ITER structural design criterion in-vessel components (SDC-IC) design rules. Proof of concept mock-ups were manufactured using a two stage brazing process verified by tomography and micrographic inspection. Full assemblies were inspected using ultrasound and thermographic (SATIR) test methods at ENEA and CEA respectively. High heat flux tests using IPP’s GLADIS facility showed that 200 cycles at 20 MW m-2 and five cycles at 25 MW m-2 could be sustained without apparent component damage. Further testing and component development is planned.
Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao
2012-05-01
Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
Roberts, Miguel E; Han, Kyunghee; Weed, Nathan C
2006-09-01
This study documents the development of an MMPI-2 scale designed to assess features of the Korean culture-bound syndrome, Hwa-Byung (HB). An American research team and psychiatric practitioners in Korea created an 18-item HB scale via rational item selection and psycho-metric refinement. Principal components analysis of scale items revealed four components, reflecting content domains of general health, gastrointestinal symptoms, hopelessness, and anger. This four-component solution applied well to both Korean men and women, but not to an American sample. Although some findings were encouraging, future studies employing clinical samples are needed to provide further validation of this scale.
Glass, F.M.; Wilson, H.N.
1959-02-17
Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope
Fox, Jessica L.; Fairhall, Adrienne L.; Daniel, Thomas L.
2010-01-01
The halteres of dipteran insects are essential sensory organs for flight control. They are believed to detect Coriolis and other inertial forces associated with body rotation during flight. Flies use this information for rapid flight control. We show that the primary afferent neurons of the haltere’s mechanoreceptors respond selectively with high temporal precision to multiple stimulus features. Although we are able to identify many stimulus features contributing to the response using principal component analysis, predictive models using only two features, common across the cell population, capture most of the cells’ encoding activity. However, different sensitivity to these two features permits each cell to respond to sinusoidal stimuli with a different preferred phase. This feature similarity, combined with diverse phase encoding, allows the haltere to transmit information at a high rate about numerous inertial forces, including Coriolis forces. PMID:20133721
Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.
El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A
2017-08-01
The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.
Predicting Protein-Protein Interactions by Combing Various Sequence-Derived.
Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao
2011-09-20
Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.
Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C
2011-05-01
Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Systematic comparison of the behaviors produced by computational models of epileptic neocortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warlaumont, A. S.; Lee, H. C.; Benayoun, M.
2010-12-01
Two existing models of brain dynamics in epilepsy, one detailed (i.e., realistic) and one abstract (i.e., simplified) are compared in terms of behavioral range and match to in vitro mouse recordings. A new method is introduced for comparing across computational models that may have very different forms. First, high-level metrics were extracted from model and in vitro output time series. A principal components analysis was then performed over these metrics to obtain a reduced set of derived features. These features define a low-dimensional behavior space in which quantitative measures of behavioral range and degree of match to real data canmore » be obtained. The detailed and abstract models and the mouse recordings overlapped considerably in behavior space. Both the range of behaviors and similarity to mouse data were similar between the detailed and abstract models. When no high-level metrics were used and principal components analysis was computed over raw time series, the models overlapped minimally with the mouse recordings. The method introduced here is suitable for comparing across different kinds of model data and across real brain recordings. It appears that, despite differences in form and computational expense, detailed and abstract models do not necessarily differ in their behaviors.« less
NASA Astrophysics Data System (ADS)
Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.
2013-12-01
This article is concerned with the practical use of Multiway Principal Component Analysis (MPCA), Discrete Wavelet Transform (DWT), Squared Prediction Error (SPE) measures and Self-Organizing Maps (SOM) to detect and classify damages in mechanical structures. The formalism is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. Statistical models are built using PCA when the structure is known to be healthy either directly from the dynamic responses or from wavelet coefficients at different scales representing Time-frequency information. Different damages on the tested structures are simulated by adding masses at different positions. The data from the structure in different states (damaged or not) are then projected into the different principal component models by each actuator in order to obtain the input feature vectors for a SOM from the scores and the SPE measures. An aircraft fuselage from an Airbus A320 and a multi-layered carbon fiber reinforced plastic (CFRP) plate are used as examples to test the approaches. Results are presented, compared and discussed in order to determine their potential in structural health monitoring. These results showed that all the simulated damages were detectable and the selected features proved capable of separating all damage conditions from the undamaged state for both approaches.
Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M
2012-05-01
Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
2D/3D facial feature extraction
NASA Astrophysics Data System (ADS)
Çinar Akakin, Hatice; Ali Salah, Albert; Akarun, Lale; Sankur, Bülent
2006-02-01
We propose and compare three different automatic landmarking methods for near-frontal faces. The face information is provided as 480x640 gray-level images in addition to the corresponding 3D scene depth information. All three methods follow a coarse-to-fine suite and use the 3D information in an assist role. The first method employs a combination of principal component analysis (PCA) and independent component analysis (ICA) features to analyze the Gabor feature set. The second method uses a subset of DCT coefficients for template-based matching. These two methods employ SVM classifiers with polynomial kernel functions. The third method uses a mixture of factor analyzers to learn Gabor filter outputs. We contrast the localization performance separately with 2D texture and 3D depth information. Although the 3D depth information per se does not perform as well as texture images in landmark localization, the 3D information has still a beneficial role in eliminating the background and the false alarms.
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
Tang, Guiji; Tian, Tian; Zhou, Chong
2018-01-01
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time–time (IHTT) transform, by combining a Hilbert time–time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures. PMID:29662013
Topological patterns of mesh textures in serpentinites
NASA Astrophysics Data System (ADS)
Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.
2017-12-01
Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
PCA feature extraction for change detection in multidimensional unlabeled data.
Kuncheva, Ludmila I; Faithfull, William J
2014-01-01
When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.
Principal Stability and the Rural Divide
ERIC Educational Resources Information Center
Pendola, Andrew; Fuller, Edward J.
2018-01-01
This article examines the unique features of the rural school context and how these features are associated with the stability of principals in these schools. Given the small but growing literature on the characteristics of rural principals, this study presents an exploratory analysis of principal stability across schools located in different…
Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong
2015-01-01
Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography-mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components' features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA. Copyright © 2014 Elsevier B.V. All rights reserved.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units
NASA Astrophysics Data System (ADS)
Rietmeijer, F. J. M.
1996-03-01
Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.
NASA Astrophysics Data System (ADS)
Ghosh, A.; Majumder, S. B.
2017-07-01
Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.
Discrimination of serum Raman spectroscopy between normal and colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi
2011-07-01
Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.
Statistical Inference for Porous Materials using Persistent Homology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chul; Heath, Jason E.; Mitchell, Scott A.
2017-12-01
We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability,more » anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.« less
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2014-01-01
The current trend to use Brain-Computer Interfaces (BCIs) with mobile devices mandates the development of efficient EEG data processing methods. In this paper, we demonstrate the performance of a Principal Component Analysis (PCA) ensemble classifier for P300-based spellers. We recorded EEG data from multiple subjects using the Emotiv neuroheadset in the context of a classical oddball P300 speller paradigm. We compare the performance of the proposed ensemble classifier to the performance of traditional feature extraction and classifier methods. Our results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average accuracy of 86.29% on cross-validation data. In addition, offline testing of the recorded data reveals an average classification accuracy of 73.3% that is significantly higher than that achieved using traditional methods. Finally, we demonstrate the effect of the parameters of the P300 speller paradigm on the performance of the method.
Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P
2013-03-01
Previous studies on Diptera have shown the potential for the use of cuticular hydrocarbons' analysis in the determination of larval age and hence the postmortem interval (PMI) for an associated cadaver. In this work, hydrocarbon compounds, extracted daily until pupation from the cuticle of the blowfly Lucilia sericata (Diptera: Calliphoridae), have been analyzed using gas chromatography-mass spectrometry (GC-MS). The results show distinguishing features within the hydrocarbon profile over the period of the larvae life cycle, with significant chemical changes occurring from the younger larvae to the postfeeding larvae. Further interpretation of the chromatograms using principal component analysis revealed a strong correlation between the magnitudes of particular principal components and time. This outcome suggests that, under the conditions of this study, the cuticular hydrocarbons evolve in a systematic fashion with time, thus supporting the potential for GC-MS analysis as a tool for establishing PMI where such a species is present. © 2012 American Academy of Forensic Sciences.
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi
2015-01-01
This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
Detection of goal events in soccer videos
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas
2005-01-01
In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.
Zhou, Pan; Lin, Zhouchen; Zhang, Chao
2016-05-01
Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.
Face-space architectures: evidence for the use of independent color-based features.
Nestor, Adrian; Plaut, David C; Behrmann, Marlene
2013-07-01
The concept of psychological face space lies at the core of many theories of face recognition and representation. To date, much of the understanding of face space has been based on principal component analysis (PCA); the structure of the psychological space is thought to reflect some important aspects of a physical face space characterized by PCA applications to face images. In the present experiments, we investigated alternative accounts of face space and found that independent component analysis provided the best fit to human judgments of face similarity and identification. Thus, our results challenge an influential approach to the study of human face space and provide evidence for the role of statistically independent features in face encoding. In addition, our findings support the use of color information in the representation of facial identity, and we thus argue for the inclusion of such information in theoretical and computational constructs of face space.
Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki
2015-04-30
Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.
Sun, Xiaochun; Ma, Ping; Mumm, Rita H
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.
Sun, Xiaochun; Ma, Ping; Mumm, Rita H.
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression. PMID:23226325
Cheke, Lucy G; Clayton, Nicola S
2015-09-01
The development of episodic memory in children has been of interest to researchers for more than a century. Current behavioral tests that have been developed to assess episodic memory differ substantially in their surface features. Therefore, it is possible that these tests are assessing different memory processes. In this study, 106 children aged 3 to 6 years were tested on four putative tests of episodic memory. Covariation in performance was investigated in order to address two conflicting hypotheses: (a) that the high level of difference between the tests will result in little covariation in performance despite their being designed to assess the same ability and (b) that the conceptual similarity of these tasks will lead to high levels of covariation despite surface differences. The results indicated a gradual improvement with age on all tests. Performances on many of the tests were related, but not after controlling for age. A principal component analysis found that a single principal component was able to satisfactorily fit the observed data. This principal component produced a marginally stronger correlation with age than any test alone. As such, it might be concluded that different tests of episodic memory are too different to be used in parallel. Nevertheless, if used together, these tests may offer a robust assessment of episodic memory as a complex multifaceted process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Díaz-Ayil, G.; Amouroux, M.; Blondel, W. C. P. M.; Bourg-Heckly, G.; Leroux, A.; Guillemin, F.; Granjon, Y.
2009-07-01
This paper deals with the development and application of in vivo spatially-resolved bimodal spectroscopy (AutoFluorescence AF and Diffuse Reflectance DR), to discriminate various stages of skin precancer in a preclinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A programmable instrumentation was developed for acquiring AF emission spectra using 7 excitation wavelengths: 360, 368, 390, 400, 410, 420 and 430 nm, and DR spectra in the 390-720 nm wavelength range. After various steps of intensity spectra preprocessing (filtering, spectral correction and intensity normalization), several sets of spectral characteristics were extracted and selected based on their discrimination power statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of sensitivity (Se) and specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibers distances and of the numbers of principal components, such that: Se and Sp ≈ 100% when discriminating CH vs. others; Sp ≈ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ≈ 74% and Se ≈ 63%for AH vs. D.
Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques
NASA Astrophysics Data System (ADS)
Soto, Juan; Granda, Guillermo; Prieto, Flavio; Ipanaque, William; Machacuay, Jorge
2015-04-01
Nowadays, cocoa bean exportation from Piura-Peru is having a positive international market response due to their inherent high quality. Nevertheless, when using subjective techniques for quality assessment, such as the cut test, a wastefulness of grains is generated, additional to a restriction in the selection as well as improvement approaches in earlier stages for optimizing the quality. Thus, in an attempt to standardize the internal features analyzed by the cut test, for instance, crack formation and internal color changes during the fermentation, this research is submitted as an approach which aims to make use of hyperspectral images, with the purpose of having a quick and accurate analysis. Hyperspectral cube size was reduced by using Principal Component Analysis (PCA). The image generated by principal component PC1 provides enough information to clearly distinguish the internal cracks of the cocoa bean, since the zones where these cracks are, have a negative correlation with PC1. The features taken were processed through a fuzzy block, which is able to describe the cocoa bean quality. Three membership functions were defined in the output: unfermented, partly fermented and well fermented, by using trapezoidal-shaped and triangular-shaped functions. A total of twelve rules were propounded. Furthermore, the bisector method was chosen for the defuzzification. Begin the abstract two lines below author names and addresses.
Fractal analysis of scatter imaging signatures to distinguish breast pathologies
NASA Astrophysics Data System (ADS)
Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.
2013-02-01
Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.
Nonlinear Principal Components Analysis: Introduction and Application
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.
2007-01-01
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
Fuggetta, Giorgio; Duke, Philip A
2017-05-01
The operation of attention on visible objects involves a sequence of cognitive processes. The current study firstly aimed to elucidate the effects of practice on neural mechanisms underlying attentional processes as measured with both behavioural and electrophysiological measures. Secondly, it aimed to identify any pattern in the relationship between Event-Related Potential (ERP) components which play a role in the operation of attention in vision. Twenty-seven participants took part in two recording sessions one week apart, performing an experimental paradigm which combined a match-to-sample task with a memory-guided efficient visual-search task within one trial sequence. Overall, practice decreased behavioural response times, increased accuracy, and modulated several ERP components that represent cognitive and neural processing stages. This neuromodulation through practice was also associated with an enhanced link between behavioural measures and ERP components and with an enhanced cortico-cortical interaction of functionally interconnected ERP components. Principal component analysis (PCA) of the ERP amplitude data revealed three components, having different rostro-caudal topographic representations. The first component included both the centro-parietal and parieto-occipital mismatch triggered negativity - involved in integration of visual representations of the target with current task-relevant representations stored in visual working memory - loaded with second negative posterior-bilateral (N2pb) component, involved in categorising specific pop-out target features. The second component comprised the amplitude of bilateral anterior P2 - related to detection of a specific pop-out feature - loaded with bilateral anterior N2, related to detection of conflicting features, and fronto-central mismatch triggered negativity. The third component included the parieto-occipital N1 - related to early neural responses to the stimulus array - which loaded with the second negative posterior-contralateral (N2pc) component, mediating the process of orienting and focusing covert attention on peripheral target features. We discussed these three components as representing different neurocognitive systems modulated with practice within which the input selection process operates. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Principal curve detection in complicated graph images
NASA Astrophysics Data System (ADS)
Liu, Yuncai; Huang, Thomas S.
2001-09-01
Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.
A method of vehicle license plate recognition based on PCANet and compressive sensing
NASA Astrophysics Data System (ADS)
Ye, Xianyi; Min, Feng
2018-03-01
The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants’ strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research. PMID:26321997
2015-01-01
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377
Principal semantic components of language and the measurement of meaning.
Samsonovich, Alexei V; Samsonovic, Alexei V; Ascoli, Giorgio A
2010-06-11
Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of "good/bad" (valence), "calm/excited" (arousal), and "open/closed" (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number ( approximately 4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind.
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2001-01-01
Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.
An Introductory Application of Principal Components to Cricket Data
ERIC Educational Resources Information Center
Manage, Ananda B. W.; Scariano, Stephen M.
2013-01-01
Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
Grilo, C M
2004-01-01
To examine the factor structure of DSM-IV criteria for obsessive compulsive personality disorder (OCPD) in patients with binge eating disorder (BED). Two hundred and eleven consecutive out-patients with axis I diagnoses of BED were reliably assessed with semi-structured diagnostic interviews. The eight criteria for the OCPD diagnosis were examined with reliability and correlational analyses. Exploratory factor analysis was performed to identify potential components. Cronbach's coefficient alpha for the OCPD criteria was 0.77. Principal components factor analysis with varimax rotation revealed a three-factor solution (rigidity, perfectionism, and miserliness), which accounted for 65% of variance. The DSM-IV criteria for OCPD showed good internal consistency. Exploratory factor analysis, however, revealed three components that may reflect distinct interpersonal, intrapersonal (cognitive), and behavioral features.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
40 CFR 60.2570 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ghanashyam; McLing, Travis; Mattson, Earl
The presented database includes water chemistry data and structural rating values for various geothermal features used for performing principal component (PC) and cluster analyses work to identify promising KGRAs and IHRAs in southern Idaho and southeastern Oregon. A brief note on various KGRAs/IHRAs is also included herewith. Results of PC and cluster analyses are presented as a separate paper (Lindsey et al., 2017) that is, as of the time of this submission, in 'revision' status.
VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR
Scheele, P.F.
1958-09-16
This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.
Pes, Giovanni Mario; Delitala, Alessandro Palmerio; Errigo, Alessandra; Delitala, Giuseppe; Dore, Maria Pina
2016-06-01
Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers) showed a faster beta-cells failure and PC-3 (characterized mostly by gender and high triglycerides) and PC-4 (high cholesterol) showed a slower beta-cells failure. PC-1 (including dislipidemia and other metabolic dysfunctions), showed a mild beta-cells failure. In conclusion variable clustering might be consistent with different pathogenic pathways and/or distinct immune mechanisms in LADA and could potentially help physicians improve the clinical management of these patients.
You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing
2013-01-01
Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.
Dall'Asta, Andrea; Schievano, Silvia; Bruse, Jan L; Paramasivam, Gowrishankar; Kaihura, Christine Tita; Dunaway, David; Lees, Christoph C
2017-07-01
The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing. The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29 +4 weeks (25 +0 to 36 +1 ). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis. Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056). This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature. Copyright © 2017 Elsevier Inc. All rights reserved.
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability
NASA Astrophysics Data System (ADS)
Parker, M. L.; Alston, W. N.; Buisson, D. J. K.; Fabian, A. C.; Jiang, J.; Kara, E.; Lohfink, A.; Pinto, C.; Reynolds, C. S.
2017-08-01
We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultrafast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone and that variability studies of UFOs are an extremely promising avenue for future research.
Kahan, Tracey L; Claudatos, Stephanie
2016-04-01
Self-ratings of dream experiences were obtained from 144 college women for 788 dreams, using the Subjective Experiences Rating Scale (SERS). Consistent with past studies, dreams were characterized by a greater prevalence of vision, audition, and movement than smell, touch, or taste, by both positive and negative emotion, and by a range of cognitive processes. A Principal Components Analysis of SERS ratings revealed ten subscales: four sensory, three affective, one cognitive, and two structural (events/actions, locations). Correlations (Pearson r) among subscale means showed a stronger relationship among the process-oriented features (sensory, cognitive, affective) than between the process-oriented and content-centered (structural) features--a pattern predicted from past research (e.g., Bulkeley & Kahan, 2008). Notably, cognition and positive emotion were associated with a greater number of other phenomenal features than was negative emotion; these findings are consistent with studies of the qualitative features of waking autobiographical memory (e.g., Fredrickson, 2001). Copyright © 2016 Elsevier Inc. All rights reserved.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
Activity Recognition in Egocentric video using SVM, kNN and Combined SVMkNN Classifiers
NASA Astrophysics Data System (ADS)
Sanal Kumar, K. P.; Bhavani, R., Dr.
2017-08-01
Egocentric vision is a unique perspective in computer vision which is human centric. The recognition of egocentric actions is a challenging task which helps in assisting elderly people, disabled patients and so on. In this work, life logging activity videos are taken as input. There are 2 categories, first one is the top level and second one is second level. Here, the recognition is done using the features like Histogram of Oriented Gradients (HOG), Motion Boundary Histogram (MBH) and Trajectory. The features are fused together and it acts as a single feature. The extracted features are reduced using Principal Component Analysis (PCA). The features that are reduced are provided as input to the classifiers like Support Vector Machine (SVM), k nearest neighbor (kNN) and combined Support Vector Machine (SVM) and k Nearest Neighbor (kNN) (combined SVMkNN). These classifiers are evaluated and the combined SVMkNN provided better results than other classifiers in the literature.
NASA Astrophysics Data System (ADS)
Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.
Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation
NASA Astrophysics Data System (ADS)
Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen
2012-01-01
Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.
NASA Astrophysics Data System (ADS)
Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.
2009-07-01
Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.
Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat
2011-05-27
In this paper, automated sample preparation, retention time locked gas chromatography-mass spectrometry (GC-MS) and data analysis methods for the metabolomics study were evaluated. A miniaturized and automated derivatisation method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types×2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatisation process offers excellent repeatability, and the time between sample preparation and analysis was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatography-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data analysis. XCMS followed by principal component analysis (approach 1) and AMDIS deconvolution combined with a commercially available program (Mass Profiler Professional) followed by principal component analysis (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Haiqing; Wu, Di; He, Yong
2007-11-01
Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.
Genetic structure in the Sherpa and neighboring Nepalese populations.
Cole, Amy M; Cox, Sean; Jeong, Choongwon; Petousi, Nayia; Aryal, Dhana R; Droma, Yunden; Hanaoka, Masayuki; Ota, Masao; Kobayashi, Nobumitsu; Gasparini, Paolo; Montgomery, Hugh; Robbins, Peter; Di Rienzo, Anna; Cavalleri, Gianpiero L
2017-01-19
We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.
Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung
2015-08-01
An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
ERIC Educational Resources Information Center
Oplatka, Izhar
2017-01-01
Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…
2013-01-01
Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322
2011-01-01
Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD). In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA). Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA) approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup. The ease of use and installation of the current method provides clinicians and researchers a low cost solution to monitor the progression of and the treatment to PD. In summary, the proposed method provides an alternative to perform gait analysis for patients with PD. PMID:22074315
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification.
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database.
Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification
Rajagopal, Gayathri; Palaniswamy, Ramamoorthy
2015-01-01
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database. PMID:26640813
Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics
Belo, David; Gamboa, Hugo
2017-01-01
The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239
NASA Astrophysics Data System (ADS)
Zhao, Yiqun; Wang, Zhihui
2015-12-01
The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.
Hybrid Feature Extraction-based Approach for Facial Parts Representation and Recognition
NASA Astrophysics Data System (ADS)
Rouabhia, C.; Tebbikh, H.
2008-06-01
Face recognition is a specialized image processing which has attracted a considerable attention in computer vision. In this article, we develop a new facial recognition system from video sequences images dedicated to person identification whose face is partly occulted. This system is based on a hybrid image feature extraction technique called ACPDL2D (Rouabhia et al. 2007), it combines two-dimensional principal component analysis and two-dimensional linear discriminant analysis with neural network. We performed the feature extraction task on the eyes and the nose images separately then a Multi-Layers Perceptron classifier is used. Compared to the whole face, the results of simulation are in favor of the facial parts in terms of memory capacity and recognition (99.41% for the eyes part, 98.16% for the nose part and 97.25 % for the whole face).
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Remembering the dynamic changes in pain intensity and unpleasantness: a psychophysical study.
Khoshnejad, Mina; Fortin, Marie C; Rohani, Farzan; Duncan, Gary H; Rainville, Pierre
2014-03-01
This study investigated the short-term memory of dynamic changes in acute pain using psychophysical methods. Pain intensity or unpleasantness induced by painful contact-heat stimuli of 8, 9, or 10s was rated continuously during the stimulus or after a 14-s delay using an electronic visual analog scale in 10 healthy volunteers. Because the continuous visual analog scale time courses contained large amounts of redundant information, a principal component analysis was applied to characterize the main features inherent to both the concurrent rating and retrospective evaluations. Three components explained about 90% of the total variance across all trials and subjects, with the first component reflecting the global perceptual profile, and the second and third components explaining finer perceptual aspects (eg, changes in slope at onset and offset and shifts in peak latency). We postulate that these 3 principal components may provide some information about the structure of the mental representations of what one perceives, stores, and remembers during the course of few seconds. Analysis performed on the components confirmed significant memory distortions and revealed that the discriminative information about pain dimensions in concurrent ratings was partly or completely lost in retrospective ratings. Importantly, our results highlight individual differences affecting these memory processes. These results provide further evidence of the important transformations underlying the processing of pain in explicit memory and raise fundamental questions about the conversion of dynamic nociceptive signals into a mental representation of pain in perception and memory. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression
NASA Astrophysics Data System (ADS)
Ling, X.; Snow, J. E.; Chin, W.
2017-12-01
The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The prediction residual is about 1-2km. It means that the combined 5 isotopes are a strong predictor of geographic location along the ridge, a slightly surprising result. PCR is a robust and powerful method for both visualizing and manipulating the multidimensional representation of isotope data.
Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng
2012-07-01
We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.
Metsalu, Tauno; Vilo, Jaak
2015-01-01
The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/. PMID:25969447
Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C
2017-12-01
The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.
Detection of micro solder balls using active thermography and probabilistic neural network
NASA Astrophysics Data System (ADS)
He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning
2017-03-01
Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-10-01
Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS) was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD) and Analytical Spectral Devices (ASD) were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
NASA Astrophysics Data System (ADS)
Steiner, G.; Sablinskas, V.; Savchuk, O.; Bariseviciute, R.; Jähne, E.; Adler, H. J.; Salzer, R.
2003-12-01
Self assembly layers were studied by a polarization modulation FT-spectroscopy mapping technique. The optical lay out is based on polarization modulation FT infrared reflection absorption spectroscopy (PM-FT-IRRAS). Here we report for the first time on a PM-FT-IRRAS mapping instrument. Octadecanephosphonic acid adsorbed on a patterned aluminum/gold surface was investigated. The nature of chemical bonding at particular surface areas was evaluated by principal component analysis. The most prominent features of the PM-FT-IRRA spectra are the P-O and PO stretching vibrations. It is shown that octadecanephosphonic acid is adsorbed both on Al 2O 3 and on Au. Moreover, PM-FT-IRRAS maps reveal areas of non-equivalent structural features. Lateral dimensions of these areas are in the micrometer range. Such non-equivalencies may control the inhibition potential of SAMs on ignoble metals, hence become crucial to the quality of products as biosensors or microelectronic components.
Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.
Research of seafloor topographic analyses for a staged mineral exploration
NASA Astrophysics Data System (ADS)
Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Yamakawa, T.; Asakawa, E.; Sumi, T.; Kose, M.
2016-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide (SMS) deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed the multi-stage approach, which is designed from the regional scaled to the detail scaled survey stages through semi-detail scaled, focusing a prospective area by seafloor topographic analyses. We applied this method to the area of more than 100km x 100km around Okinawa Trough, including some well-known mineralized deposits. In the regional scale survey, we assume survey areas are more than 100 km x 100km. Then the spatial resolution of topography data should be bigger than 100m. The 500 m resolution data which is interpolated into 250 m resolution was used for extracting depression and performing principal component analysis (PCA) by the wavelength obtained from frequency analysis. As the result, we have successfully extracted the areas having the topographic features quite similar to well-known mineralized deposits. In the semi-local survey stage, we use the topography data obtained by bathymetric survey using multi-narrow beam echo-sounder. The 30m-resolution data was used for extracting depression, relative-large mounds, hills, lineaments as fault, and also for performing frequency analysis. As the result, wavelength as principal component constituting in the target area was extracted by PCA of wavelength obtained from frequency analysis. Therefore, color image was composited by using the second principal component (PC2) to the forth principal component (PC4) in which the continuity of specific wavelength was observed, and consistent with extracted lineaments. In addition, well-known mineralized deposits were discriminated in the same clusters by using clustering from PC2 to PC4.We applied the results described above to a new area, and successfully extract the quite similar area in vicinity to one of the well-known mineralized deposits. So we are going to verify the extracted areas by using geophysical methods, such as vertical cable seismic and time-domain EM survey, developed in this SIP project.
Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Recognizing human activities using appearance metric feature and kinematics feature
NASA Astrophysics Data System (ADS)
Qian, Huimin; Zhou, Jun; Lu, Xinbiao; Wu, Xinye
2017-05-01
The problem of automatically recognizing human activities from videos through the fusion of the two most important cues, appearance metric feature and kinematics feature, is considered. And a system of two-dimensional (2-D) Poisson equations is introduced to extract the more discriminative appearance metric feature. Specifically, the moving human blobs are first detected out from the video by background subtraction technique to form a binary image sequence, from which the appearance feature designated as the motion accumulation image and the kinematics feature termed as centroid instantaneous velocity are extracted. Second, 2-D discrete Poisson equations are employed to reinterpret the motion accumulation image to produce a more differentiated Poisson silhouette image, from which the appearance feature vector is created through the dimension reduction technique called bidirectional 2-D principal component analysis, considering the balance between classification accuracy and time consumption. Finally, a cascaded classifier based on the nearest neighbor classifier and two directed acyclic graph support vector machine classifiers, integrated with the fusion of the appearance feature vector and centroid instantaneous velocity vector, is applied to recognize the human activities. Experimental results on the open databases and a homemade one confirm the recognition performance of the proposed algorithm.
An Evaluation of Feature Learning Methods for High Resolution Image Classification
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Montoya, J.; Schindler, K.
2012-07-01
Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Closed-ecology life support systems /CELSS/ for long-duration, manned missions
NASA Technical Reports Server (NTRS)
Modell, M.; Spurlock, J. M.
1979-01-01
Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Low-Dimensional Feature Representation for Instrument Identification
NASA Astrophysics Data System (ADS)
Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin
For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.
Jesunathadas, Mark; Poston, Brach; Santello, Marco; Ye, Jieping; Panchanathan, Sethuraman
2014-01-01
Many studies have attempted to monitor fatigue from electromyogram (EMG) signals. However, fatigue affects EMG in a subject-specific manner. We present here a subject-independent framework for monitoring the changes in EMG features that accompany muscle fatigue based on principal component analysis and factor analysis. The proposed framework is based on several time- and frequency-domain features, unlike most of the existing work, which is based on two to three features. Results show that latent factors obtained from factor analysis on these features provide a robust and unified framework. This framework learns a model from EMG signals of multiple subjects, that form a reference group, and monitors the changes in EMG features during a sustained submaximal contraction on a test subject on a scale from zero to one. The framework was tested on EMG signals collected from 12 muscles of eight healthy subjects. The distribution of factor scores of the test subject, when mapped onto the framework was similar for both the subject-specific and subject-independent cases. PMID:22498666
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...
View subspaces for indexing and retrieval of 3D models
NASA Astrophysics Data System (ADS)
Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel
2010-02-01
View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.
Improving human activity recognition and its application in early stroke diagnosis.
Villar, José R; González, Silvia; Sedano, Javier; Chira, Camelia; Trejo-Gabriel-Galan, Jose M
2015-06-01
The development of efficient stroke-detection methods is of significant importance in today's society due to the effects and impact of stroke on health and economy worldwide. This study focuses on Human Activity Recognition (HAR), which is a key component in developing an early stroke-diagnosis tool. An overview of the proposed global approach able to discriminate normal resting from stroke-related paralysis is detailed. The main contributions include an extension of the Genetic Fuzzy Finite State Machine (GFFSM) method and a new hybrid feature selection (FS) algorithm involving Principal Component Analysis (PCA) and a voting scheme putting the cross-validation results together. Experimental results show that the proposed approach is a well-performing HAR tool that can be successfully embedded in devices.
Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine
NASA Astrophysics Data System (ADS)
Lawi, Armin; Sya'Rani Machrizzandi, M.
2018-03-01
Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.
Super-resolution method for face recognition using nonlinear mappings on coherent features.
Huang, Hua; He, Huiting
2011-01-01
Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Motorcyclists safety system to avoid rear end collisions based on acoustic signatures
NASA Astrophysics Data System (ADS)
Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.
2017-03-01
In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.
Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder
NASA Astrophysics Data System (ADS)
Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao
2018-04-01
Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.
PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.
Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar
2014-01-01
Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.
Optimization of a Multi-Stage ATR System for Small Target Identification
NASA Technical Reports Server (NTRS)
Lin, Tsung-Han; Lu, Thomas; Braun, Henry; Edens, Western; Zhang, Yuhan; Chao, Tien- Hsin; Assad, Christopher; Huntsberger, Terrance
2010-01-01
An Automated Target Recognition system (ATR) was developed to locate and target small object in images and videos. The data is preprocessed and sent to a grayscale optical correlator (GOC) filter to identify possible regionsof- interest (ROIs). Next, features are extracted from ROIs based on Principal Component Analysis (PCA) and sent to neural network (NN) to be classified. The features are analyzed by the NN classifier indicating if each ROI contains the desired target or not. The ATR system was found useful in identifying small boats in open sea. However, due to "noisy background," such as weather conditions, background buildings, or water wakes, some false targets are mis-classified. Feedforward backpropagation and Radial Basis neural networks are optimized for generalization of representative features to reduce false-alarm rate. The neural networks are compared for their performance in classification accuracy, classifying time, and training time.
Automated feature extraction in color retinal images by a model based approach.
Li, Huiqi; Chutatape, Opas
2004-02-01
Color retinal photography is an important tool to detect the evidence of various eye diseases. Novel methods to extract the main features in color retinal images have been developed in this paper. Principal component analysis is employed to locate optic disk; A modified active shape model is proposed in the shape detection of optic disk; A fundus coordinate system is established to provide a better description of the features in the retinal images; An approach to detect exudates by the combined region growing and edge detection is proposed. The success rates of disk localization, disk boundary detection, and fovea localization are 99%, 94%, and 100%, respectively. The sensitivity and specificity of exudate detection are 100% and 71%, correspondingly. The success of the proposed algorithms can be attributed to the utilization of the model-based methods. The detection and analysis could be applied to automatic mass screening and diagnosis of the retinal diseases.
Finessing filter scarcity problem in face recognition via multi-fold filter convolution
NASA Astrophysics Data System (ADS)
Low, Cheng-Yaw; Teoh, Andrew Beng-Jin
2017-06-01
The deep convolutional neural networks for face recognition, from DeepFace to the recent FaceNet, demand a sufficiently large volume of filters for feature extraction, in addition to being deep. The shallow filter-bank approaches, e.g., principal component analysis network (PCANet), binarized statistical image features (BSIF), and other analogous variants, endure the filter scarcity problem that not all PCA and ICA filters available are discriminative to abstract noise-free features. This paper extends our previous work on multi-fold filter convolution (ℳ-FFC), where the pre-learned PCA and ICA filter sets are exponentially diversified by ℳ folds to instantiate PCA, ICA, and PCA-ICA offspring. The experimental results unveil that the 2-FFC operation solves the filter scarcity state. The 2-FFC descriptors are also evidenced to be superior to that of PCANet, BSIF, and other face descriptors, in terms of rank-1 identification rate (%).
Principals' Perceptions Regarding Their Supervision and Evaluation
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann
2015-01-01
This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…
Scattering by ensembles of small particles experiment, theory and application
NASA Technical Reports Server (NTRS)
Gustafson, B. A. S.
1980-01-01
A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.
Feature extraction in MFL signals of machined defects in steel tubes
NASA Astrophysics Data System (ADS)
Perazzo, R.; Pignotti, A.; Reich, S.; Stickar, P.
2001-04-01
Thirty defects of various shapes were machined on the external and internal wall surfaces of a 177 mm diameter ferromagnetic steel pipe. MFL signals were digitized and recorded at a frequency of 4 Khz. Various magnetizing currents and relative tube-probe velocities of the order of 2m/s were used. The identification of the location of the defect by a principal component/neural network analysis of the signal is shown to be more effective than the standard procedure of classification based on the average signal frequency.
Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong
2017-01-01
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659
An Accurate Framework for Arbitrary View Pedestrian Detection in Images
NASA Astrophysics Data System (ADS)
Fan, Y.; Wen, G.; Qiu, S.
2018-01-01
We consider the problem of detect pedestrian under from images collected under various viewpoints. This paper utilizes a novel framework called locality-constrained affine subspace coding (LASC). Firstly, the positive training samples are clustered into similar entities which represent similar viewpoint. Then Principal Component Analysis (PCA) is used to obtain the shared feature of each viewpoint. Finally, the samples that can be reconstructed by linear approximation using their top- k nearest shared feature with a small error are regarded as a correct detection. No negative samples are required for our method. Histograms of orientated gradient (HOG) features are used as the feature descriptors, and the sliding window scheme is adopted to detect humans in images. The proposed method exploits the sparse property of intrinsic information and the correlations among the multiple-views samples. Experimental results on the INRIA and SDL human datasets show that the proposed method achieves a higher performance than the state-of-the-art methods in form of effect and efficiency.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
NASA Astrophysics Data System (ADS)
Otero, Federico; Norte, Federico; Araneo, Diego
2018-01-01
The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.
NASA Astrophysics Data System (ADS)
Li, Jun; Song, Minghui; Peng, Yuanxi
2018-03-01
Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.
Development of an Input Suite for an Orthotropic Composite Material Model
NASA Technical Reports Server (NTRS)
Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther
2017-01-01
An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.
Model based approach to UXO imaging using the time domain electromagnetic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavely, E.M.
1999-04-01
Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detectormore » modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.« less
NASA Astrophysics Data System (ADS)
Unglert, K.; Radić, V.; Jellinek, A. M.
2016-06-01
Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as self-organizing maps (SOM) and principal component analysis (PCA) can help to quickly and automatically identify important patterns related to impending eruptions. For the first time, we evaluate the performance of SOM and PCA on synthetic volcano seismic spectra constructed from observations during two well-studied eruptions at Klauea Volcano, Hawai'i, that include features observed in many volcanic settings. In particular, our objective is to test which of the techniques can best retrieve a set of three spectral patterns that we used to compose a synthetic spectrogram. We find that, without a priori knowledge of the given set of patterns, neither SOM nor PCA can directly recover the spectra. We thus test hierarchical clustering, a commonly used method, to investigate whether clustering in the space of the principal components and on the SOM, respectively, can retrieve the known patterns. Our clustering method applied to the SOM fails to detect the correct number and shape of the known input spectra. In contrast, clustering of the data reconstructed by the first three PCA modes reproduces these patterns and their occurrence in time more consistently. This result suggests that PCA in combination with hierarchical clustering is a powerful practical tool for automated identification of characteristic patterns in volcano seismic spectra. Our results indicate that, in contrast to PCA, common clustering algorithms may not be ideal to group patterns on the SOM and that it is crucial to evaluate the performance of these tools on a control dataset prior to their application to real data.
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer
NASA Astrophysics Data System (ADS)
Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad
2017-04-01
Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.
Men, Hong; Shi, Yan; Fu, Songlin; Jiao, Yanan; Qiao, Yu; Liu, Jingjing
2017-01-01
Multi-sensor data fusion can provide more comprehensive and more accurate analysis results. However, it also brings some redundant information, which is an important issue with respect to finding a feature-mining method for intuitive and efficient analysis. This paper demonstrates a feature-mining method based on variable accumulation to find the best expression form and variables’ behavior affecting beer flavor. First, e-tongue and e-nose were used to gather the taste and olfactory information of beer, respectively. Second, principal component analysis (PCA), genetic algorithm-partial least squares (GA-PLS), and variable importance of projection (VIP) scores were applied to select feature variables of the original fusion set. Finally, the classification models based on support vector machine (SVM), random forests (RF), and extreme learning machine (ELM) were established to evaluate the efficiency of the feature-mining method. The result shows that the feature-mining method based on variable accumulation obtains the main feature affecting beer flavor information, and the best classification performance for the SVM, RF, and ELM models with 96.67%, 94.44%, and 98.33% prediction accuracy, respectively. PMID:28753917
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed
2012-01-01
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim
2012-10-22
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Spatial and spectral analysis of corneal epithelium injury using hyperspectral images
NASA Astrophysics Data System (ADS)
Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-12-01
Eye assessment is essential in preventing blindness. Currently, the existing methods to assess corneal epithelium injury are complex and require expert knowledge. Hence, we have introduced a non-invasive technique using hyperspectral imaging (HSI) and an image analysis algorithm of corneal epithelium injury. Three groups of images were compared and analyzed, namely healthy eyes, injured eyes, and injured eyes with stain. Dimensionality reduction using principal component analysis (PCA) was applied to reduce massive data and redundancies. The first 10 principal components (PCs) were selected for further processing. The mean vector of 10 PCs with 45 pairs of all combinations was computed and sent to two classifiers. A quadratic Bayes normal classifier (QDC) and a support vector classifier (SVC) were used in this study to discriminate the eleven eyes into three groups. As a result, the combined classifier of QDC and SVC showed optimal performance with 2D PCA features (2DPCA-QDSVC) and was utilized to classify normal and abnormal tissues, using color image segmentation. The result was compared with human segmentation. The outcome showed that the proposed algorithm produced extremely promising results to assist the clinician in quantifying a cornea injury.
Piscivory limits diversification of feeding morphology in centrarchid fishes.
Collar, David C; O'Meara, Brian C; Wainwright, Peter C; Near, Thomas J
2009-06-01
Proximity to an adaptive peak influences a lineage's potential to diversify. We tested whether piscivory, a high quality but functionally demanding trophic strategy, represents an adaptive peak that limits morphological diversification in the teleost fish clade, Centrarchidae. We synthesized published diet data and applied a well-resolved, multilocus and time-calibrated phylogeny to reconstruct ancestral piscivory. We measured functional features of the skull and performed principal components analysis on species' values for these variables. To assess the role of piscivory on morphological diversification, we compared the fit of several models of evolution for each principal component (PC), where model parameters were allowed to vary between lineages that differed in degree of piscivory. According to the best-fitting model, two adaptive peaks influenced PC 1 evolution, one peak shared between highly and moderately piscivorous lineages and another for nonpiscivores. Brownian motion better fit PCs 2, 3, and 4, but the best Brownian models infer a slow rate of PC 2 evolution shared among all piscivores and a uniquely slow rate of PC 4 evolution in highly piscivorous lineages. These results suggest that piscivory limits feeding morphology diversification, but this effect is most severe in lineages that exhibit an extreme form of this diet.
Macro policy responses to oil booms and busts in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mutawa, A.K.
1991-01-01
The effects of oil shocks and macro policy changes in the United Arab Emirates are analyzed. A theoretical model is developed within the framework of the Dutch Disease literature. It contains four unique features that are applicable to the United Arab Emirates' economy. There are: (1) the presence of a large foreign labor force; (2) OPEC's oil export quotas; (3) the division of oil profits; and (4) the important role of government expenditures. The model is then used to examine the welfare effects of the above-mentioned shocks. An econometric model is then specified that conforms to the analytical model. Inmore » the econometric model the method of principal components' is applied owing to the undersized sample data. The principal components methodology is used in both the identification testing and the estimation of the structural equations. The oil and macro policy shocks are then simulated. The simulation results show that an oil-quantity boom leads to a higher welfare gain than an oil-price boom. Under certain circumstances, this finding is also confirmed by the comparative statistics that follow from the analytical model.« less
Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.
Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J
2009-02-01
The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.
2011-11-22
CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett
2011-11-22
CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Williams, D. L.; Borden, F. Y.
1977-01-01
Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.
Constrained Principal Component Analysis: Various Applications.
ERIC Educational Resources Information Center
Hunter, Michael; Takane, Yoshio
2002-01-01
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
Zbilut, Joseph P.; Colosimo, Alfredo; Conti, Filippo; Colafranceschi, Mauro; Manetti, Cesare; Valerio, MariaCristina; Webber, Charles L.; Giuliani, Alessandro
2003-01-01
The problem of protein folding vs. aggregation was investigated in acylphosphatase and the amyloid protein Aβ(1–40) by means of nonlinear signal analysis of their chain hydrophobicity. Numerical descriptors of recurrence patterns provided the basis for statistical evaluation of folding/aggregation distinctive features. Static and dynamic approaches were used to elucidate conditions coincident with folding vs. aggregation using comparisons with known protein secondary structure classifications, site-directed mutagenesis studies of acylphosphatase, and molecular dynamics simulations of amyloid protein, Aβ(1–40). The results suggest that a feature derived from principal component space characterized by the smoothness of singular, deterministic hydrophobicity patches plays a significant role in the conditions governing protein aggregation. PMID:14645049
Hyper sausage neuron: Recognition of transgenic sugar-beet based on terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Li, Zhi; Hu, Fangrong; Chen, Tao; Du, Yong; Xin, Haitao
2015-01-01
This paper presents a novel approach for identification of terahertz (THz) spectral of genetically modified organisms (GMOs) based on Hyper Sausage Neuron (HSN), and THz transmittance spectra of some typical transgenic sugar-beet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject identity non similar samples in the same type. The proposed approach provides a new effective method for detection and identification of GMOs by using THz spectroscopy.
Identification of Transgenic Organisms Based on Terahertz Spectroscopy and Hyper Sausage Neuron
NASA Astrophysics Data System (ADS)
Liu, J.; Li, Zh.; Hu, F.; Chen, T.; Du, Y.; Xin, H.
2015-03-01
This paper presents a novel approach for identifi cation of terahertz (THz) spectra of genetically modifi ed organisms (GMOs) based on hyper sausage neuron (HSN), and THz transmittance spectra of some typical transgenic sugarbeet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject nonsimilar samples of the same type. The proposed approach provides a new effective method for detection and identification of genetically modified organisms by using THz spectroscopy.
Tracking Equilibrium and Nonequilibrium Shifts in Data with TREND.
Xu, Jia; Van Doren, Steven R
2017-01-24
Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capabilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent component analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra from many spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus provides convenient tools to resolve the processes recorded by diverse biophysical methods. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard
NASA Astrophysics Data System (ADS)
Petkov, Boyan H.; Vitale, Vito; Svendby, Tove M.; Hansen, Georg H.; Sobolewski, Piotr S.; Láska, Kamil; Elster, Josef; Pavlova, Kseniya; Viola, Angelo; Mazzola, Mauro; Lupi, Angelo; Solomatnikova, Anna
2018-07-01
The vertical features of the variations in the atmospheric ozone density, temperature and wind velocity observed at Ny-Ålesund, Svalbard were studied by applying the principal component analysis to the ozonesounding data collected during the 1992-2016 period. Two data sets corresponding to intra-seasonal (IS) variations, which are composed by harmonics with lower than 1 year periods and inter-annual (IA) variations, characterised by larger periods, were extracted and analysed separately. The IS variations in all the three parameters were found to be composed mainly by harmonics typical for the Madden-Julian Oscillation (from 30- to 60-day periods) and, while the first four principal components (PCs) associated with the temperature and wind contributed about 90% to the IS variations, the ozone IS oscillations appeared to be a higher dimensional object for which the first 15 PCs presented almost the same extent of contribution. The IA variations in the three parameters were consisted of harmonics that correspond to widely registered over the globe Quasi-Biennial, El Niño-Southern, North Atlantic and Arctic Oscillations respectively, and the IA variations turned out to be negligible below the tropopause that characterises the Svalbard troposphere as comparatively closed system with respect to the long-period global variations. The behaviour of the first and second PCs associated with IS ozone variations in the time of particular events, like the strong ozone depletion over Arctic in the spring 2011 and solar eclipses was discussed and the changes in the amplitude-frequency features of these PCs were assumed as signs of the atmosphere response to the considered phenomena.
Osis, Sean T; Hettinga, Blayne A; Leitch, Jessica; Ferber, Reed
2014-08-22
As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10 N rise in the vertical ground reaction force. Results show 89-94% of all predicted foot strikes were within 4 frames (20 ms) of the gold standard with the largest error being 28 ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecological characteristics of Simulium breeding sites in West Africa.
Cheke, Robert A; Young, Stephen; Garms, Rolf
2017-03-01
Twenty-nine taxa of Simulium were identified amongst 527 collections of larvae and pupae from untreated rivers and streams in Liberia (362 collections in 1967-71 & 1989), Togo (125 in 1979-81), Benin (35 in 1979-81) and Ghana (5 in 1980-81). Presence or absence of associations between different taxa were used to group them into six clusters using Ward agglomerative hierarchical cluster analysis. Environmental data associated with the pre-imaginal habitats were then analysed in relation to the six clusters by one way ANOVA. The results revealed significant effects in determining the clusters of maximum river width (all P<0.001 unless stated otherwise), water temperature, dry bulb air temperature, relative humidity, altitude, type of water (on a range from trickle to large river), water level, slope, current, vegetation, light conditions, discharge, length of breeding area, environs, terrain, river bed type (P<0.01), and the supports to which the insects were attached (P<0.01). When four non-significant contributors (wet bulb temperature, river features, height of waterfall and depth) were excluded and the reduced data-set analysed by principal components analysis (PCA), the first two principal components (PCs) accounted for 87% of the variance, with geographical features dominant in PC1 and hydrological characteristics in PC2. The analyses also revealed the ecological characteristics of each taxon's pre-imaginal habitats, which are discussed with particular reference to members of the Simulium damnosum species complex, whose breeding site distributions were further analysed by canonical correspondence analysis (CCA), a method also applied to the data on non-vector species. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman
2018-01-01
Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.
Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D
2018-01-01
Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.
Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2018-06-01
The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko
2017-12-01
Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.
Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu
2015-01-01
The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.
Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D
2018-05-10
The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.
Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
Maisuradze, Gia G; Senet, Patrick; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A
2010-04-08
Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition, a comparison between the structures that are representative of the minima in the free-energy profile along the essential collective coordinates of protein folding (computed by principal component analysis) and the free-energy profile projected along the virtual-bond dihedral angles gamma of the backbone revealed the key residues involved in the transitions between the different basins of the folding free-energy profile, in agreement with existing experimental data for 1E0L .
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
NASA Astrophysics Data System (ADS)
de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio
2017-07-01
Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.
High-resolution face verification using pore-scale facial features.
Li, Dong; Zhou, Huiling; Lam, Kin-Man
2015-08-01
Face recognition methods, which usually represent face images using holistic or local facial features, rely heavily on alignment. Their performances also suffer a severe degradation under variations in expressions or poses, especially when there is one gallery per subject only. With the easy access to high-resolution (HR) face images nowadays, some HR face databases have recently been developed. However, few studies have tackled the use of HR information for face recognition or verification. In this paper, we propose a pose-invariant face-verification method, which is robust to alignment errors, using the HR information based on pore-scale facial features. A new keypoint descriptor, namely, pore-Principal Component Analysis (PCA)-Scale Invariant Feature Transform (PPCASIFT)-adapted from PCA-SIFT-is devised for the extraction of a compact set of distinctive pore-scale facial features. Having matched the pore-scale features of two-face regions, an effective robust-fitting scheme is proposed for the face-verification task. Experiments show that, with one frontal-view gallery only per subject, our proposed method outperforms a number of standard verification methods, and can achieve excellent accuracy even the faces are under large variations in expression and pose.
Identification of informative features for predicting proinflammatory potentials of engine exhausts.
Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei
2017-08-18
The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.
2013-01-01
Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD.
Sidhu, Gagan S; Asgarian, Nasimeh; Greiner, Russell; Brown, Matthew R G
2012-01-01
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200 dataset. We used machine learning techniques to produce support vector machine (SVM) classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs. controls. In different tests, we used only the phenotypic data, only the imaging data, or else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA), and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy was 64.2% produced by guessing healthy control (the majority class) for all participants. Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8% on three class diagnosis. Diagnosis using only imaging data did not perform as well as phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and 68.6% on three class diagnosis-better than phenotypic-only approaches. Our results demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well as phenotypic data for automated diagnosis of ADHD. These results are encouraging given known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset (see Brown et al., 2012).
Dascălu, Cristina Gena; Antohe, Magda Ecaterina
2009-01-01
Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Exploring spatial-temporal dynamics of fire regime features in mainland Spain
NASA Astrophysics Data System (ADS)
Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan
2017-10-01
This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
Classification of vegetation types in military region
NASA Astrophysics Data System (ADS)
Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose
2015-10-01
In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.
NASA Astrophysics Data System (ADS)
Wang, Tao; He, Bin
2004-03-01
The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun
2017-01-01
The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088
Analysis of PETT images in psychiatric disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, J.D.; Gomez-Mont, F.; Volkow, N.D.
1983-01-01
A quantitative method is presented for studying the pattern of metabolic activity in a set of Positron Emission Transaxial Tomography (PETT) images. Using complex Fourier coefficients as a feature vector for each image, cluster, principal components, and discriminant function analyses are used to empirically describe metabolic differences between control subjects and patients with DSM III diagnosis for schizophrenia or endogenous depression. We also present data on the effects of neuroleptic treatment on the local cerebral metabolic rate of glucose utilization (LCMRGI) in a group of chronic schizophrenics using the region of interest approach. 15 references, 4 figures, 3 tables.
Robust 2DPCA with non-greedy l1 -norm maximization for image analysis.
Wang, Rong; Nie, Feiping; Yang, Xiaojun; Gao, Feifei; Yao, Minli
2015-05-01
2-D principal component analysis based on l1 -norm (2DPCA-L1) is a recently developed approach for robust dimensionality reduction and feature extraction in image domain. Normally, a greedy strategy is applied due to the difficulty of directly solving the l1 -norm maximization problem, which is, however, easy to get stuck in local solution. In this paper, we propose a robust 2DPCA with non-greedy l1 -norm maximization in which all projection directions are optimized simultaneously. Experimental results on face and other datasets confirm the effectiveness of the proposed approach.
EM in high-dimensional spaces.
Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim
2005-06-01
This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.
Principal components colour display of ERTS imagery
NASA Technical Reports Server (NTRS)
Taylor, M. M.
1974-01-01
In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.
Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2014-07-01
Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
2017-01-01
Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649
Ravenscroft, John; Wazny, Kerri; Davis, John M
2017-01-01
This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.
Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch
2014-03-01
Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Cheminformatic comparison of approved drugs from natural product versus synthetic origins.
Stratton, Christopher F; Newman, David J; Tan, Derek S
2015-11-01
Despite the recent decline of natural product discovery programs in the pharmaceutical industry, approximately half of all new drug approvals still trace their structural origins to a natural product. Herein, we use principal component analysis to compare the structural and physicochemical features of drugs from natural product-based versus completely synthetic origins that were approved between 1981 and 2010. Drugs based on natural product structures display greater chemical diversity and occupy larger regions of chemical space than drugs from completely synthetic origins. Notably, synthetic drugs based on natural product pharmacophores also exhibit lower hydrophobicity and greater stereochemical content than drugs from completely synthetic origins. These results illustrate that structural features found in natural products can be successfully incorporated into synthetic drugs, thereby increasing the chemical diversity available for small-molecule drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gait recognition based on Gabor wavelets and modified gait energy image for human identification
NASA Astrophysics Data System (ADS)
Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang
2013-10-01
This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.
NASA Astrophysics Data System (ADS)
Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin
2018-04-01
The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.
A time-frequency classifier for human gait recognition
NASA Astrophysics Data System (ADS)
Mobasseri, Bijan G.; Amin, Moeness G.
2009-05-01
Radar has established itself as an effective all-weather, day or night sensor. Radar signals can penetrate walls and provide information on moving targets. Recently, radar has been used as an effective biometric sensor for classification of gait. The return from a coherent radar system contains a frequency offset in the carrier frequency, known as the Doppler Effect. The movements of arms and legs give rise to micro Doppler which can be clearly detailed in the time-frequency domain using traditional or modern time-frequency signal representation. In this paper we propose a gait classifier based on subspace learning using principal components analysis(PCA). The training set consists of feature vectors defined as either time or frequency snapshots taken from the spectrogram of radar backscatter. We show that gait signature is captured effectively in feature vectors. Feature vectors are then used in training a minimum distance classifier based on Mahalanobis distance metric. Results show that gait classification with high accuracy and short observation window is achievable using the proposed classifier.
An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm
Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En
2015-01-01
A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193
Automotive System for Remote Surface Classification.
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-04-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.
Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.
Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B
2011-02-01
This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.
Automotive System for Remote Surface Classification
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-01-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297
Unsupervised spike sorting based on discriminative subspace learning.
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-01-01
Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.
Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En
2015-08-13
A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.
NASA Astrophysics Data System (ADS)
Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.
2017-09-01
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.
Augmenting the decomposition of EMG signals using supervised feature extraction techniques.
Parsaei, Hossein; Gangeh, Mehrdad J; Stashuk, Daniel W; Kamel, Mohamed S
2012-01-01
Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its constituent motor unit potential trains (MUPTs). In this work, the possibility of improving the decomposing results using two supervised feature extraction methods, i.e., Fisher discriminant analysis (FDA) and supervised principal component analysis (SPCA), is explored. Using the MUP labels provided by a decomposition-based quantitative EMG system as a training data for FDA and SPCA, the MUPs are transformed into a new feature space such that the MUPs of a single MU become as close as possible to each other while those created by different MUs become as far as possible. The MUPs are then reclassified using a certainty-based classification algorithm. Evaluation results using 10 simulated EMG signals comprised of 3-11 MUPTs demonstrate that FDA and SPCA on average improve the decomposition accuracy by 6%. The improvement for the most difficult-to-decompose signal is about 12%, which shows the proposed approach is most beneficial in the decomposition of more complex signals.
Anomaly Detection of Electromyographic Signals.
Ijaz, Ahsan; Choi, Jongeun
2018-04-01
In this paper, we provide a robust framework to detect anomalous electromyographic (EMG) signals and identify contamination types. As a first step for feature selection, optimally selected Lawton wavelets transform is applied. Robust principal component analysis (rPCA) is then performed on these wavelet coefficients to obtain features in a lower dimension. The rPCA based features are used for constructing a self-organizing map (SOM). Finally, hierarchical clustering is applied on the SOM that separates anomalous signals residing in the smaller clusters and breaks them into logical units for contamination identification. The proposed methodology is tested using synthetic and real world EMG signals. The synthetic EMG signals are generated using a heteroscedastic process mimicking desired experimental setups. A sub-part of these synthetic signals is introduced with anomalies. These results are followed with real EMG signals introduced with synthetic anomalies. Finally, a heterogeneous real world data set is used with known quality issues under an unsupervised setting. The framework provides recall of 90% (± 3.3) and precision of 99%(±0.4).
PCA-HOG symmetrical feature based diseased cell detection
NASA Astrophysics Data System (ADS)
Wan, Min-jie
2016-04-01
A histogram of oriented gradient (HOG) feature is applied to the field of diseased cell detection, which can detect diseased cells in high resolution tissue images rapidly, accurately and efficiently. Firstly, motivated by symmetrical cellular forms, a new HOG symmetrical feature based on the traditional HOG feature is proposed to meet the condition of cell detection. Secondly, considering the high feature dimension of traditional HOG feature leads to plenty of memory resources and long runtime in practical applications, a classical dimension reduction method called principal component analysis (PCA) is used to reduce the dimension of high-dimensional HOG descriptor. Because of that, computational speed is increased greatly, and the accuracy of detection can be controlled in a proper range at the same time. Thirdly, support vector machine (SVM) classifier is trained with PCA-HOG symmetrical features proposed above. At last, practical tissue images is detected and analyzed by SVM classifier. In order to verify the effectiveness of this new algorithm, it is practically applied to conduct diseased cell detection which takes 200 pieces of H&E (hematoxylin & eosin) high resolution staining histopathological images collected from 20 breast cancer patients as a sample. The experiment shows that the average processing rate can be 25 frames per second and the detection accuracy can be 92.1%.
Introduction to uses and interpretation of principal component analyses in forest biology.
J. G. Isebrands; Thomas R. Crow
1975-01-01
The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
ERIC Educational Resources Information Center
Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine
1997-01-01
A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)
Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.
2010-08-01
Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
NASA Astrophysics Data System (ADS)
Bigdeli, Behnaz; Pahlavani, Parham
2017-01-01
Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.
NASA Astrophysics Data System (ADS)
Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.
2010-03-01
This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups
Multimodal biometric method that combines veins, prints, and shape of a finger
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo
2011-01-01
Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
Automated texture-based identification of ovarian cancer in confocal microendoscope images
NASA Astrophysics Data System (ADS)
Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.
2005-03-01
The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.
Facial expression recognition under partial occlusion based on fusion of global and local features
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Xia, Chen; Hu, Min; Ren, Fuji
2018-04-01
Facial expression recognition under partial occlusion is a challenging research. This paper proposes a novel framework for facial expression recognition under occlusion by fusing the global and local features. In global aspect, first, information entropy are employed to locate the occluded region. Second, principal Component Analysis (PCA) method is adopted to reconstruct the occlusion region of image. After that, a replace strategy is applied to reconstruct image by replacing the occluded region with the corresponding region of the best matched image in training set, Pyramid Weber Local Descriptor (PWLD) feature is then extracted. At last, the outputs of SVM are fitted to the probabilities of the target class by using sigmoid function. For the local aspect, an overlapping block-based method is adopted to extract WLD features, and each block is weighted adaptively by information entropy, Chi-square distance and similar block summation methods are then applied to obtain the probabilities which emotion belongs to. Finally, fusion at the decision level is employed for the data fusion of the global and local features based on Dempster-Shafer theory of evidence. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the effectiveness and fault tolerance of this method.
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Jiang, Yuan Yuan; Kim, Sung Min
2015-01-01
This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics, 18 gray level co-occurrence matrices, 18 Law's, and echogenicity were extracted. A total of 29 key features that were selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically.
Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class
Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...
EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES
An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...
Fractography applied to investigations of cores, outcrops, and fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.
1995-11-01
Fractography focuses investigations on the topography of fracture surfaces. This topography is composed of fractographic features produced by changing stress magnitudes and directions along the advancing crack tip. Fractographic features commonly useful in core and outcrop analysis include the origin, twist hackle, inclusion hackle, and rib marks. These structures develop during brittle failure by Mode I loading at the crack tip and act together to form a hackle plume. Fractographic components throughout the plume record the dynamic history of fracture development. Components show, to the limit of visual scale, the principal stress directions, as well as relative stress magnitudes andmore » propagation velocities, that existed at the advancing fracture front. This information contributes to more meaningful conclusions in fracture investigations. In core studies, fractography aids identification of induced and natural fractures. Induced fractures and fractographic features show distinct geometry with that of the core and reflect the effects of the core boundary, in-situ stresses, drilling stresses, and rock anisotropies. Certain drilling- and coring-induced fractures possess orientations and fractographic features that suggest the direction of minimum in-situ stress and that this direction may change abruptly within the drilled volume of rock. Cored natural fractures generally originated away from the bit and possess fractographic features that bear no geometerical relationship to core parameters. Abrupt changes of natural fracture strike and development of twist hackle suggest locally complex paleostress distributions. A combined knowledge of in-situ stress and natural fracture trends is useful in predicting reservoir permeability. In outcrop, fractographic features, including abutting relationships between joints, more readily depict order of development, intrastratum distribution of fracturing stress, and size for joints in any set.« less
Woodman, Neal; Stabile, Frank A.
2015-01-01
Myosoricinae is a small clade of shrews (Mammalia, Eulipotyphla, Soricidae) that is currently restricted to the African continent. Individual species have limited distributions that are often associated with higher elevations. Although the majority of species in the subfamily are considered ambulatory in their locomotory behavior, species of the myosoricine genus Surdisorex are known to be semifossorial. To better characterize variation in locomotory behaviors among myosoricines, we calculated 32 morphological indices from skeletal measurements from nine species representing all three genera that comprise the subfamily (i.e., Congosorex, Myosorex, Surdisorex) and compared them to indices calculated for two species with well-documented locomotory behaviors: the ambulatory talpid Uropsilus soricipes and the semifossorial talpid Neurotrichus gibbsii. We summarized the 22 most complete morphological variables by 1) calculating a mean percentile rank for each species and 2) using the first principal component from principal component analysis of the indices. The two methods yielded similar results and indicate grades of adaptations reflecting a range of potential locomotory behaviors from ambulatory to semifossorial that exceeds the range represented by the two talpids. Morphological variation reflecting grades of increased semifossoriality among myosoricine shrews is similar in many respects to that seen for soricines, but some features are unique to the Myosoricinae.
Carvajal, Roberto C; Arias, Luis E; Garces, Hugo O; Sbarbaro, Daniel G
2016-04-01
This work presents a non-parametric method based on a principal component analysis (PCA) and a parametric one based on artificial neural networks (ANN) to remove continuous baseline features from spectra. The non-parametric method estimates the baseline based on a set of sampled basis vectors obtained from PCA applied over a previously composed continuous spectra learning matrix. The parametric method, however, uses an ANN to filter out the baseline. Previous studies have demonstrated that this method is one of the most effective for baseline removal. The evaluation of both methods was carried out by using a synthetic database designed for benchmarking baseline removal algorithms, containing 100 synthetic composed spectra at different signal-to-baseline ratio (SBR), signal-to-noise ratio (SNR), and baseline slopes. In addition to deomonstrating the utility of the proposed methods and to compare them in a real application, a spectral data set measured from a flame radiation process was used. Several performance metrics such as correlation coefficient, chi-square value, and goodness-of-fit coefficient were calculated to quantify and compare both algorithms. Results demonstrate that the PCA-based method outperforms the one based on ANN both in terms of performance and simplicity. © The Author(s) 2016.
Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes
NASA Astrophysics Data System (ADS)
Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen
2017-09-01
Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.
Empirical Orthogonal Function (EOF) Analysis of Storm-Time GPS Total Electron Content Variations
NASA Astrophysics Data System (ADS)
Thomas, E. G.; Coster, A. J.; Zhang, S.; McGranaghan, R. M.; Shepherd, S. G.; Baker, J. B.; Ruohoniemi, J. M.
2016-12-01
Large perturbations in ionospheric density are known to occur during geomagnetic storms triggered by dynamic structures in the solar wind. These ionospheric storm effects have long attracted interest due to their impact on the propagation characteristics of radio wave communications. Over the last two decades, maps of vertically-integrated total electron content (TEC) based on data collected by worldwide networks of Global Positioning System (GPS) receivers have dramatically improved our ability to monitor the spatiotemporal dynamics of prominent storm-time features such as polar cap patches and storm enhanced density (SED) plumes. In this study, we use an empirical orthogonal function (EOF) decomposition technique to identify the primary modes of spatial and temporal variability in the storm-time GPS TEC response at midlatitudes over North America during more than 100 moderate geomagnetic storms from 2001-2013. We next examine the resulting time-varying principal components and their correlation with various geophysical indices and parameters in order to derive an analytical representation. Finally, we use a truncated reconstruction of the EOF basis functions and parameterization of the principal components to produce an empirical representation of the geomagnetic storm-time response of GPS TEC for all magnetic local times local times and seasons at midlatitudes in the North American sector.
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar
2017-06-01
We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Putilov, Arcady A; Donskaya, Olga G
2016-01-01
Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.
Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection
NASA Technical Reports Server (NTRS)
Srivastava, Askok N.; Matthews, Bryan; Das, Santanu
2008-01-01
The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Rosacea assessment by erythema index and principal component analysis segmentation maps
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis
2017-12-01
RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
Door detection in images based on learning by components
NASA Astrophysics Data System (ADS)
Cicirelli, Grazia; D'Orazio, Tiziana; Ancona, Nicola
2001-10-01
In this paper we present a vision-based technique for detecting targets of the environment which has to be reached by an autonomous mobile robot during its navigational task. The targets the robot has to reach are the doors of our office building. Color and shape information are used as identifying features for detecting principal components of the door. In fact in images the door can appear of different dimensions depending on the attitude of the robot with respect to the door, therefore detection of the door is performed by detecting its most significant components in the image. Positive and negative examples, in form of image patterns, are manually selected from real images for training two neural classifiers in order to recognize the single components. Each classifier has been realized by a feed-forward neural network with one hidden layer and sigmoid activation function. Moreover for selecting negative examples, relevant for the problem at hand, a bootstrap technique has been used during the training process. Finally the detecting system has been applied to several test real images for evaluating its performance.
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.
Bagley, C
1980-03-01
The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.
ERIC Educational Resources Information Center
McCormick, Ernest J.; And Others
The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…
ERIC Educational Resources Information Center
Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn
2012-01-01
Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…
Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.
Principal Components Analysis Studies of Martian Clouds
NASA Astrophysics Data System (ADS)
Klassen, D. R.; Bell, J. F., III
2001-11-01
We present the principal components analysis (PCA) of absolutely calibrated multi-spectral images of Mars as a function of Martian season. The PCA technique is a mathematical rotation and translation of the data from a brightness/wavelength space to a vector space of principal ``traits'' that lie along the directions of maximal variance. The first of these traits, accounting for over 90% of the data variance, is overall brightness and represented by an average Mars spectrum. Interpretation of the remaining traits, which account for the remaining ~10% of the variance, is not always the same and depends upon what other components are in the scene and thus, varies with Martian season. For example, during seasons with large amounts of water ice in the scene, the second trait correlates with the ice and anti-corrlates with temperature. We will investigate the interpretation of the second, and successive important PCA traits. Although these PCA traits are orthogonal in their own vector space, it is unlikely that any one trait represents a singular, mineralogic, spectral end-member. It is more likely that there are many spectral endmembers that vary identically to within the noise level, that the PCA technique will not be able to distinguish them. Another possibility is that similar absorption features among spectral endmembers may be tied to one PCA trait, for example ''amount of 2 \\micron\\ absorption''. We thus attempt to extract spectral endmembers by matching linear combinations of the PCA traits to USGS, JHU, and JPL spectral libraries as aquired through the JPL Aster project. The recovered spectral endmembers are then linearly combined to model the multi-spectral image set. We present here the spectral abundance maps of the water ice/frost endmember which allow us to track Martian clouds and ground frosts. This work supported in part through NASA Planetary Astronomy Grant NAG5-6776. All data gathered at the NASA Infrared Telescope Facility in collaboration with the telescope operators and with thanks to the support staff and day crew.
Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398
NASA Astrophysics Data System (ADS)
Ertas, Gokhan; Doran, Simon; Leach, Martin O.
2011-12-01
In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.
Jiang, Yu; Li, Changying
2015-01-01
Cotton quality, a major factor determining both cotton profitability and marketability, is affected by not only the overall quantity of but also the type of the foreign matter. Although current commercial instruments can measure the overall amount of the foreign matter, no instrument can differentiate various types of foreign matter. The goal of this study was to develop a hyperspectral imaging system to discriminate major types of foreign matter in cotton lint. A push-broom based hyperspectral imaging system with a custom-built multi-thread software was developed to acquire hyperspectral images of cotton fiber with 15 types of foreign matter commonly found in the U.S. cotton lint. A total of 450 (30 replicates for each foreign matter) foreign matter samples were cut into 1 by 1 cm2 pieces and imaged on the lint surface using reflectance mode in the spectral range from 400-1000 nm. The mean spectra of the foreign matter and lint were extracted from the user-defined region-of-interests in the hyperspectral images. The principal component analysis was performed on the mean spectra to reduce the feature dimension from the original 256 bands to the top 3 principal components. The score plots of the 3 principal components were used to examine clusterization patterns for classifying the foreign matter. These patterns were further validated by statistical tests. The experimental results showed that the mean spectra of all 15 types of cotton foreign matter were different from that of the lint. Nine types of cotton foreign matter formed distinct clusters in the score plots. Additionally, all of them were significantly different from each other at the significance level of 0.05 except brown leaf and bract. The developed hyperspectral imaging system is effective to detect and classify cotton foreign matter on the lint surface and has the potential to be implemented in commercial cotton classing offices.
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
NASA Technical Reports Server (NTRS)
Rahmatullah, M.
1972-01-01
The grenade-TMA firing conducted in 1965-1967 bring out the following important features regarding the stratospheric circulation in the subtropics: (1) The temperature pattern during the month of March/April at Sonmiani is characterized by higher temperature than the corresponding CIRA 1965 value. (2) Double maxima in temperature has often been observed during spring. (3) In March the zonal wind is predominantly westerly reaching a maximum value of about 45 m/s at 55 km. (4) The meridional component exhibits oscillatory character between 45 and 60 kms. (5) The change from winter westerlies to summer easterlies first occurred around 50 km during April and gradually affected higher levels as the month progressed. (6) The height of the principal maxima at Sonmiani is located at 105 + or - 5 km. In autumn the wind at the principal maxima is below 100 m/s and is directed to NW, in spring it is of the order of 118 m/s but directed to E or NE.
Forensic age estimation by morphometric analysis of the manubrium from 3D MR images.
Martínez Vera, Naira P; Höller, Johannes; Widek, Thomas; Neumayer, Bernhard; Ehammer, Thomas; Urschler, Martin
2017-08-01
Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (M vol :p<0.01, R 2 ¯=0.50) and surface area (M sur :p<0.01, R 2 ¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (M shp :p<0.01, R 2 ¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼M shp M sur /S h :p<0.01, R 2 ¯=0.71; Y∼M shp M vol /S h :p<0.01, R 2 ¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼M shp M sur /S h :p<0.01, R p 2 =0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
Slow feature analysis: unsupervised learning of invariances.
Wiskott, Laurenz; Sejnowski, Terrence J
2002-04-01
Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.
Classification of Partial Discharge Measured under Different Levels of Noise Contamination.
Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.
Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam
2018-05-08
When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.
Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator
NASA Astrophysics Data System (ADS)
Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong
2011-04-01
In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.
Photometer for detection of sodium day airglow.
NASA Technical Reports Server (NTRS)
Mcmahon, D. J.; Manring, E. R.; Patty, R. R.
1973-01-01
Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.
The new ATLAS Fast Calorimeter Simulation
NASA Astrophysics Data System (ADS)
Schaarschmidt, J.; ATLAS Collaboration
2017-10-01
Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.
NASA Technical Reports Server (NTRS)
Gerstell, M. F.
1993-01-01
A review of the convolution theorem for obtaining the cumulative k-distribution of a gas mixture proven in Goody et al. (1989) and a discussion of its application to natural spectra are presented. Computational optimizations for use in analyzing high-altitude gas mixtures are introduced. Comparisons of the results of the optimizations, and criteria for deciding what altitudes are 'high' in this context are given. A few relevant features of the testing support software are examined. Some spectrally integrated results, and the circumstances the might permit substituting the method of principal absorbers are examined.
Detection of Poisonous Herbs by Terahertz Time-Domain Spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, H.; Li, Z.; Chen, T.; Liu, J.-J.
2018-03-01
The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spectra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb, and Ficus Hirta Vahl) were obtained in the range 0.2-1.4 THz by using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poisonous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms.
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.
2017-06-01
The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Bahrami, Nasim; Sharif, Saeed Pahlevan; Sharif Nia, Hamid
2016-10-01
In this study, 398 Iranian cancer patients completed the 15-item Templer's Death Anxiety Scale (TDAS). Tests of internal consistency, principal components analysis, and confirmatory factor analysis were conducted to assess the internal consistency and factorial validity of the Persian TDAS. The construct reliability statistic and average variance extracted were also calculated to measure construct reliability, convergent validity, and discriminant validity. Principal components analysis indicated a 3-component solution, which was generally supported in the confirmatory analysis. However, acceptable cutoffs for construct reliability, convergent validity, and discriminant validity were not fulfilled for the three subscales that were derived from the principal component analysis. This study demonstrated both the advantages and potential limitations of using the TDAS with Persian-speaking cancer patients.
The Daily Lives of Principals: Twenty-One Principals in the 21st Century
ERIC Educational Resources Information Center
West, Deborah Lynn
2010-01-01
This is a qualitative dissertation study about the daily work lives of 21 school principals from 10 states across the nation. The study tells the story of the principals' work lives by featuring their voices. Since the inception of No Child Left Behind (NCLB), the principalship has become a position with increased responsibilities and restricted…
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...
Incremental principal component pursuit for video background modeling
Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt
2017-03-14
An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
NASA Astrophysics Data System (ADS)
Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.
2017-12-01
The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.
Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System
NASA Technical Reports Server (NTRS)
Lin, Tsung Han (Hank)
2011-01-01
JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.
1982-01-01
An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.
Smell identification of spices using nanomechanical membrane-type surface stress sensors
NASA Astrophysics Data System (ADS)
Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki
2016-11-01
Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.
Psychopathy, attention, and oddball target detection: New insights from PCL-R facet scores.
Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Bernat, Edward M; Kiehl, Kent A
2015-09-01
Psychopathy is a disorder accompanied by cognitive deficits including abnormalities in attention. Prior studies examining cognitive features of psychopaths using ERPs have produced some inconsistent results. We examined psychopathy-related differences in ERPs during an auditory oddball task in a sample of incarcerated adult males. We extend previous work by deriving ERPs with principal component analysis (PCA) and relate these to the four facets of Hare's Psychopathy Checklist Revised (PCL-R). Features of psychopathy were associated with increased target N1 amplitude (facets 1, 4), decreased target P3 amplitude (facet 1), and reduced slow wave amplitude for frequent standard stimuli (facets 1, 3, 4). We conclude that employing PCA and examining PCL-R facets improve sensitivity and help clarify previously reported associations. Furthermore, attenuated slow wave during standards may be a novel marker for psychopaths' abnormalities in attention. © 2015 Society for Psychophysiological Research.
Single-accelerometer-based daily physical activity classification.
Long, Xi; Yin, Bin; Aarts, Ronald M
2009-01-01
In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.
Apostolou, N; Papazoglou, Th; Koutsouris, D
2006-01-01
Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.
Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles
NASA Astrophysics Data System (ADS)
He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato
2014-06-01
There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.
Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin
2014-07-02
Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.
Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin
2014-01-01
Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital. PMID:24991942
Dynamic competitive probabilistic principal components analysis.
López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel
2009-04-01
We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Voyager planetary radio astronomy studies
NASA Technical Reports Server (NTRS)
Staelin, David H.; Eikenberry, Stephen S.
1993-01-01
Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.
Brambilla, Giovanni; Maffei, Luigi; Di Gabriele, Maria; Gallo, Veronica
2013-07-01
An experimental study was carried out in 20 squares in the center of Rome, covering a wide range of different uses, sonic environments, geometry, and architectural styles. Soundwalks along the perimeter of each square were performed during daylight and weekdays taking binaural and video recordings, as well as spot measurements of illuminance. The cluster analysis performed on the physical parameters, not only acoustic, provided two clusters that are in satisfactory agreement with the "a priori" classification. Applying the principal component analysis (PCA) to five physical parameters, two main components were obtained which might be associated to two environmental features, namely, "chaotic/calm" and "open/enclosed." On the basis of these two features, six squares were selected for the laboratory audio-video tests where 32 subjects took part filling in a questionnaire. The PCA performed on the subjective ratings on the sonic environment showed two main components which might be associated to two emotional meanings, namely, "calmness" and "vibrancy." The linear regression modeling between five objective parameters and the mean value of subjective ratings on chaotic/calm and enclosed/open attributes showed a good correlation. Notwithstanding these interesting results being limited to the specific data set, it is worth pointing out that the complexity of the soundscape quality assessment can be more comprehensively examined merging the field measurements of physical parameters with the subjective ratings provided by field and/or laboratory tests.
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-28
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
NASA Astrophysics Data System (ADS)
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-01
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Ugliano, Maurizio
2016-12-01
This work describes the application of disposable screen printed carbon paste sensors for the analysis of the main white wine oxidizable compounds as well as for the rapid fingerprinting and classification of white wines from different grape varieties. The response of individual white wine antioxidants such as flavanols, flavanol derivatives, phenolic acids, SO2 and ascorbic acid was first assessed in model wine. Analysis of commercial white wines gave voltammograms featuring two unresolved anodic waves corresponding to the oxidation of different compounds, mostly phenolic antioxidants. Calculation of the first order derivative of measured current vs. applied potential allowed resolving these two waves, highlighting the occurrence of several electrode processes corresponding to the oxidation of individual wine components. Through the application of Principal Component Analysis (PCA), derivative voltammograms were used to discriminate among wines of different varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
A study of fuzzy logic ensemble system performance on face recognition problem
NASA Astrophysics Data System (ADS)
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.
Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf
2016-09-20
Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.
NASA Astrophysics Data System (ADS)
Molodtsova, T.; Amon, R. M. W.
2016-12-01
In this study the optical properties (absorption and fluorescence intensity) of chromophoric dissolved organic matter (CDOM) were investigated in water samples collected during the cruise conducted in August and September 2007 across the Eastern and Central Arctic regions. The fluorescence spectroscopy analysis was complimented with the parallel factor analysis (PARAFAC) and the identified six components were compared to other water properties including salinity, in situ fluorescence, dissolved organic carbon, and specific ultraviolet absorbance at 254 nm. The principal component analysis was conducted to distinguish between the water masses and identify the features such as the Trans Polar Drift and the North Atlantic Current. The preliminary results indicate that investigation of the optical properties of CDOM are able to provide better understanding of Arctic Ocean circulation and environmental changes such as the loss of the perennial sea ice and more light penetrating the water column.
Principals' Perceptions of Collegial Support as a Component of Administrative Inservice.
ERIC Educational Resources Information Center
Daresh, John C.
To address the problem of increasing professional isolation of building administrators, the Principals' Inservice Project helps establish principals' collegial support groups across the nation. The groups are typically composed of 6 to 10 principals who meet at least once each month over a 2-year period. One collegial support group of seven…
Training the Trainers: Learning to Be a Principal Supervisor
ERIC Educational Resources Information Center
Saltzman, Amy
2017-01-01
While most principal supervisors are former principals themselves, few come to the role with specific training in how to do the job effectively. For this reason, both the Washington, D.C., and Tulsa, Oklahoma, principal supervisor programs include a strong professional development component. In this article, the author takes a look inside these…
ERIC Educational Resources Information Center
Rodrigue, Christine M.
2011-01-01
This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…
The Identification of Hail Storms in the Early Stage Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Wang, Ping; Shi, Jinyu; Hou, Jinyi; Hu, Yan
2018-01-01
This study investigates the characteristics of hail storms and cumulonimbus storms in China from 2005 to 2016. Ten features are proposed to identify storm cells that can produce hail, especially in the early stage of hail formation. These features describe hail storms based on three factors: the height and thickness of the cell core, the radar echo intensity, and the overhang structure and the horizontal reflectivity gradient. The 10 features are transformed into two-dimensional comprehensive features by principal component analysis (PCA). The two comprehensive features are named the volume measurement comprehensive feature (VMCF) and the height-gradient comprehensive feature (HGCF). Through an analysis of 49 hail cases and 35 heavy rainfall cases with S-band radar data, the time series exhibit a distinct increase in VMCF or HGCF values in the early stage of a hail storm. However, the VMCF and HGCF values of heavy rainfall events remain relatively stable throughout the storm life cycle. An experiment involving real-storm events, including 31 hail cases and 33 heavy rainfall cases, indicated that the probability of detection of hail storms was 93.33% and the false alarm ratio was 15.66%. In the cases that could be successfully identified as hail storms, 80.00% were detected within 18 min of reaching a hail storm reflectivity of 40 dBZ.
An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image
NASA Astrophysics Data System (ADS)
Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan
2017-10-01
It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.
ERIC Educational Resources Information Center
Ackermann, Margot Elise; Morrow, Jennifer Ann
2008-01-01
The present study describes the development and initial validation of the Coping with the College Environment Scale (CWCES). Participants included 433 college students who took an online survey. Principal Components Analysis (PCA) revealed six coping strategies: planning and self-management, seeking support from institutional resources, escaping…
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
NASA Astrophysics Data System (ADS)
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.
2007-01-01
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.1580 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the model rule? 60.1580 Section 60.1580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines..., 1999 Use of Model Rule § 60.1580 What are the principal components of the model rule? The model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
Students' Perceptions of Teaching and Learning Practices: A Principal Component Approach
ERIC Educational Resources Information Center
Mukorera, Sophia; Nyatanga, Phocenah
2017-01-01
Students' attendance and engagement with teaching and learning practices is perceived as a critical element for academic performance. Even with stipulated attendance policies, students still choose not to engage. The study employed a principal component analysis to analyze first- and second-year students' perceptions of the importance of the 12…
ERIC Educational Resources Information Center
Hunley-Jenkins, Keisha Janine
2012-01-01
This qualitative study explores large, urban, mid-western principal perspectives about cyberbullying and the policy components and practices that they have found effective and ineffective at reducing its occurrence and/or negative effect on their schools' learning environments. More specifically, the researcher was interested in learning more…
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
ERIC Educational Resources Information Center
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Learning Principal Component Analysis by Using Data from Air Quality Networks
ERIC Educational Resources Information Center
Perez-Arribas, Luis Vicente; Leon-González, María Eugenia; Rosales-Conrado, Noelia
2017-01-01
With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information…
Applications of Nonlinear Principal Components Analysis to Behavioral Data.
ERIC Educational Resources Information Center
Hicks, Marilyn Maginley
1981-01-01
An empirical investigation of the statistical procedure entitled nonlinear principal components analysis was conducted on a known equation and on measurement data in order to demonstrate the procedure and examine its potential usefulness. This method was suggested by R. Gnanadesikan and based on an early paper of Karl Pearson. (Author/AL)
ERIC Educational Resources Information Center
Hendrix, Dean
2010-01-01
This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…
Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese Characters.
Tao, Dapeng; Lin, Xu; Jin, Lianwen; Li, Xuelong
2016-03-01
Chinese character font recognition (CCFR) has received increasing attention as the intelligent applications based on optical character recognition becomes popular. However, traditional CCFR systems do not handle noisy data effectively. By analyzing in detail the basic strokes of Chinese characters, we propose that font recognition on a single Chinese character is a sequence classification problem, which can be effectively solved by recurrent neural networks. For robust CCFR, we integrate a principal component convolution layer with the 2-D long short-term memory (2DLSTM) and develop principal component 2DLSTM (PC-2DLSTM) algorithm. PC-2DLSTM considers two aspects: 1) the principal component layer convolution operation helps remove the noise and get a rational and complete font information and 2) simultaneously, 2DLSTM deals with the long-range contextual processing along scan directions that can contribute to capture the contrast between character trajectory and background. Experiments using the frequently used CCFR dataset suggest the effectiveness of PC-2DLSTM compared with other state-of-the-art font recognition methods.
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.