Sample records for featuring accurate tracking

  1. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  2. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    NASA Astrophysics Data System (ADS)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  3. Feature point based 3D tracking of multiple fish from multi-view images

    PubMed Central

    Qian, Zhi-Ming

    2017-01-01

    A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966

  4. Feature point based 3D tracking of multiple fish from multi-view images.

    PubMed

    Qian, Zhi-Ming; Chen, Yan Qiu

    2017-01-01

    A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.

  5. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  6. Automatic Spatio-Temporal Flow Velocity Measurement in Small Rivers Using Thermal Image Sequences

    NASA Astrophysics Data System (ADS)

    Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G.

    2018-05-01

    An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.

  7. Mark Tracking: Position/orientation measurements using 4-circle mark and its tracking experiments

    NASA Technical Reports Server (NTRS)

    Kanda, Shinji; Okabayashi, Keijyu; Maruyama, Tsugito; Uchiyama, Takashi

    1994-01-01

    Future space robots require position and orientation tracking with visual feedback control to track and capture floating objects and satellites. We developed a four-circle mark that is useful for this purpose. With this mark, four geometric center positions as feature points can be extracted from the mark by simple image processing. We also developed a position and orientation measurement method that uses the four feature points in our mark. The mark gave good enough image measurement accuracy to let space robots approach and contact objects. A visual feedback control system using this mark enabled a robot arm to track a target object accurately. The control system was able to tolerate a time delay of 2 seconds.

  8. Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration

    PubMed Central

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2014-01-01

    Stereovision is an important intraoperative imaging technique that captures the exposed parenchymal surface noninvasively during open cranial surgery. Estimating cortical surface shift efficiently and accurately is critical to compensate for brain deformation in the operating room (OR). In this study, we present an automatic and robust registration technique based on optical flow (OF) motion tracking to compensate for cortical surface displacement throughout surgery. Stereo images of the cortical surface were acquired at multiple time points after dural opening to reconstruct three-dimensional (3D) texture intensity-encoded cortical surfaces. A local coordinate system was established with its z-axis parallel to the average surface normal direction of the reconstructed cortical surface immediately after dural opening in order to produce two-dimensional (2D) projection images. A dense displacement field between the two projection images was determined directly from OF motion tracking without the need for feature identification or tracking. The starting and end points of the displacement vectors on the two cortical surfaces were then obtained following spatial mapping inversion to produce the full 3D displacement of the exposed cortical surface. We evaluated the technique with images obtained from digital phantoms and 18 surgical cases – 10 of which involved independent measurements of feature locations acquired with a tracked stylus for accuracy comparisons, and 8 others of which 4 involved stereo image acquisitions at three or more time points during surgery to illustrate utility throughout a procedure. Results from the digital phantom images were very accurate (0.05 pixels). In the 10 surgical cases with independently digitized point locations, the average agreement between feature coordinates derived from the cortical surface reconstructions was 1.7–2.1 mm relative to those determined with the tracked stylus probe. The agreement in feature displacement tracking was also comparable to tracked probe data (difference in displacement magnitude was <1 mm on average). The average magnitude of cortical surface displacement was 7.9 ± 5.7 mm (range 0.3–24.4 mm) in all patient cases with the displacement components along gravity being 5.2 ± 6.0 mm relative to the lateral movement of 2.4 ± 1.6 mm. Thus, our technique appears to be sufficiently accurate and computationally efficiency (typically ~15 s), for applications in the OR. PMID:25077845

  9. CALIPSO Featured Articles

    Atmospheric Science Data Center

    2016-06-13

    ... Nighttime Ash Tracking  - Vertical profile of the volcanic ash helps modelers issue more accurate warnings to pilots. ... train of satellites follows the atmospheric effects of a volcanic eruption. ...

  10. Radar signature generation for feature-aided tracking research

    NASA Astrophysics Data System (ADS)

    Piatt, Teri L.; Sherwood, John U.; Musick, Stanton H.

    2005-05-01

    Accurately associating sensor kinematic reports to known tracks, new tracks, or clutter is one of the greatest obstacles to effective track estimation. Feature-aiding is one technology that is emerging to address this problem, and it is expected that adding target features will aid report association by enhancing track accuracy and lengthening track life. The Sensor's Directorate of the Air Force Research Laboratory is sponsoring a challenge problem called Feature-Aided Tracking of Stop-move Objects (FATSO). The long-range goal of this research is to provide a full suite of public data and software to encourage researchers from government, industry, and academia to participate in radar-based feature-aided tracking research. The FATSO program is currently releasing a vehicle database coupled to a radar signature generator. The completed FATSO system will incorporate this database/generator into a Monte Carlo simulation environment for evaluating multiplatform/multitarget tracking scenarios. The currently released data and software contains the following: eight target models, including a tank, ammo hauler, and self-propelled artillery vehicles; and a radar signature generator capable of producing SAR and HRR signatures of all eight modeled targets in almost any configuration or articulation. In addition, the signature generator creates Z-buffer data, label map data, and radar cross-section prediction and allows the user to add noise to an image while varying sensor-target geometry (roll, pitch, yaw, squint). Future capabilities of this signature generator, such as scene models and EO signatures as well as details of the complete FATSO testbed, are outlined.

  11. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  12. Towards accurate localization: long- and short-term correlation filters for tracking

    NASA Astrophysics Data System (ADS)

    Li, Minglangjun; Tian, Chunna

    2018-04-01

    Visual tracking is a challenging problem, especially using a single model. In this paper, we propose a discriminative correlation filter (DCF) based tracking approach that exploits both the long-term and short-term information of the target, named LSTDCF, to improve the tracking performance. In addition to a long-term filter learned through the whole sequence, a short-term filter is trained using only features extracted from most recent frames. The long-term filter tends to capture more semantics of the target as more frames are used for training. However, since the target may undergo large appearance changes, features extracted around the target in non-recent frames prevent the long-term filter from locating the target in the current frame accurately. In contrast, the short-term filter learns more spatial details of the target from recent frames but gets over-fitting easily. Thus the short-term filter is less robust to handle cluttered background and prone to drift. We take the advantage of both filters and fuse their response maps to make the final estimation. We evaluate our approach on a widely-used benchmark with 100 image sequences and achieve state-of-the-art results.

  13. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  14. Real-time seam tracking control system based on line laser visions

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi

    2018-07-01

    A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.

  15. Automatically Detect and Track Multiple Fish Swimming in Shallow Water with Frequent Occlusion

    PubMed Central

    Qian, Zhi-Ming; Cheng, Xi En; Chen, Yan Qiu

    2014-01-01

    Due to its universality, swarm behavior in nature attracts much attention of scientists from many fields. Fish schools are examples of biological communities that demonstrate swarm behavior. The detection and tracking of fish in a school are of important significance for the quantitative research on swarm behavior. However, different from other biological communities, there are three problems in the detection and tracking of fish school, that is, variable appearances, complex motion and frequent occlusion. To solve these problems, we propose an effective method of fish detection and tracking. In this method, first, the fish head region is positioned through extremum detection and ellipse fitting; second, The Kalman filtering and feature matching are used to track the target in complex motion; finally, according to the feature information obtained by the detection and tracking, the tracking problems caused by frequent occlusion are processed through trajectory linking. We apply this method to track swimming fish school of different densities. The experimental results show that the proposed method is both accurate and reliable. PMID:25207811

  16. Scale-adaptive compressive tracking with feature integration

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin

    2016-05-01

    Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.

  17. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  18. The Along Track Scanning Radiometer (ATSR) for ERS1

    NASA Astrophysics Data System (ADS)

    Delderfield, J.; Llewellyn-Jones, D. T.; Bernard, R.; de Javel, Y.; Williamson, E. J.

    1986-01-01

    The ATSR is an infrared imaging radiometer which has been selected to fly aboard the ESA Remote Sensing Satellite No. 1 (ERS1) with the specific objective of accurately determining global Sea Surface Temperature (SST). Novel features, including the technique of 'along track' scanning, a closed Stirling cycle cooler, and the precision on-board blackbodies are described. Instrument subsystems are identified and their design trade-offs discussed.

  19. Stardust Interstellar Preliminary Examination V: XRF Analyses of Interstellar Dust Candidates at ESRF ID13

    NASA Technical Reports Server (NTRS)

    Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.

    2014-01-01

    Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.

  20. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  1. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature.

    PubMed

    Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie

    2018-02-23

    Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  2. A real-time TV logo tracking method using template matching

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin

    2012-11-01

    A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.

  3. Robust human detection, tracking, and recognition in crowded urban areas

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.

  4. Geometry and Gesture-Based Features from Saccadic Eye-Movement as a Biometric in Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Tracy; Tourassi, Georgia; Yoon, Hong-Jun

    In this study, we present a novel application of sketch gesture recognition on eye-movement for biometric identification and estimating task expertise. The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus for this study. Sketch gesture recognition techniques were employed to extract geometric and gesture-based features from saccadic eye-movements. Our results show that saccadic eye-movement, characterizedmore » using sketch-based features, result in more accurate models for predicting individual identity and level of expertise than more traditional eye-tracking features.« less

  5. Real-time subpixel-accuracy tracking of single mitochondria in neurons reveals heterogeneous mitochondrial motion.

    PubMed

    Alsina, Adolfo; Lai, Wu Ming; Wong, Wai Kin; Qin, Xianan; Zhang, Min; Park, Hyokeun

    2017-11-04

    Mitochondria are essential for cellular survival and function. In neurons, mitochondria are transported to various subcellular regions as needed. Thus, defects in the axonal transport of mitochondria are related to the pathogenesis of neurodegenerative diseases, and the movement of mitochondria has been the subject of intense research. However, the inability to accurately track mitochondria with subpixel accuracy has hindered this research. Here, we report an automated method for tracking mitochondria based on the center of fluorescence. This tracking method, which is accurate to approximately one-tenth of a pixel, uses the centroid of an individual mitochondrion and provides information regarding the distance traveled between consecutive imaging frames, instantaneous speed, net distance traveled, and average speed. Importantly, this new tracking method enables researchers to observe both directed motion and undirected movement (i.e., in which the mitochondrion moves randomly within a small region, following a sub-diffusive motion). This method significantly improves our ability to analyze the movement of mitochondria and sheds light on the dynamic features of mitochondrial movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  7. Improving polio vaccination coverage in Nigeria through the use of geographic information system technology.

    PubMed

    Barau, Inuwa; Zubairu, Mahmud; Mwanza, Michael N; Seaman, Vincent Y

    2014-11-01

    Historically, microplanning for polio vaccination campaigns in Nigeria relied on inaccurate and incomplete hand-drawn maps, resulting in the exclusion of entire settlements and missed children. The goal of this work was to create accurate, coordinate-based maps for 8 polio-endemic states in northern Nigeria to improve microplanning and support tracking of vaccination teams, thereby enhancing coverage, supervision, and accountability. Settlement features were identified in the target states, using high-resolution satellite imagery. Field teams collected names and geocoordinates for each settlement feature, with the help of local guides. Global position system (GPS) tracking of vaccination teams was conducted in selected areas and daily feedback provided to supervisors. Geographic information system (GIS)-based maps were created for 2238 wards in the 8 target states. The resulting microplans included all settlements and more-efficient team assignments, owing to the improved spatial reference. GPS tracking was conducted in 111 high-risk local government areas, resulting in improved team performance and the identification of missed/poorly covered settlements. Accurate and complete maps are a necessary part of an effective polio microplan, and tracking vaccinators gives supervisors a tool to ensure that all settlements are visited. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Low-cost asset tracking using location-aware camera phones

    NASA Astrophysics Data System (ADS)

    Chen, David; Tsai, Sam; Kim, Kyu-Han; Hsu, Cheng-Hsin; Singh, Jatinder Pal; Girod, Bernd

    2010-08-01

    Maintaining an accurate and up-to-date inventory of one's assets is a labor-intensive, tedious, and costly operation. To ease this difficult but important task, we design and implement a mobile asset tracking system for automatically generating an inventory by snapping photos of the assets with a smartphone. Since smartphones are becoming ubiquitous, construction and deployment of our inventory management solution is simple and costeffective. Automatic asset recognition is achieved by first segmenting individual assets out of the query photo and then performing bag-of-visual-features (BoVF) image matching on the segmented regions. The smartphone's sensor readings, such as digital compass and accelerometer measurements, can be used to determine the location of each asset, and this location information is stored in the inventory for each recognized asset. As a special case study, we demonstrate a mobile book tracking system, where users snap photos of books stacked on bookshelves to generate a location-aware book inventory. It is shown that segmenting the book spines is very important for accurate feature-based image matching into a database of book spines. Segmentation also provides the exact orientation of each book spine, so more discriminative upright local features can be employed for improved recognition. This system's mobile client has been implemented for smartphones running the Symbian or Android operating systems. The client enables a user to snap a picture of a bookshelf and to subsequently view the recognized spines in the smartphone's viewfinder. Two different pose estimates, one from BoVF geometric matching and the other from segmentation boundaries, are both utilized to accurately draw the boundary of each spine in the viewfinder for easy visualization. The BoVF representation also allows matching each photo of a bookshelf rack against a photo of the entire bookshelf, and the resulting feature matches are used in conjunction with the smartphone's orientation sensors to determine the exact location of each book.

  9. Infrared target tracking via weighted correlation filter

    NASA Astrophysics Data System (ADS)

    He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping

    2015-11-01

    Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.

  10. 76 FR 75809 - Prior Label Approval System: Generic Label Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... tracking and reporting systems; and (4) design and implement a survey of the effects of the limited generic... and poultry product inspection programs designed to assure consumers that meat and poultry products... mandatory features are designed to ensure that meat and poultry products are accurately and truthfully...

  11. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  12. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  13. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  14. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  15. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-03-26

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  16. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    PubMed

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  17. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A

    2008-02-12

    The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.

  18. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860

  19. Fast algorithm for probabilistic bone edge detection (FAPBED)

    NASA Astrophysics Data System (ADS)

    Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.

    2005-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean value of 0.38 indicating clear identification of surface points on average. The segmentation was also sufficiently crisp, with a full width at half maximum (FWHM) value of 1.51 voxels.

  20. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    PubMed

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  1. Statistical uncertainty of extreme wind storms over Europe derived from a probabilistic clustering technique

    NASA Astrophysics Data System (ADS)

    Walz, Michael; Leckebusch, Gregor C.

    2016-04-01

    Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Chen, Z; Nath, R

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less

  3. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  4. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.

  5. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    PubMed

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  6. Classification of team sport activities using a single wearable tracking device.

    PubMed

    Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam

    2015-11-26

    Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  8. SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Thomas R., E-mail: tmazur@radonc.wustl.edu, E-mail: hli@radonc.wustl.edu; Fischer-Valuck, Benjamin W.; Wang, Yuhe

    Purpose: To first demonstrate the viability of applying an image processing technique for tracking regions on low-contrast cine-MR images acquired during image-guided radiation therapy, and then outline a scheme that uses tracking data for optimizing gating results in a patient-specific manner. Methods: A first-generation MR-IGRT system—treating patients since January 2014—integrates a 0.35 T MR scanner into an annular gantry consisting of three independent Co-60 sources. Obtaining adequate frame rates for capturing relevant patient motion across large fields-of-view currently requires coarse in-plane spatial resolution. This study initially (1) investigate the feasibility of rapidly tracking dense pixel correspondences across single, sagittal planemore » images (with both moderate signal-to-noise and spatial resolution) using a matching objective for highly descriptive vectors called scale-invariant feature transform (SIFT) descriptors associated to all pixels that describe intensity gradients in local regions around each pixel. To more accurately track features, (2) harmonic analysis was then applied to all pixel trajectories within a region-of-interest across a short training period. In particular, the procedure adjusts the motion of outlying trajectories whose relative spectral power within a frequency bandwidth consistent with respiration (or another form of periodic motion) does not exceed a threshold value that is manually specified following the training period. To evaluate the tracking reliability after applying this correction, conventional metrics—including Dice similarity coefficients (DSCs), mean tracking errors (MTEs), and Hausdorff distances (HD)—were used to compare target segmentations obtained via tracking to manually delineated segmentations. Upon confirming the viability of this descriptor-based procedure for reliably tracking features, the study (3) outlines a scheme for optimizing gating parameters—including relative target position and a tolerable margin about this position—derived from a probability density function that is constructed using tracking results obtained just prior to treatment. Results: The feasibility of applying the matching objective for SIFT descriptors toward pixel-by-pixel tracking on cine-MR acquisitions was first retrospectively demonstrated for 19 treatments (spanning various sites). Both with and without motion correction based on harmonic analysis, sub-pixel MTEs were obtained. A mean DSC value spanning all patients of 0.916 ± 0.001 was obtained without motion correction, with DSC values exceeding 0.85 for all patients considered. While most patients show accurate tracking without motion correction, harmonic analysis does yield substantial gain in accuracy (defined using HDs) for three particularly challenging subjects. An application of tracking toward a gating optimization procedure was then demonstrated that should allow a physician to balance beam-on time and tissue sparing in a patient-specific manner by tuning several intuitive parameters. Conclusions: Tracking results show high fidelity in assessing intrafractional motion observed on cine-MR acquisitions. Incorporating harmonic analysis during a training period improves the robustness of the tracking for challenging targets. The concomitant gating optimization procedure should allow for physicians to quantitatively assess gating effectiveness quickly just prior to treatment in a patient-specific manner.« less

  9. The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, T.E.; Mihalczo, J.T.

    1995-12-31

    This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.

  10. A new method for tracking organ motion on diagnostic ultrasound images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp; Fukahori, Mai, E-mail: fukahori@nirs.go.jp

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather thanmore » organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and changing cross-sectional position using this method. Conclusions: The proposed method achieved real-time processing and continuous tracking of the target organ for about 5 min. It is expected that our method will enable more accurate radiation treatment than is the case using indirect observational methods, such as the respiratory sensor method, because of direct visualization of the tumor. Results show that this tracking system facilitates safe treatment in clinical practice.« less

  11. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  12. Multiple hypothesis tracking for cluttered biological image sequences.

    PubMed

    Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe

    2013-11-01

    In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.

  13. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.

    PubMed

    Terunuma, Toshiyuki; Tokui, Aoi; Sakae, Takeji

    2018-03-01

    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling "importance recognition": the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

  14. Tumor propagation model using generalized hidden Markov model

    NASA Astrophysics Data System (ADS)

    Park, Sun Young; Sargent, Dustin

    2017-02-01

    Tumor tracking and progression analysis using medical images is a crucial task for physicians to provide accurate and efficient treatment plans, and monitor treatment response. Tumor progression is tracked by manual measurement of tumor growth performed by radiologists. Several methods have been proposed to automate these measurements with segmentation, but many current algorithms are confounded by attached organs and vessels. To address this problem, we present a new generalized tumor propagation model considering time-series prior images and local anatomical features using a Hierarchical Hidden Markov model (HMM) for tumor tracking. First, we apply the multi-atlas segmentation technique to identify organs/sub-organs using pre-labeled atlases. Second, we apply a semi-automatic direct 3D segmentation method to label the initial boundary between the lesion and neighboring structures. Third, we detect vessels in the ROI surrounding the lesion. Finally, we apply the propagation model with the labeled organs and vessels to accurately segment and measure the target lesion. The algorithm has been designed in a general way to be applicable to various body parts and modalities. In this paper, we evaluate the proposed algorithm on lung and lung nodule segmentation and tracking. We report the algorithm's performance by comparing the longest diameter and nodule volumes using the FDA lung Phantom data and a clinical dataset.

  15. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Sophie; Pinto, Frank M; Morin-Ducote, Garnetta

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADsmore » images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.« less

  16. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  17. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  18. Sad people are more accurate at expression identification with a smaller own-ethnicity bias than happy people.

    PubMed

    Hills, Peter J; Hill, Dominic M

    2017-07-12

    Sad individuals perform more accurately at face identity recognition (Hills, Werno, & Lewis, 2011), possibly because they scan more of the face during encoding. During expression identification tasks, sad individuals do not fixate on the eyes as much as happier individuals (Wu, Pu, Allen, & Pauli, 2012). Fixating on features other than the eyes leads to a reduced own-ethnicity bias (Hills & Lewis, 2006). This background indicates that sad individuals would not view the eyes as much as happy individuals and this would result in improved expression recognition and a reduced own-ethnicity bias. This prediction was tested using an expression identification task, with eye tracking. We demonstrate that sad-induced participants show enhanced expression recognition and a reduced own-ethnicity bias than happy-induced participants due to scanning more facial features. We conclude that mood affects eye movements and face encoding by causing a wider sampling strategy and deeper encoding of facial features diagnostic for expression identification.

  19. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    PubMed

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  20. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.

    PubMed

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-12-24

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  1. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    PubMed Central

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-01-01

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755

  2. Clustering method for counting passengers getting in a bus with single camera

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying

    2010-03-01

    Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.

  3. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS imagesmore » features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.« less

  4. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  5. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  6. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  7. Calibration-free gaze tracking for automatic measurement of visual acuity in human infants.

    PubMed

    Xiong, Chunshui; Huang, Lei; Liu, Changping

    2014-01-01

    Most existing vision-based methods for gaze tracking need a tedious calibration process. In this process, subjects are required to fixate on a specific point or several specific points in space. However, it is hard to cooperate, especially for children and human infants. In this paper, a new calibration-free gaze tracking system and method is presented for automatic measurement of visual acuity in human infants. As far as I know, it is the first time to apply the vision-based gaze tracking in the measurement of visual acuity. Firstly, a polynomial of pupil center-cornea reflections (PCCR) vector is presented to be used as the gaze feature. Then, Gaussian mixture models (GMM) is employed for gaze behavior classification, which is trained offline using labeled data from subjects with healthy eyes. Experimental results on several subjects show that the proposed method is accurate, robust and sufficient for the application of measurement of visual acuity in human infants.

  8. Quality assurance of a gimbaled head swing verification using feature point tracking.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Enosaki, Tsubasa; Kawakubo, Atsushi; Hosono, Fumika; Yamada, Kiyoshi; Nagata, Yasushi

    2017-01-01

    To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas-Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00-3.07) s and 3.00 ± 0.02 (range: 3.00-3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6-19.8) mm and 18.9 ± 0.2 (range: 18.4-19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Registration Combining Wide and Narrow Baseline Feature Tracking Techniques for Markerless AR Systems.

    PubMed

    Duan, Liya; Guan, Tao; Yang, Bo

    2009-01-01

    Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. Registration is one of the most difficult problems currently limiting the usability of AR systems. In this paper, we propose a novel natural feature tracking based registration method for AR applications. The proposed method has following advantages: (1) it is simple and efficient, as no man-made markers are needed for both indoor and outdoor AR applications; moreover, it can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) Thanks to the reduced SIFT based augmented optical flow tracker, the virtual scene can still be augmented on the specified areas even under the circumstances of occlusion and large changes in viewpoint during the entire process. (3) It is easy to use, because the adaptive classification tree based matching strategy can give us fast and accurate initialization, even when the initial camera is different from the reference image to a large degree. Experimental evaluations validate the performance of the proposed method for online pose tracking and augmentation.

  10. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking.

    PubMed

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-03-07

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.

  11. Improvement on Gabor order tracking and objective comparison with Vold Kalman filtering order tracking

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Liao, Shiu-Wei; Chiu, Chun-Chin

    2007-02-01

    The waveform-reconstruction schemes of order tracking (OT) such as the Gabor and the Vold-Kalman filtering (VKF) techniques can extract specific order and/or spectral components in addition to characterizing the processed signal in rpm-frequency domain. The study first improves the Gabor OT (GOT) technique to handle the order-crossing problem, and then objectively compares the features of the improved GOT scheme and the angular-displacement VKF OT technique. It is numerically observed the improved method performs less accurately than the VKF_OT scheme at the crossing occurrences, but without end effect in the reconstructed waveform. As OT is not exact science, it may well be that the decrease in computation time can justify the reduced accuracy. The characterisation and discrimination of riding noise with crossing orders emitted by an electrical scooter are conducted as an example of the application.

  12. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.

    2015-03-01

    Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and "on-the-fly" computer-assisted assessment of ejection fraction for cardiac function monitoring.Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and on-the- y" computer-assisted assessment of ejection fraction for cardiac function monitoring.

  13. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Michaelis, D.; van Oudheusden, B. W.; Weiss, P.-É.; de Kat, R.; Laskari, A.; Jeon, Y. J.; David, L.; Schanz, D.; Huhn, F.; Gesemann, S.; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, D. E.; Schneiders, J. F. G.; Schrijer, F. F. J.

    2017-04-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as continuous time-resolved data which can realistically only be obtained for low-speed flows. Particle images were processed using tomographic PIV processing as well as the LPT algorithm `Shake-The-Box' (STB). Multiple pressure field reconstruction techniques have subsequently been applied to the PIV results (Eulerian approach, iterative least-square pseudo-tracking, Taylor's hypothesis approach, and instantaneous Vortex-in-Cell) and LPT results (FlowFit, Vortex-in-Cell-plus, Voronoi-based pressure evaluation, and iterative least-square pseudo-tracking). All methods were able to reconstruct the main features of the instantaneous pressure fields, including methods that reconstruct pressure from a single PIV velocity snapshot. Highly accurate reconstructed pressure fields could be obtained using LPT approaches in combination with more advanced techniques. In general, the use of longer series of time-resolved input data, when available, allows more accurate pressure field reconstruction. Noise in the input data typically reduces the accuracy of the reconstructed pressure fields, but none of the techniques proved to be critically sensitive to the amount of noise added in the present test case.

  14. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    PubMed

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  15. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Chen, K.; Jusko, M.

    The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking andmore » item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system integration is technically feasible and reliable with the existing RFID and Qualcomm satellite equipment. In terms of web application, improvements in mapping, tracking, data presentation, and post-incident spatial query reporting were implemented in ARG-US, the application software that manages the dataflow among the RFID tags, readers, and servers. These features were tested in the MiniDemo and found to be satisfactory. The resulting web application is both informative and user-friendly. A joint developmental project is being planned between the PCP and the DOE TRANSCOM that uses the Qualcomm gear in vehicles for tracking and communication of radioactive material shipments across the country. Adding an RFID interface to TRANSCOM is a significant enhancement to the DOE infrastructure for tracking and monitoring shipments of radioactive materials.« less

  17. The Identification and Tracking of Uterine Contractions Using Template Based Cross-Correlation.

    PubMed

    McDonald, Sarah C; Brooker, Graham; Phipps, Hala; Hyett, Jon

    2017-09-01

    The purpose of this paper is to outline a novel method of using template based cross-correlation to identify and track uterine contractions during labour. A purpose built six-channel Electromyography (EMG) device was used to collect data from consenting women during labour and birth. A range of templates were constructed for the purpose of identifying and tracking uterine activity when cross-correlated with the EMG signal. Peak finding techniques were applied on the cross-correlated result to simplify and automate the identification and tracking of contractions. The EMG data showed a unique pattern when a woman was contracting with key features of the contraction signal remaining consistent and identifiable across subjects. Contraction profiles across subjects were automatically identified using template based cross-correlation. Synthetic templates from a rectangular function with a duration of between 5 and 10 s performed best at identifying and tracking uterine activity across subjects. The successful application of this technique provides opportunity for both simple and accurate real-time analysis of contraction data while enabling investigations into the application of techniques such as machine learning which could enable automated learning from contraction data as part of real-time monitoring and post analysis.

  18. The new 34-meter antenna

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1986-01-01

    The new 34-m high efficiency Azimuth - Elevation antenna configuration, including its features, dynamic characteristics and performance at 8.4-GHz frequencies is described. The current-technology features of this antenna produce a highly reliable configuration by incorporation of a main wheel and track azimuth support, central pintle pivot bearing, close tolerance surface panels and all-welded construction. Also described are basic drive controls that, as slaved to three automatic microprocessors, provide accurate and safe control of the antenna's steering tasks. At this time antenna installations are completed at Goldstone and Canberra and have operationally supported the Voyager - Uranus encounter. A third installation is being constructed currently in Madrid and is scheduled for completion in late 1986.

  19. Tracking down a solution: exploring the acceptability and value of wearable GPS devices for older persons, individuals with a disability and their support persons.

    PubMed

    Williamson, Brittany; Aplin, Tammy; de Jonge, Desleigh; Goyne, Matthew

    2017-11-01

    To explore the acceptability and value of three wearable GPS devices for older persons and individuals with a disability and safety concerns when accessing the community. This pilot study explored six wearers' and their support persons' experience of using three different wearable GPS devices (a pendant, watch, and mini GPS phone), each for a two-week period. Participants identified safety as the main value of using a wearable GPS device. The acceptability and value of these devices was strongly influenced by device features, ease of use, cost, appearance, the reliability of the GPS coordinates, the wearer's health condition and the users familiarity with technology. Overall, participants indicated that they preferred the pendant. Wearable GPS devices are potentially useful in providing individuals who have safety concerns with reassurance and access to assistance as required. To ensure successful utilization, future device design and device selection should consider the user's familiarity with technology and their health condition. This study also revealed that not all wearable GPS devices provide continuous location tracking. It is therefore critical to ensure that the device's location tracking functions address the wearer's requirements and reason for using the device. Implications for Rehabilitation The acceptability and usability of wearable GPS devices is strongly influenced by the device features, ease of use, cost, appearance, the reliability of the device to provide accurate and timely GPS coordinates, as well as the health condition of the wearer and their familiarity with technology. Wearable GPS devices need to be simple to use and support and training is essential to ensure they are successfully utilized. Not all wearable GPS devices provide continuous location tracking and accuracy of location is impacted by line of sight to satellites. Therefore, care needs to be taken when choosing a suitable device, to ensure that the device's location tracking features are based on the wearer's requirements and value behind using the device.

  20. Oculomatic: High speed, reliable, and accurate open-source eye tracking for humans and non-human primates.

    PubMed

    Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway

    2016-09-01

    Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5°), and low system latency (∼1.8ms, 0.32ms STD) at a relatively low-cost. Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation

    PubMed Central

    Zhong, Sheng-hua; Ma, Zheng; Wilson, Colin; Liu, Yan; Flombaum, Jonathan I

    2014-01-01

    Intuitively, extrapolating object trajectories should make visual tracking more accurate. This has proven to be true in many contexts that involve tracking a single item. But surprisingly, when tracking multiple identical items in what is known as “multiple object tracking,” observers often appear to ignore direction of motion, relying instead on basic spatial memory. We investigated potential reasons for this behavior through probabilistic models that were endowed with perceptual limitations in the range of typical human observers, including noisy spatial perception. When we compared a model that weights its extrapolations relative to other sources of information about object position, and one that does not extrapolate at all, we found no reliable difference in performance, belying the intuition that extrapolation always benefits tracking. In follow-up experiments we found this to be true for a variety of models that weight observations and predictions in different ways; in some cases we even observed worse performance for models that use extrapolations compared to a model that does not at all. Ultimately, the best performing models either did not extrapolate, or extrapolated very conservatively, relying heavily on observations. These results illustrate the difficulty and attendant hazards of using noisy inputs to extrapolate the trajectories of multiple objects simultaneously in situations with targets and featurally confusable nontargets. PMID:25311300

  2. Neural network tracking and extension of positive tracking periods

    NASA Technical Reports Server (NTRS)

    Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre

    2004-01-01

    Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.

  3. Neural network tracking and extension of positive tracking periods

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre

    2004-04-01

    Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.

  4. Monocular Visual Odometry Based on Trifocal Tensor Constraint

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, G. L.; Jiang, Y. X.; Liu, X. Y.

    2018-02-01

    For the problem of real-time precise localization in the urban street, a monocular visual odometry based on Extend Kalman fusion of optical-flow tracking and trifocal tensor constraint is proposed. To diminish the influence of moving object, such as pedestrian, we estimate the motion of the camera by extracting the features on the ground, which improves the robustness of the system. The observation equation based on trifocal tensor constraint is derived, which can form the Kalman filter alone with the state transition equation. An Extend Kalman filter is employed to cope with the nonlinear system. Experimental results demonstrate that, compares with Yu’s 2-step EKF method, the algorithm is more accurate which meets the needs of real-time accurate localization in cities.

  5. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  6. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  7. Stereo-vision system for finger tracking in breast self-examination

    NASA Astrophysics Data System (ADS)

    Zeng, Jianchao; Wang, Yue J.; Freedman, Matthew T.; Mun, Seong K.

    1997-05-01

    Early detection of breast cancer, one of the leading causes of death by cancer for women in the US is key to any strategy designed to reduce breast cancer mortality. Breast self-examination (BSE) is considered as the most cost- effective approach available for early breast cancer detection because it is simple and non-invasive, and a large fraction of breast cancers are actually found by patients using this technique today. In BSE, the patient should use a proper search strategy to cover the whole breast region in order to detect al possible tumors. At present there is no objective approach or clinical data to evaluate the effectiveness of a particular BSE strategy. Even if a particular strategy is determined to be the most effective, training women to use it is still difficult because there is no objective way for them to know whether they are doing it correctly. We have developed a system using vision-based motion tracking technology to gather quantitative data about the breast palpation process for analysis of the BSE technique. By tracking position of the fingers, the system can provide the first objective quantitative data about the BSE process, and thus can improve our knowledge of the technique and help analyze its effectiveness. By visually displaying all the touched position information to the patient as the BSE is being conducted, the system can provide interactive feedback to the patient and create a prototype for a computer-based BSE training system. We propose to use color features, put them on the finger nails and track these features, because in breast palpation the background is the breast itself which is similar to the hand in color. This situation can hinder the ability/efficiency of other features if real time performance is required. To simplify feature extraction process, color transform is utilized instead of RGB values. Although the clinical environment will be well illuminated, normalization of color attributes is applied to compensate for minor changes in illumination. Neighbor search is employed to ensure real time performance, and a three-finger pattern topology is always checked for extracted features to avoid any possible false features. After detecting the features in the images, 3D position parameters of the colored fingers are calculated using the stereo vision principle. In the experiments, a 15 frames/second performance is obtained using an image size of 160 X 120 and an SGI Indy MIPS R4000 workstation. The system is robust and accurate, which confirms the performance and effectiveness of the proposed approach. The system is robust and accurate, which confirms the performance and effectiveness of the proposed approach. The system can be used to quantify search strategy of the palpation and its documentation. With real-time visual feedback, it can be used to train both patients and new physicians to improve their performance of palpation and thus visual feedback, it can be used to train both patients and new physicians to improve their performance of palpation and thus improve the rate of breast tumor detection.

  8. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  9. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  10. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  11. Eye-tracking the own-race bias in face recognition: revealing the perceptual and socio-cognitive mechanisms.

    PubMed

    Hills, Peter J; Pake, J Michael

    2013-12-01

    Own-race faces are recognised more accurately than other-race faces and may even be viewed differently as measured by an eye-tracker (Goldinger, Papesh, & He, 2009). Alternatively, observer race might direct eye-movements (Blais, Jack, Scheepers, Fiset, & Caldara, 2008). Observer differences in eye-movements are likely to be based on experience of the physiognomic characteristics that are differentially discriminating for Black and White faces. Two experiments are reported that employed standard old/new recognition paradigms in which Black and White observers viewed Black and White faces with their eye-movements recorded. Experiment 1 showed that there were observer race differences in terms of the features scanned but observers employed the same strategy across different types of faces. Experiment 2 demonstrated that other-race faces could be recognised more accurately if participants had their first fixation directed to more diagnostic features using fixation crosses. These results are entirely consistent with those presented by Blais et al. (2008) and with the perceptual interpretation that the own-race bias is due to inappropriate attention allocated to the facial features (Hills & Lewis, 2006, 2011). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Multicell migration tracking within angiogenic networks by deep learning-based segmentation and augmented Bayesian filtering.

    PubMed

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2018-04-01

    Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental phase-contrast microscopy image sequences. The proposed system initializes tracks with the end-point confocal nuclei coordinates. We apply convolutional neural networks to detect cell candidates and combine backward Kalman filtering with multiple hypothesis tracking to link the cell candidates at each time step. These hypotheses incorporate prior knowledge on vessel formation and cell proliferation rates. The association accuracy reaches 86.4% for the proposed algorithm, indicating that the proposed system is able to associate cells more accurately than existing approaches. Cell culture experiments in 3-D MFDs have shown considerable promise for improving biology research. The proposed system is expected to be a useful quantitative tool for potential microscopy problems of MFDs.

  13. Video-based measurements for wireless capsule endoscope tracking

    NASA Astrophysics Data System (ADS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  14. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.

    1974-01-01

    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  15. Object motion computation for the initiation of smooth pursuit eye movements in humans.

    PubMed

    Wallace, Julian M; Stone, Leland S; Masson, Guillaume S

    2005-04-01

    Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.

  16. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  17. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  18. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.

    PubMed

    Bailey, Timothy S; Stone, Jenine Y

    2017-05-01

    Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.

  19. Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications

    PubMed Central

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica

    2015-01-01

    Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411

  20. A fast recognition method of warhead target in boost phase using kinematic features

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping

    2015-12-01

    The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.

  1. Visual attention is required for multiple object tracking.

    PubMed

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  3. A simple method to achieve full-field and real-scale reconstruction using a movable stereo rig

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Song, Zhan; Tang, Suming

    2018-06-01

    This paper introduces a simple method to achieve full-field and real-scale reconstruction using a movable binocular vision system (MBVS). The MBVS is composed of two cameras, one is called the tracking camera, and the other is called the working camera. The tracking camera is used for tracking the positions of the MBVS and the working camera is used for the 3D reconstruction task. The MBVS has several advantages compared with a single moving camera or multi-camera networks. Firstly, the MBVS could recover the real-scale-depth-information from the captured image sequences without using auxiliary objects whose geometry or motion should be precisely known. Secondly, the removability of the system could guarantee appropriate baselines to supply more robust point correspondences. Additionally, using one camera could avoid the drawback which exists in multi-camera networks, that the variability of a cameras’ parameters and performance could significantly affect the accuracy and robustness of the feature extraction and stereo matching methods. The proposed framework consists of local reconstruction and initial pose estimation of the MBVS based on transferable features, followed by overall optimization and accurate integration of multi-view 3D reconstruction data. The whole process requires no information other than the input images. The framework has been verified with real data, and very good results have been obtained.

  4. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    PubMed Central

    Serrano, Miguel Ángel; Gómez-Romero, Juan; Patricio, Miguel Ángel; García, Jesús; Molina, José Manuel

    2012-01-01

    Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.

  5. Research on facial expression simulation based on depth image

    NASA Astrophysics Data System (ADS)

    Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao

    2017-11-01

    Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.

  6. A probability tracking approach to segmentation of ultrasound prostate images using weak shape priors

    NASA Astrophysics Data System (ADS)

    Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.

    2010-03-01

    Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.

  7. Accurate segmentation framework for the left ventricle wall from cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Sliman, H.; Khalifa, F.; Elnakib, A.; Soliman, A.; Beache, G. M.; Gimel'farb, G.; Emam, A.; Elmaghraby, A.; El-Baz, A.

    2013-10-01

    We propose a novel, fast, robust, bi-directional coupled parametric deformable model to segment the left ventricle (LV) wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of LV wall to track the evolution of the parametric deformable models control points. To accurately estimate the marginal density of each deformable model control point, the empirical marginal grey level distributions (first-order appearance) inside and outside the boundary of the deformable model are modeled with adaptive linear combinations of discrete Gaussians (LCDG). The second order visual appearance of the LV wall is accurately modeled with a new rotationally invariant second-order Markov-Gibbs random field (MGRF). We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and AD value of 2.16±0.60 compared to two other level set methods that achieve 0.904±0.033 and 0.885±0.02 for DSC; and 2.86±1.35 and 5.72±4.70 for AD, respectively.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less

  9. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  10. Soccer player recognition by pixel classification in a hybrid color space

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Nicolas; Macaire, Ludovic; Postaire, Jack-Gerard

    1997-08-01

    Soccer is a very popular sport all over the world, Coaches and sport commentators need accurate information about soccer games, especially about the players behavior. These information can be gathered by inspectors who watch the soccer match and report manually the actions of the players involved in the principal phases of the game. Generally, these inspectors focus their attention on the few players standing near the ball and don't report about the motion of all the other players. So it seems desirable to design a system which automatically tracks all the players in real- time. That's why we propose to automatically track each player through the successive color images of the sequences acquired by a fixed color camera. Each player which is present in the image, is modelized by an active contour model or snake. When, during the soccer match, a player is hidden by another, the snakes which track these two players merge. So, it becomes impossible to track the players, except if the snakes are interactively re-initialized. Fortunately, in most cases, the two players don't belong to the same team. That is why we present an algorithm which recognizes the teams of the players by pixels representing the soccer ground which must be withdrawn before considering the players themselves. To eliminate these pixels, the color characteristics of the ground are determined interactively. In a second step, dealing with windows containing only one player of one team, the color features which yield the best discrimination between the two teams are selected. Thanks to these color features, the pixels associated to the players of the two teams form two separated clusters into a color space. In fact, there are many color representation systems and it's interesting to evaluate the features which provide the best separation between the two classes of pixels according to the players soccer suit. Finally, the classification process for image segmentation is based on the three most discriminating color features which define the coordinates of each pixel in an 'hybrid color space.' Thanks to this hybrid color representation, each pixel can be assigned to one of the two classes by a minimum distance classification.

  11. A Scalable Distributed Approach to Mobile Robot Vision

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.

    1997-01-01

    This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).

  12. Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro

    NASA Astrophysics Data System (ADS)

    Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan

    2016-07-01

    Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.

  13. Enriching 3D optical surface scans with prior knowledge: tissue thickness computation by exploiting local neighborhoods.

    PubMed

    Wissel, Tobias; Stüber, Patrick; Wagner, Benjamin; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2016-04-01

    Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.

  14. The role of visual attention in multiple object tracking: evidence from ERPs.

    PubMed

    Doran, Matthew M; Hoffman, James E

    2010-01-01

    We examined the role of visual attention in the multiple object tracking (MOT) task by measuring the amplitude of the N1 component of the event-related potential (ERP) to probe flashes presented on targets, distractors, or empty background areas. We found evidence that visual attention enhances targets and suppresses distractors (Experiment 1 & 3). However, we also found that when tracking load was light (two targets and two distractors), accurate tracking could be carried out without any apparent contribution from the visual attention system (Experiment 2). Our results suggest that attentional selection during MOT is flexibly determined by task demands as well as tracking load and that visual attention may not always be necessary for accurate tracking.

  15. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  16. Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    PubMed Central

    Lee, Young-Sook; Chung, Wan-Young

    2012-01-01

    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486

  17. Automatic feature-based grouping during multiple object tracking.

    PubMed

    Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J

    2013-12-01

    Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.

  18. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  19. 3D terrain reconstruction using Chang’E-3 PCAM images

    NASA Astrophysics Data System (ADS)

    Chen, Wangli; Zeng, Xingguo; Zhang, Hongbo

    2017-10-01

    In order to improve understanding of the topography of Chang’E-3 landing site, 3D terrain models are reconstructed using PCMA images. PCAM (panoramic cameras) is a stereo camera system with a 27cm baseline on-board Yutu rover. It obtained panoramic images at four detection sites, and can achieve a resolution of 1.48mm/pixel at 10m. So the PCAM images reveal fine details of the detection region. In the method, SIFT is employed for feature description and feature matching. In addition to collinearity equations, the measure of baseline of the stereo system is also used in bundle adjustment to solve orientation parameters of all images. And then, pair-wise depth map computation is applied for dense surface reconstruction. Finally, DTM of the detection region is generated. The DTM covers an area with radius of about 20m, and centering at the location of the camera. In consequence of the design, each individual wheel of Yutu rover can leave three tracks on the surface of moon, and the width between the first and third track is 15cm, and these tracks are clear and distinguishable in images. So we chose the second detection site which is of the best ability of recognition of wheel tracks to evaluate the accuracy of the DTM. We measured the width of wheel tracks every 1.5m from the center of the detection region, and obtained 13 measures. It is noticed that the area where wheel tracks are ambiguous is avoided. Result shows that the mean value of wheel track width is 0.155m with a standard deviation of 0.007m. Generally, the closer to the center the more accurate the measure of wheel width is. This is due to the fact that the deformation of images aggravates with increase distance from the location of the camera, and this induces the decline of DTM quality in far areas. In our work, images of the four detection sites are adjusted independently, and this means that there is no tie point between different sites. So deviations between the locations of the same object measured from DTMs of adjacent detection sites may exist.

  20. Feature-based interference from unattended visual field during attentional tracking in younger and older adults.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2011-02-01

    The ability to attend to multiple objects that move in the visual field is important for many aspects of daily functioning. The attentional capacity for such dynamic tracking, however, is highly limited and undergoes age-related decline. Several aspects of the tracking process can influence performance. Here, we investigated effects of feature-based interference from distractor objects that appear in unattended regions of the visual field with a hemifield-tracking task. Younger and older participants performed an attentional tracking task in one hemifield while distractor objects were concurrently presented in the unattended hemifield. Feature similarity between objects in the attended and unattended hemifields as well as motion speed and the number of to-be-tracked objects were parametrically manipulated. The results show that increasing feature overlap leads to greater interference from the unattended visual field. This effect of feature-based interference was only present in the slow speed condition, indicating that the interference is mainly modulated by perceptual demands. High-performing older adults showed a similar interference effect as younger adults, whereas low-performing adults showed poor tracking performance overall.

  1. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  2. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  3. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  4. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.

    PubMed

    Zheng, Ran; Maraj, Brian K V

    2018-04-27

    In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.

  5. A visual tracking method based on deep learning without online model updating

    NASA Astrophysics Data System (ADS)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  6. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  7. Robust object matching for persistent tracking with heterogeneous features.

    PubMed

    Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying

    2007-05-01

    This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.

  8. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    PubMed

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  9. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm

    PubMed Central

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2010-01-01

    With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443

  10. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy.

    PubMed

    Petasecca, M; Newall, M K; Booth, J T; Duncan, M; Aldosari, A H; Fuduli, I; Espinoza, A A; Porumb, C S; Guatelli, S; Metcalfe, P; Colvill, E; Cammarano, D; Carolan, M; Oborn, B; Lerch, M L F; Perevertaylo, V; Keall, P J; Rosenfeld, A B

    2015-06-01

    Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.

  11. Mobile apps for mood tracking: an analysis of features and user reviews.

    PubMed

    Caldeira, Clara; Chen, Yu; Chan, Lesley; Pham, Vivian; Chen, Yunan; Zheng, Kai

    2017-01-01

    Many mood tracking apps are available on smartphone app stores, but little is known about their features and their users' experiences. To investigate commercially available mood tracking apps, we conducted an in-depth feature analysis of 32 apps, and performed a qualitative analysis of a set of user reviews. Informed by a widely adopted personal informatics framework, we conducted a feature analysis to investigate how these apps support four stages of selftracking: preparation, collection, reflection, and action; and found that mood tracking apps offer many features for the collection and reflection stages, but lack adequate support for the preparation and action stages. Through the qualitative analysis of user reviews, we found that users utilize mood tracking to learn about their mood patterns, improve their mood, and self-manage their mental illnesses. In this paper, we present our findings and discuss implications for mobile apps designed to enhance emotional wellness.

  12. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  13. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  14. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

  15. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis.

    PubMed

    Defante, Adrian P; Vreeland, Wyatt N; Benkstein, Kurt D; Ripple, Dean C

    2018-05-01

    Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels 2 , results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count. Published by Elsevier Inc.

  16. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  17. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  18. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow

    NASA Astrophysics Data System (ADS)

    Hartman, John; Kirby, Brian

    2017-03-01

    Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.

  19. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  20. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  1. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  2. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdell, S; Paganetti, H; Schuemann, J

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed usingmore » TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.« less

  3. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    PubMed Central

    Byambasuren, Bat-erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  4. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    PubMed

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  5. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  6. A software solution for recording circadian oscillator features in time-lapse live cell microscopy.

    PubMed

    Sage, Daniel; Unser, Michael; Salmon, Patrick; Dibner, Charna

    2010-07-06

    Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Our software solution, Circadian Gene Express (CGE), is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and efficient recording of large number of cell parameters, including level of reporter protein expression, velocity, direction of movement, and others. CGE proves to be useful for the analysis of widefield fluorescent microscopy datasets, as well as for bioluminescence imaging. Moreover, it might be easily adaptable for confocal image analysis by manually choosing one of the focal planes of each z-stack of the various time points of a time series. CGE is a Java plugin for ImageJ; it is freely available at: http://bigwww.epfl.ch/sage/soft/circadian/.

  7. Explaining Sad People's Memory Advantage for Faces.

    PubMed

    Hills, Peter J; Marquardt, Zoe; Young, Isabel; Goodenough, Imogen

    2017-01-01

    Sad people recognize faces more accurately than happy people (Hills et al., 2011). We devised four hypotheses for this finding that are tested between in the current study. The four hypotheses are: (1) sad people engage in more expert processing associated with face processing; (2) sad people are motivated to be more accurate than happy people in an attempt to repair their mood; (3) sad people have a defocused attentional strategy that allows more information about a face to be encoded; and (4) sad people scan more of the face than happy people leading to more facial features to be encoded. In Experiment 1, we found that dysphoria (sad mood often associated with depression) was not correlated with the face-inversion effect (a measure of expert processing) nor with response times but was correlated with defocused attention and recognition accuracy. Experiment 2 established that dysphoric participants detected changes made to more facial features than happy participants. In Experiment 3, using eye-tracking we found that sad-induced participants sampled more of the face whilst avoiding the eyes. Experiment 4 showed that sad-induced people demonstrated a smaller own-ethnicity bias. These results indicate that sad people show different attentional allocation to faces than happy and neutral people.

  8. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  9. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  10. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    PubMed

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  11. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  12. Beyond Academic Tracking: Using Cluster Analysis and Self-Organizing Maps to Investigate Secondary Students' Chemistry Self-Concept

    ERIC Educational Resources Information Center

    Nielsen, Sara E.; Yezierski, Ellen J.

    2016-01-01

    Academic tracking, placing students in different classes based on past performance, is a common feature of the American secondary school system. A longitudinal study of secondary students' chemistry self-concept scores was conducted, and one feature of the study was the presence of academic tracking. Though academic tracking is one way to group…

  13. Development of the MCNPX depletion capability: A Monte Carlo linked depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations

    NASA Astrophysics Data System (ADS)

    Fensin, Michael Lorne

    Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established and supported radiation transport code, for further development of a Monte Carlo-linked depletion methodology which is essential to the future development of advanced reactor technologies that exceed the limitations of current deterministic based methods.

  14. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  15. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications.

    PubMed

    Fernandez-Miranda, Juan C; Pathak, Sudhir; Engh, Johnathan; Jarbo, Kevin; Verstynen, Timothy; Yeh, Fang-Cheng; Wang, Yibao; Mintz, Arlan; Boada, Fernando; Schneider, Walter; Friedlander, Robert

    2012-08-01

    High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution. To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications. Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography. HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers. Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.

  16. Autofocusing and Polar Body Detection in Automated Cell Manipulation.

    PubMed

    Wang, Zenan; Feng, Chen; Ang, Wei Tech; Tan, Steven Yih Min; Latt, Win Tun

    2017-05-01

    Autofocusing and feature detection are two essential processes for performing automated biological cell manipulation tasks. In this paper, we have introduced a technique capable of focusing on a holding pipette and a mammalian cell under a bright-field microscope automatically, and a technique that can detect and track the presence and orientation of the polar body of an oocyte that is rotated at the tip of a micropipette. Both algorithms were evaluated by using mouse oocytes. Experimental results show that both algorithms achieve very high success rates: 100% and 96%. As robust and accurate image processing methods, they can be widely applied to perform various automated biological cell manipulations.

  17. Lung tumor tracking in fluoroscopic video based on optical flow

    PubMed Central

    Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094

  18. Lung tumor tracking in fluoroscopic video based on optical flow.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B

    2008-12-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.

  19. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    DOE PAGES

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less

  20. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    PubMed

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. Model-based morphological segmentation and labeling of coronary angiograms.

    PubMed

    Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G

    1999-10-01

    A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.

  2. Compressed normalized block difference for object tracking

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  3. Using eye tracking technology to compare the effectiveness of malignant hyperthermia cognitive aid design.

    PubMed

    King, Roderick; Hanhan, Jaber; Harrison, T Kyle; Kou, Alex; Howard, Steven K; Borg, Lindsay K; Shum, Cynthia; Udani, Ankeet D; Mariano, Edward R

    2018-05-15

    Malignant hyperthermia is a rare but potentially fatal complication of anesthesia, and several different cognitive aids designed to facilitate a timely and accurate response to this crisis currently exist. Eye tracking technology can measure voluntary and involuntary eye movements, gaze fixation within an area of interest, and speed of visual response and has been used to a limited extent in anesthesiology. With eye tracking technology, we compared the accessibility of five malignant hyperthermia cognitive aids by collecting gaze data from twelve volunteer participants. Recordings were reviewed and annotated to measure the time required for participants to locate objects on the cognitive aid to provide an answer; cumulative time to answer was the primary outcome. For the primary outcome, there were differences detected between cumulative time to answer survival curves (P < 0.001). Participants demonstrated the shortest cumulative time to answer when viewing the Society for Pediatric Anesthesia (SPA) cognitive aid compared to four other publicly available cognitive aids for malignant hyperthermia, and this outcome was not influenced by the anesthesiologists' years of experience. This is the first study to utilize eye tracking technology in a comparative evaluation of cognitive aid design, and our experience suggests that there may be additional applications of eye tracking technology in healthcare and medical education. Potentially advantageous design features of the SPA cognitive aid include a single page, linear layout, and simple typescript with minimal use of single color blocking.

  4. Geosat crossover analysis in the tropical Pacific. Part 1: Constrained sinusoidal crossover adjustment

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    A new method (constrained sinusoidal crossover adjustment) for removing the orbit error in satellite altimetry is tested (using crossovers accumulated in the first 91 days of the Geosat non-repeat era in the tropical Pacific) and found to have excellent qualities. Two features distinguish the new method from the conventional bias-and-tilt crossover adjustment. First, a sine wave (with wavelength equaling the circumference of the Earth) is used to represent the orbit error for each satellite revolution, instead of the bias-and-tilt (and curvature, if necessary) approach for each segment of the satellite ground track. Secondly, the indeterminacy of the adjustment process is removed by a simple constraint minimizing the amplitudes of the sine waves, rather than by fixing selected tracks. Overall the new method is more accurate, more efficient, and much less cumbersome than the old. The idea of restricting the crossover adjustment to crossovers between tracks that are less than certain days apart in order to preserve the large-scale long-term oceanic variability is also tested with inconclusive results because the orbit error was unusually nonstationary in the initial 91 days of the GEOSAT mission.

  5. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  6. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  7. Tensor-based tracking of the aorta in phase-contrast MR images

    NASA Astrophysics Data System (ADS)

    Azad, Yoo-Jin; Malsam, Anton; Ley, Sebastian; Rengier, Fabian; Dillmann, Rüdiger; Unterhinninghofen, Roland

    2014-03-01

    The velocity-encoded magnetic resonance imaging (PC-MRI) is a valuable technique to measure the blood flow velocity in terms of time-resolved 3D vector fields. For diagnosis, presurgical planning and therapy control monitoring the patient's hemodynamic situation is crucial. Hence, an accurate and robust segmentation of the diseased vessel is the basis for further methods like the computation of the blood pressure. In the literature, there exist some approaches to transfer the methods of processing DT-MR images to PC-MR data, but the potential of this approach is not fully exploited yet. In this paper, we present a method to extract the centerline of the aorta in PC-MR images by applying methods from the DT-MRI. On account of this, in the first step the velocity vector fields are converted into tensor fields. In the next step tensor-based features are derived and by applying a modified tensorline algorithm the tracking of the vessel course is accomplished. The method only uses features derived from the tensor imaging without the use of additional morphology information. For evaluation purposes we applied our method to 4 volunteer as well as 26 clinical patient datasets with good results. In 29 of 30 cases our algorithm accomplished to extract the vessel centerline.

  8. A judicious multiple hypothesis tracker with interacting feature extraction

    NASA Astrophysics Data System (ADS)

    McAnanama, James G.; Kirubarajan, T.

    2009-05-01

    The multiple hypotheses tracker (mht) is recognized as an optimal tracking method due to the enumeration of all possible measurement-to-track associations, which does not involve any approximation in its original formulation. However, its practical implementation is limited by the NP-hard nature of this enumeration. As a result, a number of maintenance techniques such as pruning and merging have been proposed to bound the computational complexity. It is possible to improve the performance of a tracker, mht or not, using feature information (e.g., signal strength, size, type) in addition to kinematic data. However, in most tracking systems, the extraction of features from the raw sensor data is typically independent of the subsequent association and filtering stages. In this paper, a new approach, called the Judicious Multi Hypotheses Tracker (jmht), whereby there is an interaction between feature extraction and the mht, is presented. The measure of the quality of feature extraction is input into measurement-to-track association while the prediction step feeds back the parameters to be used in the next round of feature extraction. The motivation for this forward and backward interaction between feature extraction and tracking is to improve the performance in both steps. This approach allows for a more rational partitioning of the feature space and removes unlikely features from the assignment problem. Simulation results demonstrate the benefits of the proposed approach.

  9. Feature Extraction for Track Section Status Classification Based on UGW Signals

    PubMed Central

    Yang, Yuan; Shi, Lin

    2018-01-01

    Track status classification is essential for the stability and safety of railway operations nowadays, when railway networks are becoming more and more complex and broad. In this situation, monitoring systems are already a key element in applications dedicated to evaluating the status of a certain track section, often determining whether it is free or occupied by a train. Different technologies have already been involved in the design of monitoring systems, including ultrasonic guided waves (UGW). This work proposes the use of the UGW signals captured by a track monitoring system to extract the features that are relevant for determining the corresponding track section status. For that purpose, three features of UGW signals have been considered: the root mean square value, the energy, and the main frequency components. Experimental results successfully validated how these features can be used to classify the track section status into free, occupied and broken. Furthermore, spatial and temporal dependencies among these features were analysed in order to show how they can improve the final classification performance. Finally, a preliminary high-level classification system based on deep learning networks has been envisaged for future works. PMID:29673156

  10. Sentinel-3A Views Ocean Variability More Accurately at Finer Resolution

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Sánchez-Román, A.; Pascual, A.; Rodríguez, D.; Reeve, K. A.; Faugère, Y.; Raynal, M.

    2017-12-01

    This is the first multiplatform evaluation involving data from the new Sentinel-3A altimeter. An experiment was undertaken in the Algerian Basin, employing an ocean glider and a ship mission, along the same track and synchronous with an overpass of the Sentinel-3A mission. This provided three independent views of the ocean velocity field, along a section that encompassed three different oceanographic regimes. The results demonstrate the capacity of Sentinel-3A to retrieve fine-scale oceanographic features ( 20 km). The intercomparison with in situ platforms showed a significant improvement, order 30% in resolution and 42% in velocity accuracy using a synthetic aperture radar mode with respect to lower-resolution mode of conventional altimetry. In addition, the three-platform view provided valuable insight into the variability of evolving oceanographic features, in an area of the Mediterranean that remains chronically under sampled.

  11. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  12. Remote Power Systems for Sensors on the Northern Border

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lin J; Kandt, Alicen J

    The National Renewable Energy Laboratory (NREL) is working with the Department of Homeland Security (DHS) [1] to field sensors that accurately track different types of transportation across the northern border of the U.S.. To do this, the sensors require remote power so that they can be placed in the most advantageous geographical locations, often where no grid power is available. This enables the sensors to detect and track aircraft/vehicles despite natural features (e.g., mountains, ridges, valleys, trees) that often prevent standard methods (e.g., monostatic radar or visual observers) from detecting them. Without grid power, portable power systems were used tomore » provide between 80 and 300 W continuously, even in bitter cold and when buried under feet of snow/ice. NREL provides details about the design, installation, and lessons learned from long-term deployment of a second-generation of novel power systems that used adjustable-angle photovoltaics (PV), lithium ion batteries, and fuel cells that provide power to achieve 100% up-time.« less

  13. Current Status of 3-Dimensional Speckle Tracking Echocardiography: A Review from Our Experiences

    PubMed Central

    Ishizu, Tomko; Aonuma, Kazutaka

    2014-01-01

    Cardiac function analysis is the main focus of echocardiography. Left ventricular ejection fraction (LVEF) has been the clinical standard, however, LVEF is not enough to investigate myocardial function. For the last decade, speckle tracking echocardiography (STE) has been the novel clinical tool for regional and global myocardial function analysis. However, 2-dimensional imaging methods have limitations in assessing 3-dimensional (3D) cardiac motion. In contrast, 3D echocardiography also has been widely used, in particular, to measure LV volume measurements and assess valvular diseases. Joining the technology bandwagon, 3D-STE was introduced in 2008. Experimental studies and clinical investigations revealed the reliability and feasibility of 3D-STE-derived data. In addition, 3D-STE provides a novel deformation parameter, area change ratio, which have the potential for more accurate assessment of overall and regional myocardial function. In this review, we introduced the features of the methodology, validation, and clinical application of 3D-STE based on our experiences for 7 years. PMID:25031794

  14. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.

    PubMed

    Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan

    2017-07-01

    In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).

  15. Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair

    PubMed Central

    ElSaharty, M. A.; zakzouk, Ezz Eldin

    2017-01-01

    Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973

  16. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking Algorithm.

    PubMed

    Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun

    2018-05-19

    Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.

  17. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  18. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  19. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  20. 47 CFR 64.1320 - Payphone call tracking system audits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certified Public Accountants, to determine whether the call tracking system accurately tracks payphone calls... Certified Public Accountants for attestation engagements, the System Audit Report shall consist of: (1) The... the payphone service provider for inspection any documents, including working papers, underlying the...

  1. Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Brock, John; Zawada, Dave

    2006-01-01

    "Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.

  2. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  3. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and monitoring tracking performance.

  4. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it; Seregni, Matteo; Fattori, Giovanni

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each featuremore » was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI-guided radiation therapy, which could support the definition of patient-specific optimal treatment strategies.« less

  5. Small explosive volcanic plume dynamics: insights from feature tracking velocimetry at Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Andrews, B. J.

    2016-12-01

    Volcanic explosions eject turbulent, transient jets of hot volcanic gas and particles into the atmosphere. Though the jet of hot material is initially negatively buoyant, the jet can become buoyant through entrainment and subsequent thermal expansion of entrained air that allows the eruptive plume to rise several kilometers. Although basic plume structure is qualitatively well known, the velocity field and dynamic structure of volcanic plumes are not well quantified. An accurate and quantitative description of volcanic plumes is essential for hazard assessments, such as if the eruption will form a buoyant plume that will affect aviation or produce dangerous pyroclastic density currents. Santa Maria volcano, in Guatemala, provides the rare opportunity to safely capture video of Santiaguito lava dome explosions and small eruptive plumes. In January 2016, two small explosions (< 2 km) that lasted several minutes and with little cloud obstruction were recorded for image analysis. The volcanic plume structure is analyzed through sequential image frames from the video where specific features are tracked using a feature tracking velocimetry (FTV) algorithm. The FTV algorithm quantifies the 2D apparent velocity fields along the surface of the plume throughout the duration of the explosion. Image analysis of small volcanic explosions allows us to examine the maximum apparent velocities at two heights above the dome surface, 0-25 meters, where the explosions first appear, and 100-125 meters. Explosions begin with maximum apparent velocities of <15 m/s. We find at heights near the dome surface and 10 seconds after explosion initiation, the maximum apparent velocities transition to sustained velocities of 5-15 m/s. At heights 100-125 meters above the dome surface, the apparent velocities transition to sustained velocities of 5-15 m/s after 25 seconds. Throughout the explosion, transient velocity maximums can exceed 40 m/s at both heights. Here, we provide novel quantification and description of turbulent surface velocity fields of explosive volcanic eruptions at active lava domes.

  6. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  7. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.

  8. Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling.

    PubMed

    Khan, Adil Ghani; Sarangi, Manaswini; Bhalla, Upinder Singh

    2012-02-28

    Tracking odour trails is a crucial behaviour for many animals, often leading to food, mates or away from danger. It is an excellent example of active sampling, where the animal itself controls how to sense the environment. Here we show that rats can track odour trails accurately with near-optimal sampling. We trained rats to follow odour trails drawn on paper spooled through a treadmill. By recording local field potentials (LFPs) from the olfactory bulb, and sniffing rates, we find that sniffing but not LFPs differ between tracking and non-tracking conditions. Rats can track odours within ~1 cm, and this accuracy is degraded when one nostril is closed. Moreover, they show path prediction on encountering a fork, wide 'casting' sweeps on encountering a gap and detection of reappearance of the trail in 1-2 sniffs. We suggest that rats use a multi-layered strategy, and achieve efficient sampling and high accuracy in this complex task.

  9. Feature-level analysis of a novel smartphone application for smoking cessation.

    PubMed

    Heffner, Jaimee L; Vilardaga, Roger; Mercer, Laina D; Kientz, Julie A; Bricker, Jonathan B

    2015-01-01

    Currently, there are over 400 smoking cessation smartphone apps available, downloaded an estimated 780,000 times per month. No prior studies have examined how individuals engage with specific features of cessation apps and whether use of these features is associated with quitting. Using data from a pilot trial of a novel smoking cessation app, we examined: (i) the 10 most-used app features, and (ii) prospective associations between feature usage and quitting. Participants (n = 76) were from the experimental arm of a randomized, controlled pilot trial of an app for smoking cessation called "SmartQuit," which includes elements of both Acceptance and Commitment Therapy (ACT) and traditional cognitive behavioral therapy (CBT). Utilization data were automatically tracked during the 8-week treatment phase. Thirty-day point prevalence smoking abstinence was assessed at 60-day follow-up. The most-used features - quit plan, tracking, progress, and sharing - were mostly CBT. Only two of the 10 most-used features were prospectively associated with quitting: viewing the quit plan (p = 0.03) and tracking practice of letting urges pass (p = 0.03). Tracking ACT skill practice was used by fewer participants (n = 43) but was associated with cessation (p = 0.01). In this exploratory analysis without control for multiple comparisons, viewing a quit plan (CBT) as well as tracking practice of letting urges pass (ACT) were both appealing to app users and associated with successful quitting. Aside from these features, there was little overlap between a feature's popularity and its prospective association with quitting. Tests of causal associations between feature usage and smoking cessation are now needed.

  10. Multiple-object tracking while driving: the multiple-vehicle tracking task.

    PubMed

    Lochner, Martin J; Trick, Lana M

    2014-11-01

    Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.

  11. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  12. Online tracking of instantaneous frequency and amplitude of dynamical system response

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.

    2010-05-01

    This paper presents a sliding-window tracking (SWT) method for accurate tracking of the instantaneous frequency and amplitude of arbitrary dynamic response by processing only three (or more) most recent data points. Teager-Kaiser algorithm (TKA) is a well-known four-point method for online tracking of frequency and amplitude. Because finite difference is used in TKA, its accuracy is easily destroyed by measurement and/or signal-processing noise. Moreover, because TKA assumes the processed signal to be a pure harmonic, any moving average in the signal can destroy the accuracy of TKA. On the other hand, because SWT uses a constant and a pair of windowed regular harmonics to fit the data and estimate the instantaneous frequency and amplitude, the influence of any moving average is eliminated. Moreover, noise filtering is an implicit capability of SWT when more than three data points are used, and this capability increases with the number of processed data points. To compare the accuracy of SWT and TKA, Hilbert-Huang transform is used to extract accurate time-varying frequencies and amplitudes by processing the whole data set without assuming the signal to be harmonic. Frequency and amplitude trackings of different amplitude- and frequency-modulated signals, vibrato in music, and nonlinear stationary and non-stationary dynamic signals are studied. Results show that SWT is more accurate, robust, and versatile than TKA for online tracking of frequency and amplitude.

  13. Airborne tracking sunphotometer

    NASA Technical Reports Server (NTRS)

    Matsumoto, Tak; Russell, Philip; Mina, Cesar; Van Ark, William; Banta, Victor

    1987-01-01

    An airborne tracking sunphotometer, mounted on the outside top surface of an aircaft has been developed to provide unresricted viewing of the sun. This instrument will substantially increase the data that scientists can gather for atmospheric studies. The instrument has six wavelength channels and an automatic data gathering system. The instrument's optical features, tracking capability, mechanical features, and data gathering system are described.

  14. Apparatus for obstacle traversion

    DOEpatents

    Borenstein, Johann

    2004-08-10

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of drive track assemblies. The plurality of drive track assemblies cooperate to provide forward propulsion wherever a propulsion member is in contact with any feature of the environment, regardless of how many or which ones of the plurality of drive track assemblies make contact with such environmental feature.

  15. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  16. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.

    PubMed

    Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L

    2015-03-01

    In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  18. Explaining Sad People’s Memory Advantage for Faces

    PubMed Central

    Hills, Peter J.; Marquardt, Zoe; Young, Isabel; Goodenough, Imogen

    2017-01-01

    Sad people recognize faces more accurately than happy people (Hills et al., 2011). We devised four hypotheses for this finding that are tested between in the current study. The four hypotheses are: (1) sad people engage in more expert processing associated with face processing; (2) sad people are motivated to be more accurate than happy people in an attempt to repair their mood; (3) sad people have a defocused attentional strategy that allows more information about a face to be encoded; and (4) sad people scan more of the face than happy people leading to more facial features to be encoded. In Experiment 1, we found that dysphoria (sad mood often associated with depression) was not correlated with the face-inversion effect (a measure of expert processing) nor with response times but was correlated with defocused attention and recognition accuracy. Experiment 2 established that dysphoric participants detected changes made to more facial features than happy participants. In Experiment 3, using eye-tracking we found that sad-induced participants sampled more of the face whilst avoiding the eyes. Experiment 4 showed that sad-induced people demonstrated a smaller own-ethnicity bias. These results indicate that sad people show different attentional allocation to faces than happy and neutral people. PMID:28261138

  19. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.

    PubMed

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time.

  20. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water

    PubMed Central

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time. PMID:27128096

  1. Measuring Positions of Objects using Two or More Cameras

    NASA Technical Reports Server (NTRS)

    Klinko, Steve; Lane, John; Nelson, Christopher

    2008-01-01

    An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate system attached to one object as defined in its CAD model.

  2. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less

  3. All eyes on relevance: strategic allocation of attention as a result of feature-based task demands in multiple object tracking.

    PubMed

    Brockhoff, Alisa; Huff, Markus

    2016-10-01

    Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.

  4. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones.

    PubMed

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-12-05

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy.

  5. Classifying MCI Subtypes in Community-Dwelling Elderly Using Cross-Sectional and Longitudinal MRI-Based Biomarkers

    PubMed Central

    Guan, Hao; Liu, Tao; Jiang, Jiyang; Tao, Dacheng; Zhang, Jicong; Niu, Haijun; Zhu, Wanlin; Wang, Yilong; Cheng, Jian; Kochan, Nicole A.; Brodaty, Henry; Sachdev, Perminder; Wen, Wei

    2017-01-01

    Amnestic MCI (aMCI) and non-amnestic MCI (naMCI) are considered to differ in etiology and outcome. Accurately classifying MCI into meaningful subtypes would enable early intervention with targeted treatment. In this study, we employed structural magnetic resonance imaging (MRI) for MCI subtype classification. This was carried out in a sample of 184 community-dwelling individuals (aged 73–85 years). Cortical surface based measurements were computed from longitudinal and cross-sectional scans. By introducing a feature selection algorithm, we identified a set of discriminative features, and further investigated the temporal patterns of these features. A voting classifier was trained and evaluated via 10 iterations of cross-validation. The best classification accuracies achieved were: 77% (naMCI vs. aMCI), 81% (aMCI vs. cognitively normal (CN)) and 70% (naMCI vs. CN). The best results for differentiating aMCI from naMCI were achieved with baseline features. Hippocampus, amygdala and frontal pole were found to be most discriminative for classifying MCI subtypes. Additionally, we observed the dynamics of classification of several MRI biomarkers. Learning the dynamics of atrophy may aid in the development of better biomarkers, as it may track the progression of cognitive impairment. PMID:29085292

  6. Vision-based localization of the center of mass of large space debris via statistical shape analysis

    NASA Astrophysics Data System (ADS)

    Biondi, G.; Mauro, S.; Pastorelli, S.

    2017-08-01

    The current overpopulation of artificial objects orbiting the Earth has increased the interest of the space agencies on planning missions for de-orbiting the largest inoperative satellites. Since this kind of operations involves the capture of the debris, the accurate knowledge of the position of their center of mass is a fundamental safety requirement. As ground observations are not sufficient to reach the required accuracy level, this information should be acquired in situ just before any contact between the chaser and the target. Some estimation methods in the literature rely on the usage of stereo cameras for tracking several features of the target surface. The actual positions of these features are estimated together with the location of the center of mass by state observers. The principal drawback of these methods is related to possible sudden disappearances of one or more features from the field of view of the cameras. An alternative method based on 3D Kinematic registration is presented in this paper. The method, which does not suffer of the mentioned drawback, considers a preliminary reduction of the inaccuracies in detecting features by the usage of statistical shape analysis.

  7. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  8. Real-Time Visual Tracking through Fusion Features

    PubMed Central

    Ruan, Yang; Wei, Zhenzhong

    2016-01-01

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951

  9. Swallowing Disorders after Oral Cavity and Pharyngolaryngeal Surgery and Role of Imaging

    PubMed Central

    Zurlo, Valeria; Ansarin, Mohssen; Di Pietro, Salvatore

    2017-01-01

    Head and neck squamous cell carcinoma is the sixth most common cancer diagnosed worldwide and the eighth most common cause of cancer death. Malignant tumors of the oral cavity, oropharynx, and larynx can be treated by surgical resection or radiotheraphy with or without chemotheraphy and have a profound impact on quality of life functions, including swallowing. When surgery is the chosen treatment modality, the patient may experience swallowing impairment in the oral and pharyngeal phases of deglutition. A videofluoroscopic study of swallow enables the morphodynamics of the pharyngeal-esophageal tract to be accurately examined in patients with prior surgery. These features allow an accurate tracking of the various phases of swallowing in real time, identifying the presence of functional disorders and of complications during the short- and long-term postoperative recovery. The role of imaging is fundamental for the therapist to plan rehabilitation. In this paper, the authors aim to describe the videofluoroscopic study of swallow protocol and related swallowing impairment findings in consideration of different types of surgery. PMID:28496456

  10. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  11. Accurate orbit determination strategies for the tracking and data relay satellites

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Bolvin, D. T.; Lorah, J. M.; Lee, T.; Doll, C. E.

    1995-01-01

    The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for tracking and communications support of low Earth-orbiting satellites. TDRSS has the operational capability of providing 85% coverage for TDRSS-user spacecraft. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for each TDRS. The ground-based BRTS transponders are tracked as if they were TDRSS-user spacecraft. Since the positions of the BRTS transponders are known, their radiometric tracking measurements can be used to provide a well-determined ephemeris for the TDRS spacecraft. For high-accuracy orbit determination of a TDRSS user, such as the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft, high-accuracy TDRS orbits are required. This paper reports on successive refinements in improved techniques and procedures leading to more accurate TDRS orbit determination strategies using the Goddard Trajectory Determination System (GTDS). These strategies range from the standard operational solution using only the BRTS tracking measurements to a sophisticated iterative process involving several successive simultaneous solutions for multiple TDRSs and a TDRSS-user spacecraft. Results are presented for GTDS-generated TDRS ephemerides produced in simultaneous solutions with the TOPEX/Poseidon spacecraft. Strategies with different user spacecraft, as well as schemes for recovering accurate TDRS orbits following a TDRS maneuver, are also presented. In addition, a comprehensive assessment and evaluation of alternative strategies for TDRS orbit determination, excluding BRTS tracking measurements, are presented.

  12. Good Features to Correlate for Visual Tracking

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Alatan, A. Aydin

    2018-05-01

    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

  13. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  14. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  15. A Railway Track Geometry Measuring Trolley System Based on Aided INS

    PubMed Central

    Chen, Qijin; Niu, Xiaoji; Zuo, Lili; Zhang, Tisheng; Xiao, Fuqin; Liu, Yi; Liu, Jingnan

    2018-01-01

    Accurate measurement of the railway track geometry is a task of fundamental importance to ensure the track quality in both the construction phase and the regular maintenance stage. Conventional track geometry measuring trolleys (TGMTs) in combination with classical geodetic surveying apparatus such as total stations alone cannot meet the requirements of measurement accuracy and surveying efficiency at the same time. Accurate and fast track geometry surveying applications call for an innovative surveying method that can measure all or most of the track geometric parameters in short time without interrupting the railway traffic. We provide a novel solution to this problem by integrating an inertial navigation system (INS) with a geodetic surveying apparatus, and design a modular TGMT system based on aided INS, which can be configured according to different surveying tasks including precise adjustment of slab track, providing tamping measurements, measuring track deformation and irregularities, and determination of the track axis. TGMT based on aided INS can operate in mobile surveying mode to significantly improve the surveying efficiency. Key points in the design of the TGMT’s architecture and the data processing concept and workflow are introduced in details, which should benefit subsequent research and provide a reference for the implementation of this kind of TGMT. The surveying performance of proposed TGMT with different configurations is assessed in the track geometry surveying experiments and actual projects. PMID:29439423

  16. Vision-Aided Inertial Navigation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Stergios I. (Inventor); Mourikis, Anastasios I. (Inventor)

    2017-01-01

    This document discloses, among other things, a system and method for implementing an algorithm to determine pose, velocity, acceleration or other navigation information using feature tracking data. The algorithm has computational complexity that is linear with the number of features tracked.

  17. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  18. Zebrafish tracking using convolutional neural networks.

    PubMed

    Xu, Zhiping; Cheng, Xi En

    2017-02-17

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  19. Zebrafish tracking using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Cheng, Xi En

    2017-02-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  20. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  1. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  2. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  3. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and... What features must our finance systems have to keep track of mail costs? All agencies must have an... requirement, because the level at which it is cost-beneficial differs widely. The agency's finance system(s...

  4. Determination of feature generation methods for PTZ camera object tracking

    NASA Astrophysics Data System (ADS)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  5. Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking

    PubMed Central

    Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang

    2016-01-01

    Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875

  6. Accurate estimation of influenza epidemics using Google search data via ARGO.

    PubMed

    Yang, Shihao; Santillana, Mauricio; Kou, S C

    2015-11-24

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.

  7. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  8. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    ERIC Educational Resources Information Center

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  9. Correlation Filter Learning Toward Peak Strength for Visual Tracking.

    PubMed

    Sui, Yao; Wang, Guanghui; Zhang, Li

    2018-04-01

    This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

  10. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.

  11. Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter

    PubMed Central

    Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.

    2016-01-01

    Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549

  12. Semi-Supervised Geographical Feature Detection

    NASA Astrophysics Data System (ADS)

    Yu, H.; Yu, L.; Kuo, K. S.

    2016-12-01

    Extraction and tracking geographical features is a fundamental requirement in many geoscience fields. However, this operation has become an increasingly challenging task for domain scientists when tackling a large amount of geoscience data. Although domain scientists may have a relatively clear definition of features, it is difficult to capture the presence of features in an accurate and efficient fashion. We propose a semi-supervised approach to address large geographical feature detection. Our approach has two main components. First, we represent a heterogeneous geoscience data in a unified high-dimensional space, which can facilitate us to evaluate the similarity of data points with respect to geolocation, time, and variable values. We characterize the data from these measures, and use a set of hash functions to parameterize the initial knowledge of the data. Second, for any user query, our approach can automatically extract the initial results based on the hash functions. To improve the accuracy of querying, our approach provides a visualization interface to display the querying results and allow users to interactively explore and refine them. The user feedback will be used to enhance our knowledge base in an iterative manner. In our implementation, we use high-performance computing techniques to accelerate the construction of hash functions. Our design facilitates a parallelization scheme for feature detection and extraction, which is a traditionally challenging problem for large-scale data. We evaluate our approach and demonstrate the effectiveness using both synthetic and real world datasets.

  13. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  14. Accuracy and precision of four value-added blood glucose meters: the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro.

    PubMed

    Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A

    2009-09-01

    This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.

  15. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  16. Scalable Track Detection in SAR CCD Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, James G; Quach, Tu-Thach

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988,more » up fr om 0.907 obtained by the current state-of-the-art method.« less

  17. Characterizing Smartphone Engagement for Schizophrenia: Results of a Naturalist Mobile Health Study.

    PubMed

    Torous, John; Staples, Patrick; Slaters, Linda; Adams, Jared; Sandoval, Luis; Onnela, J P; Keshavan, Matcheri

    2017-08-04

    Despite growing interest in smartphone apps for schizophrenia, little is known about how these apps are utilized in the real world. Understanding how app users are engaging with these tools outside of the confines of traditional clinical studies offers an important information on who is most likely to use apps and what type of data they are willing to share. The Schizophrenia and Related Disorders Alliance of America, in partnership with Self Care Catalyst, has created a smartphone app for schizophrenia that is free and publically available on both Apple iTunes and Google Android Play stores. We analyzed user engagement data from this app across its medication tracking, mood tracking, and symptom tracking features from August 16 th 2015 to January 1 st 2017 using the R programming language. We included all registered app users in our analysis with reported ages less than 100. We analyzed a total of 43,451 mood, medication and symptom entries from 622 registered users, and excluded a single patient with a reported age of 114. Seventy one percent of the 622 users tried the mood-tracking feature at least once, 49% the symptom tracking feature, and 36% the medication-tracking feature. The mean number of uses of the mood feature was two, the symptom feature 10, and the medication feature 14. However, a small subset of users were very engaged with the app and the top 10 users for each feature accounted for 35% or greater of all entries for that feature. We find that user engagement follows a power law distribution for each feature, and this fit was largely invariant when stratifying for age or gender. Engagement with this app for schizophrenia was overall low, but similar to prior naturalistic studies for mental health app use in other diseases. The low rate of engagement in naturalistic settings, compared to higher rates of use in clinical studies, suggests the importance of clinical involvement as one factor in driving engagement for mental health apps. Power law relationships suggest strongly skewed user engagement, with a small subset of users accounting for the majority of substantial engagements. There is a need for further research on app engagement in schizophrenia.

  18. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NASA Astrophysics Data System (ADS)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-07-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.

  19. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight

    PubMed Central

    Guo, Siqiu; Zhang, Tao; Song, Yulong

    2018-01-01

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610

  20. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    PubMed

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  1. GRAVSAT/GEOPAUSE covariance analysis including geopotential aliasing

    NASA Technical Reports Server (NTRS)

    Koch, D. W.

    1975-01-01

    A conventional covariance analysis for the GRAVSAT/GEOPAUSE mission is described in which the uncertainties of approximately 200 parameters, including the geopotential coefficients to degree and order 12, are estimated over three different tracking intervals. The estimated orbital uncertainties for both GRAVSAT and GEOPAUSE reach levels more accurate than presently available. The adjusted measurement bias errors approach the mission goal. Survey errors in the low centimeter range are achieved after ten days of tracking. The ability of the mission to obtain accuracies of geopotential terms to (12, 12) one to two orders of magnitude superior to present accuracy levels is clearly shown. A unique feature of this report is that the aliasing structure of this (12, 12) field is examined. It is shown that uncertainties for unadjusted terms to (12, 12) still exert a degrading effect upon the adjusted error of an arbitrarily selected term of lower degree and order. Finally, the distribution of the aliasing from the unestimated uncertainty of a particular high degree and order geopotential term upon the errors of all remaining adjusted terms is listed in detail.

  2. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    PubMed Central

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-01-01

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. PMID:26404290

  3. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering

    PubMed Central

    Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano

    2015-01-01

    Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615

  4. Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment

    PubMed Central

    Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang

    2013-01-01

    Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620

  5. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  6. Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns

    PubMed Central

    Teng, Dongdong; Chen, Dihu; Tan, Hongzhou

    2015-01-01

    The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz. PMID:26426929

  7. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  8. General features of the retinal connectome determine the computation of motion anticipation

    PubMed Central

    Johnston, Jamie; Lagnado, Leon

    2015-01-01

    Motion anticipation allows the visual system to compensate for the slow speed of phototransduction so that a moving object can be accurately located. This correction is already present in the signal that ganglion cells send from the retina but the biophysical mechanisms underlying this computation are not known. Here we demonstrate that motion anticipation is computed autonomously within the dendritic tree of each ganglion cell and relies on feedforward inhibition. The passive and non-linear interaction of excitatory and inhibitory synapses enables the somatic voltage to encode the actual position of a moving object instead of its delayed representation. General rather than specific features of the retinal connectome govern this computation: an excess of inhibitory inputs over excitatory, with both being randomly distributed, allows tracking of all directions of motion, while the average distance between inputs determines the object velocities that can be compensated for. DOI: http://dx.doi.org/10.7554/eLife.06250.001 PMID:25786068

  9. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.

  10. A stereo vision-based obstacle detection system in vehicles

    NASA Astrophysics Data System (ADS)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  11. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing

    NASA Astrophysics Data System (ADS)

    Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò; Vavassori, Paolo; van Dijken, Sebastiaan

    2018-05-01

    We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger.

  12. A sun-tracking environmental chamber for the outdoor quantification of CPV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiman, David, E-mail: faiman@bgu.ac.il; Melnichak, Vladimir, E-mail: faiman@bgu.ac.il; Bokobza, Dov, E-mail: faiman@bgu.ac.il

    2014-09-26

    The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

  13. FECAL POLLUTION, PUBLIC HEALTH AND MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Microbial source tracking (MST) seeks to provide information about sources of fecal water contamination. Without knowledge of sources, it is difficult to accurately model risk assessments, choose effective remediation strategies, or bring chronically polluted waters into complian...

  14. Maximizing mitigation benefits: research to support a mitigation cost framework-final report.

    DOT National Transportation Integrated Search

    2016-08-01

    Tracking environmental costs in the project development process has been a challenging task for state : departments of transportation (DOTs). Previous research identified the need to accurately track and : subsequently estimate project costs resultin...

  15. U27 : real-time commercial vehicle safety & security monitoring final report.

    DOT National Transportation Integrated Search

    2012-12-01

    Accurate real-time vehicle tracking has a wide range of applications including fleet management, drug/speed/law enforcement, transportation planning, traffic safety, air quality, electronic tolling, and national security. While many alternative track...

  16. A comparison of wearable fitness devices.

    PubMed

    Kaewkannate, Kanitthika; Kim, Soochan

    2016-05-24

    Wearable trackers can help motivate you during workouts and provide information about your daily routine or fitness in combination with your smartphone without requiring potentially disruptive manual calculations or records. This paper summarizes and compares wearable fitness devices, also called "fitness trackers" or "activity trackers." These devices are becoming increasingly popular in personal healthcare, motivating people to exercise more throughout the day without the need for lifestyle changes. The various choices in the market for wearable devices are also increasing, with customers searching for products that best suit their personal needs. Further, using a wearable device or fitness tracker can help people reach a fitness goal or finish line. Generally, companies display advertising for these kinds of products and depict them as beneficial, user friendly, and accurate. However, there are no objective research results to prove the veracity of their words. This research features subjective and objective experimental results, which reveal that some devices perform better than others. The four most popular wristband style wearable devices currently on the market (Withings Pulse, Misfit Shine, Jawbone Up24, and Fitbit Flex) are selected and compared. The accuracy of fitness tracking is one of the key components for fitness tracking, and some devices perform better than others. This research shows subjective and objective experimental results that are used to compare the accuracy of four wearable devices in conjunction with user friendliness and satisfaction of 7 real users. In addition, this research matches the opinions between reviewers on an Internet site and those of subjects when using the device. Withings Pulse is the most friendly and satisfactory from the users' viewpoint. It is the most accurate and repeatable for step and distance tracking, which is the most important measurement of fitness tracking, followed by Fitbit Flex, Jawbone Up24, and Misfit Shine. In contrast, Misfit Shine has the highest score for design and hardware, which is also appreciated by users. From the results of experiments on four wearable devices, it is determined that the most acceptable in terms of price and satisfaction levels is the Withings Pulse, followed by the Fitbit Flex, Jawbone Up24, and Misfit Shine.

  17. Accurate estimation of influenza epidemics using Google search data via ARGO

    PubMed Central

    Yang, Shihao; Santillana, Mauricio; Kou, S. C.

    2015-01-01

    Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions. PMID:26553980

  18. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  19. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  20. Improving GOCE cross-track gravity gradients

    NASA Astrophysics Data System (ADS)

    Siemes, Christian

    2018-01-01

    The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.

  1. Airborne target tracking algorithm against oppressive decoys in infrared imagery

    NASA Astrophysics Data System (ADS)

    Sun, Xiechang; Zhang, Tianxu

    2009-10-01

    This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.

  2. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  3. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  4. Actively learning to distinguish suspicious from innocuous anomalies in a batch of vehicle tracks

    NASA Astrophysics Data System (ADS)

    Qiu, Zhicong; Miller, David J.; Stieber, Brian; Fair, Tim

    2014-06-01

    We investigate the problem of actively learning to distinguish between two sets of anomalous vehicle tracks, innocuous" and suspicious", starting from scratch, without any initial examples of suspicious" and with no prior knowledge of what an operator would deem suspicious. This two-class problem is challenging because it is a priori unknown which track features may characterize the suspicious class. Furthermore, there is inherent imbalance in the sizes of the labeled innocuous" and suspicious" sets, even after some suspicious examples are identified. We present a comprehensive solution wherein a classifier learns to discriminate suspicious from innocuous based on derived p-value track features. Through active learning, our classifier thus learns the types of anomalies on which to base its discrimination. Our solution encompasses: i) judicious choice of kinematic p-value based features conditioned on the road of origin, along with more explicit features that capture unique vehicle behavior (e.g. U-turns); ii) novel semi-supervised learning that exploits information in the unlabeled (test batch) tracks, and iii) evaluation of several classifier models (logistic regression, SVMs). We find that two active labeling streams are necessary in practice in order to have efficient classifier learning while also forwarding (for labeling) the most actionable tracks. Experiments on wide-area motion imagery (WAMI) tracks, extracted via a system developed by Toyon Research Corporation, demonstrate the strong ROC AUC performance of our system, with sparing use of operator-based active labeling.

  5. Tracking multiple surgical instruments in a near-infrared optical system.

    PubMed

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Wang, Zhigang

    2016-12-01

    Surgical navigation systems can assist doctors in performing more precise and more efficient surgical procedures to avoid various accidents. The near-infrared optical system (NOS) is an important component of surgical navigation systems. However, several surgical instruments are used during surgery, and effectively tracking all of them is challenging. A stereo matching algorithm using two intersecting lines and surgical instrument codes is proposed in this paper. In our NOS, the markers on the surgical instruments can be captured by two near-infrared cameras. After automatically searching and extracting their subpixel coordinates in the left and right images, the coordinates of the real and pseudo markers are determined by the two intersecting lines. Finally, the pseudo markers are removed to achieve accurate stereo matching by summing the codes for the distances between a specific marker with the other two markers on the surgical instrument. Experimental results show that the markers on the different surgical instruments can be automatically and accurately recognized. The NOS can accurately track multiple surgical instruments.

  6. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  7. Goddard earth models (5 and 6)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Wagner, C. A.; Richardson, J. A.; Brownd, J. E.

    1974-01-01

    A comprehensive earth model has been developed that consists of two complementary gravitational fields and center-of-mass locations for 134 tracking stations on the earth's surface. One gravitational field is derived solely from satellite tracking data. This data on 27 satellite orbits is the most extensive used for such a solution. A second solution uses this data with 13,400 simultaneous events from satellite camera observations and surface gravimetric anomalies. The satellite-only solution as a whole is accurate to about 4.5 milligals as judged by the surface gravity data. The majority of the station coordinates are accurate to better than 10 meters as judged by independent results from geodetic surveys and by Doppler tracking of both distant space probes and near earth orbits.

  8. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    NASA Astrophysics Data System (ADS)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  9. Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework

    NASA Astrophysics Data System (ADS)

    Jain, Ameet K.; Taylor, Russell H.

    2004-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). Although US has many advantages over others, tracked US for Orthopedic Surgery has been researched by only a few authors. An important factor limiting the accuracy of tracked US to CT registration (1-3mm) has been the difficulty in determining the exact location of the bone surfaces in the US images (the response could range from 2-4mm). Thus it is crucial to localize the bone surface accurately from these images. Moreover conventional US imaging systems are known to have certain inherent inaccuracies, mainly due to the fact that the imaging model is assumed planar. This creates the need to develop a bone segmentation framework that can couple information from various post-processed spatially separated US images (of the bone) to enhance the localization of the bone surface. In this paper we discuss the various reasons that cause inherent uncertainties in the bone surface localization (in B-mode US images) and suggest methods to account for these. We also develop a method for automatic bone surface detection. To do so, we account objectively for the high-level understanding of the various bone surface features visible in typical US images. A combination of these features would finally decide the surface position. We use a Bayesian probabilistic framework, which strikes a fair balance between high level understanding from features in an image and the low level number crunching of standard image processing techniques. It also provides us with a mathematical approach that facilitates combining multiple images to augment the bone surface estimate.

  10. Stereoscopic Feature Tracking System for Retrieving Velocity of Surface Waters

    NASA Astrophysics Data System (ADS)

    Zuniga Zamalloa, C. C.; Landry, B. J.

    2017-12-01

    The present work is concerned with the surface velocity retrieval of flows using a stereoscopic setup and finding the correspondence in the images via feature tracking (FT). The feature tracking provides a key benefit of substantially reducing the level of user input. In contrast to other commonly used methods (e.g., normalized cross-correlation), FT does not require the user to prescribe interrogation window sizes and removes the need for masking when specularities are present. The results of the current FT methodology are comparable to those obtained via Large Scale Particle Image Velocimetry while requiring little to no user input which allowed for rapid, automated processing of imagery.

  11. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  12. Robust feature tracking for endoscopic pose estimation and structure recovery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.

    2013-03-01

    Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.

  13. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    NASA Astrophysics Data System (ADS)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  14. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    NASA Astrophysics Data System (ADS)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  15. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  16. Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy.

    PubMed

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W

    2010-11-15

    In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Effectiveness of an automatic tracking software in underwater motion analysis.

    PubMed

    Magalhaes, Fabrício A; Sawacha, Zimi; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio; Fantozzi, Silvia

    2013-01-01

    Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software.

  18. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  19. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  20. Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.

    PubMed

    Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang

    2017-12-01

    Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.

  1. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    PubMed

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.

  2. The track structure in condensed matter

    NASA Astrophysics Data System (ADS)

    Kaplan, I. G.

    1995-11-01

    The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.

  3. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less

  4. Proposed patient motion monitoring system using feature point tracking with a web camera.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Matsuura, Takaaki; Yamada, Kiyoshi; Nagata, Yasushi

    2017-12-01

    Patient motion monitoring systems play an important role in providing accurate treatment dose delivery. We propose a system that utilizes a web camera (frame rate up to 30 fps, maximum resolution of 640 × 480 pixels) and an in-house image processing software (developed using Microsoft Visual C++ and OpenCV). This system is simple to use and convenient to set up. The pyramidal Lucas-Kanade method was applied to calculate motions for each feature point by analysing two consecutive frames. The image processing software employs a color scheme where the defined feature points are blue under stable (no movement) conditions and turn red along with a warning message and an audio signal (beeping alarm) for large patient movements. The initial position of the marker was used by the program to determine the marker positions in all the frames. The software generates a text file that contains the calculated motion for each frame and saves it as a compressed audio video interleave (AVI) file. We proposed a patient motion monitoring system using a web camera, which is simple and convenient to set up, to increase the safety of treatment delivery.

  5. Computing and visualizing time-varying merge trees for high-dimensional data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2017-06-03

    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

  6. A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry.

    PubMed

    Colonnier, Fabien; Manecy, Augustin; Juston, Raphaël; Mallot, Hanspeter; Leitel, Robert; Floreano, Dario; Viollet, Stéphane

    2015-02-25

    In this study, a miniature artificial compound eye (15 mm in diameter) called the curved artificial compound eye (CurvACE) was endowed for the first time with hyperacuity, using similar micro-movements to those occurring in the fly's compound eye. A periodic micro-scanning movement of only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold greater resolution than that imposed by the interommatidial angle. In this study, we developed a new algorithm merging the output of 35 local processing units consisting of adjacent pairs of artificial ommatidia. The local measurements performed by each pair are processed in parallel with very few computational resources, which makes it possible to reach a high refresh rate of 500 Hz. An aerial robotic platform with two degrees of freedom equipped with the active CurvACE placed over naturally textured panels was able to assess its linear position accurately with respect to the environment thanks to its efficient gaze stabilization system. The algorithm was found to perform robustly at different light conditions as well as distance variations relative to the ground and featured small closed-loop positioning errors of the robot in the range of 45 mm. In addition, three tasks of interest were performed without having to change the algorithm: short-range odometry, visual stabilization, and tracking contrasting objects (hands) moving over a textured background.

  7. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    NASA Astrophysics Data System (ADS)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  8. The Role of Visual Working Memory in Attentive Tracking of Unique Objects

    ERIC Educational Resources Information Center

    Makovski, Tal; Jiang, Yuhong V.

    2009-01-01

    When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…

  9. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  10. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.

    PubMed

    Alatise, Mary B; Hancke, Gerhard P

    2017-09-21

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs).

  11. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter

    PubMed Central

    Hancke, Gerhard P.

    2017-01-01

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs). PMID:28934102

  12. Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.

    PubMed

    Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales

    2017-09-06

    This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.

  13. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  14. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    PubMed

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.

  15. Identifying elemental genomic track types and representing them uniformly

    PubMed Central

    2011-01-01

    Background With the recent advances and availability of various high-throughput sequencing technologies, data on many molecular aspects, such as gene regulation, chromatin dynamics, and the three-dimensional organization of DNA, are rapidly being generated in an increasing number of laboratories. The variation in biological context, and the increasingly dispersed mode of data generation, imply a need for precise, interoperable and flexible representations of genomic features through formats that are easy to parse. A host of alternative formats are currently available and in use, complicating analysis and tool development. The issue of whether and how the multitude of formats reflects varying underlying characteristics of data has to our knowledge not previously been systematically treated. Results We here identify intrinsic distinctions between genomic features, and argue that the distinctions imply that a certain variation in the representation of features as genomic tracks is warranted. Four core informational properties of tracks are discussed: gaps, lengths, values and interconnections. From this we delineate fifteen generic track types. Based on the track type distinctions, we characterize major existing representational formats and find that the track types are not adequately supported by any single format. We also find, in contrast to the XML formats, that none of the existing tabular formats are conveniently extendable to support all track types. We thus propose two unified formats for track data, an improved XML format, BioXSD 1.1, and a new tabular format, GTrack 1.0. Conclusions The defined track types are shown to capture relevant distinctions between genomic annotation tracks, resulting in varying representational needs and analysis possibilities. The proposed formats, GTrack 1.0 and BioXSD 1.1, cater to the identified track distinctions and emphasize preciseness, flexibility and parsing convenience. PMID:22208806

  16. The application of measurement techniques to track flutter testing

    NASA Technical Reports Server (NTRS)

    Roglin, H. R.

    1975-01-01

    The application is discussed of measurement techniques to captive flight flutter tests at the Supersonic Naval Ordnance Research Track (SNORT), U. S. Naval Ordnance Test Station, China Lake, California. The high-speed track, by its ability to prove the validity of design and to accurately determine the actual margin of safety, offers a unique method of flutter testing for the aircraft design engineer.

  17. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  18. Principal axis-based correspondence between multiple cameras for people tracking.

    PubMed

    Hu, Weiming; Hu, Min; Zhou, Xue; Tan, Tieniu; Lou, Jianguang; Maybank, Steve

    2006-04-01

    Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties: 1) Camera calibration is not needed. 2) Accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise. 3) Based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method.

  19. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    PubMed

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  20. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    PubMed Central

    Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827

  1. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, J.L.

    1998-08-11

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications. 10 figs.

  2. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, James L.

    1998-01-01

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications.

  3. Accurate and efficient spin integration for particle accelerators

    DOE PAGES

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...

    2015-02-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less

  4. A generic sun-tracking algorithm for on-axis solar collector in mobile platforms

    NASA Astrophysics Data System (ADS)

    Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han; Ho, Ming-Cheng; Yap, See-Hao; Heng, Chun-Kit; Lee, Jer-Vui; King, Yeong-Jin

    2015-04-01

    This paper proposes a novel dynamic sun-tracking algorithm which allows accurate tracking of the sun for both non-concentrated and concentrated photovoltaic systems located on mobile platforms to maximize solar energy extraction. The proposed algorithm takes not only the date, time, and geographical information, but also the dynamic changes of coordinates of the mobile platforms into account to calculate the sun position angle relative to ideal azimuth-elevation axes in real time using general sun-tracking formulas derived by Chong and Wong. The algorithm acquires data from open-loop sensors, i.e. global position system (GPS) and digital compass, which are readily available in many off-the-shelf portable gadgets, such as smart phone, to instantly capture the dynamic changes of coordinates of mobile platforms. Our experiments found that a highly accurate GPS is not necessary as the coordinate changes of practical mobile platforms are not fast enough to produce significant differences in the calculation of the incident angle. On the contrary, it is critical to accurately identify the quadrant and angle where the mobile platforms are moving toward in real time, which can be resolved by using digital compass. In our implementation, a noise filtering mechanism is found necessary to remove unexpected spikes in the readings of the digital compass to ensure stability in motor actuations and effectiveness in continuous tracking. Filtering mechanisms being studied include simple moving average and linear regression; the results showed that a compound function of simple moving average and linear regression produces a better outcome. Meanwhile, we found that a sampling interval is useful to avoid excessive motor actuations and power consumption while not sacrificing the accuracy of sun-tracking.

  5. On charged particle tracks in cellulose nitrate and Lexan

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.

  6. Integrating Terrestrial Time-Lapse Photography with Laser Scanning to Distinguish the Drivers of Movement at Sólheimajökull, Iceland

    NASA Astrophysics Data System (ADS)

    How, P.; James, M. R.; Wynn, P.

    2014-12-01

    Glacier movement is attributed to a sensitive configuration of driving forces. Here, we present an approach designed to evaluate the drivers of movement at Sólheimajökull, an outlet glacier from the Myrdalsjökull ice cap, Iceland, through combining terrestrial time-lapse photography and laser scanning (TLS). A time-lapse camera (a dSLR with intervalometer and solar-recharged battery power supply) collected hourly data over the summer of 2013. The data are subject to all the difficulties that are usually present in long time-lapse sequences, such as highly variable illumination and visibility conditions, evolving surfaces, and camera instabilities. Feature-tracking software [1] was used to: 1) track regions of static topography (e.g. the skyline) from which camera alignment could be continuously updated throughout the sequence; and 2) track glacial surface features for velocity estimation. Absolute georeferencing of the image sequence was carried out by registering the camera to a TLS survey acquired at the beginning of the monitoring period. A second TLS survey (July 2013) provided an additional 3D surface. By assuming glacial features moved in approximately planimetrically straight lines between the two survey dates, combining the two TLS surfaces with the monoscopic feature tracking allows 3D feature tracks to be derived. Such tracks will enable contributions from different drivers (e.g. surface melting) to be extracted, even in imagery that is acquired not perpendicular to glacier motion. At Sólheimajökull, our aim is to elucidate any volcanic contribution to the observed movement.[1] http://www.lancaster.ac.uk/staff/jamesm/software/pointcatcher.htm

  7. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  8. Application of enteric viruses for fecal pollution source tracking in environmental waters

    EPA Science Inventory

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...

  9. Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors

    PubMed Central

    Everding, Lukas; Conradt, Jörg

    2018-01-01

    In order to safely navigate and orient in their local surroundings autonomous systems need to rapidly extract and persistently track visual features from the environment. While there are many algorithms tackling those tasks for traditional frame-based cameras, these have to deal with the fact that conventional cameras sample their environment with a fixed frequency. Most prominently, the same features have to be found in consecutive frames and corresponding features then need to be matched using elaborate techniques as any information between the two frames is lost. We introduce a novel method to detect and track line structures in data streams of event-based silicon retinae [also known as dynamic vision sensors (DVS)]. In contrast to conventional cameras, these biologically inspired sensors generate a quasicontinuous stream of vision information analogous to the information stream created by the ganglion cells in mammal retinae. All pixels of DVS operate asynchronously without a periodic sampling rate and emit a so-called DVS address event as soon as they perceive a luminance change exceeding an adjustable threshold. We use the high temporal resolution achieved by the DVS to track features continuously through time instead of only at fixed points in time. The focus of this work lies on tracking lines in a mostly static environment which is observed by a moving camera, a typical setting in mobile robotics. Since DVS events are mostly generated at object boundaries and edges which in man-made environments often form lines they were chosen as feature to track. Our method is based on detecting planes of DVS address events in x-y-t-space and tracing these planes through time. It is robust against noise and runs in real time on a standard computer, hence it is suitable for low latency robotics. The efficacy and performance are evaluated on real-world data sets which show artificial structures in an office-building using event data for tracking and frame data for ground-truth estimation from a DAVIS240C sensor. PMID:29515386

  10. Model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald

    1992-01-01

    This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.

  11. Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.

    2016-01-01

    Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800

  12. Electromagnetic tracking for abdominal interventions in computer aided surgery

    PubMed Central

    Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin

    2014-01-01

    Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506

  13. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

  14. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    NASA Technical Reports Server (NTRS)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  15. Multi-ball and one-ball geolocation and location verification

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.; Townsend, J. L.

    2017-05-01

    We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. Several fundamental problems are addressed, including demodulation of AIS/GMSK signals, verification of the emitter location, accurate frequency and delay estimation and identification of pulse trains from the same emitter. In particular, we present several new correlation methods, including cross-cross correlation that greatly improves correlation accuracy over conventional methods and cross- TDOA and cross-FDOA functions that make it possible to estimate time and frequency delay without the need of computing a two dimensional cross-ambiguity surface. By isolating pulses from the same emitter and accurately tracking the received signal frequency, we are able to accurately estimate the emitter location from the received Doppler characteristics.

  16. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility.

    PubMed

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-05-29

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  -0.27 and -0.71 m · s -1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  -0.12 versus -0.26 m · s -1 ). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  17. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  18. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  19. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui

    2017-02-01

    An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.

  20. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  1. SLATE: scanning laser automatic threat extraction

    NASA Astrophysics Data System (ADS)

    Clark, David J.; Prickett, Shaun L.; Napier, Ashley A.; Mellor, Matthew P.

    2016-10-01

    SLATE is an Autonomous Sensor Module (ASM) designed to work with the SAPIENT system providing accurate location tracking and classifications of targets that pass through its field of view. The concept behind the SLATE ASM is to produce a sensor module that provides a complementary view of the world to the camera-based systems that are usually used for wide area surveillance. Cameras provide a hi-fidelity, human understandable view of the world with which tracking and identification algorithms can be used. Unfortunately, positioning and tracking in a 3D environment is difficult to implement robustly, making location-based threat assessment challenging. SLATE uses a Scanning Laser Rangefinder (SLR) that provides precise (<1cm) positions, sizes, shapes and velocities of targets within its field-of-view (FoV). In this paper we will discuss the development of the SLATE ASM including the techniques used to track and classify detections that move through the field of view of the sensor providing the accurate tracking information to the SAPIENT system. SLATE's ability to locate targets precisely allows subtle boundary-crossing judgements, e.g. on which side of a chain-link fence a target is. SLATE's ability to track targets in 3D throughout its FoV enables behavior classification such as running and walking which can provide an indication of intent and help reduce false alarm rates.

  2. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  3. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…

  4. Utility of optical facial feature and arm movement tracking systems to enable text communication in critically ill patients who cannot otherwise communicate.

    PubMed

    Muthuswamy, M B; Thomas, B N; Williams, D; Dingley, J

    2014-09-01

    Patients recovering from critical illness especially those with critical illness related neuropathy, myopathy, or burns to face, arms and hands are often unable to communicate by writing, speech (due to tracheostomy) or lip reading. This may frustrate both patient and staff. Two low cost movement tracking systems based around a laptop webcam and a laser/optical gaming system sensor were utilised as control inputs for on-screen text creation software and both were evaluated as communication tools in volunteers. Two methods were used to control an on-screen cursor to create short sentences via an on-screen keyboard: (i) webcam-based facial feature tracking, (ii) arm movement tracking by laser/camera gaming sensor and modified software. 16 volunteers with simulated tracheostomy and bandaged arms to simulate communication via gross movements of a burned limb, communicated 3 standard messages using each system (total 48 per system) in random sequence. Ten and 13 minor typographical errors occurred with each system respectively, however all messages were comprehensible. Speed of sentence formation ranged from 58 to 120s with the facial feature tracking system, and 60-160s with the arm movement tracking system. The average speed of sentence formation was 81s (range 58-120) and 104s (range 60-160) for facial feature and arm tracking systems respectively, (P<0.001, 2-tailed independent sample t-test). Both devices may be potentially useful communication aids in patients in general and burns critical care units who cannot communicate by conventional means, due to the nature of their injuries. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  5. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  6. Velocities along Byrd Glacier, East Antarctica, derived from Automatic Feature Tracking

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Hamilton, G. S.

    2003-12-01

    Automatic feature tracking techniques are applied to recently acquired ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery in order to determine the velocity field of Byrd Glacier, East Antarctica. The software IMCORR tracks the displacement of surface features (crevasses, drift mounds) in time sequential images, to produce the velocity field. Due to its high resolution, ASTER imagery is ideally suited for detecting small features changes. The produced result is a dense array of velocity vectors, which allows more thorough characterization of glacier dynamics. Byrd Glacier drains approximately 20.5 km3 of ice into the Ross Ice Shelf every year. Previous studies have determined ice velocities for Byrd Glacier by using photogrammetry, field measurements and manual feature tracking. The most recent velocity data is from 1986 and, as evident in the West Antarctic ice streams, substantial changes in velocity can occur on decadal time scales. The application of ASTER-based velocities fills this time lapse, and increased temporal resolution allows for a more complete analysis of Byrd Glacier. The ASTER-derived ice velocities are used in updating mass balance and force budget calculations to assess the stability of Byrd Glacier. Ice thickness information from BEDMAP, surface slopes from the OSUDEM and a compilation of accumulation rates are used to complete the calculations.

  7. Automated dynamic feature tracking of RSLs on the Martian surface through HiRISE super-resolution restoration and 3D reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.

    2017-09-01

    In this paper, we demonstrate novel Super-resolution restoration and 3D reconstruction tools developed within the EU FP7 projects and their applications to advanced dynamic feature tracking through HiRISE repeat stereo. We show an example with one of the RSL sites in the Palikir Crater took 8 repeat-pass 25cm HiRISE images from which a 5cm RSL-free SRR image is generated using GPT-SRR. Together with repeat 3D modelling of the same area, it allows us to overlay tracked dynamic features onto the reconstructed "original" surface, providing a much more comprehensive interpretation of the surface formation processes in 3D.

  8. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  9. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  10. Modeling Individual Cyclic Variation in Human Behavior.

    PubMed

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-04-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.

  11. Modeling Individual Cyclic Variation in Human Behavior

    PubMed Central

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-01-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets—of human menstrual cycle symptoms and physical activity tracking data—yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model. PMID:29780976

  12. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling

    NASA Astrophysics Data System (ADS)

    Kapania, Nitin R.; Gerdes, J. Christian

    2015-12-01

    This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.

  13. Feasibility of tracked electrodes for use in epilepsy surgery

    NASA Astrophysics Data System (ADS)

    Holmes, David; Brinkmann, Benjamin; Hanson, Dennis; Worrell, Gregory; Robb, Richard; Holton, Leslie

    2016-03-01

    Subdural electrode recording is commonly used to evaluate intractable epilepsy. In order to accurately record electrical activity responsible for seizure, electrodes must be positioned precisely near targets of interest, often indicated preoperatively through imaging studies. To achieve accurate placement, a large craniotomy is used to expose the brain surface. With the intent of limiting the size and improving the location of craniotomy for electrode placement, we examined magnetic tracking for localization of electrode strips. Commercially available electrode strips were attached to specialized magnetic tracking sensors developed by Medtronic plc. In a rigid phantom we evaluated the strips to determine the accuracy of electrode placement on targets. We further conducted an animal study to evaluate the impact of magnetic field interference during data collection. The measured distance between the physical fiducial and lead coil of the electrode strip was 1.32 +/- 1.03mm in the phantom experiments. The tracking system induces a very strong signal in the electrodes in the Very Low Frequency, an International Telecommunication Union (ITU) designated frequency band, from 3 kHz to 30 kHz. The results of the animal experiment demonstrated both tracking feasibility and data collection.

  14. An object detection and tracking system for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao

    2017-10-01

    Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.

  15. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  16. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues

    PubMed Central

    Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2014-01-01

    When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601

  17. Predicting consumer behavior with Web search.

    PubMed

    Goel, Sharad; Hofman, Jake M; Lahaie, Sébastien; Pennock, David M; Watts, Duncan J

    2010-10-12

    Recent work has demonstrated that Web search volume can "predict the present," meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future.

  18. Structure Modulates Similarity-Based Interference in Sluicing: An Eye Tracking study

    PubMed Central

    Harris, Jesse A.

    2015-01-01

    In cue-based content-addressable approaches to memory, a target and its competitors are retrieved in parallel from memory via a fast, associative cue-matching procedure under a severely limited focus of attention. Such a parallel matching procedure could in principle ignore the serial order or hierarchical structure characteristic of linguistic relations. I present an eye tracking while reading experiment that investigates whether the sentential position of a potential antecedent modulates the strength of similarity-based interference, a well-studied effect in which increased similarity in features between a target and its competitors results in slower and less accurate retrieval overall. The manipulation trades on an independently established Locality bias in sluiced structures to associate a wh-remnant (which ones) in clausal ellipsis with the most local correlate (some wines), as in The tourists enjoyed some wines, but I don't know which ones. The findings generally support cue-based parsing models of sentence processing that are subject to similarity-based interference in retrieval, and provide additional support to the growing body of evidence that retrieval is sensitive to both the structural position of a target antecedent and its competitors, and the specificity or diagnosticity of retrieval cues. PMID:26733893

  19. Predicting consumer behavior with Web search

    PubMed Central

    Goel, Sharad; Hofman, Jake M.; Lahaie, Sébastien; Pennock, David M.; Watts, Duncan J.

    2010-01-01

    Recent work has demonstrated that Web search volume can “predict the present,” meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future. PMID:20876140

  20. Real-time acquisition and tracking system with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.

    1994-07-01

    The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.

  1. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signaturesmore » in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.« less

  2. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    DTIC Science & Technology

    2014-09-01

    based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  3. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.

  4. Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model

    DOE PAGES

    Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...

    2016-11-09

    Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less

  5. Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans

    Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less

  6. Determination of subthalamic nucleus location by quantitative analysis of despiked background neural activity from microelectrode recordings obtained during deep brain stimulation surgery.

    PubMed

    Danish, Shabbar F; Baltuch, Gordon H; Jaggi, Jurg L; Wong, Stephen

    2008-04-01

    Microelectrode recording during deep brain stimulation surgery is a useful adjunct for subthalamic nucleus (STN) localization. We hypothesize that information in the nonspike background activity can help identify STN boundaries. We present results from a novel quantitative analysis that accomplishes this goal. Thirteen consecutive microelectrode recordings were retrospectively analyzed. Spikes were removed from the recordings with an automated algorithm. The remaining "despiked" signals were converted via root mean square amplitude and curve length calculations into "feature profile" time series. Subthalamic nucleus boundaries determined by inspection, based on sustained deviations from baseline for each feature profile, were compared against those determined intraoperatively by the clinical neurophysiologist. Feature profile activity within STN exhibited a sustained rise in 10 of 13 tracks (77%). The sensitivity of STN entry was 60% and 90% for curve length and root mean square amplitude, respectively, when agreement within 0.5 mm of the neurophysiologist's prediction was used. Sensitivities were 70% and 100% for 1 mm accuracy. Exit point sensitivities were 80% and 90% for both features within 0.5 mm and 1.0 mm, respectively. Reproducible activity patterns in deep brain stimulation microelectrode recordings can allow accurate identification of STN boundaries. Quantitative analyses of this type may provide useful adjunctive information for electrode placement in deep brain stimulation surgery.

  7. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  8. An improved KCF tracking algorithm based on multi-feature and multi-scale

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye

    2018-02-01

    The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.

  9. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    PubMed

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-05

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.

  10. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  11. 41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What features must our finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION ADMINISTRATIVE PROGRAMS 192-MAIL...

  12. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate tomore » within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)« less

  13. SVGenes: a library for rendering genomic features in scalable vector graphic format.

    PubMed

    Etherington, Graham J; MacLean, Daniel

    2013-08-01

    Drawing genomic features in attractive and informative ways is a key task in visualization of genomics data. Scalable Vector Graphics (SVG) format is a modern and flexible open standard that provides advanced features including modular graphic design, advanced web interactivity and animation within a suitable client. SVGs do not suffer from loss of image quality on re-scaling and provide the ability to edit individual elements of a graphic on the whole object level independent of the whole image. These features make SVG a potentially useful format for the preparation of publication quality figures including genomic objects such as genes or sequencing coverage and for web applications that require rich user-interaction with the graphical elements. SVGenes is a Ruby-language library that uses SVG primitives to render typical genomic glyphs through a simple and flexible Ruby interface. The library implements a simple Page object that spaces and contains horizontal Track objects that in turn style, colour and positions features within them. Tracks are the level at which visual information is supplied providing the full styling capability of the SVG standard. Genomic entities like genes, transcripts and histograms are modelled in Glyph objects that are attached to a track and take advantage of SVG primitives to render the genomic features in a track as any of a selection of defined glyphs. The feature model within SVGenes is simple but flexible and not dependent on particular existing gene feature formats meaning graphics for any existing datasets can easily be created without need for conversion. The library is provided as a Ruby Gem from https://rubygems.org/gems/bio-svgenes under the MIT license, and open source code is available at https://github.com/danmaclean/bioruby-svgenes also under the MIT License. dan.maclean@tsl.ac.uk.

  14. Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations

    NASA Astrophysics Data System (ADS)

    Lapuebla-Ferri, Andrés; Cegoñino-Banzo, José; Jiménez-Mocholí, Antonio-José; Pérez del Palomar, Amaya

    2017-11-01

    In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as accurately as possible. These images are generated using a single or several imaging techniques. As x-ray-based mammography is widely used, a breast lesion is located in the same plane of the image (mammogram), but tracking it across mammograms corresponding to different views is a challenging task for medical physicians. Accordingly, simulation tools and methodologies that use patient-specific numerical models can facilitate the task of fusing information from different images. Additionally, these tools need to be as straightforward as possible to facilitate their translation to the clinical area. This paper presents a patient-specific, finite-element-based and semi-automated simulation methodology to track breast lesions across mammograms. A realistic three-dimensional computer model of a patient’s breast was generated from magnetic resonance imaging to simulate mammographic compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-dimensional rigid-body transformations were applied, and the error distance measured between the centroids of the tumors previously located on each image was 3.84 mm and 2.41 mm for CC and MLO compression, respectively. Considering that the scope of this work is to conceive a methodology translatable to clinical practice, the results indicate that it could be helpful in supporting the tracking of breast lesions.

  15. Automatically tracking neurons in a moving and deforming brain

    PubMed Central

    Nguyen, Jeffrey P.; Linder, Ashley N.; Plummer, George S.; Shaevitz, Joshua W.

    2017-01-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches. PMID:28545068

  16. Automatically tracking neurons in a moving and deforming brain.

    PubMed

    Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M

    2017-05-01

    Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  17. Proton radiography and fluoroscopy of lung tumors: A Monte Carlo study using patient-specific 4DCT phantoms

    PubMed Central

    Han, Bin; Xu, X. George; Chen, George T. Y.

    2011-01-01

    Purpose: Monte Carlo methods are used to simulate and optimize a time-resolved proton range telescope (TRRT) in localization of intrafractional and interfractional motions of lung tumor and in quantification of proton range variations. Methods: The Monte Carlo N-Particle eXtended (MCNPX) code with a particle tracking feature was employed to evaluate the TRRT performance, especially in visualizing and quantifying proton range variations during respiration. Protons of 230 MeV were tracked one by one as they pass through position detectors, patient 4DCT phantom, and finally scintillator detectors that measured residual ranges. The energy response of the scintillator telescope was investigated. Mass density and elemental composition of tissues were defined for 4DCT data. Results: Proton water equivalent length (WEL) was deduced by a reconstruction algorithm that incorporates linear proton track and lateral spatial discrimination to improve the image quality. 4DCT data for three patients were used to visualize and measure tumor motion and WEL variations. The tumor trajectories extracted from the WEL map were found to be within ∼1 mm agreement with direct 4DCT measurement. Quantitative WEL variation studies showed that the proton radiograph is a good representation of WEL changes from entrance to distal of the target. Conclusions:MCNPX simulation results showed that TRRT can accurately track the motion of the tumor and detect the WEL variations. Image quality was optimized by choosing proton energy, testing parameters of image reconstruction algorithm, and comparing to ground truth 4DCT. The future study will demonstrate the feasibility of using the time resolved proton radiography as an imaging tool for proton treatments of lung tumors. PMID:21626923

  18. Robust infrared targets tracking with covariance matrix representation

    NASA Astrophysics Data System (ADS)

    Cheng, Jian

    2009-07-01

    Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.

  19. Convolutional networks for vehicle track segmentation

    NASA Astrophysics Data System (ADS)

    Quach, Tu-Thach

    2017-10-01

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple and fast models to label track pixels. These models, however, are unable to capture natural track features, such as continuity and parallelism. More powerful but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3×3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate in low power and have limited training data. As a result, we aim for small and efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our six-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.

  20. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  1. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  2. Restoring integrity--A grounded theory of coping with a fast track surgery programme.

    PubMed

    Jørgensen, Lene Bastrup; Fridlund, Bengt

    2016-01-01

    The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. The study design used classical grounded theory. The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients' main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme.

  3. Shearlet-based edge detection: flame fronts and tidal flats

    NASA Astrophysics Data System (ADS)

    King, Emily J.; Reisenhofer, Rafael; Kiefer, Johannes; Lim, Wang-Q.; Li, Zhen; Heygster, Georg

    2015-09-01

    Shearlets are wavelet-like systems which are better suited for handling geometric features in multi-dimensional data than traditional wavelets. A novel method for edge and line detection which is in the spirit of phase congruency but is based on a complex shearlet transform will be presented. This approach to detection yields an approximate tangent direction of detected discontinuities as a byproduct of the computation, which then yields local curvature estimates. Two applications of the edge detection method will be discussed. First, the tracking and classification of flame fronts is a critical component of research in technical thermodynamics. Quite often, the flame fronts are transient or weak and the images are noisy. The standard methods used in the field for the detection of flame fronts do not handle such data well. Fortunately, using the shearlet-based edge measure yields good results as well as an accurate approximation of local curvature. Furthermore, a modification of the method will yield line detection, which is important for certain imaging modalities. Second, the Wadden tidal flats are a biodiverse region along the North Sea coast. One approach to surveying the delicate region and tracking the topographical changes is to use pre-existing Synthetic Aperture Radar (SAR) images. Unfortunately, SAR data suffers from multiplicative noise as well as sensitivity to environmental factors. The first large-scale mapping project of that type showed good results but only with a tremendous amount of manual interaction because there are many edges in the data which are not boundaries of the tidal flats but are edges of features like fields or islands. Preliminary results will be presented.

  4. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  5. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  6. Multiple objects tracking in fluorescence microscopy.

    PubMed

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  7. Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking

    PubMed Central

    Qu, Shiru

    2016-01-01

    Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710

  8. Hue distinctiveness overrides category in determining performance in multiple object tracking.

    PubMed

    Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming

    2018-02-01

    The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.

  9. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  10. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    NASA Astrophysics Data System (ADS)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  12. An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio

    2008-07-01

    Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.

  13. Phantom study and accuracy evaluation of an image-to-world registration approach used with electro-magnetic tracking system for neurosurgery

    NASA Astrophysics Data System (ADS)

    Li, Senhu; Sarment, David

    2015-12-01

    Minimally invasive neurosurgery needs intraoperative imaging updates and high efficient image guide system to facilitate the procedure. An automatic image guided system utilized with a compact and mobile intraoperative CT imager was introduced in this work. A tracking frame that can be easily attached onto the commercially available skull clamp was designed. With known geometry of fiducial and tracking sensor arranged on this rigid frame that was fabricated through high precision 3D printing, not only was an accurate, fully automatic registration method developed in a simple and less-costly approach, but also it helped in estimating the errors from fiducial localization in image space through image processing, and in patient space through the calibration of tracking frame. Our phantom study shows the fiducial registration error as 0.348+/-0.028mm, comparing the manual registration error as 1.976+/-0.778mm. The system in this study provided a robust and accurate image-to-patient registration without interruption of routine surgical workflow and any user interactions involved through the neurosurgery.

  14. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  15. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Faria, Faiza Afroz; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Sensale-Rodriguez, Berardi; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2017-10-01

    For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs), the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  16. USA Track & Field Coaching Manual. USA Track & Field.

    ERIC Educational Resources Information Center

    USA Track and Field, Inc., Indianapolis, IN.

    This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…

  17. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, A; Bednarz, B

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localizedmore » block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA190298.« less

  18. Bayesian approach to analyzing holograms of colloidal particles.

    PubMed

    Dimiduk, Thomas G; Manoharan, Vinothan N

    2016-10-17

    We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.

  19. Inter-operative trajectory registration for endoluminal video synchronization: application to biopsy site re-localization.

    PubMed

    Vemuri, Anant Suraj; Nicolau, Stephane A; Ayache, Nicholas; Marescaux, Jacques; Soler, Luc

    2013-01-01

    The screening of oesophageal adenocarcinoma involves obtaining biopsies at different regions along the oesophagus. The localization and tracking of these biopsy sites inter-operatively poses a significant challenge for providing targeted treatments. This paper presents a novel framework for providing a guided navigation to the gastro-intestinal specialist for accurate re-positioning of the endoscope at previously targeted sites. Firstly, we explain our approach for the application of electromagnetic tracking in acheiving this objective. Then, we show on three in-vivo porcine interventions that our system can provide accurate guidance information, which was qualitatively evaluated by five experts.

  20. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    NASA Astrophysics Data System (ADS)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of the global rotational state of the target. The results of the computer simulations showed a good robustness of the method and its potential applicability for general motion conditions of the target.

  1. Modeling and optimization of a time-resolved proton radiographic imaging system for proton cancer treatment

    NASA Astrophysics Data System (ADS)

    Han, Bin

    This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.

  2. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less

  3. Impact of TRMM and SSM/I Rainfall Assimilation on Global Analysis and QPF

    NASA Technical Reports Server (NTRS)

    Hou, Arthur; Zhang, Sara; Reale, Oreste

    2002-01-01

    Evaluation of QPF skills requires quantitatively accurate precipitation analyses. We show that assimilation of surface rain rates derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) improves quantitative precipitation estimates (QPE) and many aspects of global analyses. Short-range forecasts initialized with analyses with satellite rainfall data generally yield significantly higher QPF threat scores and better storm track predictions. These results were obtained using a variational procedure that minimizes the difference between the observed and model rain rates by correcting the moist physics tendency of the forecast model over a 6h assimilation window. In two case studies of Hurricanes Bonnie and Floyd, synoptic analysis shows that this procedure produces initial conditions with better-defined tropical storm features and stronger precipitation intensity associated with the storm.

  4. VizieR Online Data Catalog: Surface gravity determination in late-type stars (Morel+, 2012)

    NASA Astrophysics Data System (ADS)

    Morel, T.; Miglio, A.

    2012-06-01

    The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsating stars with gravities derived using classical methods (ionization balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05dex (although with a dispersion of up to ~0.2dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys. (1 data file).

  5. MRO High Resolution Imaging Science Experiment (HiRISE): Instrument Development

    NASA Technical Reports Server (NTRS)

    Delamere, Alan; Becker, Ira; Bergstrom, Jim; Burkepile, Jon; Day, Joe; Dorn, David; Gallagher, Dennis; Hamp, Charlie; Lasco, Jeffrey; Meiers, Bill

    2003-01-01

    The primary functional requirement of the HiRISE imager is to allow identification of both predicted and unknown features on the surface of Mars to a much finer resolution and contrast than previously possible. This results in a camera with a very wide swath width, 6km at 300km altitude, and a high signal to noise ratio, >100:1. Generation of terrain maps, 30 cm vertical resolution, from stereo images requires very accurate geometric calibration. The project limitations of mass, cost and schedule make the development challenging. In addition, the spacecraft stability must not be a major limitation to image quality. The nominal orbit for the science phase of the mission is a 3pm orbit of 255 by 320 km with periapsis locked to the south pole. The track velocity is approximately 3,400 m/s.

  6. The research of medical equipment on-line detection system based on Android smartphone

    NASA Astrophysics Data System (ADS)

    Jiang, Junjie; Dong, Xinyu; Zhang, Hongjie; Liu, Mengjun

    2017-06-01

    With the unceasing enhancement of medical level, the expanding scale of medical institutions, medical equipment as an important tool for disease diagnosis, treatment and prevention, used in all levels of medical institutions. The quality and accuracy of the Medical equipment play a key role in the doctor's diagnosis and treatment effect, medical metrology as the important technical foundation is to ensure that the equipment, technology, material components are accurate and the application is safe and reliable. Medical equipment have the feature of variety, large quantity, long using cycle, expensive and multi-site, which bring great difficulty in maintenance, equipment management and verification. Therefore, how to get the medical measurement integrate deeply into the advanced internet technology, information technology and the new measuring method, for real-time monitoring of medical equipment, tracking, positioning, and query is particularly important.

  7. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.

    PubMed

    Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki

    2014-02-01

    This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.

  8. Supporting Collaborative Health Tracking in the Hospital: Patients’ Perspectives

    PubMed Central

    Mishra, Sonali R.; Miller, Andrew D.; Haldar, Shefali; Khelifi, Maher; Eschler, Jordan; Elera, Rashmi G.; Pollack, Ari H; Pratt, Wanda

    2018-01-01

    The hospital setting creates a high-stakes environment where patients’ lives depend on accurate tracking of health data. Despite recent work emphasizing the importance of patients’ engagement in their own health care, less is known about how patients track their health and care in the hospital. Through interviews and design probes, we investigated hospitalized patients’ tracking activity and analyzed our results using the stage-based personal informatics model. We used this model to understand how to support the tracking needs of hospitalized patients at each stage. In this paper, we discuss hospitalized patients’ needs for collaboratively tracking their health with their care team. We suggest future extensions of the stage-based model to accommodate collaborative tracking situations, such as hospitals, where data is collected, analyzed, and acted on by multiple people. Our findings uncover new directions for HCI research and highlight ways to support patients in tracking their care and improving patient safety. PMID:29721554

  9. Track-structure simulations for charged particles.

    PubMed

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  10. Impact analysis of the transponder time delay on radio-tracking observables

    NASA Astrophysics Data System (ADS)

    Bertone, Stefano; Le Poncin-Lafitte, Christophe; Rosenblatt, Pascal; Lainey, Valéry; Marty, Jean-Charles; Angonin, Marie-Christine

    2018-01-01

    Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i . e . the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.

  11. System considerations for detection and tracking of small targets using passive sensors

    NASA Astrophysics Data System (ADS)

    DeBell, David A.

    1991-08-01

    Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.

  12. Edge-following algorithm for tracking geological features

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.

    1977-01-01

    Sequential edge-tracking algorithm employs circular scanning to point permit effective real-time tracking of coastlines and rivers from earth resources satellites. Technique eliminates expensive high-resolution cameras. System might also be adaptable for application in monitoring automated assembly lines, inspecting conveyor belts, or analyzing thermographs, or x ray images.

  13. Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft

    NASA Technical Reports Server (NTRS)

    Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish

    2017-01-01

    In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.

  14. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species

    PubMed Central

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591

  15. Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Howat, I. M.

    2009-12-01

    Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).

  16. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  17. Validity of Physician Self-Report in Tracking Patient Education Objectives.

    ERIC Educational Resources Information Center

    Roter, Debra L.; Russell, Nancy K.

    1994-01-01

    Analysis of interactions among 377 patients and 38 physicians, compared to their self-reports, showed that neither doctors nor patients accurately reported health counseling discussions nor agreed about what was discussed. Smoking and diet discussions were most accurately reported, physical activity, alcohol, and stress discussions less so. (SK)

  18. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    NASA Astrophysics Data System (ADS)

    Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.

    2013-09-01

    With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.

  19. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  20. Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications

    PubMed Central

    Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154

  1. Observing rotation and deformation of sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Samadani, R.; Daida, J. M.; Smith, M. P.; Bracewell, R. N.

    1987-01-01

    The ESA's ERS-1 satellite will carry SARs over the polar regions; an important component in the use of these data is an automated scheme for the extraction of sea ice velocity fields from a sequence of SAR images of the same geographical region. The image pyramid area-correlation hierarchical method is noted to be vulnerable to uncertainties for sea ice rotations greater than 10-15 deg between SAR observations. Rotation-invariant methods can successfully track isolated floes in the marginal ice zone. Hu's (1962) invariant moments are also worth considering as a possible basis for rotation-invariant tracking methods. Feature tracking is inherently robust for tracking rotating sea ice, but is limited when features are floe-lead boundaries. A variety of techniques appears neccessary.

  2. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  3. Towards fast and accurate temperature mapping with proton resonance frequency-based MR thermometry

    PubMed Central

    Yuan, Jing; Mei, Chang-Sheng; Panych, Lawrence P.; McDannold, Nathan J.; Madore, Bruno

    2012-01-01

    The capability to image temperature is a very attractive feature of MRI and has been actively exploited for guiding minimally-invasive thermal therapies. Among many MR-based temperature-sensitive approaches, proton resonance frequency (PRF) thermometry provides the advantage of excellent linearity of signal with temperature over a large temperature range. Furthermore, the PRF shift has been shown to be fairly independent of tissue type and thermal history. For these reasons, PRF method has evolved into the most widely used MR-based thermometry method. In the present paper, the basic principles of PRF-based temperature mapping will be reviewed, along with associated pulse sequence designs. Technical advancements aimed at increasing the imaging speed and/or temperature accuracy of PRF-based thermometry sequences, such as image acceleration, fat suppression, reduced field-of-view imaging, as well as motion tracking and correction, will be discussed. The development of accurate MR thermometry methods applicable to moving organs with non-negligible fat content represents a very challenging goal, but recent developments suggest that this goal may be achieved. If so, MR-guided thermal therapies may be expected to play an increasingly-important therapeutic and palliative role, as a minimally-invasive alternative to surgery. PMID:22773966

  4. Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savas, Omer

    Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, ismore » ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.« less

  5. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  6. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  7. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model.

  8. A Critical Test of Temporal and Spatial Accuracy of the Tobii T60XL Eye Tracker

    ERIC Educational Resources Information Center

    Morgante, James D.; Zolfaghari, Rahman; Johnson, Scott P.

    2012-01-01

    Infant eye tracking is becoming increasingly popular for its presumed precision relative to traditional looking time paradigms and potential to yield new insights into developmental processes. However, there is strong reason to suspect that the temporal and spatial resolution of popular eye tracking systems is not entirely accurate, potentially…

  9. Intelligent Control of Flexible-Joint Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Gallegos, G.

    1997-01-01

    This paper considers the trajectory tracking problem for uncertain rigid-link. flexible.joint manipulators, and presents a new intelligent controller as a solution to this problem. The proposed control strategy is simple and computationally efficient, requires little information concerning either the manipulator or actuator/transmission models and ensures uniform boundedness of all signals and arbitrarily accurate task-space trajectory tracking.

  10. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE PAGES

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...

    2017-07-06

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  11. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  12. Restoring integrity—A grounded theory of coping with a fast track surgery programme

    PubMed Central

    Jørgensen, Lene Bastrup; Fridlund, Bengt

    2016-01-01

    Aims and objectives The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Background Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. Design The study design used classical grounded theory. Methods The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Results Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients’ main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. Conclusion In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme. PMID:26751199

  13. Orbit Determination of the Lunar Reconnaissance Orbiter: Status and Recent Development

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Goossens, S. J.; Nicholas, J. B.; Wagner, R.; Speyerer, E. J.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    The LRO mission has been operated since June 2009, and the productivity of its seven instruments has led to a wealth of new data and scientific results. The high-resolution data acquired benefit from precise orbit determination (OD), alleviating human intervention in their geolocation and co-registration. The initial position knowledge requirement (50 meters) was met with radio tracking data from the primary NASA White Sands ground station supported by USN, after combination with LOLA altimetric crossovers. LRO-specific gravity field solutions were thus determined and allowed radio-only OD to perform adequately, although secular inclination changes required frequent updates. The high-accuracy gravity fields from GRAIL, with <10 km resolution, further improved the radio-only orbit reconstruction quality. However, it is in part limited by the 0.3-0.5 mm/s measurement noise level in the S-band. One-way tracking through Laser Ranging can supplement the tracking available for OD with 28 Hz ranges with 20 cm single-shot precision, but is available only on the nearside. The LOLA altimetric data afford accurate, independent information about LRO's orbit, with a very different geometry that includes coverage over the lunar farside. With LOLA's highest-quality topographic model of the Moon and the Kaguya Terrain Camera stereo-derived elevation model, and their combination named SLDEM2015, another altimetric measurement is now possible to use in OD. This `direct altimetry' tracking type was developed to calibrate the laser boresight pointing of the IceSAT/GLAS altimeter, as differences in geolocated height of profiles with respect to an ocean surface reference geoid were primarily attributed to pointing errors. We extended this technique to short-scale, high-resolution targets, and can now use the SLDEM2015 topographic model as a basemap to match individual LOLA tracks during OD, adjusting both spacecraft position and pointing to minimize the discrepancies. Comparisons with the radio-only orbits through the mission are used to evaluate the benefit of this new tracking data type, which might be used for the OD of future lunar orbiters carrying a laser altimeter. LROC NAC images provide independent accuracy estimation, through the repeated views taken of anthropogenic features for instance.

  14. HoDOr: histogram of differential orientations for rigid landmark tracking in medical images

    NASA Astrophysics Data System (ADS)

    Tiwari, Abhishek; Patwardhan, Kedar Anil

    2018-03-01

    Feature extraction plays a pivotal role in pattern recognition and matching. An ideal feature should be invariant to image transformations such as translation, rotation, scaling, etc. In this work, we present a novel rotation-invariant feature, which is based on Histogram of Oriented Gradients (HOG). We compare performance of the proposed approach with the HOG feature on 2D phantom data, as well as 3D medical imaging data. We have used traditional histogram comparison measures such as Bhattacharyya distance and Normalized Correlation Coefficient (NCC) to assess efficacy of the proposed approach under effects of image rotation. In our experiments, the proposed feature performs 40%, 20%, and 28% better than the HOG feature on phantom (2D), Computed Tomography (CT-3D), and Ultrasound (US-3D) data for image matching, and landmark tracking tasks respectively.

  15. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  16. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    PubMed Central

    Jia, Chaolong; Wei, Lili; Wang, Hanning; Yang, Jiulin

    2014-01-01

    Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described. PMID:25435869

  17. Convolutional networks for vehicle track segmentation

    DOE PAGES

    Quach, Tu-Thach

    2017-08-19

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are unable to capture natural track features such as continuity and parallelism. More powerful, but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3-by-3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate inmore » low power and have limited training data. As a result, we aim for small, efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our 6-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.« less

  18. Convolutional networks for vehicle track segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quach, Tu-Thach

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are unable to capture natural track features such as continuity and parallelism. More powerful, but computationally expensive models can be used in offline settings. We present an approach that uses dilated convolutional networks consisting of a series of 3-by-3 convolutions to segment vehicle tracks. The design of our networks considers the fact that remote sensing applications tend to operate inmore » low power and have limited training data. As a result, we aim for small, efficient networks that can be trained end-to-end to learn natural track features entirely from limited training data. We demonstrate that our 6-layer network, trained on just 90 images, is computationally efficient and improves the F-score on a standard dataset to 0.992, up from 0.959 obtained by the current state-of-the-art method.« less

  19. Robust visual tracking via multiscale deep sparse networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  20. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  1. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  2. Robust visual tracking based on deep convolutional neural networks and kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping

    2018-03-01

    Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.

  3. Comparing capacity value estimation techniques for photovoltaic solar power

    DOE PAGES

    Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul

    2012-09-28

    In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. As a result, we also examine the sensitivity of PV capacity value to themore » inclusion of sun-tracking systems.« less

  4. Range Measurement as Practiced in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Bryant, Scott H.; Kinman, Peter W.

    2007-01-01

    Range measurements are used to improve the trajectory models of spacecraft tracked by the Deep Space Network. The unique challenge of deep-space ranging is that the two-way delay is long, typically many minutes, and the signal-to-noise ratio is small. Accurate measurements are made under these circumstances by means of long correlations that incorporate Doppler rate-aiding. This processing is done with commercial digital signal processors, providing a flexibility in signal design that can accommodate both the traditional sequential ranging signal and pseudonoise range codes. Accurate range determination requires the calibration of the delay within the tracking station. Measurements with a standard deviation of 1 m have been made.

  5. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  6. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  7. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; van Huis, Jasper R.; Dijk, Judith; van Rest, Jeroen H. C.

    2014-10-01

    Proactive detection of incidents is required to decrease the cost of security incidents. This paper focusses on the automatic early detection of suspicious behavior of pickpockets with track-based features in a crowded shopping mall. Our method consists of several steps: pedestrian tracking, feature computation and pickpocket recognition. This is challenging because the environment is crowded, people move freely through areas which cannot be covered by a single camera, because the actual snatch is a subtle action, and because collaboration is complex social behavior. We carried out an experiment with more than 20 validated pickpocket incidents. We used a top-down approach to translate expert knowledge in features and rules, and a bottom-up approach to learn discriminating patterns with a classifier. The classifier was used to separate the pickpockets from normal passers-by who are shopping in the mall. We performed a cross validation to train and evaluate our system. In this paper, we describe our method, identify the most valuable features, and analyze the results that were obtained in the experiment. We estimate the quality of these features and the performance of automatic detection of (collaborating) pickpockets. The results show that many of the pickpockets can be detected at a low false alarm rate.

  8. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  9. An eye tracking study of bloodstain pattern analysts during pattern classification.

    PubMed

    Arthur, R M; Hoogenboom, J; Green, R D; Taylor, M C; de Bruin, K G

    2018-05-01

    Bloodstain pattern analysis (BPA) is the forensic discipline concerned with the classification and interpretation of bloodstains and bloodstain patterns at the crime scene. At present, it is unclear exactly which stain or pattern properties and their associated values are most relevant to analysts when classifying a bloodstain pattern. Eye tracking technology has been widely used to investigate human perception and cognition. Its application to forensics, however, is limited. This is the first study to use eye tracking as a tool for gaining access to the mindset of the bloodstain pattern expert. An eye tracking method was used to follow the gaze of 24 bloodstain pattern analysts during an assigned task of classifying a laboratory-generated test bloodstain pattern. With the aid of an automated image-processing methodology, the properties of selected features of the pattern were quantified leading to the delineation of areas of interest (AOIs). Eye tracking data were collected for each AOI and combined with verbal statements made by analysts after the classification task to determine the critical range of values for relevant diagnostic features. Eye-tracking data indicated that there were four main regions of the pattern that analysts were most interested in. Within each region, individual elements or groups of elements that exhibited features associated with directionality, size, colour and shape appeared to capture the most interest of analysts during the classification task. The study showed that the eye movements of trained bloodstain pattern experts and their verbal descriptions of a pattern were well correlated.

  10. Ocular tracking responses to background motion gated by feature-based attention.

    PubMed

    Souto, David; Kerzel, Dirk

    2014-09-01

    Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset. Copyright © 2014 the American Physiological Society.

  11. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  12. Allicat magnetoresistive head design and performance

    NASA Astrophysics Data System (ADS)

    Hannon, David; Krounbi, Mohamed; Christner, Jodie

    1994-03-01

    The general design features of the magnetoresistive (MR) merged head are described and compared to the earlier MR piggy-back head called Corsair. Examples of static, magnetic, and error rate testing are given. Dual track profiles show the read-narrow feature of the MR head. Stability of the signal with write disturbance shows the effectiveness of the hard-bias longitudinal biasing. Error rate versus off-track position indicates the robustness of the file design.

  13. Features of Heart Rate Variability Capture Regulatory Changes During Kangaroo Care in Preterm Infants.

    PubMed

    Kommers, Deedee R; Joshi, Rohan; van Pul, Carola; Atallah, Louis; Feijs, Loe; Oei, Guid; Bambang Oetomo, Sidarto; Andriessen, Peter

    2017-03-01

    To determine whether heart rate variability (HRV) can serve as a surrogate measure to track regulatory changes during kangaroo care, a period of parental coregulation distinct from regulation within the incubator. Nurses annotated the starting and ending times of kangaroo care for 3 months. The pre-kangaroo care, during-kangaroo care, and post-kangaroo care data were retrieved in infants with at least 10 accurately annotated kangaroo care sessions. Eight HRV features (5 in the time domain and 3 in the frequency domain) were used to visually and statistically compare the pre-kangaroo care and during-kangaroo care periods. Two of these features, capturing the percentage of heart rate decelerations and the extent of heart rate decelerations, were newly developed for preterm infants. A total of 191 kangaroo care sessions were investigated in 11 preterm infants. Despite clinically irrelevant changes in vital signs, 6 of the 8 HRV features (SD of normal-to-normal intervals, root mean square of the SD, percentage of consecutive normal-to-normal intervals that differ by >50 ms, SD of heart rate decelerations, high-frequency power, and low-frequency/high-frequency ratio) showed a visible and statistically significant difference (P <.01) between stable periods of kangaroo care and pre-kangaroo care. HRV was reduced during kangaroo care owing to a decrease in the extent of transient heart rate decelerations. HRV-based features may be clinically useful for capturing the dynamic changes in autonomic regulation in response to kangaroo care and other changes in environment and state. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  15. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  16. Acoustic Features Influence Musical Choices Across Multiple Genres.

    PubMed

    Barone, Michael D; Bansal, Jotthi; Woolhouse, Matthew H

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning.

  17. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  18. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  19. Snapshot 3D tracking of insulin granules in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Huang, Xiang; Gdor, Itay; Daddysman, Matthew; Yi, Hannah; Selewa, Alan; Haunold, Theresa; Hereld, Mark; Scherer, Norbert F.

    2018-02-01

    Rapid and accurate volumetric imaging remains a challenge, yet has the potential to enhance understanding of cell function. We developed and used a multifocal microscope (MFM) for 3D snapshot imaging to allow 3D tracking of insulin granules labeled with mCherry in MIN6 cells. MFM employs a special diffractive optical element (DOE) to simultaneously image multiple focal planes. This simultaneous acquisition of information determines the 3D location of single objects at a speed only limited by the array detector's frame rate. We validated the accuracy of MFM imaging/tracking with fluorescence beads; the 3D positions and trajectories of single fluorescence beads can be determined accurately over a wide range of spatial and temporal scales. The 3D positions and trajectories of single insulin granules in a 3.2um deep volume were determined with imaging processing that combines 3D decovolution, shift correction, and finally tracking using the Imaris software package. We find that the motion of the granules is superdiffusive, but less so in 3D than 2D for cells grown on coverslip surfaces, suggesting an anisotropy in the cytoskeleton (e.g. microtubules and action).

  20. Passive RFID Rotation Dimension Reduction via Aggregation

    NASA Astrophysics Data System (ADS)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  1. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  2. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  3. Statistical evolution of quiet-Sun small-scale magnetic features using Sunrise observations

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Solanki, S. K.; Hirzberger, J.; Feller, A.

    2017-02-01

    The evolution of small magnetic features in quiet regions of the Sun provides a unique window for probing solar magneto-convection. Here we analyze small-scale magnetic features in the quiet Sun, using the high resolution, seeing-free observations from the Sunrise balloon borne solar observatory. Our aim is to understand the contribution of different physical processes, such as splitting, merging, emergence and cancellation of magnetic fields to the rearrangement, addition and removal of magnetic flux in the photosphere. We have employed a statistical approach for the analysis and the evolution studies are carried out using a feature-tracking technique. In this paper we provide a detailed description of the feature-tracking algorithm that we have newly developed and we present the results of a statistical study of several physical quantities. The results on the fractions of the flux in the emergence, appearance, splitting, merging, disappearance and cancellation qualitatively agrees with other recent studies. To summarize, the total flux gained in unipolar appearance is an order of magnitude larger than the total flux gained in emergence. On the other hand, the bipolar cancellation contributes nearly an equal amount to the loss of magnetic flux as unipolar disappearance. The total flux lost in cancellation is nearly six to eight times larger than the total flux gained in emergence. One big difference between our study and previous similar studies is that, thanks to the higher spatial resolution of Sunrise, we can track features with fluxes as low as 9 × 1014 Mx. This flux is nearly an order of magnitude lower than the smallest fluxes of the features tracked in the highest resolution previous studies based on Hinode data. The area and flux of the magnetic features follow power-law type distribution, while the lifetimes show either power-law or exponential type distribution depending on the exact definitions used to define various birth and death events. We have also statistically determined the evolution of the flux within the features in the course of their lifetime, finding that this evolution depends very strongly on the birth and death process that the features undergo.

  4. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.

    PubMed

    Hassan, Mehdi; Amin, Muhammad; Murtza, Iqbal; Khan, Asifullah; Chaudhry, Asmatullah

    2017-11-01

    In this paper, we consider the challenging problem of detecting retinal vessel networks. Precise detection of retinal vessel networks is vital for accurate eye disease diagnosis. Most of the blood vessel tracking techniques may not properly track vessels in presence of vessels' occlusion. Owing to problem in sensor resolution or acquisition of fundus images, it is possible that some part of vessel may occlude. In this scenario, it becomes a challenging task to accurately trace these vital vessels. For this purpose, we have proposed a new robust and intelligent retinal vessel detection technique on Hidden Markov Model. The proposed model is able to successfully track vessels in the presence of occlusion. The effectiveness of the proposed technique is evaluated on publically available standard DRIVE dataset of the fundus images. The experiments show that the proposed technique not only outperforms the other state of the art methodologies of retinal blood vessels segmentation, but it is also capable of accurate occlusion handling in retinal vessel networks. The proposed technique offers better average classification accuracy, sensitivity, specificity, and area under the curve (AUC) of 95.7%, 81.0%, 97.0%, and 90.0% respectively, which shows the usefulness of the proposed technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking

    DTIC Science & Technology

    2017-03-03

    of these packets, it waits until the end of the transmit time and then responds with its own hello packet, containing its own location, as well as...own hello packet. Location Tracking Another important feature is location tracking. Due to node mobility, it is vital that each node tracks the

  6. Early Readers and Electronic Texts: CD-ROM Storybook Features That Influence Reading Behaviors

    ERIC Educational Resources Information Center

    Lefever-Davis, Shirley; Pearman, Cathy

    2005-01-01

    This research explores the impact of CD-ROM storybook features on the reading behaviors of 6- and 7-year-old students with limited exposure to CD-ROM storybooks. Six categories of behaviors were identified: tracking, electronic feature dependency, distractibility, spectator stance, electronic feature limitations, and electronic features as tools.…

  7. Energy harvesting from rail track for transportation safety and monitoring.

    DOT National Transportation Integrated Search

    2014-02-01

    An efficient electromagnetic energy harvester featured with mechanical motion rectifier (MMR) is designed to recover : energy from the vibration-like railroad track deflections induced by passing trains. Comparing to typical existing : vibration ener...

  8. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is tracked. The respiratory motion tracking error was between 1.00 % and 1.09 %. The estimated dynamic vessel masks yielded a Sørensen-Dice coefficient between 0.94 and 0.96. Finally, the accuracy of the vessel contours was measured in terms of the 99th percentile of the error, which ranged between 0.64 and 0.96 mm. The presented results show that the approach is feasible for respiratory motion tracking and compensation and could therefore considerably improve the workflow of minimally invasive procedures in the thorax and abdomen

  9. Precise positioning with sparse radio tracking: How LRO-LOLA and GRAIL enable future lunar exploration

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S. J.; Barker, M. K.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2017-12-01

    Two recent NASA missions to the Moon, the Lunar Reconnaissance Orbiter (LRO) and the Gravity Recovery and Interior Laboratory (GRAIL), have obtained highly accurate information about the lunar shape and gravity field. These global geodetic datasets resolve long-standing issues with mission planning; the tidal lock of the Moon long prevented collection of accurate gravity measurements over the farside, and deteriorated precise positioning of topographic data. We describe key datasets and results from the LRO and GRAIL mission that are directly relevant to future lunar missions. SmallSat and CubeSat missions especially would benefit from these recent improvements, as they are typically more resource-constrained. Even with limited radio tracking data, accurate knowledge of topography and gravity enables precise orbit determination (OD) (e.g., limiting the scope of geolocation and co-registration tasks) and long-term predictions of altitude (e.g., dramatically reducing uncertainties in impact time). With one S-band tracking pass per day, LRO OD now routinely achieves total position knowledge better than 10 meters and radial position knowledge around 0.5 meter. Other tracking data, such as Laser Ranging from Earth-based SLR stations, can further support OD. We also show how altimetry can be used to substantially improve orbit reconstruction with the accurate topographic maps now available from Lunar Orbiter Laser Altimeter (LOLA) data. We present new results with SELENE extended mission and LRO orbits processed with direct altimetry measurements. With even a simple laser altimeter onboard, high-quality OD can be achieved for future missions because of the datasets acquired by LRO and GRAIL, without the need for regular radio contact. Onboard processing of altimetric ranges would bring high-quality real-time position knowledge to support autonomous operation. We also describe why optical ranging transponders are ideal payloads for future lunar missions, as they can address both communication and navigation needs with little resources.

  10. Method for tracking core-contributed publications.

    PubMed

    Loomis, Cynthia A; Curchoe, Carol Lynn

    2012-12-01

    Accurately tracking core-contributed publications is an important and often difficult task. Many core laboratories are supported by programmatic grants (such as Cancer Center Support Grant and Clinical Translational Science Awards) or generate data with instruments funded through S10, Major Research Instrumentation, or other granting mechanisms. Core laboratories provide their research communities with state-of-the-art instrumentation and expertise, elevating research. It is crucial to demonstrate the specific projects that have benefited from core services and expertise. We discuss here the method we developed for tracking core contributed publications.

  11. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  12. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor.

    PubMed

    Lange, Belinda; Chang, Chien-Yen; Suma, Evan; Newman, Bradley; Rizzo, Albert Skip; Bolas, Mark

    2011-01-01

    The use of the commercial video games as rehabilitation tools, such as the Nintendo WiiFit, has recently gained much interest in the physical therapy arena. Motion tracking controllers such as the Nintendo Wiimote are not sensitive enough to accurately measure performance in all components of balance. Additionally, users can figure out how to "cheat" inaccurate trackers by performing minimal movement (e.g. wrist twisting a Wiimote instead of a full arm swing). Physical rehabilitation requires accurate and appropriate tracking and feedback of performance. To this end, we are developing applications that leverage recent advances in commercial video game technology to provide full-body control of animated virtual characters. A key component of our approach is the use of newly available low cost depth sensing camera technology that provides markerless full-body tracking on a conventional PC. The aim of this research was to develop and assess an interactive game-based rehabilitation tool for balance training of adults with neurological injury.

  13. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  14. Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity

    NASA Astrophysics Data System (ADS)

    Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik

    2016-09-01

    Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.

  15. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, C.; Shao, M.; Saini, N. S.; Sandhu, J. S.; Werne, T. A.; Choi, P.; Ely, T. A.; Jacobs, C.; Lazio, J.; Martin-Mur, T. J.; Owen, W. K.; Preston, R. A.; Turyshev, S. G.

    2017-12-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package to be carried on the Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  16. Navigators for motion detection during real-time MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2012-11-01

    An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.

  17. PRIMAS: a real-time 3D motion-analysis system

    NASA Astrophysics Data System (ADS)

    Sabel, Jan C.; van Veenendaal, Hans L. J.; Furnee, E. Hans

    1994-03-01

    The paper describes a CCD TV-camera-based system for real-time multicamera 2D detection of retro-reflective targets and software for accurate and fast 3D reconstruction. Applications of this system can be found in the fields of sports, biomechanics, rehabilitation research, and various other areas of science and industry. The new feature of real-time 3D opens an even broader perspective of application areas; animations in virtual reality are an interesting example. After presenting an overview of the hardware and the camera calibration method, the paper focuses on the real-time algorithms used for matching of the images and subsequent 3D reconstruction of marker positions. When using a calibrated setup of two cameras, it is now possible to track at least ten markers at 100 Hz. Limitations in the performance are determined by the visibility of the markers, which could be improved by adding a third camera.

  18. Combining satellite imagery and machine learning to predict poverty.

    PubMed

    Jean, Neal; Burke, Marshall; Xie, Michael; Davis, W Matthew; Lobell, David B; Ermon, Stefano

    2016-08-19

    Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains. Copyright © 2016, American Association for the Advancement of Science.

  19. W-band EPR of vanadyl complexes aggregates on the surface of Al2O3

    NASA Astrophysics Data System (ADS)

    Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.

    2018-05-01

    Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.

  20. An adaptive gridless methodology in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, N.T.; Hailey, C.E.

    1996-09-01

    Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less

  1. Wavelet Analysis of SAR Images for Coastal Monitoring

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.

    1998-01-01

    The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.

  2. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  3. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility

    NASA Astrophysics Data System (ADS)

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-06-01

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  ‑0.27 and ‑0.71 m · s–1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  ‑0.12 versus ‑0.26 m · s–1). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  4. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  5. Track-monitoring from the dynamic response of an operational train

    NASA Astrophysics Data System (ADS)

    Lederman, George; Chen, Siheng; Garrett, James; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo

    2017-03-01

    We explore a data-driven approach for monitoring rail infrastructure from the dynamic response of a train in revenue-service. Presently, track inspection is performed either visually or with dedicated track geometry cars. In this study, we examine a more economical approach where track inspection is performed by analyzing vibration data collected from an operational passenger train. The high frequency with which passenger trains travel each section of track means that faults can be detected sooner than with dedicated inspection vehicles, and the large number of passes over each section of track makes a data-driven approach statistically feasible. We have deployed a test-system on a light-rail vehicle and have been collecting data for the past two years. The collected data underscores two of the main challenges that arise in train-based track monitoring: the speed of the train at a given location varies from pass to pass and the position of the train is not known precisely. In this study, we explore which feature representations of the data best characterize the state of the tracks despite these sources of uncertainty (i.e., in the spatial domain or frequency domain), and we examine how consistently change detection approaches can identify track changes from the data. We show the accuracy of these different representations, or features, and different change detection approaches on two types of track changes, track replacement and tamping (a maintenance procedure to improve track geometry), and two types of data, simulated data and operational data from our test-system. The sensing, signal processing, and data analysis we propose in the study could facilitate safer trains and more cost-efficient maintenance in the future. Moreover, the proposed approach is quite general and could be extended to other parts of the infrastructure, including bridges.

  6. Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study

    NASA Astrophysics Data System (ADS)

    Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy

    2016-11-01

    The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).

  7. Conoscopic holography for image registration: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lathrop, Ray A.; Cheng, Tiffany T.; Webster, Robert J., III

    2009-02-01

    Preoperative image data can facilitate intrasurgical guidance by revealing interior features of opaque tissues, provided image data can be accurately registered to the physical patient. Registration is challenging in organs that are deformable and lack features suitable for use as alignment fiducials (e.g. liver, kidneys, etc.). However, provided intraoperative sensing of surface contours can be accomplished, a variety of rigid and deformable 3D surface registration techniques become applicable. In this paper, we evaluate the feasibility of conoscopic holography as a new method to sense organ surface shape. We also describe potential advantages of conoscopic holography, including the promise of replacing open surgery with a laparoscopic approach. Our feasibility study investigated use of a tracked off-the-shelf conoscopic holography unit to perform a surface scans on several types of biological and synthetic phantom tissues. After first exploring baseline accuracy and repeatability of distance measurements, we performed a number of surface scan experiments on the phantom and ex vivo tissues with a variety of surface properties and shapes. These indicate that conoscopic holography is capable of generating surface point clouds of at least comparable (and perhaps eventually improved) accuracy in comparison to published experimental laser triangulation-based surface scanning results.

  8. Automated computer-based detection of encounter behaviours in groups of honeybees.

    PubMed

    Blut, Christina; Crespi, Alessandro; Mersch, Danielle; Keller, Laurent; Zhao, Linlin; Kollmann, Markus; Schellscheidt, Benjamin; Fülber, Carsten; Beye, Martin

    2017-12-15

    Honeybees form societies in which thousands of members integrate their behaviours to act as a single functional unit. We have little knowledge on how the collaborative features are regulated by workers' activities because we lack methods that enable collection of simultaneous and continuous behavioural information for each worker bee. In this study, we introduce the Bee Behavioral Annotation System (BBAS), which enables the automated detection of bees' behaviours in small observation hives. Continuous information on position and orientation were obtained by marking worker bees with 2D barcodes in a small observation hive. We computed behavioural and social features from the tracking information to train a behaviour classifier for encounter behaviours (interaction of workers via antennation) using a machine learning-based system. The classifier correctly detected 93% of the encounter behaviours in a group of bees, whereas 13% of the falsely classified behaviours were unrelated to encounter behaviours. The possibility of building accurate classifiers for automatically annotating behaviours may allow for the examination of individual behaviours of worker bees in the social environments of small observation hives. We envisage that BBAS will be a powerful tool for detecting the effects of experimental manipulation of social attributes and sub-lethal effects of pesticides on behaviour.

  9. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  10. Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation

    PubMed Central

    Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.

    2014-01-01

    We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590

  11. Multi-Stage Target Tracking with Drift Correction and Position Prediction

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ren, Keyan; Hou, Yibin

    2018-04-01

    Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.

  12. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons

    PubMed Central

    Cemgil, Ali Taylan

    2017-01-01

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375

  13. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.

    PubMed

    Daniş, F Serhan; Cemgil, Ali Taylan

    2017-10-29

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.

  14. Positron emission particle tracking and its application to granular media

    NASA Astrophysics Data System (ADS)

    Parker, D. J.

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  15. Adaptive object tracking via both positive and negative models matching

    NASA Astrophysics Data System (ADS)

    Li, Shaomei; Gao, Chao; Wang, Yawen

    2015-03-01

    To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

  16. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  17. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  18. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  19. Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.

    PubMed

    Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin

    2018-06-22

    Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.

  20. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  1. Markov random field based automatic image alignment for electron tomography.

    PubMed

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark

    2008-03-01

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

  2. Codebook-based electrooculography data analysis towards cognitive activity recognition.

    PubMed

    Lagodzinski, P; Shirahama, K; Grzegorzek, M

    2018-04-01

    With the advancement in mobile/wearable technology, people started to use a variety of sensing devices to track their daily activities as well as health and fitness conditions in order to improve the quality of life. This work addresses an idea of eye movement analysis, which due to the strong correlation with cognitive tasks can be successfully utilized in activity recognition. Eye movements are recorded using an electrooculographic (EOG) system built into the frames of glasses, which can be worn more unobtrusively and comfortably than other devices. Since the obtained information is low-level sensor data expressed as a sequence representing values in constant intervals (100 Hz), the cognitive activity recognition problem is formulated as sequence classification. However, it is unclear what kind of features are useful for accurate cognitive activity recognition. Thus, a machine learning algorithm like a codebook approach is applied, which instead of focusing on feature engineering is using a distribution of characteristic subsequences (codewords) to describe sequences of recorded EOG data, where the codewords are obtained by clustering a large number of subsequences. Further, statistical analysis of the codeword distribution results in discovering features which are characteristic to a certain activity class. Experimental results demonstrate good accuracy of the codebook-based cognitive activity recognition reflecting the effective usage of the codewords. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electronic Fingerprinting for Industry

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Veritec's VeriSystem is a complete identification and tracking system for component traceability, improved manufacturing and processing, and automated shop floor applications. The system includes the Vericode Symbol, a more accurate and versatile alternative to the traditional bar code, that is scanned by charge coupled device (CCD) cameras. The system was developed by Veritec, Rockwell International and Marshall Space Flight Center to identify and track Space Shuttle parts.

  4. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  5. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  6. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    PubMed

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  7. Is self-regard a sociometer or a hierometer? Self-esteem tracks status and inclusion, narcissism tracks status.

    PubMed

    Mahadevan, Nikhila; Gregg, Aiden P; Sedikides, Constantine

    2018-04-02

    What adaptive function does self-regard serve? Sociometer theory predicts that it positively tracks social inclusion. A new theory, hierometer theory, predicts that it positively tracks social status. We tested both predictions with respect to two types of self-regard: self-esteem and narcissism. Study 1 (N = 940), featuring a cross-sectional design, found that both status and inclusion covaried positively with self-esteem, but that status alone covaried positively with narcissism. These links held independently of gender, age, and the Big Five personality traits. Study 2 (N = 627), a preregistered cross-sectional study, obtained similar results with alternative measures of self-esteem and narcissism. Studies 3-4 featured experimental designs in which status and inclusion were orthogonally manipulated. Study 3 (N = 104) found that both higher status and higher inclusion promoted higher self-esteem, whereas only higher status promoted higher narcissism. Study 4 (N = 259) obtained similar results with alternative measures of self-esteem and narcissism. The findings suggest that self-esteem operates as both sociometer and hierometer, positively tracking both status and inclusion, whereas narcissism operates primarily as a hierometer, positively tracking status. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M; Matsuo, Y; Mukumoto, N

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonalmore » kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.« less

  9. A practical approach to tramway track condition monitoring: vertical track defects detection and identification using time-frequency processing technique

    NASA Astrophysics Data System (ADS)

    Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán

    2018-03-01

    This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.

  10. Decoupled direct tracking control system based on use of a virtual track for multilayer disk with a separate guide layer

    NASA Astrophysics Data System (ADS)

    Tanaka, Yukinobu; Ogata, Takeshi; Imagawa, Seiji

    2015-09-01

    We developed a decoupled direct tracking control system for multilayer optical disk that uses a separate guide layer. Data marks are recorded on a recording layer immediately above the guide layer by using two spatially separated spots with different wavelengths. Accurate data mark recording requires that the relative positions of the corresponding spots on the recording layer and guide layer are maintained. However, a disk tilt can shift their relative positions and cause previously recorded data marks to be overwritten. Additionally, a two-input/two-output control system is susceptible to mutual interference phenomenon between the two outputs, which can destabilize tracking control. A tracking control system based on use of data marks previously recorded as a virtual track has been developed that prevents spot shifting and mutual interference even if the disk tilt reaches 0.7°, thereby preventing overwriting.

  11. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland

    USGS Publications Warehouse

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  12. Using GBrowse 2.0 to visualize and share next-generation sequence data

    PubMed Central

    2013-01-01

    GBrowse is a mature web-based genome browser that is suitable for deployment on both public and private web sites. It supports most of genome browser features, including qualitative and quantitative (wiggle) tracks, track uploading, track sharing, interactive track configuration, semantic zooming and limited smooth track panning. As of version 2.0, GBrowse supports next-generation sequencing (NGS) data by providing for the direct display of SAM and BAM sequence alignment files. SAM/BAM tracks provide semantic zooming and support both local and remote data sources. This article provides step-by-step instructions for configuring GBrowse to display NGS data. PMID:23376193

  13. Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar

    DTIC Science & Technology

    2012-07-01

    cross track direction is calculated. This is accomplished by taking a 101 point horizontal slice of pixels centered on the alarm. Then, a 101 point...Hamming window, is the 101 -length row vector of FLGPR image pixels surrounding alarm A. We then store the first 50 frequency values (excluding the...Figure 3. Illustration of spectral features in the cross track direction and the difference between actual targets and FAs. Eleven rows of 101

  14. Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puleston, P.F.; Mantz, R.J.

    1993-11-01

    A proportional plus integral matrix control structure for MIMO systems is proposed. Based on a standard optimal control structure with integral action, it permits a greater degree of independence of the design and tuning of the regulating and tracking features, without considerably increasing the controller complexity. Fast recovery from load disturbances is achieved, while large overshoots associated with set-point changes and reset wind-up problems can be reduced. A simple effective procedure for practical tuning is introduced.

  15. Invisible costs, visible savings.

    PubMed

    Lefever, G

    1999-08-01

    By identifying hidden inventory costs, nurse managers can save money for the organization. Some measures include tracking and standardizing supplies, accurately evaluating patients' needs, and making informed purchasing decisions.

  16. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, B.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  17. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  18. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbeco, R.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  19. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  20. Human Body Parts Tracking and Kinematic Features Assessment Based on RSSI and Inertial Sensor Measurements

    PubMed Central

    Blumrosen, Gaddi; Luttwak, Ami

    2013-01-01

    Acquisition of patient kinematics in different environments plays an important role in the detection of risk situations such as fall detection in elderly patients, in rehabilitation of patients with injuries, and in the design of treatment plans for patients with neurological diseases. Received Signal Strength Indicator (RSSI) measurements in a Body Area Network (BAN), capture the signal power on a radio link. The main aim of this paper is to demonstrate the potential of utilizing RSSI measurements in assessment of human kinematic features, and to give methods to determine these features. RSSI measurements can be used for tracking different body parts' displacements on scales of a few centimeters, for classifying motion and gait patterns instead of inertial sensors, and to serve as an additional reference to other sensors, in particular inertial sensors. Criteria and analytical methods for body part tracking, kinematic motion feature extraction, and a Kalman filter model for aggregation of RSSI and inertial sensor were derived. The methods were verified by a set of experiments performed in an indoor environment. In the future, the use of RSSI measurements can help in continuous assessment of various kinematic features of patients during their daily life activities and enhance medical diagnosis accuracy with lower costs. PMID:23979481

Top