Science.gov

Sample records for fecal coliform bacteria

  1. Isolation of Fecal Coliform Bacteria from the Diamondback Terrapin (Malaclemys terrapin centrata)

    PubMed Central

    Harwood, Valerie J.; Butler, Joseph; Parrish, Danny; Wagner, Victoria

    1999-01-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have implications for the efficacy of current regulatory parameters in shellfishing waters. PMID:9925633

  2. Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata).

    PubMed

    Harwood, V J; Butler, J; Parrish, D; Wagner, V

    1999-02-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have implications for the efficacy of current regulatory parameters in shellfishing waters.

  3. Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Love, Andra

    1999-01-01

    Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.

  4. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  5. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    USGS Publications Warehouse

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria

  6. Interaction of ambient conditions and fecal coliform bacteria in southern Lake Michigan beach waters: Monitoring program implications

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith Becker; Gerovac, Paul J.

    1999-01-01

    Excessive fecal coliform bacteria in public swimming waters can potentially threaten visitor health. Fecal coliform bacteria (1984-1989) and Escherichia coli (1990-1995) density were monitored weekly at the Indiana Dunes National Lakeshore beaches for 12 summers, and park officials closed swimming areas when fecal coliform density exceeded the state water quality criteria (400 CFU fecal coliforms/ 100 ml; 235 CFU E. coli/100 ml water). Due to a 24-hour incubation in the fecal coliform and E. coli assays, beaches were closed the day after collection of high fecal coliform. Our analysis suggests that it is not possible to predict one day's fecal coliform count based on the previous day's results in waters taken from southern Lake Michigan beaches. Dispersal and deposition of bacteria were not uniform among sites or across time apparently due to interactions among environmental variables including rainfall, wind direction, water temperature, and bacteria source. Rainfall combined with northwest winds increased bacteria concentrations. Escherichia coli followed a seasonal trend with similar fluctuations in density among beaches. We suggest that the current beach monitoring protocol is inadequate for predicting fecal coliform density at the time of beach closure, and, subsequently, its use for ensuring visitor safety remains questionable.

  7. An Assessment of Fecal Coliform Bacteria in Cruise Ship Wastewater Discharge

    DTIC Science & Technology

    2003-09-01

    An Assessment of Fecal Coliform Bacteria in Cruise Ship Wastewater Discharge Charles D. McGee Orange County Sanitation District* 10844 Ellis...Alaska Cruise Ship Initiative in 1999. This initiative required investigation, understanding and oversight of discharges from large cruise ships...into the waters of Alaska. As part of the overall assessment of impacts from cruise ship waste discharges on the environment, a Science Advisory

  8. Escherichia coli and fecal-coliform bacteria as indicators of recreational water quality

    USGS Publications Warehouse

    Francy, D.S.; Myers, Donna N.; Metzker, K.D.

    1993-01-01

    In 1986, the U.S. Environmental Protection Agency (USEPA) recommended that Escherichia coli (E. coli) be used in place of fecal-coliform bacteria in State recreational water-quality standards as an indicator of fecal contamination. This announcement followed an epidemiological study in which E. coli concentration was shown to be a better predictor of swimming-associated gastrointestinal illness than fecal-coliform concentration. Water-resource managers from Ohio have decided to collect information specific to their waters and decide whether to use E. coli or fecal-coliform bacteria as the basis for State recreational water-quality standards. If one indicator is a better predictor of recreational water quality than the other and if the relation between the two indicators is variable, then the indicator providing the most accurate measure of recreational water quality should be used in water-quality standards. Water-quality studies of the variability of concentrations of E. coli to fecal-coliform bacteria have shown that (1) concentrations of the two indicators are positively correlated, (2) E. coli to fecal-coliform ratios differ considerably from site to site, and (3) the E. coli criteria recommended by USEPA may be more difficult to meet than current (1992) fecal-coliform standards. In this study, a statistical analysis was done on concentrations of E. coli and fecal-coliform bacteria in water samples collected by two government agencies in Ohio-- the U.S. Geological Survey (USGS) and the Ohio River Valley Water Sanitation Commission (ORSANCO). Data were organized initially into five data sets for statistical analysis: (1) Cuyahoga River, (2) Olentangy River, (3) Scioto River, (4) Ohio River at Anderson Ferry, and (5) Ohio River at Cincinnati Water Works and Tanners Creek. The USGS collected the data in sets 1, 2, and 3, whereas ORSANCO collected the data in sets 4 and 5. The relation of E. coli to fecal-coliform concentration was investigated by use of linear

  9. Bacteria holding times for fecal coliform by mFC agar method and total coliform and Escherichia coli by Colilert®-18 Quanti-Tray® method

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2010-01-01

    Bacteria holding-time experiments of up to 62 h were performed on five surface-water samples from four urban stream sites in the vicinity of Atlanta, GA, USA that had relatively high densities of coliform bacteria (Escherichia coli densities were all well above the US Environmental Protection Agency criterion of 126 colonies (100 ml) − 1 for recreational waters). Holding-time experiments were done for fecal coliform using the membrane filtration modified fecal coliform (mFC) agar method and for total coliform and E. coli using the Colilert®-18 Quanti-Tray® method. The precisions of these analytical methods were quantified. Precisions determined for fecal coliform indicated that the upper bound of the ideal range of counts could reasonably be extended upward and would improve precision. For the Colilert®-18 method, analytical precisions were similar to the theoretical precisions for this method. Fecal and total coliform densities did not change significantly with holding times up to about 27 h. Limited information indicated that fecal coliform densities might be stable for holding times of up to 62 h, whereas total coliform densities might not be stable for holding times greater than about 27 h. E. coli densities were stable for holding times of up to 18 h—a shorter period than indicated from a previous studies. These results should be applicable to non-regulatory monitoring sampling designs for similar urban surface-water sample types.

  10. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  11. Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally

  12. Thermotolerant non-fecal source Klebsiella pneumoniae: validity of the fecal coliform test in recreational waters.

    PubMed Central

    Caplenas, N R; Kanarek, M S

    1984-01-01

    Wisconsin pulp and paper mill processing plants were evaluated for fecal coliform and total Klebsiella (i.e., thermotolerant and thermointolerant) bacterial concentrations. Using the standard fecal coliform test, up to 90 per cent of non-fecal source thermotolerant K. pneumoniae was falsely identified as fecal source bacteria. Since there is a lack of specificity in the currently used standard for fecal coliform evaluation, a more reliable health risk assessment for fecal coliform bacteria is recommended. PMID:6388365

  13. Comparison and continuous estimates of fecal coliform and Escherichia coli bacteria in selected Kansas streams, May 1999 through April 2002

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Ziegler, Andrew C.

    2003-01-01

    The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and

  14. FECAL COLIFORM INCREASE AFTER CENTRIFUGATION

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  15. Interaction of fecal coliforms with soil aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-applied manures may contain various contaminants that cause water pollution and concomitant health problems. Some of these pollutants are bacteria, and fecal coliforms (FC) have been widely used as an indicator of bacterial contamination. Experiments on bacteria attachment to soil are tradition...

  16. Fate and Enumeration Problems of Fecal Coliform Bacteria in Runoff Waters from Terrestrial Ecosystems.

    DTIC Science & Technology

    1980-09-01

    was resistant to the antibiotics nalidixic acid (100 pg/ml) and sodium azide (50 pg/ml). The first test was conducted for 31 hr, from 30 October to 31...Tracer bacteria, resistant to nalidixic acid and sodium azide , were enumerated on M-FC agar containing 100 mg nalidixic acid and 50 mg sodium azide ...testing period. Tracer studies with E. coli 66. A genetically marked strain of E. coli, resistant to both nalidixic acid and sodium azide , was used

  17. ANALYZING BIOSOLIDS FOR FECAL COLIFORM AND SALMONELLAE

    EPA Science Inventory

    Current federal regulations required monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Standard protocols designed to quantify these organisms in water or wastewater were identified and specified in these regulations. However, proto...

  18. FECAL COLIFORM INCREASE AFTER CENTRIFUGATION: EPA PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  19. Fecal Coliform Removal by River Networks

    NASA Astrophysics Data System (ADS)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  20. Evaluation of Colilert-18 for detection and enumeration of fecal coliform bacteria in wastewater using the U.S. Environmental Protection Agency Alternative Test procedure Protocol.

    PubMed

    Warden, Paul S; DeSarno, Monique S; Volk, Sarah E; Eldred, Bradley J

    2011-01-01

    This study compared recovery of fecal coliform bacteria from sewage by Colilert-18 and Standard Methods 9222D (membrane-Fecal Coliform medium) in accordance with the U.S. Environmental Protection Agency (EPA) Alternative Test Protocol (ATP). Samples were collected from 10 different wastewater treatment plants in the northeastern United States and tested in a single laboratory. Twenty replicates of each sample were analyzed by each method, and 200 positive and 200 negative responses were confirmed for each method. Recovery of fecal coliforms by Colilert-18 was significantly higher than (8 of 10 sites) or statistically equivalent to (1 of 10 sites) recovery by the reference method (Standard Methods 9222D) for samples from all but one site. Both methods had low false-positive rates (< 2%); however, the false-negative rate observed with Standard Methods 9222D (21.5%) was substantially higher than that observed with Colilert-18 (7%). The accuracy rates of the two methods were calculated as 96.5 and 88.9% for Colilert-18 and Standard Methods 9222D, respectively. The results of this study demonstrate that Colilert-18 meets the acceptance criteria for alternative methods specified in the EPA ATP.

  1. What do fecal coliforms indicate in tropical waters

    SciTech Connect

    Hazen, T.C.

    1988-01-01

    High densities of total and fecal coliform bacteria have been detected in pristine streams and in ground water samples collected from many tropical parts of the world, even in epiphytic vegetation 10 m above ground in the rain forest of Puerto Rico. Nucleic acid (DNA) analyses of Escherichia coli from pristine tropical environs has indicated that they are identical to clinical isolates of E. coli. Many tropical source waters have been shown to have enteric pathogens in the complete absence of coliforms. Diffusion chamber studies with E. coli at several tropical sites reveal that this bacterium can survive indefinitely in most freshwaters in Puerto Rico. An evaluation of methods for the enumeration of fecal coliforms showed that currently used media have poor reliability as a result of large numbers of false positive and false negative results when applied to tropical water samples. Total and fecal coliform bacteria are not reliable indicators of recent biological contamination of waters in tropical areas. Fecal streptococci and coliphages in tropical waters, violate the same under lying assumptions of indicator assays as the coliforms. Anaerobic bacteria like Bifidobacterium spp. and Clostridium perfringens show some promise in terms of survival but not in ease of enumeration and media specificity. The best course at present lies in using current techniques for direct enumeration of pathogens by fluorescent staining and nucleic acid analysis and developing tropical maximum containmant levels for certain resistant pathogens in tropical waters. 66 refs.

  2. Fecal-coliform bacteria concentrations in streams of the Chattahoochee River National Recreation Area, Metropolitan Atlanta, Georgia, May-October 1994 and 1995

    USGS Publications Warehouse

    Gregory, M. Brian; Frick, Elizabeth A.

    2000-01-01

    Introduction: The Metropolitan Atlanta area has been undergoing a period of rapid growth and development. The population in the 10-county metropolitan area almost doubled from about 1.5 million people in 1970 to 2.9 million people in 1995 (Atlanta Regional Commission, written commun., 2000). Residential, commercial, and other urban land uses more than tripled during the same period (Frick and others, 1998). The Chattahoochee River is the most utilized water resource in Georgia. The rapid growth of Metropolitan Atlanta and its location downstream of the headwaters of the drainage basin make the Chattahoochee River a vital resource for drinking-water supplies, recreational opportunities, and wastewater assimilation. In 1978, the U.S. Congress declared the natural, scenic, recreation, and other values of 48 miles of the Chattahoochee River from Buford Dam to Peachtree Creek to be of special national significance. To preserve this reach of the Chattahoochee River, the U.S. Congress created the Chattahoochee River National Recreational Area (CRNRA), which includes the Chattahoochee River downstream from Buford Dam to the mouth of Peachtree Creek and a series of park areas adjacent to the river in northern Metropolitan Atlanta Even with this protection, waters of the Chattahoochee River and many of its tributaries in Metropolitan Atlanta did not meet water-quality standards set for designated uses during 1994 and 1995 (fig. 1 and table 1). Much of the degradation of water quality has been associated with areas undergoing rapid urban growth and sprawling suburban development. The resulting conversion of mostly forested land to urban land has multiple adverse effects on water quality. Degradation of water quality may be caused by a number of factors including an increase in nutrient concentrations, sediment and sedimentbound contaminant concentrations (e.g., metals and pesticides) (Frick and others, 1998), and fecal-coliform bacteria concentrations (Center for Watershed

  3. Fecal coliform population dynamics associated with the thermophilic stabilization of treated sewage sludge.

    PubMed

    Ziemba, Chris; Peccia, Jordan

    2012-10-26

    The inactivation of fecal coliforms in anaerobic batch reactors has been investigated at the thermophilic temperatures of 50, 55 and 60 °C. Throughout inactivation experiments at each temperature, individual colonies were isolated and identified by 16S rDNA gene sequencing to illustrate how the diversity of fecal coliforms is affected by thermophilic treatment. Results indicate that even though fecal coliforms in raw sewage sludge are comprised of several different bacterial species, each with variable temperature induced decay rates, the overall inactivation of fecal coliforms in raw sewage sludge was found to follow a first-order relationship. No tailing was observed across the range of fecal coliform concentrations measured. Fecal coliforms in raw sludge contained six different genera of bacteria and were 62% enriched in E. coli. Within 1.5 log removal of fecal coliform concentration by thermophilic treatment, the populations had shifted to, and remained at 100% E. coli. Subsequent inactivation rates measured in isolated fecal coliform strains confirmed that E. coli cells isolated post-treatment were more thermotolerant than E. coli and non-E coli bacteria isolated prior to thermal treatment. Overall, this study describes the potential enrichment of thermotolerant E. coli in biosolids fecal coliforms and demonstrates that while thermotolerant species are present at the end of treatment, pure first-order approximations are appropriate for estimating residence times to reduce fecal coliforms to levels promulgated in U.S. Class A biosolids standards.

  4. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC.

    PubMed

    Bai, Sen; Lung, Wu-Seng

    2006-01-01

    Fecal coliform are widely used as bacterial indicator in the United States and around the world. Fecal coliform impaired water is highly possible to be polluted by pathogenic bacteria. The Tidal Basin and Washington Channel in Washington, DC are on the Total Maximum Daily Load (TMDL) list due to the high fecal coliform level. To support TMDL development, a three-dimensional numerical model of fecal coliform was developed using the EFDC framework. The model calculates the transport of fecal coliform under the influences of flap gate operations and tidal elevation. The original EFDC code was modified to calculate the die-off of fecal coliform under the impact of temperature and solar radiation intensity. The watershed contribution is expressed as storm water inflow and the load carried by the runoff. Model results show that fecal coliform vary strongly in space in both the Tidal Basin and Washington Channel. The storm water only impacts a small area around the storm water outfall in the Tidal Basin and the impacts are negligible in the Washington Channel due to dilution. The water from the Potomac River may affect the fecal coliform level in the area close to the flap gate in the Tidal Basin. The fecal coliform level in the Washington Channel is mainly controlled by the fecal coliform level in the Anacostia River, which is located at the open boundary of the Washington Channel. The potential sediment layer storage of fecal coliform was analyzed and it was found that the sediment layer fecal coliform level could be much higher than the water column fecal coliform level and becomes a secondary source under high bottom shear stress condition. The developed model built solid connection of fecal coliform source and concentration in the water column and has been used to develop TMDL.

  5. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria

    PubMed Central

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P.; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable. PMID:25918721

  6. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria.

    PubMed

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable.

  7. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis.

    PubMed

    Whitlock, John E; Jones, David T; Harwood, Valerie J

    2002-10-01

    Bacteria such as fecal coliforms are used as indicators of fecal pollution in natural waters. These bacteria are found in the feces of most wild and domestic animals and thus provide no information as to the source of fecal contamination, yet identification of indicator bacteria sources allows improved risk assessment, remediation, and total daily maximum load (TDML) assessment of environmental waters. This bacterial source tracking study was initiated in order to identify the dominant source(s) of fecal contamination in the urban watershed of Stevenson Creek in Clearwater, Florida. Five sites that represent areas where routine monitoring has previously shown high levels of fecal coliforms were sampled over 7 months. Fecal coliforms were enumerated by membrane filtration, and antibiotic resistance analysis was used to "fingerprint" a subset of randomly selected isolates and statistically match them to fingerprints of fecal coliforms from known sources (the library). A field test of the classification accuracy of the library was carried out by isolating fecal coliforms from the soil and waters surrounding a failing onsite wastewater treatment and disposal system (OSTDS). The vast majority of the isolates were classified into the human category. The major sources of fecal pollution in Stevenson Creek over the course of the study were wild animal, human, and, to a lesser extent, dog. Overall, wild animal feces were identified as the dominant source when fecal coliform levels were high, but when fecal coliform levels were low, the dominant source was identified as human. The results of this study demonstrate that the sources of fecal indicator bacteria within one urban watershed can vary substantially over temporal and spatial distances.

  8. Photoelectrocatalytic inactivation of fecal coliform bacteria in urban wastewater using nanoparticulated films of TiO2 and TiO2/Ag.

    PubMed

    Domínguez-Espíndola, Ruth Belinda; Varia, Jeet C; Álvarez-Gallegos, Alberto; Ortiz-Hernández, Ma Laura; Peña-Camacho, Justina Leticia; Silva-Martínez, Susana

    2017-03-01

    Photocatalysis has shown the ability to inactivate a wide range of harmful microorganisms with traditional use of chlorination. Photocatalysis combined with applied bias potential (photoelectrocatalysis) increases the efficiency of photocatalysis and decreases the charge recombination. This work examines the inactivation of fecal coliform bacteria present in real urban wastewater by photoelectrocatalysis using nanoparticulated films of TiO2 and TiO2/Ag (4%w/w) under UV light irradiation. The catalysts were prepared with different thicknesses by the sol-gel method and calcined at 400°C and 600°C. The urban wastewater samples were collected from the sedimentation tank effluent of the university sewage treatment facility. The rate of bacteria inactivation increases with increasing the applied potential and film thicknesses; also, the presence of silver on the catalyst surface annealed at 400°C shows better inactivation than that at 600°C. Finally, a structural cell damage of Escherichia coli (DH5α), inoculated in water, is observed during the photoelectrocatalytic process.

  9. Occurrence of dissolved solids, nutrients, atrazine, and fecal coliform bacteria during low flow in the Cheney Reservoir watershed, south-central Kansas, 1996

    USGS Publications Warehouse

    Christensen, V.G.; Pope, L.M.

    1997-01-01

    A network of 34 stream sampling sites was established in the 1,005-square-mile Cheney Reservoir watershed, south-central Kansas, to evaluate spatial variability in concentrations of selected water-quality constituents during low flow. Land use in the Cheney Reservoir watershed is almost entirely agricultural, consisting of pasture and cropland. Cheney Reservoir provides 40 to 60 percent of the water needs for the city of Wichita, Kansas. Sampling sites were selected to determine the relative contribution of point and nonpoint sources of water-quality constituents to streams in the watershed and to identify areas of potential water-quality concern. Water-quality constituents of interest included dissolved solids and major ions, nitrogen and phosphorus nutrients, atrazine, and fecal coliform bacteria. Water from the 34 sampling sites was sampled once in June and once in September 1996 during Phase I of a two-phase study to evaluate water-quality constituent concentrations and loading characteristics in selected subbasins within the watershed and into and out of Cheney Reservoir. Information summarized in this report pertains to Phase I and was used in the selection of six long-term monitoring sites for Phase II of the study. The average low-flow constituent concentrations in water collected during Phase I from all sampling sites was 671 milligrams per liter for dissolved solids, 0.09 milligram per liter for dissolved ammonia as nitrogen, 0.85 milligram per liter for dissolved nitrite plus nitrate as nitrogen, 0.19 milligram per liter for total phosphorus, 0.20 microgram per liter for dissolved atrazine, and 543 colonies per 100 milliliters of water for fecal coliform bacteria. Generally, these constituents were of nonpoint-source origin and, with the exception of dissolved solids, probably were related to agricultural activities. Dissolved solids probably occur naturally as the result of the dissolution of rocks and ancient marine sediments containing large salt

  10. Escherichia coli and fecal coliforms in freshwater and estuarine sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been known for some time that substantial populations of fecal coliforms and E. coli are harbored in freshwater bottom sediments, bank soils, and beach sands. However, the relative importance of sediments as bacterial habitats and as a source of water-borne fecal coliforms and E. coli has not...

  11. Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China.

    PubMed

    Hong, Huachang; Qiu, Jianwen; Liang, Yan

    2010-01-01

    The Pearl River Delta (PRD) is one of the most developed and densely populated regions in China. Quantifying the amount of pathogens in the source of drinking water is important for improving water quality. We collected water samples from six major water storage reservoirs in the PRD region in both wet and dry seasons in 2006. Results showed that external environmental factors, such as precipitation, location, as well as the internal environmental factors, i.e., physicochemical properties of the water, were closely related with the distribution of coliforms. Seasonally, the coliform bacterial concentrations in wet season were one to two orders of magnitude greater than those in dry season. Spatially, coliform bacterial levels in reservoirs near urban and industrial areas were significantly higher (p < 0.05) than those in remote areas. Correlation analyses showed that the levels of coliforms had close relationships with pH, temperature, suspended solid, organic and inorganic nutrients in water. Principal components analysis further demonstrated that total coliforms in the reservoirs were closely related with water physicochemical properties, while fecal coliforms were more associated with external input brought in by seasonal runoff.

  12. Comparison of Fecal Coliform Agar and Violet Red Bile Lactose Agar for Fecal Coliform Enumeration in Foods

    PubMed Central

    Leclercq, A.; Wanegue, C.; Baylac, P.

    2002-01-01

    A 24-h direct plating method for fecal coliform enumeration with a resuscitation step (preincubation for 2 h at 37 ± 1°C and transfer to 44 ± 1°C for 22 h) using fecal coliform agar (FCA) was compared with the 24-h standardized violet red bile lactose agar (VRBL) method. FCA and VRBL have equivalent specificities and sensitivities, except for lactose-positive non-fecal coliforms such as Hafnia alvei, which could form typical colonies on FCA and VRBL. Recovery of cold-stressed Escherichia coli in mashed potatoes on FCA was about 1 log unit lower than that with VRBL. When the FCA method was compared with standard VRBL for enumeration of fecal coliforms, based on counting carried out on 170 different food samples, results were not significantly different (P > 0.05). Based on 203 typical identified colonies selected as found on VRBL and FCA, the latter medium appears to allow the enumeration of more true fecal coliforms and has higher performance in certain ways (specificity, sensitivity, and negative and positive predictive values) than VRBL. Most colonies clearly identified on both media were E. coli and H. alvei, a non-fecal coliform. Therefore, the replacement of fecal coliform enumeration by E. coli enumeration to estimate food sanitary quality should be recommended. PMID:11916678

  13. Alternative methods for fecal coliform load reductions in South Georgia watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the 11,285 miles of streams and rivers assessed in the state of Georgia, roughly 57% have been classified as impaired. Of the impaired water bodies, impairments due to fecal coliform (FC) bacteria are the most prevalent form of pollutant. FC bacteria are found in both urban and rural settings a...

  14. Variability in the characterization of total coliforms, fecal coliforms and Escherichia coli in recreational water supplies of north Mississippi, USA.

    PubMed

    Fiello, M; Mikell, A T; Moore, M T; Cooper, C M

    2014-08-01

    The fecal coliform, Escherichia coli, is a historical organism for the detection of fecal pollution in water supplies. The presence of E. coli indicates a potential contamination of the water supply by other more hazardous human pathogens. In order to accurately determine the presence and degree of fecal contamination, it is important that standard methods approved by the US Environmental Protection Agency are designed to determine the presence of E. coli in a water supply, and distinguish E. coli from other coliform bacteria (e.g. Citrobacter, Klebsiella and Enterobacter). These genera of bacteria are present not only in fecal matter, but also in soil and runoff water and are not good indicators of fecal contamination. There is also ambiguity in determining a positive result for fecal coliforms on M-FC filters by a blue colony. When all variations of blue, including light blue or glossy blue, were examined, confirmation methods agreed with the positive M-FC result less often than when colonies that the technician would merely call "blue", with no descriptors, were examined. Approximately 48 % of M-FC positive colonies were found to be E. coli with 4 methylumbelliferyl-β-D-glucuronide (MUG), and only 23 % of samples producing a positive result on M-FC media were found to be E. coli using API-20E test strips and current API-20E profiles. The majority of other M-FC blue colonies were found to be Klebsiella or were unidentifiable with current API-20E profiles. Two positive M-FC colonies were found to be Kluyvera with API-20E, both of which cleaved MUG and produced fluorescence under UV light, a characteristic used to differentiate E. coli from other fecal coliforms.

  15. Determination of fecal contamination origin in reclaimed water open-air ponds using biochemical fingerprinting of enterococci and fecal coliforms.

    PubMed

    Casanovas-Massana, Arnau; Blanch, Anicet R

    2013-05-01

    Low levels of fecal indicator bacteria (FIB) were recently detected in two reclaimed water open-air ponds used to irrigate a golf course located in Northeastern Spain. The aim of this study was to evaluate the feasibility of a biochemical fingerprinting method to track the origin of fecal contamination in water with low FIB levels, as in the aforementioned ponds. We also aimed to determine whether FIB presence was due to regrowth of the reclaimed water populations or to a contribution of fecal matter whose source was in the golf facility. Three hundred and fifty enterococcal strains and 308 fecal coliform strains were isolated from the ponds and reclamation plant, and they were biochemically phenotyped. In addition, the inactivation of several microbial fecal pollution indicators (fecal coliforms, total bifidobacteria, sorbitol-fermenting bifidobacteria, somatic bacteriophages, and bacteriophages infecting Bacteroides thetaiotaomicron) was studied using a mesocosm in situ in order to obtain information about their decay rate. Although FIB concentration was low, the biochemical fingerprinting provided evidence that the origin of the fecal contamination in the ponds was not related to the reclaimed water. Biochemical fingerprinting thus proved to be a successful approach, since other microbial source-tracking methods perform poorly when dealing with low fecal load matrices. Furthermore, the mesocosm assays indicated that none of the microbial fecal indicators was able to regrow in the ponds. Finally, the study highlights the fact that reclaimed water may be recontaminated in open-air reservoirs, and therefore, its microbial quality should be monitored throughout its use.

  16. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    NASA Astrophysics Data System (ADS)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  17. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  18. STANDARDIZATION AND VALIDATION OF METHODS FOR ENUMERATION OF FECAL COLIFORM AND SALMONELLA IN BIOSOLIDS

    EPA Science Inventory

    Current federal regulations require monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella were reviewed and a standard protocol was developed. The protocols were then evaluated by testi...

  19. Fecal Coliform Determinations. Training Module 5.115.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining fecal coliform concentrations in a wastewater sample. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…

  20. Estimation and modeling of direct rapid sand filtration for total fecal coliform removal from secondary clarifier effluents.

    PubMed

    Li, Yi; Yu, Jingjing; Liu, Zhigang; Ma, Tian

    2012-01-01

    The filtration of fecal coliform from a secondary clarifier effluent was investigated using direct rapid sand filters as tertiary wastewater treatment on a pilot scale. The effect of the flocculation dose, flow loading rate, and grain size on fecal coliform removal was determined. Direct rapid sand filters can remove 0.6-1.5 log-units of fecal coliform, depending on the loading rate and grain size distribution. Meanwhile, the flocculation dose has little effect on coliform removal, and increasing the loading rate and/or grain size decreases the bacteria removal efficiency. A model was then developed for the removal process. Bacteria elimination and inactivation both in the water phase and the sand bed can be described by first-order kinetics. Removal was successfully simulated at different loading rates and grain size distributions and compared with the data obtained using pilot-scale filters.

  1. Survival of Fecal Coliforms in Dry-Composting Toilets

    PubMed Central

    Redlinger, Thomas; Graham, Jay; Corella-Barud, Verónica; Avitia, Raquel

    2001-01-01

    The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation. PMID:11526002

  2. Survival of fecal coliforms in dry-composting toilets.

    PubMed

    Redlinger, T; Graham, J; Corella-Barud, V; Avitia, R

    2001-09-01

    The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation.

  3. Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed.

    PubMed

    Burnes, Brian S

    2003-06-01

    Antibiotic resistance analysis was performed on fecal coliform (FC) bacteria from a mixed-use watershed to determine the source, human or nonhuman, of fecal coliform contamination. The study consisted of discriminant analysis of antibiotic resistance patterns generated by exposure to four concentrations of six antibiotics (ampicillin, gentamicin sulfate, kanamycin, spectinomycin dihydrochloride, streptomycin sulfate, and tetracycline hydrochloride). A reference database was constructed from 1125 fecal coliform isolates from the following sources: humans, domestic animals (cats and dogs), agricultural animals (chickens, cattle, and horses), and wild animals. Based on similar antibiotic resistance patterns, cat and dog isolates were grouped as domestic animals and horse and cattle isolates were grouped as livestock. The resulting average rate of correct classification (ARCC) for human and nonhuman isolates was 94%. A total of 800 FC isolates taken from the watershed during either a dry event or a wet event were classified according to source. Human sources contribute a majority (> 50%) of the baseflow FC isolates found in the watershed in urbanized areas. Chicken and livestock sources are responsible for the majority of the baseflow FC isolates found in the rural reaches of the watershed. Stormwater introduces FC isolates from domestic (approximately 16%) and wild (approximately 21%) sources throughout the watershed and varying amounts (up to 60%) from chicken and livestock sources. These results suggest that antibiotic resistance patterns of FC may be used to determine sources of fecal contamination and aid in the direction of water quality improvement.

  4. Sequential modeling of fecal coliform removals in a full-scale activated-sludge wastewater treatment plant using an evolutionary process model induction system.

    PubMed

    Suh, Chang-Won; Lee, Joong-Won; Hong, Yoon-Seok Timothy; Shin, Hang-Sik

    2009-01-01

    We propose an evolutionary process model induction system that is based on the grammar-based genetic programming to automatically discover multivariate dynamic inference models that are able to predict fecal coliform bacteria removals using common process variables instead of directly measuring fecal coliform bacteria concentration in a full-scale municipal activated-sludge wastewater treatment plant. A sequential modeling paradigm is also proposed to derive multivariate dynamic models of fecal coliform removals in the evolutionary process model induction system. It is composed of two parts, the process estimator and the process predictor. The process estimator acts as an intelligent software sensor to achieve a good estimation of fecal coliform bacteria concentration in the influent. Then the process predictor yields sequential prediction of the effluent fecal coliform bacteria concentration based on the estimated fecal coliform bacteria concentration in the influent from the process estimator with other process variables. The results show that the evolutionary process model induction system with a sequential modeling paradigm has successfully evolved multivariate dynamic models of fecal coliform removals in the form of explicit mathematical formulas with high levels of accuracy and good generalization. The evolutionary process model induction system with sequential modeling paradigm proposed here provides a good alternative to develop cost-effective dynamic process models for a full-scale wastewater treatment plant and is readily applicable to a variety of other complex treatment processes.

  5. Distribution of total and fecal coliform organisms from septic effluent in selected coastal plain soils.

    PubMed

    Reneau, R B; Pettry, D E; Shanholtz, M I; Graham, S A; Weston, C W

    1977-01-01

    Distribution of total and fecal coliform bacteria in three Atlantic coastal plain soils in Virginia were monitored in situ over a 3-year period. The soils studied were Varina, Goldsboro, and Beltsville sandy loams. These and similar soils are found extensively along the populous Atlantic seaboard of the United States. They are considered only marginally suitable for septic tank installation because the restricting soil layers result in the subsequent development of seasonal perched water tables. To determine both horizontal and vertical movement of indicator organisms, samples were collected from piezometers placed at selected distances and depths from the drainfields in the direction of the ground water flow. Large reductions in total and fecal coliform bacteria were noted in the perched ground waters above the restricting layers as distance from the drainfield increased. These restricting soil layers appear to be effective barriers to the vertical movement of indicator organisms. The reduction in the density of the coliform bacteria above the restricting soil layers can probably be attributed to dilution, filtration, and dieoff as the bacteria move through the natural soil systems.

  6. Comparison of four membrane filter methods for fecal coliform enumeration.

    PubMed Central

    Pagel, J E; Qureshi, A A; Young, D M; Vlassoff, L T

    1982-01-01

    Four membrane filter methods fecal coliform enumeration were evaluated and compared in six laboratories based on determination of accuracy, specificity, upper counting limit, and recovery comparability. Recovery accuracy with pure cultures ranged from 89 to 100% for m-FC, mTEC (a procedure developed for thermotolerant Escherichia coli), and m-FC2 methods (the latter incorporating a 2-h, 35 degrees C resuscitation period), but was less than 60% for the MacConkey membrane broth method. These figures dropped by approximately 40 to 55% when the cultures were subjected to temperature (10 degrees C) stress. Close to 800 colonies were verified to determine specificity. False-positive colonies occurred most frequently with the m-FC2 method (18%), whereas false-negative colonies were most common on MacConkey membrane broth (26%). In counting range experiments using a variety of samples, the highest upper counting limit was 130 colonies per filter with the mTEC procedure. Recovery comparisons were based on over 130 samples including raw surface waters, raw sewage, and chlorinated and unchlorinated sewage effluents. In general, recoveries were significantly higher with the m-FC2 and mTEC methods; however, on m-FC2, growth of nontarget background organisms was also higher in most cases. Highest recoveries from chlorinated sewage effluents were obtained by the mTEC method, and the addition of a similar resuscitation period to the m-FC procedure (m-FC2) improved fecal coliform recovery from such samples. The best overall performance for fecal coliform enumeration was obtained with the mTEC method with high recovery and low levels of background colonies, good specificity and accuracy, and a high upper counting limit. This procedure also offers the advantage of enumerating E. coli within 24 h. PMID:7044309

  7. VIABILITY OF COLIFORM BACTERIA IN ANTARCTIC SOIL.

    PubMed

    BOYD, W L; BOYD, J W

    1963-05-01

    Boyd, William L. (Ohio State University, Columbus) and Josephine W. Boyd. Viability of coliform bacteria in antarctic soil. J. Bacteriol. 85:1121-1123. 1963.-The distribution of coliform bacteria in soils of Ross Island and the nearby mainland was studied. None was found in almost all of the samples collected, including some from the Adelie penguin rookeries at Cape Royds and Cape Crozier and in soil at the McMurdo Base which had been recently contaminated by human sewage. Samples of pony manure left from previous expeditions were also negative, with one exception where Escherichia coli were present. Studies carried out with two freshly isolated human strains of E. coli and the isolate from pony manure showed that the death rate was extremely rapid, although the animal strain was much more resistant to the various factors of the environment causing death.

  8. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  9. Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area.

    PubMed

    Sauvé, Sébastien; Aboulfadl, Khadija; Dorner, Sarah; Payment, Pierre; Deschamps, Guy; Prévost, Michèle

    2012-01-01

    Water samples from streams, brooks and storm sewer outfall pipes that collect storm waters across the Island of Montréal were analyzed for caffeine, carbamazepine and fecal coliforms. All samples contained various concentrations of these tracers, indicating a widespread sanitary contamination in urban environments. Fecal coliforms and caffeine levels ranged over several orders of magnitude with a modest correlation between caffeine and fecal coliforms (R(2) value of 0.558). An arbitrary threshold of 400 ng caffeine L(-1) allows us to identify samples with an elevated fecal contamination, as defined by more than 200 colony-forming units per 100 mL (cfu 100 mL(-1)) of fecal coliforms. Low caffeine levels were sporadically related to high fecal coliform counts. Lower levels of caffeine and fecal coliforms were observed in the brooks while the larger streams and storm water discharge points contained over ten times more. The carbamazepine data showed little or no apparent correlation to caffeine. These data suggest that this storm water collection system, located in a highly urbanized urban environment, is widely contaminated by domestic sewers as indicated by the ubiquitous presence of fecal contaminants as well as caffeine and carbamazepine. Caffeine concentrations were relatively well correlated to fecal coliforms, and could potentially be used as a chemical indicator of the level of contamination by sanitary sources. The carbamazepine data was not significantly correlated to fecal coliforms and of little use in this dataset.

  10. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed

  11. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Blacks Run, Rockingham County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow

  12. Variability in the characterization of total coliforms, fecal coliforms, and escherichia coli in recreational water supplies of North Mississippi, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fecal coliform, Escherichia coli, is a historical organism for the detection of fecal pollution in water supplies. The presence of E. coli indicates a potential contamination of the water supply by other more hazardous human pathogens. In order to accurately determine the presence and degree o...

  13. Evaluation of fecal contamination indicators (fecal coliforms, somatic phages, and helminth eggs) in ryegrass sward farming.

    PubMed

    Cárdenas, Martha; Moreno, Gerardo; Campos, Claudia

    2009-02-15

    The effect of soil supplementation with biosolids at various ratios on fecal-origin microorganism activity was evaluated in a ryegrass sward farm. Fifteen plots with 3 different soil and biosolid mixture ratios were assessed. Soil and grass were sampled over a period of 4 months (days 0, 30, 45, 60, 75, and 120) for soil and on days 75 and 120 for grass, corresponding to first and second grass harvest periods. We analyzed fecal coliforms, somatic phages, helminth eggs, and environmental factors, such as rainfall, temperature, and moisture. The fecal coliforms decreased by 2 logarithmic units (LU) in all soils containing biosolids and by 1 LU in the soil alone and in biosolid control plots alone. The concentration of somatic phages decreased to 2 to 3 LU in the soil containing biosolids and to 1 to 2 LU in the control plots. In contrast, however, there was a noticeable increase in helminth eggs on days 75 ad 120, but not in the soil control alone. Maximum concentrations (10(2) CFU/g TS; colony forming units per gram total solids) of fecal coliforms were found on the grass and in other samples, but the concentrations of phages and helminth eggs were below detection limits. Environmental factors did not significantly influence the results, and grass production increased from 35 to 50 Ton/Ha (tons per hectare) with biosolid supplementation, as compared with controls (14 Ton/Ha).

  14. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... Alaska shall not have a fecal coliform bacterial count of greater than 200 per 100 ml nor total...

  15. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... Alaska shall not have a fecal coliform bacterial count of greater than 200 per 100 ml nor total...

  16. STANDARDIZATION AND VALIDATION OF METHODS FOR ENUMERATION OF FECAL COLIFORM AND SALMONELLA IN BIOSOLIDS

    EPA Science Inventory

    Current federal regulations required monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella were reviewed and a standard protocol was developed. The protocols were then...

  17. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    PubMed

    Silverman, M P; Munoz, E F

    1979-03-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique.

  18. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variabili...

  19. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    PubMed Central

    Silverman, M P; Munoz, E F

    1979-01-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique. PMID:378128

  20. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting; Young, Chih-Chieh

    2015-01-01

    A three-dimensional fecal coliform transport model was developed and incorporated into a hydrodynamic model to obtain a better understanding of local microbiological water quality in the tidal Danshuei River estuarine system of northern Taiwan. The model was firstly validated with the salinity and fecal coliform data measured in 2010. The concentration comparison showed quantitatively good agreement between the simulation and measurement results. Further, the model was applied to investigate the effects of upstream freshwater discharge variation and fecal coliform loading reduction on the contamination distributions in the tidal estuarine system. The qualitative and quantitative analyses clearly revealed that low freshwater discharge resulted in higher fecal coliform concentration. The fecal coliform loading reduction considerably decreased the contamination along the Danshuei River-Tahan Stream, the Hsintien Stream, and the Keelung River.

  1. Microplate fecal coliform method to monitor stream water pollution.

    PubMed Central

    Maul, A; Block, J C

    1983-01-01

    A study has been carried out on the Moselle River by means of a microtechnique based on the most-probable-number method for fecal coliform enumeration. This microtechnique, in which each serial dilution of a sample is inoculated into all 96 wells of a microplate, was compared with the standard membrane filter method. It showed a marked overestimation of about 14% due, probably, to the lack of absolute specificity of the method. The high precision of the microtechnique (13%, in terms of the coefficient of variation for log most probable number) and its relative independence from the influence of bacterial density allowed the use of analysis of variance to investigate the effects of spatial and temporal bacterial heterogeneity on the estimation of coliforms. Variability among replicate samples, subsamples, handling, and analytical errors were considered as the major sources of variation in bacterial titration. Variances associated with individual components of the sampling procedure were isolated, and optimal replications of each step were determined. Temporal variation was shown to be more influential than the other three components (most probable number, subsample, sample to sample), which were approximately equal in effect. However, the incidence of sample-to-sample variability (16%, in terms of the coefficient of variation for log most probable number) caused by spatial heterogeneity of bacterial populations in the Moselle River is shown and emphasized. Consequently, we recommend that replicate samples be taken on each occasion when conducting a sampling program for a stream pollution survey. PMID:6360044

  2. Fresh steam-flaked corn in cattle feedlots is an important site for fecal coliform contamination by house flies.

    PubMed

    Ghosh, Anuradha; Zurek, Ludek

    2015-03-01

    House flies are a common pest at food animal facilities, including cattle feedlots. Previously, house flies were shown to play an important role in the ecology of Escherichia coli O157:H7; house flies in cattle feedlots carried this zoonotic pathogen and were able to contaminate cattle through direct contact and/or by contamination of drinking water and feed. Because house flies aggregate in large numbers on fresh ( # 6 h) steam-flaked corn (FSFC) used in cattle feed, the aim of this study was to assess FSFC in a cattle feedlot as a potentially important site of fecal coliform contamination by house flies. House flies and FSFC samples were collected, homogenized, and processed for culturing of fecal coliforms on membrane fecal coliform agar. Selected isolates were identified by 16S rRNA gene sequencing, and representative isolates from each phylogenetic group were genotyped by pulsed-field gel electrophoresis. Fecal coliforms were undetectable in FSFC shortly (0 h) after flaking; however, in summer, after 4 to 6 h, the concentrations of fecal coliforms ranged from 1.9 × 10(3) to 3.7 × 10(4) CFU/g FSFC (mean, 1.1 ± 3.0 × 10(4) CFU/g). House flies from FSFC carried between 7.6 × 10(2) and 4.1 × 10(6) CFU of fecal coliforms per fly (mean, 6.0 ± 2.3 × 10(5) CFU per fly). Fecal coliforms were represented by E. coli (85.1%), Klebsiella spp. (10.6%), and Citrobacter spp. (4.3%). Pulsed-field gel electrophoresis demonstrated clonal matches of E. coli and Klebsiella spp. between house flies and FSFC. In contrast, in winter and in the absence of house flies, the contamination of corn by fecal coliforms was significantly (∼10-fold) lower. These results indicate that FSFC is an important site for bacterial contamination by flies and possible exchange of E. coli and other bacteria among house flies. Further research is needed to evaluate the potential use of screens or blowers to limit the access of house flies to FSFC and therefore their effectiveness in preventing

  3. Characterization of genetic determinants involved in antibiotic resistance in Aeromonas spp. and fecal coliforms isolated from different aquatic environments.

    PubMed

    Carnelli, Alessandro; Mauri, Federica; Demarta, Antonella

    2017-03-02

    Aeromonas spp. and fecal coliforms, two abundant and cultivable bacterial populations that can be found in water ecosystems, might substantially contribute to the spread of antibiotic resistance. We investigated the presence and spread of transposons (elements that can move from one location to another in the genome), integrons (structures able to capture and incorporate gene cassettes) and resistance plasmids in strains isolated from polluted and unpolluted water. We recovered 231 Aeromonas and 250 fecal coliforms from water samplings with different degrees of pollution (hospital sewage, activated sludge of a wastewater treatment plant, river water before and after treatment and water from an alpine lake). Sixteen Aeromonas spp. and 22 fecal coliforms carried intI, coding for the site-specific integrase of class 1 integrons, while 22 Aeromonas spp. and 14 fecal coliforms carried tnpA, the transposase gene of the Tn3-family of replicative transposons. The majority of intI and tnpA-positive strains were phenotypically resistant to at least four antibiotics. Integrons and transposons were mainly located on mobilizable plasmids. Our results did not detect common mobile structures in the two populations and therefore relativize the role played by Aeromonas spp. as vectors of antimicrobial resistance determinants between water and commensal gut bacteria.

  4. Significance of Fecal Coliform-Positive Klebsiella1

    PubMed Central

    Bagley, Susan T.; Seidler, Ramon J.

    1977-01-01

    A total of 191 Klebsiella pneumoniae isolates of human clinical, bovine mastitis, and a wide variety of environmental sources were tested for fecal coliform (FC) response with the membrane filtration and most probable number techniques. Twenty-seven Escherichia coli cultures of human clinical and environmental origins were also tested. Eighty-five percent (49/58) of known pathogenic K. pneumoniae were FC positive, compared with 16% (19/120) of the environmental strains. E. coli results indicated 93% (13/14) of the clinical and 85% (11/13) of the environmental strains as FC positive. There was no significant difference in the incidence of FC-positive cultures between pathogenic Klebsiella and E. coli. pH measurements of K. pneumoniae and E. coli cultures growing in m-FC broth at 44.5°C revealed three distinct pH ranges correlating with colony morphology. β-Galactosidase assays of Klebsiella and E. coli cultures at 44.5°C indicated all were able to hydrolyze lactose, even if they were FC negative by the membrane filtration or most probable number techniques. The FC response pattern appears stable in K. pneumoniae. Three pathogenic cultures showed no change in FC responses after 270 generations of growth in sterile pulp mill effluent. Since K. pneumoniae is carried in the gastrointestinal tract of humans and animals and 85% of the tested pathogenic strains were FC positive, the isolation of FC-positive Klebsiella organisms from the environment would indicate their fecal or clinical origin or both. The added fact that K. pneumoniae is an opportunistic pathogen of increasing importance makes the occurrence of FC-positive environmental Klebsiella, particularly in large numbers, a potential human and animal health hazard. PMID:18086

  5. Detection of false-positives among total and fecal coliform counts by factorial analysis of correspondence.

    PubMed Central

    Joncas, M; Michaud, S; Carmichael, J P; Lavoie, M C

    1985-01-01

    Application of an analysis of correspondence to the biochemical characteristics of total and fecal coliforms isolated in the Ivory Coast permitted us to separate two small clusters of isolates different from the main clusters, which included isolates from human and animal feces. The isolates grouped in the small clusters were from water samples. An analysis of the biochemical characteristics which permitted the segregation of the "water-specific" isolates from the main clusters indicates that water-specific total coliforms were citrate positive, indole negative, and amygdaline positive. Water-specific fecal coliforms were either citrate positive, indole negative, amygdaline positive, and inositol negative or indole negative, amygdaline positive, and inositol positive. Any isolates not fitting the above patterns could be considered of fecal origin. If this observation is confirmed under temperate climates and for a greater number of isolates, these simple tests could be used to confirm the fecal origin of coliforms. PMID:2983607

  6. Comparison of four membrane filter methods for fecal coliform enumeration in tropical waters.

    PubMed Central

    Santiago-Mercado, J; Hazen, T C

    1987-01-01

    Four membrane filter methods for the enumeration of fecal coliforms were compared for accuracy, specificity, and recovery. Water samples were taken several times from 13 marine, 1 estuarine, and 4 freshwater sites around Puerto Rico, from pristine waters and waters receiving treated and untreated sewage and effluent from a tuna cannery and a rum distillery. Differences of 1 to 3 orders of magnitude in the levels of fecal coliforms were observed in some samples by different recovery techniques. Marine water samples gave poorer results, in terms of specificity, selectivity, and comparability, than freshwater samples for all four fecal coliform methods used. The method using Difco m-FC agar with a resuscitation step gave the best overall results; however, even this method gave higher false-positive error, higher undetected-target error, lower selectivity, and higher recovery of nontarget organisms than the method using MacConkey membrane broth, the worst method for temperate waters. All methods tested were unacceptable for the enumeration of fecal coliforms in tropical fresh and marine waters. Thus, considering the high densities of fecal coliforms observed at most sites in Puerto Rico by all these methods, it would seem that these density estimates are, in many cases, grossly overestimating the degree of recent fecal contamination. Since Escherichia coli appears to be a normal inhabitant of tropical waters, fecal contamination may be indicated when none is present. Using fecal coliforms as an indicator is grossly inadequate for the detection of recent human fecal contamination and associated pathogens in both marine and fresh tropical waters. PMID:3324970

  7. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  8. Fecal indicator bacteria variability in samples pumped from monitoring wells.

    PubMed

    Kozuskanich, J; Novakowski, K S; Anderson, B C

    2011-01-01

    The detection of microbiological contamination in drinking water from groundwater wells is often made with a limited number of samples that are collected using traditional geochemical sampling protocols. The objective of this study is to examine the variability of fecal indicator bacteria, as observed using discrete samples, due to pumping. Two wells were instrumented as multilevel piezometers in a bedrock aquifer, and bacterial enumeration was conducted on a total of 166 samples (for total coliform, fecal coliform, Escherichia coli, and fecal streptococci) using standard membrane filtration methods. Five tests were conducted using pumping rates ranging from 0.3 to 17 L/min in a variety of purging scenarios, which included constant and variable (incremental increase and decrease) flow. The results clearly show a rapid and reproducible, 1 to 2 log-unit decrease in fecal indicator bacteria at the onset of pumping to stabilized, low-level concentrations prior to the removal of three to five well volumes. The pumping rate was not found to be correlated with the magnitude of observed bacterial counts. Based on the results, we suggest sampling protocols for fecal indicator bacteria that include multiple collections during the course of pumping, including early-time samples, and consider other techniques such as microscopic enumeration when assessing the source of bacteria from the well-aquifer system.

  9. [Effect of photoreactivating light intensity on photoreactivation of Escherichia coli and fecal coliform in the tertiary effluent disinfected by UV].

    PubMed

    Guo, Mei-ting; Hu, Hong-ying; Liu, Wen-jun

    2008-09-01

    The effect of photoreactivating light intensity on photoreactivation of E. coli and fecal coliform in tertiary effluent after UV disinfection were investigated. The response of the two species to intensity of photoreactivating light varied with UV dose and bacterial species. Photoreactivation of E. coli after UV irradiation of 5 mJ/cm2 achieved the same maximum under three selected intensities of photoreactivating light (0-43 microW/cm2). A threshold existed when UV dose increased to 20 mJ/cm2 and significant photoreactivation was detected only under intensity of light 43 microW/cm2. With different UV doses irradiation, fecal coliform showed little difference under selected intensities of photoreactivating light in this study. The different effects of photoreactivating light intensity on photoreactivation of different bacteria should be considered when proposing the control measurements.

  10. The Likelihood of Coliform Bacteria in NJ Domestic Wells Based on Precipitation and Other Factors.

    PubMed

    Procopio, Nicholas A; Atherholt, Thomas B; Goodrow, Sandra M; Lester, Lori A

    2017-03-29

    The influence of precipitation on coliform bacteria detection rates in domestic wells was investigated using data collected through the New Jersey Private Well Testing Act. Measured precipitation data from the National Weather Service (NWS) monitoring stations was compared to estimated data from the Multisensor Precipitation Estimate (MPE) in order to determine which source of data to include in the analyses. A strong concordance existed between these two precipitations datasets; therefore, MPE data was utilized as it is geographically more specific to individual wells. Statewide, 10 days of cumulative precipitation prior to testing was found to be an optimal period influencing the likelihood of coliform detections in wells. A logistic regression model was developed to predict the likelihood of coliform occurrence in wells from 10 days of cumulative precipitation data and other predictive variables including geology, season, coliform bacteria analysis method, pH, and nitrate concentration. Total coliform (TC) and fecal coliform or Escherichia coli (FC/EC) were detected more frequently when the preceding 10 days of cumulative precipitation exceeded 34.5 and 54 mm, respectively. Furthermore, the likelihood of coliform detection was highest in wells located in the bedrock region, during summer and autumn, analyzed with the enzyme substrate method, with pH between 5 and 6.99, and (for FC/EC but not TC) nitrate greater than 10 mg/L. Thus, the likelihood of coliform presence in domestic wells can be predicted from readily available environmental factors including timing and magnitude of precipitation, offering outreach opportunities and potential changes to coliform testing recommendations.

  11. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Christians Creek, Augusta County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated

  12. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    PubMed

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  13. Coliform bacteria in New Jersey domestic wells: influence of geology, laboratory, and method.

    PubMed

    Atherholt, Thomas B; Bousenberry, Raymond T; Carter, Gail P; Korn, Leo R; Louis, Judith B; Serfes, Michael E; Waller, Debra A

    2013-01-01

    Following passage of the New Jersey Private Well Testing Act, 50,800 domestic wells were tested between 2002 and 2007 for the presence of total coliform (TC) bacteria. Wells containing TC bacteria were further tested for either fecal coliform or Escherichia coli (FC/E. coli) bacteria. Analysis of the data, generated by 39 laboratories, revealed that the rate of coliform detections in groundwater (GW) was influenced by the laboratory and the method used, and also by geology. Based on one sample per well, TC and FC/E. coli were detected in wells located in bedrock 3 and 3.7 times more frequently, respectively, than in wells located in the unconsolidated strata of the Coastal Plain. In bedrock, detection rates were higher in sedimentary rock than in igneous or metamorphic rock. Ice-age glaciers also influenced detection rates, most likely by removing material in some areas and depositing thick layers of unconsolidated material in other areas. In bedrock, coliform bacteria were detected more often in wells with a pH of 3 to 6 than in wells with a pH of 7 to 10 whereas the reverse was true in the Coastal Plain. TC and FC/E. coli bacteria were detected in 33 and 9.5%, respectively, of sedimentary rock wells with pH 3 to 6. Conversely, for Coastal Plain wells with pH 3 to 6, detection rates were 4.4% for TC and 0.6% for FC/E. coli.

  14. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus.

    PubMed

    Chudoba, Elizabeth A; Mallin, Michael A; Cahoon, Lawrence B; Skrabal, Stephen A

    2013-06-15

    Fecal microbial pollution of recreational and shellfishing waters is a major human health and economic issue. Microbial pollution sourced from stormwater runoff is especially widespread, and strongly associated with urbanization. However, non-point source nutrient pollution is also problematic, and may come from sources different from fecal-derived pollution (i.e. fertilization of farm fields, lawns and gardens, and ornamental urban areas). Fecal bacteria require nutrients; thus the impact of such nutrient loading on survival and abundance of fecal coliform bacteria in ambient waters was experimentally investigated in a constructed wetland in coastal North Carolina, USA. A series of nutrient-addition bioassays testing impacts of inorganic and organic nitrogen and phosphorus demonstrated that additions of neither organic nor inorganic nitrogen stimulated fecal coliform bacteria. However, phosphorus additions provided significant stimulation of fecal coliform growth at times; on other occasions such additions did not. Dilution bioassays combined with nutrient additions were subsequently devised to assess potential impacts of microzooplankton grazing on the target fecal bacteria populations. Results demonstrated grazing to be a significant bacterial reduction factor in 63% of tests, potentially obscuring nutrient effects. Thus, combining dilution experiments with nutrient addition bioassays yielded simultaneous information on microzooplankton grazing rates on fecal bacteria, fecal bacterial growth rates, and nutrient limitation. Overall, when tested against a non-amended control, additions of either organic or inorganic phosphorus significantly stimulated fecal coliform bacterial growth on 50% of occasions tested, with organic phosphorus generally providing greater stimulation. The finding of significant phosphorus stimulation of fecal bacteria indicates that extraneous nutrient loading can, at times, augment the impacts of fecal microbial pollution of shellfishing

  15. Spatial and Temporal Dynamics of Fecal Coliform and Associated with Suspended Solids and Water within Five Northern California Estuaries.

    PubMed

    Lewis, David J; Atwill, Edward R; Pereira, Maria das Graças C; Bond, Ronald

    2013-01-01

    Fecal coliform and associated with suspended solids (SS) and water in five northern California estuaries were studied to document process influences and water quality monitoring biases affecting indicator bacteria concentrations. We collected and analyzed 2371 samples during 10 sampling events for the five studied estuaries. Concentrations during wet-season stormflow conditions were greater than during wet-season base flow and dry-season base flow conditions. Results also document concentration gradients across the length of the studied estuaries and with depth of sample collection. Highest concentrations were associated with shallow samples collected furthest inland. Corresponding decreases occurred the deeper and closer to the estuary mouth a sample was collected. Results also identify direct relationships of wind speed and discharge velocity and indirect relationship of tide stage to indicator bacteria concentrations. Bacteria associated with suspended solids (SS), after conversion to the same units of measurement (mass), were three orders of magnitude greater than in the water fraction. However, the mean proportion contributed by SS to composite water sample concentrations was 8% (SE 0.3) for fecal coliform and 7% (SE 0.3) for . Bacteria from the SS proportion is related to seasonality, tide stage, and discharge velocity that are consistent with mechanisms for entrainment, transport of SS, and reduced particle settling. These results are important for both managing and monitoring these systems by improving sample spatial and temporal context and corresponding bacteria concentration values across the freshwater-saltwater interface.

  16. Assessing the sources of high fecal coliform levels at an urban tropical beach.

    PubMed

    Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro Filho, Roberto Augusto

    2015-01-01

    Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated.

  17. Assessing the sources of high fecal coliform levels at an urban tropical beach

    PubMed Central

    Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro, Roberto Augusto

    2015-01-01

    Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated. PMID:26691459

  18. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  19. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2017-03-15

    A three-dimensional fecal coliform transport model was developed and incorporated into a hydrodynamic and suspended sediment transport model to better understand the microbiological water quality in the tidal Tamsui River estuarine system of northern Taiwan, which includes three main tributaries: Dahan River, Xindian River, and Keelung River. The model was calibrated using the water level, salinity, suspended sediment concentration, and fecal coliform data measured in 2010. The predictive skill, a statistical approach, is used to evaluate the model performance. There was quantitatively good agreement between the simulation and measurement results. Further, the calibrated model underwent model sensitivity analysis by varying the model parameters which include the settling velocity, darkness decay rate, partition coefficient, and fecal coliform concentration in the sediment bed. The results indicated that the settling velocity played the most important role in affecting fecal coliform concentrations followed by partition coefficient, darkness decay rate, and fecal coliform concentration in the sediment bed. The model was also used to investigate the effects of salinity and suspended sediment on fecal coliform contamination. The salinity module was excluded in the simulations, resulting in an increase of fecal coliform concentration. However the effect of salinity on fecal coliform concentration is minor. If the suspended sediment transport was excluded in the simulations, the predicted results of fecal coliform concentration decrease to be underestimated the measured data. The modeling results revealed that the inclusion of the suspended sediment transport model in the simulations was of crucial importance because the fecal coliform concentrations were significantly influenced by the suspended sediment concentration in the estuarine system.

  20. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fecal coliform and total suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents...

  1. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fecal coliform and total suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents...

  2. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fecal coliform and total suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents...

  3. Removal of helminth eggs and fecal coliforms by anaerobic thermophilic sludge digestion.

    PubMed

    Cabirol, N; Rojas Oropeza, M; Noyola, A

    2002-01-01

    Anaerobic digestion of two types of waste sludge was applied in order to assess the suitability of thermophilic conditions for the stabilization of organic matter and removal of fecal coliforms and helminth eggs. Feeding sludge was taken from an activated sludge municipal facility (BS) and from an enhanced primary treatment municipal plant (EPT). As an accompanying experiment, mesophilic digesters were also operated. The four digesters (M1, M2, T1, T2) had a 5 litre volume and an egg shape. A highly stabilized material was obtained at both temperatures with BS type of sludge, taking the reduction of volatile fraction of suspended solids (%Rvss) as indicator (84% for M1 and 74% for T1). In general, EPT sludge was a more difficult substrate, if compared with BS sludge; thermophilic condition was better adapted than mesophilic for this kind of sludge. Satisfactory reductions on counts of fecal coliforms and helminth eggs were achieved under thermophilic digestion for both types of feeding sludge. T1 digester, fed with biological sludge, removed fecal coliforms below 1000 MPN/gTS and helminth eggs down to 0.28 HELarval/gTS, at an HRT of 20 days. As a general conclusion, anaerobic thermophilic digestion may be an appropriate option for sludge stabilization, in order to meet EPA Class A biosolids final disposal regulations. However, further research is needed in order to consistently remove helminth eggs and fecal coliforms from waste sludge at shorter hydraulic retention times.

  4. Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges.

    PubMed

    Zhang, Chong-Miao; Du, Cong; Xu, Huan; Miao, Yan-Hui; Cheng, Yan-Yan; Tang, Hao; Zhou, Jin-Hong; Wang, Xiao-Chang

    2015-01-01

    Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.

  5. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    PubMed

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  6. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    PubMed

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  7. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  8. Status and trends of fecal indicator bacteria in two urban watersheds.

    PubMed

    Petersen, Tina M; Suarez, Monica P; Rifai, Hanadi S; Jensen, Paul; Su, Yu-Chun; Stein, Ron

    2006-11-01

    This paper examines bacterial levels and their causes in two Houston bayous (Texas). Buffalo and Whiteoak bayous are two of the most contaminated water bodies in Texas for indicator bacteria, based on the frequency and magnitude of contact recreation water quality exceedances. Examination of historical data indicates frequent exceedances, although some improvement has been made since the 1970s. Statistical analyses showed some correlation between in-stream fecal coliform concentrations and rainfall and with land use. Differences in fecal coliform concentrations were found between high- and low-flow conditions in Whiteoak Bayou, while reservoir releases confounded this relationship in Buffalo Bayou. Wastewater treatment plant effluent was found to make up two-thirds to three-fourths of the median flow in both bayous. Effluent sampling was conducted at 72 of the approximately 140 wastewater treatment plants (WWTPs) in the watersheds, providing evidence that WWTP effluent could act to maintain low-flow concentrations of fecal coliform in the bayous.

  9. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  10. Molecular identification of coliform bacteria isolated from drinking water reservoirs with traditional methods and the Colilert-18 system.

    PubMed

    Kämpfer, Peter; Nienhüser, Anita; Packroff, Gabriele; Wernicke, Frank; Mehling, Arnd; Nixdorf, Katja; Fiedler, Stefanie; Kolauch, Claudia; Esser, Michael

    2008-07-01

    The accuracy of a traditional method (lactose utilization with acid and gas production) for the detection of coliform bacteria and E. coli was tested in comparison with method ISO 9308-1 (based on acid formation from lactose) and the Colilert-18 system (detection of beta-galactosidase). A total of 345 isolates were identified after isolation from water samples using API 20E strips. The Colilert-18 led to the highest number of positive findings (95% of the isolates were assigned to coliforms), whereas the ISO-9308-1 method resulted only in 29% coliform findings. With the traditional method only 15% were rated positive. Most of the isolates were identified by the API 20E system as Enterobacter spp. (species of the Enterobacter cloacae complex), Serratia spp., Citrobacter spp.and Klebsiella spp.; but species identification remained vague in several cases. A more detailed identification of 126 pure cultures by using 16S rRNA gene sequence analysis and analysis of the hsp60 gene resulted in the identification of Enterobacter nimipressuralis, E. amnigenus, E. asburiae, E. hormaechei, and Serratia fonticola as predominat coliforms. These species are beta-galactosidase positive, but show acid formation from lactose often after a prolonged incubation time. They are often not of fecal origin and may interfere with the ability to accurately detect coliforms of fecal origin.

  11. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study

    PubMed Central

    HARADA, Kazuki; SASAKI, Atsushi; SHIMIZU, Takae

    2015-01-01

    The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1−2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces. PMID:26311787

  12. Classification of Antibiotic Resistance Patterns of Indicator Bacteria by Discriminant Analysis: Use in Predicting the Source of Fecal Contamination in Subtropical Waters

    PubMed Central

    Harwood, Valerie J.; Whitlock, John; Withington, Victoria

    2000-01-01

    The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida. PMID:10966379

  13. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  14. Evaluation of surfactant modified zeolite (SMZ) as a filter for removal of E. coli and fecal coliforms from drinking water wells in Malawi

    NASA Astrophysics Data System (ADS)

    Herzog, S. P.; Mtethiwa, A.; Ghambi, C.; Lusangasi, B.

    2012-12-01

    Unsafe drinking water is a problem faced by millions of people in sub-Saharan Africa and in developing nations around the world. While effective water treatments exist, their generally high costs preclude their use by the low-income populations that need them most. Surfactant modified zeolite (SMZ) is a low-cost filter medium that has previously been demonstrated to efficiently remove bacteria and viruses in laboratory settings. The first known field test of SMZ as a drinking water filter was conducted in rural villages near Lilongwe, Malawi. Water was drawn from hand-dug wells and filtered through SMZ packs constructed from local materials. This filtration step was repeated over a period of several weeks to determine the effective lifetime of the filters. Pre-filtration and post-filtration samples were analyzed for E. coli and fecal coliforms by culturing and colorimetric presence/absence tests. All unfiltered water samples were contaminated with E. coli and fecal coliforms. The aforementioned pathogens were not detected in any of the initial filtered samples. After filtering an average of approximately 40 liters, E. coli and fecal coliforms were found to be present in the filtered water, presumably indicating that the filters had become saturated with the pathogens. The results demonstrate that SMZ could serve as an effective, affordable filter medium for treatment of drinking water in rural settings and developing countries. It is anticipated that the design of the filters could be further enhanced, leading to an increase in their effective lifespan.

  15. Effects of repeated-low level sodium chlorate administration on ruminal and fecal coliforms in sheep.

    PubMed

    Arzola, Claudio; Copado, Ramon; Epps, Sharon V R P; Rodriguez-Almeida, Felipe; Ruiz-Barrera, Oscar; Rodriguez-Muela, Carlos; Corral-Luna, Agustin; Castillo-Castillo, Yamicela; Diaz-Plascencia, Daniel

    2014-01-01

    Abstract The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.

  16. Environmental sources of fecal bacteria

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Ishii, Satoshi; Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    This chapter provides a review of the research on environmental occurrences of faecal indicator bacteria in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality.

  17. Impacts of sanitation upgrading to the decrease of fecal coliforms entering into the environment in China.

    PubMed

    Tong, Yindong; Yao, Ruihua; He, Wei; Zhou, Feng; Chen, Cen; Liu, Xianhua; Lu, Yiren; Zhang, Wei; Wang, Xuejun; Lin, Yan; Zhou, Min

    2016-08-01

    Identifying the sanitation efficacy of reducing fecal contaminations in the environment is important for evaluating health risks of the public and developing future management strategies to improve sanitation conditions. In this study, we estimated the fecal coliforms (FC) entering into the environment in 31 provinces in China under three sanitation scenarios. Our calculation results indicated that, the current FC release is disparate among regions, and the human releases in the rural regions were dominant, accounting for over 90% of the total human releases. Compared with the human release, the FC release from the livestock was of similar magnitude, but has a quite different spatial distribution. In China Women's Development Program, the Chinese government set the target to make over 85% of the population in the rural access to the toilets in 2020. If the target set by the Chinese government is achieved, a decrease of 34% (12-54%) in the FC releases would be anticipated. In the future, the improvement in sanitation and accesses to the safe drinking water in the less developed regions, such as Tibet, Qinghai, and Ningxia, should be considered as a priority.

  18. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition.

    PubMed

    St Laurent, Jacques; Mazumder, Asit

    2014-01-01

    Quantifying the influence of hydro-meteorological variability on surface source water fecal contamination is critical to the maintenance of safe drinking water. Historically, this has not been possible due to the scarcity of data on fecal indicator bacteria (FIB). We examined the relationship between hydro-meteorological variability and the most commonly measured FIB, fecal coliform (FC), concentration for 43 surface water sites within the hydro-climatologically complex region of British Columbia. The strength of relationship was highly variable among sites, but tended to be stronger in catchments with nival (snowmelt-dominated) hydro-meteorological regimes and greater land-use impacts. We observed positive relationships between inter-annual FC concentration and hydro-meteorological variability for around 50% of the 19 sites examined. These sites are likely to experience increased fecal contamination due to the projected intensification of the hydrological cycle. Seasonal FC concentration variability appeared to be driven by snowmelt and rainfall-induced runoff for around 30% of the 43 sites examined. Earlier snowmelt in nival catchments may advance the timing of peak contamination, and the projected decrease in annual snow-to-precipitation ratio is likely to increase fecal contamination levels during summer, fall, and winter among these sites. Safeguarding drinking water quality in the face of such impacts will require increased monitoring of FIB and waterborne pathogens, especially during periods of high hydro-meteorological variability. This data can then be used to develop predictive models, inform source water protection measures, and improve drinking water treatment.

  19. Fecal-indicator bacteria in streams alonga gradient of residential development

    USGS Publications Warehouse

    Frenzel, Steven A.; Couvillion, Charles S.

    2002-01-01

    Fecal-indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal-coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal-indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal-indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal-indicator bacteria concentrations were highly variable over a two-day period of stable streamflow, which may have implications for testing of compliance to water-quality standards.

  20. Vegetable Contamination by the Fecal Bacteria of Poultry Manure: Case Study of Gardening Sites in Southern Benin

    PubMed Central

    Atidégla, Séraphin C.; Huat, Joël; Agbossou, Euloge K.; Saint-Macary, Hervé; Glèlè Kakai, Romain

    2016-01-01

    A study was conducted in southern Benin to assess the contamination of vegetables by fecal coliforms, Escherichia coli, and fecal streptococci as one consequence of the intensification of vegetable cropping through fertilization with poultry manure. For this purpose, on-farm trials were conducted in 2009 and 2010 at Yodo-Condji and Ayi-Guinnou with three replications and four fertilization treatments including poultry manure and three vegetable crops (leafy eggplant, tomato, and carrot). Sampling, laboratory analyses, and counts of fecal bacteria in the samples were performed in different cropping seasons. Whatever the fertilization treatment, the logs of mean fecal bacteria count per g of fresh vegetables were variable but higher than AFNOR criteria. The counts ranged from 8 to 10 fecal coliforms, from 5 to 8 fecal streptococci, and from 2 to 6 Escherichia coli, whereas AFNOR criteria are, respectively, 0, 1, and 0. The long traditional use of poultry manure and its use during the study helped obtain this high population of fecal pathogens. Results confirmed that the contamination of vegetables by fecal bacteria is mainly due to the use of poultry manure. The use of properly composted poultry manure with innovative cropping techniques should help reduce the number and incidence of pathogens. PMID:27069914

  1. Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration.

    PubMed

    Gronewold, Andrew D; Wolpert, Robert L

    2008-07-01

    Most probable number (MPN) and colony-forming-unit (CFU) estimates of fecal coliform bacteria concentration are common measures of water quality in coastal shellfish harvesting and recreational waters. Estimating procedures for MPN and CFU have intrinsic variability and are subject to additional uncertainty arising from minor variations in experimental protocol. It has been observed empirically that the standard multiple-tube fermentation (MTF) decimal dilution analysis MPN procedure is more variable than the membrane filtration CFU procedure, and that MTF-derived MPN estimates are somewhat higher on average than CFU estimates, on split samples from the same water bodies. We construct a probabilistic model that provides a clear theoretical explanation for the variability in, and discrepancy between, MPN and CFU measurements. We then compare our model to water quality samples analyzed using both MPN and CFU procedures, and find that the (often large) observed differences between MPN and CFU values for the same water body are well within the ranges predicted by our probabilistic model. Our results indicate that MPN and CFU intra-sample variability does not stem from human error or laboratory procedure variability, but is instead a simple consequence of the probabilistic basis for calculating the MPN. These results demonstrate how probabilistic models can be used to compare samples from different analytical procedures, and to determine whether transitions from one procedure to another are likely to cause a change in quality-based management decisions.

  2. Source specific fecal bacteria modeling using soil and water assessment tool model.

    PubMed

    Parajuli, Prem B; Mankin, Kyle R; Barnes, Philip L

    2009-01-01

    Fecal bacteria can contaminate water and result in illness or death. It is often difficult to accurately determine sources of fecal bacteria contamination, but bacteria source tracking can help identify non-point sources of fecal bacteria such as livestock, humans and wildlife. The Soil and Water Assessment Tool (SWAT) microbial sub-model 2005 was used to evaluate source-specific fecal bacteria using three years (2004-2006) of observed modified deterministic probability of bacteria source tracking data, as well as measure hydrologic and water quality data. This study modeled source-specific bacteria using a model previously calibrated for flow, sediment and total fecal coliform bacteria (FCB) concentration. The SWAT model was calibrated at the Rock Creek sub-watershed, validated at the Deer Creek sub-watershed, and verified at the Auburn sub-watershed and then at the entire Upper Wakarusa watershed for predicting daily flow, sediment, nutrients, total fecal bacteria, and source-specific fecal bacteria. Watershed characteristics for livestock, humans, and wildlife fecal bacterial sources were first modeled together then with three separate sources and combinations of source-specific FCB concentration: livestock and human, livestock and wildlife and human and wildlife. Model results indicated both coefficient of determination (R(2)) and Nash-Sutcliffe Efficiency Index (E) parameters ranging from 0.52 to 0.84 for daily flow and 0.50-0.87 for sediment (good to very good agreement); 0.14-0.85 for total phosphorus (poor to very good agreement); -3.55 to 0.79 for total nitrogen (unsatisfactory to very good agreement) and -2.2 to 0.52 for total fecal bacteria (unsatisfactory to good agreement). Model results generally determined decreased agreement for each single source of bacteria (R(2) and E range from -5.03 to 0.39), potentially due to bacteria source tracking (BST) uncertainty and spatial variability. This study contributes to new knowledge in bacteria modeling and

  3. Mortality of fecal bacteria in seawater

    SciTech Connect

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G. )

    1991-03-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which ({sup 3}H)thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate.

  4. Survival of Salmonella adelaide and fecal coliforms in coarse sands of the swan costal plain, Western Australia.

    PubMed Central

    Parker, W F; Mee, B J

    1982-01-01

    The survival of Salmonella adelaide and fecal coliforms in two coarse sands influenced by two sources of septic tank effluent was studied. The experiments were conducted in conditions that reflected the soil environment beneath functioning septic tank systems. Significant differences in survival were found with different effluent sources. In one experiment the survival of S. adelaide was similar to that of fecal coliforms; in the other it was not. The nonuniform, multiphasic nature of survival curves was variability observed in these experiments suggests that the application of such survival data for establishing management criteria for septic tank systems--by, for example, the use of soil moisture characteristic curves to give estimates of movement in the soil--is inappropriate. PMID:7103482

  5. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    PubMed

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log10) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log10) whereas the least reduction was observed for F+ coliphages (2.1 log10) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log10) or chlorine (3.3 log10). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.

  6. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Mahajanakatti, Arpitha Badarinath; Grandhi, Nisha Jayaprakash; Prasanna, Akshatha; Sen, Ballari; Sharma, Narasimha; Vasist, Kiran S; Narayanappa, Rajeswari

    2015-05-01

    The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p ≤ 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51% (n = 793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46% (n = 273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85% (n = 107), 94.49% (n = 103), and 90.22% (n = 157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of bla TEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.

  7. Application of the Pearl model to analyze fecal coliform data from conditionally approved shellfish harvest areas in seven Texas bays.

    PubMed

    Conte, F S; Ahmadi, A

    2014-09-01

    The U.S. National Shellfish Sanitation Program (NSSP) 14/43 standard states that conditionally approved shellfish growing areas must be closed for harvest when the geometric mean of fecal coliform concentration exceeds the NSSP limit of 14 most probable number (MPN)/100 mL, or the estimated 90th percentile of fecal coliform concentrations exceeds 43 MPN/100 mL for a five-tube test. The authors hypothesized that the NSSP 14/43 standard is not sufficient to protect the public from risks from consumption of biologically contaminated shellfish and the standard should be modified to 8/26 MPN/100 mL. To verify this hypothesis, the authors analyzed fecal coliform data from conditionally approved shellfish harvest areas of seven Texas bays using the Pearl sanitation model. Results showed that the shellfish closure rules mandated by the Texas Department of State Health Services actually enforced the "Pearl" limits of 8/26 MPN/100 mL, and not the NSSP limit of 14/43 MPN/100 mL.

  8. [Presence of fecal coliforms, Escherichia coli and DNAse- and coagulase-positive Staphylococcus aureus, in "colonial" cheese sold in the city of Blumenau, Estado de Santa Catarina, Brazil].

    PubMed

    Reibnitz, M G; Tavares, L B; García, J A

    1998-01-01

    Twenty cheese samples were collected at Blumenau (SC) and were submitted to analysis in order to verify the presence of fecal coliforms, Escherichia coli and Staphylococcus aureus. Among the 20 samples of cheese, analysis revealed that 70% and 20% respectively, were not within present legal specifications (Norma 001/87-DNVSA) for fecal coliforms and Escherichia coli. For Staphylococcus, 95% of the samples were not within present legal specifications.

  9. Distribution and variability of fecal-indicator bacteria in Scioto and Olentangy rivers in the Columbus, Ohio, area

    USGS Publications Warehouse

    Myers, Donna N.

    1992-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, to determine the distribution and variability of fecal-indicator bacteria in Scioto and Olentangy Rivers. Fecal-indicator bacteria are among the contaminants of concern to recreational users of these rivers in the Columbus area. Samples were collected to be analyzed for fecal-coliform and Escherichia coli (E. coli) bacteria and selected water-quality constituents and physical properties at 10 sites-- 4 on the Olentangy River and 6 on the Scioto River during the recreational seasons in 1987, 1988, and 1989. Measurements of streamflow also were made at these sites at various frequencies during base flow and runoff. The concentrations of fecal-coliform and E. coli bacteria in the Scioto and Olentangy Rivers spanned a range of five orders of magnitude, from less than 20 to greater than 2,000,000 col/100 mL (colonies per 100 milliliters). In addition, the concentrations of fecal coliform and E. coli bacteria are well correlated (r=0.97) in the study area. At times, relatively high concentrations, for fecal-indicator bacteria (concentrations greater than 51,000 col/100 mL for fecal-coliform and E. coli ) were found in Olentangy River at Woody Hayes Drive and at Goodale Street, and in Scioto River at Greenlawn Avenue and at Columbus. Intermediate concentrations of fecal-indicator bacteria (from 5,100 to 50,000 col/100 mL for fecal coliform and (from 510 to 50,000 col/100 mL for E. coli ) were found in Scioto River at Town Street and below O'Shaughnessy Dam near Dublin, Ohio, and in Olentangy River at Henderson Road. The lowest (median) concentrations of fecal-indicator bacteria (from 20 to 5,000 col/100 mL for fecal coliform and from 20 to 500 col/100 mL for E. coli ) were found at Olentangy River near Worthington, Ohio, Scioto River at Dublin Road Water Treatment Plant and below Griggs Reservoir. Fecal-coliform concentrations exceeded the geometric

  10. The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate.

    PubMed

    Aziz, Hamidi Abdul; Othman, Osama Mohammed; Abu Amr, Salem S

    2013-02-01

    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.

  11. RNA-Based Methods Increase the Detection of Fecal Bacteria and Fecal Identifiers in Environmental Waters

    EPA Science Inventory

    We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...

  12. Characterizing relationships among fecal indicator bacteria ...

    EPA Pesticide Factsheets

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial source tracking (MST) markers, developed to determine potential sources of fecal contamination, can also be resuspended from bed sediments. The primary objective of this study was to predict occurrence of waterborne pathogens in water and streambed sediments using a simple statistical model that includes traditionally measured FIB, environmental parameters and source allocation, using MST markers as predictor variables. Synoptic sampling events were conducted during baseflow conditions downstream from agricultural (AG), forested (FORS), and wastewater pollution control plant (WPCP) land uses. Concentrations of FIB and MST markers were measured in water and sediments, along with occurrences of the enteric pathogens Campylobacter, Listeria and Salmonella, and the virulence gene that carries Shiga toxin, stx2. Pathogens were detected in water more often than in underlying sediments. Shiga toxin was significantly related to land use, with concentrations of the ruminant marker selected as an independent variable that could correctly classify 76% and 64% of observed Shiga toxin occurrences in water and sediment, respectively. FIB concentrations and water quality parameters were also selected a

  13. Detection of the coliform bacteria Escherichia coli and Salmonella sp. in water by a sensitive and rapid immunomagnetic electrochemiluminescence (ECL) technique

    NASA Astrophysics Data System (ADS)

    Yu, H.; Bruno, J.

    1995-10-01

    Hemorrhagic Escherichia coli O157:H7 and other fecal coliform bacteria, such as species of Salmonella, could pose a serious health threat in contaminated water resources. Traditional bacterial culture methods and ELISA based assays for identification of fecal coliforms are relatively slow and ambiguous. Polymerase chain reaction of extracted DNA from such bacteria and immunomagnetic separation (IMS) methods appear promising for this application. Although PCR can be a definitive identification technique, it is relatively time consuming when compared to IMS. In this work, the IMS technique has been coupled with an electrochemiluminescence (ECL) technology to separate specific bacteria from their media and quantitatively detect the bacteria within one hour. The sensitivity of the IMS-ECL assay for E.coli O157 strain and Salmonella sp. is as low as 10 - 100 cells/mL in water samples. In addition, IMS was accomplished in dense washings of food and environmental samples followed by ECL assay. These results suggest strongly use of the IMS-ECL methodology for rapid and facile screening of various bacterial contaminations in water resources or other environmental samples for the low level presence of pathogenic coliforms.

  14. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli

  15. Enumeration and Identification of Coliform Bacteria Injured by Chlorine or Fungicide Mixed with Agricultural Water.

    PubMed

    Izumi, Hidemi; Nakata, Yuji; Inoue, Ayano

    2016-10-01

    Chemical sanitizers may induce no injury (bacteria survive), sublethal injury (bacteria are injured), or lethal injury (bacteria die). The proportion of coliform bacteria that were injured sublethally by chlorine and fungicide mixed with agricultural water (pond water), which was used to dilute the pesticide solution, was evaluated using the thin agar layer (TAL) method. In pure cultures of Enterobacter cloacae , Escherichia coli , and E. coli O157:H7 (representing a human pathogen), the percentage of chlorine-injured cells was 69 to 77% for dilute electrolyzed water containing an available chlorine level of 2 ppm. When agricultural water was mixed with electrolyzed water, the percentage of injured coliforms in agricultural water was 75%. The isolation and identification of bacteria on TAL and selective media suggested that the chlorine stress caused injury to Enterobacter kobei . Of the four fungicide products tested, diluted to their recommended concentrations, Topsin-M, Sumilex, and Oxirane caused injury to coliform bacteria in pure cultures and in agricultural water following their mixture with each pesticide, whereas Streptomycin did not induce any injury to the bacteria. The percentage of injury was 45 to 97% for Topsin-M, 80 to 87% for Sumilex, and 50 to 97% for Oxirane. A comparison of the coliforms isolated from the pesticide solutions and then grown on either TAL or selective media indicated the possibility of fungicide-injured Rahnella aquatilis , Yersinia mollaretii , and E. coli . These results suggest the importance of selecting a suitable sanitizer and the necessity of adjusting the sanitizer concentration to a level that will kill the coliforms rather than cause sanitizer-induced cell injury that can result in the recovery of the coliforms.

  16. [The significance of glucose positive coliform bacteria and potentially pathogenic bacteria as an indicator of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnya, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Yu G; Zagaynova, A V

    2013-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies--common bacteria (CB) and thermotolerant coliform bacteria (TCB) do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index--glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections (AHI) occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  17. Temporal and spatial variability of fecal indicator bacteria in the surf zone off Huntington Beach, CA

    USGS Publications Warehouse

    Rosenfeld, L.K.; McGee, C.D.; Robertson, G.L.; Noble, M.A.; Jones, B.H.

    2006-01-01

    Fecal indicator bacteria concentrations measured in the surf zone off Huntington Beach, CA from July 1998-December 2001 were analyzed with respect to their spatial patterns along 23 km of beach, and temporal variability on time scales from hourly to fortnightly. The majority of samples had bacterial concentrations less than, or equal to, the minimum detection limit, but a small percentage exceeded the California recreational water standards. Areas where coliform bacteria exceeded standards were more prevalent north of the Santa Ana River, whereas enterococci exceedances covered a broad area both north and south of the river. Higher concentrations of bacteria were associated with spring tides. No temporal correspondence was found between these bacterial events and either the timing of cold water pulses near shore due to internal tides, or the presence of southerly swell in the surface wave field. All three fecal indicator bacteria exhibited a diel cycle, but enterococci rebounded to high nighttime values almost as soon as the sun went down, whereas coliform levels were highest near the nighttime low tide, which was also the lower low tide. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Fecal-indicator bacteria concentrations in the Illinois River between Hennepin and Peoria, Illinois: 2007-08

    USGS Publications Warehouse

    Dupre, David H.; Hortness, Jon E.; Terrio, Paul J.; Sharpe, Jennifer B.

    2012-01-01

    The Illinois Environmental Protection Agency has designated portions of the Illinois River in Peoria, Woodford, and Tazewell Counties, Illinois, as impaired owing to the presence of fecal coliform bacteria. The U.S. Geological Survey, in cooperation with the Tri-County Regional Planning Commission, examined the water quality in the Illinois River and major tributaries within a 47-mile reach between Peoria and Hennepin, Ill., during water year 2008 (October 2007–September 2008). Investigations included synoptic (snapshot) sampling at multiple locations in a 1-day period: once in October 2007 during lower streamflow conditions, and again in June 2008 during higher streamflow conditions. Five locations in the study area were monitored for the entire year at monthly or more frequent intervals. Two indicator bacteria were analyzed in each water sample: fecal coliform and Escherichia coli (E. coli). Streamflow information from previously established monitoring locations in the study area was used in the analysis. Correlation analyses were used to characterize the relation between the two fecal-indicator bacteria and the relation of either indicator to streamflow. Concentrations of the two measured fecal-indicator bacteria correlated well for all samples analyzed (r = 0.94, p E. coli: rho = -0.43, p = 0.0157). The correlation between fecal indicators and streamflow in tributaries or in the Illinois River at Hennepin was found to be statistically significant, yet moderate in strength with coefficient values ranging from r = 0.4 to 0.6. Indirect observations from the June 2008 higher flow synoptic event may indicate continued effects from combined storm and sanitary sewers in the vicinity of the Illinois River near Peoria, Ill., contributing to observed single-sample exceedance of the State criterion for fecal coliform.

  19. Assessment of the characteristic of nutrients, total metals, and fecal coliform in Sibu Laut River, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing

    2016-03-01

    The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.

  20. Analysis of fecal coliform levels at selected storm water monitoring points at the Oak Ridge Y-12 Plant

    SciTech Connect

    Skaggs, B.E.

    1995-07-01

    The Environmental Protection Agency staff published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. It specifies the permit application requirements for certain storm water discharges such as industrial activity or municipal separate storm sewers serving populations of 100,000 or greater. Storm water discharge associated with industrial activity is discharge from any conveyance used for collecting and conveying storm water that is directly related to manufacturing, processing, or raw material storage areas at an industrial plant. Quantitative testing data is required for these discharges. An individual storm water permit application was completed and submitted to Tennessee Department of Environment and Conservation (TDEC) personnel in October 1992. After reviewing this data in the permit application, TDEC personnel expressed concern with the fecal coliform levels at many of the outfalls. The 1995 NPDES Permit (Part 111-N, page 44) requires that an investigation be conducted to determine the validity of this data. If the fecal coliform data is valid, the permit requires that a report be submitted indicating possible causes and proposed corrective actions.

  1. Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems.

    PubMed

    Camper, A K; McFeters, G A; Characklis, W G; Jones, W L

    1991-08-01

    The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.

  2. Fecal Indicator Bacteria and Environmental Observations: Validation of Virtual Beach

    EPA Science Inventory

    Contamination of recreational waters by fecal material is often assessed using indicator bacteria such as enterococci. Enumeration based on culturing methods can take up to 48 hours to complete, limiting the accuracy of water quality evaluations. Molecular microbial techniques em...

  3. Fecal-Indicator Bacteria in the Allegheny, Monongahela, and Ohio Rivers and Selected Tributaries, Allegheny County, Pennsylvania, 2001-2005

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal

  4. Transport of fecal bacteria by boots and vehicle tires in a rural Alaskan community.

    PubMed

    Chambers, Molly K; Ford, Malcolm R; White, Daniel M; Barnes, David L; Schiewer, Silke

    2009-02-01

    People living without piped water and sewer can be at increased risk for diseases transmitted via the fecal-oral route. One rural Alaskan community that relies on hauling water into homes and sewage from homes was studied to determine the pathways of fecal contamination of drinking water and the human environment so that barriers can be established to protect health. Samples were tested for the fecal indicator, Escherichia coli, and the less specific indicator group, total coliforms. Shoes transported fecal contamination from outside to floor material inside buildings. Contamination in puddles on the road, in conjunction with contamination found on all-terrain vehicle (ATV) tires, supports vehicle traffic as a mechanism for transporting contamination from the dumpsite or other source areas to the rest of the community. The abundance of fecal bacteria transported around the community on shoes and ATV tires suggests that centralized measures for waste disposal as well as shoe removal in buildings could improve sanitation and health in the community.

  5. Simulation of Streamflow and Water Quality to Determine Fecal Coliform and Nitrate Concentrations and Loads in the Mad River Basin, Ohio

    USGS Publications Warehouse

    Reutter, David C.; Puskas, Barry M.; Jagucki, Martha L.

    2006-01-01

    The Hydrological Simulation Program Fortran (HSPF) was used to simulate the concentrations and loads of fecal coliform and nitrate for streams in the Mad River Basin in west-central Ohio during the period 1999 through 2003. The Mad River Basin was divided into subbasins that were defined either by the 14-digit Hydrologic Unit (HU) boundaries or by streamflow-gaging-station locations used in the model. Model calibration and simulation processes required the formation of nine meteorologic zones to input meteorologic time-series data and water-quality data. Sources of fecal coliform and nitrate from wastewater-treatment discharges and combined sewer overflow discharges (CSOs) within the City of Springfield were point sources simulated in the model. Failing septic systems and cattle with direct access to streams were nonpoint sources included in the study but treated in the model as point sources. Other nonpoint sources were addressed by adjusting interflow and ground-water concentrations in the subsurface and maximum storage capacities and accumulation rates of the simulated constituents on the land surface for each meteorologic zone. Simulation results from the calibrated model show that several HUs exceeded the water-quality standard of 1,000 colony-forming units per 100 mL for fecal coliform based on the maximum 30-day geometric mean. Most HUs with high fecal coliform counts were within or downstream from the City of Springfield. No water-quality standard has been set for instream nitrate concentrations; however, the Ohio Environmental Protection Agency (Ohio EPA) considered a concentration of 5 mg/L or greater to be of concern. Simulation results indicate that several HUs in the agricultural areas of the basin exceeded this level. The calibrated model was modified to create scenarios that simulated loads of fecal coliform and nitrate that were either reduced or eliminated from selected sources. The revised models included the elimination of failing septic systems

  6. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

    PubMed Central

    Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander

    2012-01-01

    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866

  7. Fecal-indicator bacteria in the Newfound Creek watershed, western North Carolina, during a high and low streamflow condition, 2003

    USGS Publications Warehouse

    Giddings, Elise M.; Oblinger, Carolyn J.

    2004-01-01

    Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception

  8. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators.

    PubMed

    Haack, Sheridan K; Duris, Joseph W; Fogarty, Lisa R; Kolpin, Dana W; Focazio, Michael J; Furlong, Edward T; Meyer, Michael T

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL(-1), human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions.

  10. Chapter A7. Section 7.1. Fecal Indicator Bacteria

    USGS Publications Warehouse

    Myers, Donna N.; Sylvester, Marc A.

    1997-01-01

    Fecal indicator bacteria are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the presence of several waterborne disease-causing organisms. The concentration of indicator bacteria is a measure of water safety for body-contact recreation or for consumption. This report provides information on the equipment, sampling protocols, and identification, enumeration, and calculation procedures that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator bacteria.

  11. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt.

    PubMed

    Hervert, C J; Martin, N H; Boor, K J; Wiedmann, M

    2017-02-01

    Despite the widespread use of coliforms as indicator bacteria, increasing evidence suggests that the Enterobacteriaceae (EB) and total gram-negative groups more accurately reflect the hygienic status of high-temperature, short-time pasteurized milk and processing environments. If introduced into milk as postpasteurization contamination, these bacteria may grow to high levels and produce a wide range of sensory-related defects. However, limited information is available on the use and survival of bacterial hygiene indicators in dairy products outside of pasteurized fluid milk and cheese. The goal of this study was to (1) provide information on the survival of a diverse set of bacterial hygiene indicators in the low pH environment of Greek yogurt, (2) compare traditional and alternative detection methods for their ability to detect bacterial hygiene indicators in Greek yogurt, and (3) offer insight into optimal hygiene indicator groups for use in low-pH fermented dairy products. To this end, we screened 64 bacterial isolates, representing 24 dairy-relevant genera, for survival and detection in Greek yogurt using 5 testing methods. Before testing, isolates were inoculated into plain, 0% fat Greek yogurt (pH 4.35 to 4.65), followed by a 12-h hold period at 4 ± 1°C. Yogurts were subsequently tested using Coliform Petrifilm (3M, St. Paul, MN) to detect coliforms; Enterobacteriaceae Petrifilm (3M), violet red bile glucose agar and the D-Count (bioMérieux, Marcy-l'Étoile, France) to detect EB; and crystal violet tetrazolium agar (CVTA) to detect total gram-negative bacteria. Overall, the non-EB gram-negative isolates showed significantly larger log reductions 12 h after inoculation into Greek yogurt (based on bacterial numbers recovered on CVTA) compared with the coliform and noncoliform EB isolates tested. The methods evaluated varied in their ability to detect different microbial hygiene indicators in Greek yogurt. Crystal violet tetrazolium agar detected the highest

  12. Asellus aquaticus as a potential carrier of Escherichia coli and other coliform bacteria into drinking water distribution systems.

    PubMed

    Christensen, Sarah C B; Arvin, Erik; Nissen, Erling; Albrechtsen, Hans-Jørgen

    2013-03-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL-1 were measured in the water and 200 E. coli and >240 total coliforms·mL-1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus-1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus-1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters.

  13. Inactivation of fecal bacteria in drinking water by solar heating.

    PubMed Central

    Joyce, T M; McGuigan, K G; Elmore-Meegan, M; Conroy, R M

    1996-01-01

    We report simulations of the thermal effect of strong equatorial sunshine on water samples contaminated with high populations of fecal coliforms. Water samples, heavily contaminated with a wild-type strain of Escherichia coli (starting population = 20 x 10(5) CFU/ml), are heated to those temperatures recorded for 2-liter samples stored in transparent plastic bottles and exposed to full Kenyan sunshine (maximum water temperature, 55 degrees C). The samples are completely disinfected within 7 h, and no viable E. coli organisms are detected at either the end of the experiment or a further 12 h later, showing that no bacterial recovery has occurred. The feasibility of employing solar disinfection for highly turbid, fecally contaminated water is discussed. PMID:8593045

  14. Inactivation of fecal bacteria in drinking water by solar heating.

    PubMed

    Joyce, T M; McGuigan, K G; Elmore-Meegan, M; Conroy, R M

    1996-02-01

    We report simulations of the thermal effect of strong equatorial sunshine on water samples contaminated with high populations of fecal coliforms. Water samples, heavily contaminated with a wild-type strain of Escherichia coli (starting population = 20 x 10(5) CFU/ml), are heated to those temperatures recorded for 2-liter samples stored in transparent plastic bottles and exposed to full Kenyan sunshine (maximum water temperature, 55 degrees C). The samples are completely disinfected within 7 h, and no viable E. coli organisms are detected at either the end of the experiment or a further 12 h later, showing that no bacterial recovery has occurred. The feasibility of employing solar disinfection for highly turbid, fecally contaminated water is discussed.

  15. The occurrence of coliform bacteria in the cave waters of Slovak Karst, Slovakia.

    PubMed

    Seman, Milan; Gaálová, Barbora; Cíchová, Marianna; Prokšová, Miloslava; Haviarová, Dagmar; Fľaková, Renáta

    2015-05-01

    The diversity and abundance of coliform bacteria (taxonomically enterobacterias), an important quality water indicator, were determined for four representative caves in Slovak Karst: Domica Cave, Gombasecká Cave, Milada Cave and Krásnohorská Cave. Three hundred and fifty-two enterobacterial isolates were successfully identified by biochemical testing (commercial ENTEROtest 24) and selected isolates confirmed by molecular techniques (PCR, 16S rDNA sequence analysis). A total of 39 enterobacterial species were isolated from cave waters, with predominance of Escherichia coli, Serratia spp. and Enterobacter spp. PCR amplification of lacZ gene is not specific enough to provide a reliable detection of coliform bacteria isolated from the environment. Sequence analysis of 16S rDNA confirmed that all of the selected isolates belong to the family Enterobacteriaceae. In general, physical and chemical parameters of cave waters in Slovak Karst corresponded to national drinking water quality standards.

  16. Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.

    2005-01-01

    bacteria samplers, and the use of optical brighteners. For the purposes of this report, sources of bacteria were defined as geographic locations where elevated concentrations of bacteria are observed within, or expected to enter, the main branch of the West Branch Brandywine Creek. Biologic sources (for example, waterfowl) were noted where applicable; however, no specific study of biologic sources (such as bacterial source tracking) was conducted. Data indicated that specific bacterial populations within fluvial sediments could be related to specific particle-size ranges. This relation is likely the result of the reduced porosity and permeability associated with finer sediments and the ability of specific bacteria to tolerate particular environments. Escherichia coli (E. coli) showed a higher median concentration (2,160 colonies per gram of saturated sediment) in the 0.125 to 0.5-millimeter size range of natural sediments than in other ranges, and enterococcus bacteria showed a higher median concentration (61,830 colonies per gram of saturated sediment) in the 0.062 to 0.25-millimeter size range of natural sediments than in other ranges. There were insufficient data to assess the particle-size relation to fecal coliform bacteria and (or) fecal streptococcus bacteria. Climatic conditions were shown to affect bacteria concentrations in both the water column and fluvial sediments. Drought conditions in 2002 resulted in lower overall bacteria concentrations than the more typically wet year of 2003. E. coli concentrations in fluvial sediment along the Coatesville study reach in 2002 had a median concentration of 92 colonies per gram of saturated sediment; in 2003, the median concentration had risen to 4,752 colonies per gram of saturated sediment. Symbiotic relations between bacteria and aquatic growth were likely responsible for increased bacteria concentrations observed within an impoundment area on the Coatesville study reach. This reach showed evidence of

  17. Associations between fecal indicator bacteria prevalence and demographic data in private water supplies in Virginia.

    PubMed

    Smith, Tamara; Krometis, Leigh-Anne H; Hagedorn, Charles; Lawrence, Annie H; Benham, Brian; Ling, Erin; Ziegler, Peter; Marmagas, Susan West

    2014-12-01

    Over 1.7 million Virginians rely on private water sources to provide household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved with respect to available financial resources and access to environmental health education. This study aimed to identify potential associations between concentrations of fecal indicator bacteria (FIB) (coliforms, Escherichia coli) in over 800 samples collected at the point-of-use from homes with private water supply systems and homeowner-provided demographic data (household income and education). Of the 828 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli. Source tracking efforts targeting optical brightener concentrations via fluorometry and the presence of a human-specific Bacteroides marker via quantitative real-time polymerase chain reaction (qPCR) suggest possible contamination from human septage in over 20 samples. Statistical methods implied that household income has an association with the proportion of samples positive for total coliform, though the relationship between education level and FIB is less clear. Further exploration of links between demographic data and private water quality will be helpful in building effective strategies to improve rural drinking water quality.

  18. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers, near Pittsburgh, Pennsylvania, July-September 2001

    USGS Publications Warehouse

    Fulton, John W.; Buckwalter, Theodore F.

    2004-01-01

    This report presents the results of a study by the Allegheny County Health Department (ACHD) and the U.S. Geological Survey (USGS) to determine the concentrations of fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) in Allegheny County, Pittsburgh, Pa. Water-quality samples and river-discharge measurements were collected from July to September 2001 during dry- (72-hour dry antecedent period), mixed-, and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 6-hour period) conditions at five sampling sites on the Three Rivers in Allegheny County. Water samples were collected weekly to establish baseline conditions and during successive days after three wet-weather events. Water samples were analyzed for fecal-indicator organisms including fecal-coliform (FC) bacteria, Escherichia coli (E. coli), and enterococci bacteria. Water samples were collected by the USGS and analyzed by the ACHD Laboratory. At each site, left-bank and right-bank surface-water samples were collected in addition to a composite sample (discharge-weighted sample representative of the channel cross section as a whole) at each site. Fecal-indicator bacteria reported in bank and composite samples were used to evaluate the distribution and mixing of bacteria-source streams in receiving waters such as the Three Rivers. Single-event concentrations of enterococci, E. coli, and FC during dry-weather events were greater than State and Federal water-quality standards (WQS) in 11, 28, and 28 percent of the samples, respectively; during mixed-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 28, 37, and 43 percent of the samples, respectively; and during wet-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 56, 71, and 81 percent of samples, respectively. Single-event, wet-weather concentrations exceeded those during dry-weather events for all sites except the Allegheny River at

  19. Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Environmental Protection Agency

    PubMed Central

    Zhang, Ya; Hong, Pei-Ying; LeChevallier, Mark W.

    2015-01-01

    The current definition of coliform bacteria is method dependent, and when different culture-based methods are used, discrepancies in results can occur and affect the accuracy of identification of true coliforms. This study used an alternative approach to the identification of true coliforms by combining the phenotypic traits of the coliform isolates and the phylogenetic affiliation of 16S rRNA gene sequences with the use of lacZ and uidA genes. A collection of 1,404 isolates detected by 12 U.S. Environmental Protection Agency-approved coliform-testing methods were characterized based on their phylogenetic affiliations and responses to their original isolation media and lauryl tryptose broth, m-Endo, and MI agar media. Isolates were phylogenetically classified into 32 true-coliform, or targeted Enterobacteriaceae (TE), groups and 14 noncoliform, or nontargeted Enterobacteriaceae (NTE), groups. It was shown statistically that detecting true-positive (TP) events is more challenging than detecting true-negative (TN) events. Furthermore, most false-negative (FN) events were associated with four TE groups (i.e., Serratia group I and the Providencia, Proteus, and Morganella groups) and most false-positive (FP) events with two NTE groups, the Aeromonas and Plesiomonas groups. In Escherichia coli testing, 18 out of 145 E. coli isolates identified by enzymatic methods were validated as FN. The reasons behind the FP and FN reactions could be explained through analysis of the lacZ and uidA genes. Overall, combining the analyses of the 16S rRNA, lacZ, and uidA genes with the growth responses of TE and NTE on culture-based media is an effective way to evaluate the performance of coliform detection methods. PMID:26116679

  20. Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Environmental Protection Agency.

    PubMed

    Zhang, Ya; Hong, Pei-Ying; LeChevallier, Mark W; Liu, Wen-Tso

    2015-09-01

    The current definition of coliform bacteria is method dependent, and when different culture-based methods are used, discrepancies in results can occur and affect the accuracy of identification of true coliforms. This study used an alternative approach to the identification of true coliforms by combining the phenotypic traits of the coliform isolates and the phylogenetic affiliation of 16S rRNA gene sequences with the use of lacZ and uidA genes. A collection of 1,404 isolates detected by 12 U.S. Environmental Protection Agency-approved coliform-testing methods were characterized based on their phylogenetic affiliations and responses to their original isolation media and lauryl tryptose broth, m-Endo, and MI agar media. Isolates were phylogenetically classified into 32 true-coliform, or targeted Enterobacteriaceae (TE), groups and 14 noncoliform, or nontargeted Enterobacteriaceae (NTE), groups. It was shown statistically that detecting true-positive (TP) events is more challenging than detecting true-negative (TN) events. Furthermore, most false-negative (FN) events were associated with four TE groups (i.e., Serratia group I and the Providencia, Proteus, and Morganella groups) and most false-positive (FP) events with two NTE groups, the Aeromonas and Plesiomonas groups. In Escherichia coli testing, 18 out of 145 E. coli isolates identified by enzymatic methods were validated as FN. The reasons behind the FP and FN reactions could be explained through analysis of the lacZ and uidA genes. Overall, combining the analyses of the 16S rRNA, lacZ, and uidA genes with the growth responses of TE and NTE on culture-based media is an effective way to evaluate the performance of coliform detection methods.

  1. Reduction of faecal coliform, coliform and heterotrophic plate count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners.

    PubMed

    Rusin, P; Orosz-Coughlin, P; Gerba, C

    1998-11-01

    Fourteen sites evenly divided between the household kitchen and bathroom were monitored on a weekly basis for numbers of faecal coliforms, total coliforms and heterotrophic plate count bacteria. The first 10 weeks comprised the control period, hypochlorite cleaning products were introduced into the household during the second 10 weeks, and a strict cleaning regimen using hypochlorite products was implemented during the last 10 weeks. The kitchen was more heavily contaminated than the bathroom, with the toilet seat being the least contaminated site. The highest concentrations of all three classes of bacteria were found on sites that were moist environments and/or were frequently touched; these included the sponge/dishcloth, the kitchen sink drain area, the bath sink drain area, and the kitchen faucet handle(s). The implementation of a cleaning regimen with common household hypochlorite products resulted in the significant reduction of all three classes of bacteria at these four sites and other household sites.

  2. Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems

    PubMed Central

    Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.

    2000-01-01

    The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems. PMID:11097883

  3. Profiling Living Bacteria Informs Preparation of Fecal Microbiota Transplantations.

    PubMed

    Chu, Nathaniel D; Smith, Mark B; Perrotta, Allison R; Kassam, Zain; Alm, Eric J

    2017-01-01

    Fecal microbiota transplantation is a compelling treatment for recurrent Clostridium difficile infections, with potential applications against other diseases associated with changes in gut microbiota. But variability in fecal bacterial communities-believed to be the therapeutic agent-can complicate or undermine treatment efficacy. To understand the effects of transplant preparation methods on living fecal microbial communities, we applied a DNA-sequencing method (PMA-seq) that uses propidium monoazide (PMA) to differentiate between living and dead fecal microbes, and we created an analysis pipeline to identify individual bacteria that change in abundance between samples. We found that oxygen exposure degraded fecal bacterial communities, whereas freeze-thaw cycles and lag time between donor defecation and transplant preparation had much smaller effects. Notably, the abundance of Faecalibacterium prausnitzii-an anti-inflammatory commensal bacterium whose absence is linked to inflammatory bowel disease-decreased with oxygen exposure. Our results indicate that some current practices for preparing microbiota transplant material adversely affect living fecal microbial content and highlight PMA-seq as a valuable tool to inform best practices and evaluate the suitability of clinical fecal material.

  4. Profiling Living Bacteria Informs Preparation of Fecal Microbiota Transplantations

    PubMed Central

    Chu, Nathaniel D.; Smith, Mark B.; Perrotta, Allison R.; Kassam, Zain; Alm, Eric J.

    2017-01-01

    Fecal microbiota transplantation is a compelling treatment for recurrent Clostridium difficile infections, with potential applications against other diseases associated with changes in gut microbiota. But variability in fecal bacterial communities—believed to be the therapeutic agent—can complicate or undermine treatment efficacy. To understand the effects of transplant preparation methods on living fecal microbial communities, we applied a DNA-sequencing method (PMA-seq) that uses propidium monoazide (PMA) to differentiate between living and dead fecal microbes, and we created an analysis pipeline to identify individual bacteria that change in abundance between samples. We found that oxygen exposure degraded fecal bacterial communities, whereas freeze-thaw cycles and lag time between donor defecation and transplant preparation had much smaller effects. Notably, the abundance of Faecalibacterium prausnitzii—an anti-inflammatory commensal bacterium whose absence is linked to inflammatory bowel disease—decreased with oxygen exposure. Our results indicate that some current practices for preparing microbiota transplant material adversely affect living fecal microbial content and highlight PMA-seq as a valuable tool to inform best practices and evaluate the suitability of clinical fecal material. PMID:28125667

  5. Removal of fecal indicator organisms and parasites (fecal coliforms and helminth eggs) from municipal biologic sludge by anaerobic mesophilic and thermophilic digestion.

    PubMed

    Rojas Oropeza, M; Cabirol, N; Ortega, S; Castro Ortiz, L P; Noyola, A

    2001-01-01

    In this work, two egg-shaped, 5L-volume, anaerobic sludge digesters were used, one under mesophilic conditions (35 degrees C, M1), and the other under thermophilic conditions (55 degrees C, T1). Both digesters were fed with the purged sludge from an anaerobic treatment plant (start-up period) and from an activated sludge plant (stabilization period), treating municipal wastewaters. The purpose of the study was to establish the technical feasibility of the anaerobic thermophilic sludge treatment comparatively, during the stages of start-up and stabilization of the process, for removing pathogenic microorganisms and parasites efficiently. The results show that, in both stages, the anaerobic thermophilic digester presents higher efficiency on the removal of pathogens and parasites, than the mesophilic digester. Anaerobic thermophilic digestion is close to complying with the EPA (1998) limits for "Class A" type biosolids, referring to the number of parasitic helminth eggs (0.25 HELarval/gTS), and to the pathogen indicator fecal coliforms (< 1000 MPN/gTS). Therefore, the results show that thermophilic anaerobic digestion of biologic sludge may be considered as a suitable technology for the production of Class A biosolids, for further use in agriculture without restrictions.

  6. Linking Near Real-Time Water Quality Measurements to Fecal Coliforms and Trace Organic Pollutants in Urban Streams

    NASA Astrophysics Data System (ADS)

    Henjum, M.; Wennen, C.; Hondzo, M.; Hozalski, R. M.; Novak, P. J.; Arnold, W. A.

    2009-05-01

    Anthropogenic pollutants, including pesticides, herbicides, pharmaceuticals, and estrogens are detected in urban water bodies. Effective examination of dilute organic and microbial pollutant loading rates within surface waters is currently prohibitively expensive and labor intensive. Effort is being placed on the development of improved monitoring methodologies to more accurately assess surface water quality and evaluate the effectiveness of water quality management practices. Throughout the summer and fall of 2008 a "real-time" wireless network equipped with high frequency fundamental water quality parameter sensors measured turbidity, conductivity, pH, depth, temperature, dissolved oxygen and nitrate above and below stormwater inputs at two urban stream locations. At each location one liter grab samples were concurrently collected by ISCO automatic samplers at two hour intervals for 24 hour durations during three dry periods and five rain events. Grab samples were analyzed for fecal coliforms, atrazine (agricultural herbicide), prometon (residential herbicide) and caffeine (wastewater indicator). Surrogate relationships between easy-to-measure water quality parameters and difficult-to-measure pollutants were developed, subsequently facilitating monitoring of these pollutants without the development of new, and likely costly, technologies. Additionally, comparisons were made between traditional grab sampling techniques and the "real-time" monitoring to assess the accuracy of Total Maximum Daily Load (TMDL) calculations.

  7. Occurrence and distribution of fecal indicator bacteria and gene markers of pathogenic bacteria in Great Lakes tributaries, March-October 2011

    USGS Publications Warehouse

    Brennan, Angela K.; Johnson, Heather E.; Totten, Alexander R.; Duris, Joseph W.

    2015-01-01

    Water samples were analyzed for the presence of FIB concentrations (FIB; fecal coliform bacteria, Escherichia coli [E. coli], and enterococci) by using membrane filtration and serial dilution methods. The resulting enrichments from standard culturing of the samples were then analyzed by using polymerase chain reaction (PCR) to determine the occurrence of pathogen gene markers for Shigella species, Campylobacter jejuni and coli, Salmonellaspecies, and pathogenic E. coli, including Shiga toxin-producing E. coli (STEC).

  8. Fecal-borne bacteria in stormwater and treatment systems in coastal New Hampshire

    NASA Astrophysics Data System (ADS)

    Jones, S. H.

    2005-05-01

    Bacterial contamination is the most common use limitation in New Hampshire's coastal waters. Past studies have shown consistently elevated levels of fecal-borne bacteria in surface waters occur during and following runoff events. Follow-up investigations have shown many stormwater conduits in urban areas that discharge directly into tidal rivers to contain high levels of bacteria, even during dry weather conditions. One of the results of these conditions is the need to close shellfishing waters throughout coastal New Hampshire, especially in Hampton Harbor, following rainfall events. Several recent studies have involved investigation of stormwater treatment system impacts on bacterial pollutants. Influent and effluent water samples from parking lot and storm drain treatment systems, runoff from urban streets, effluent from urban storm drains and receiving water samples were collected during different stages of stormwater runoff and analyzed for fecal coliforms, Escherichia coli and enterococci. E. coli isolates from one storm drain system were also ribotyped to identify source species. The stormwater treatment systems showed different capabilities for removing bacteria. Most were inconsistent at removing bacteria while others showed evidence of possible re-growth of bacteria between storms, especially during warmer weather. Re-growth or illicit connections appear to impact effluent bacterial levels in many urban storm drains. The source species identified for E. coli isolates in one storm drain changed between different stages of a storm event, reflecting runoff dynamics and human behavior patterns. Further work is focused on identifying the most significant sources of bacterial contaminants in receiving waters to help focus ongoing pollution abatement measures.

  9. Fecal indicator bacteria persistence under natural conditions in an ice-covered river.

    PubMed

    Davenport, C V; Sparrow, E B; Gordon, R C

    1976-10-01

    Total coliform (TC), fecal coliform (FC), and fecal streptococcus (FS) survival characteristics, under natural conditions at 0 degrees C in an ice-covered river, were examined during February and March 1975. The membrane filter (MF) technique was used throughout the study, and the multiple-tube (MPN) method was used in parallel on three preselected days for comparative recovery of these bacteria. Survival was studied at seven sample stations downstream from all domestic pollution sources in a 317-km reach of the river having 7.1 days mean flow time (range of 6.0 to 9.1 days). The mean indicator bacteria densities decreased continuously at successive stations in this reach and, after adjustment for dilution, the most rapid die-off was found to occur during the first 1.9 days, followed by a slower decrease. After 7.1 days, the relative survival was TC less than FC less than FS, with 8.4%, 15.7%, and 32.8% of the initial populations remaining viable, respectively. These rates are higher than previously reported and suggest that the highest survival rates for these bacteria in receiving streams can be expected at 0 degree C under ice cover. Additionally, the FC-FS ratio was greater than 5 at all stations, indicating that this ratio may be useable for determining the source of fecal pollution in receiving streams for greater than 7 days flow time at low water temperatures. The MPN and MF methods gave comparable results for the TC and FS at all seven sample stations, with both the direct and verified MF counts within the 95% confidence limits of the respective MPNs in most samples, but generally lower than the MPN index. Although FC recovery on membrane filters was comparable results at stations near the pollution source. However, the results became more comparable with increasing flow time. The results of this study indicate that heat shock is a major factor in suppression of the FC counts on the membrane filters at 44.5 degree C. Heat shock may be minimized by extended

  10. Effect of coliform and Proteus bacteria on growth of Staphylococcus aureus.

    PubMed

    DiGiacinto, J V; Frazier, W C

    1966-01-01

    Cultures of coliform and Proteus bacteria, mostly from foods, were tested for their effect on growth of Staphylococcus aureus in Trypticase Soy Broth. Inhibition of the staphylococcus by these competitors increased with increasing proportions of inhibiting (effector) bacteria in the inoculum and decreasing incubation temperatures (37 to 10 C). Time required for 2 x 10(4) staphylococci to increase to 5 x 10(6) cells per milliliter, the minimal number assumed to be necessary for food poisoning, varied with the species of effector, the original ratio of effector bacteria to staphylococci in the medium, and the incubation temperature. When the original ratio was 100:1, the staphylococci did not reach 5 x 10(6) cells per milliliter at 10, 15, 22, or 30 C (with one exception), when growing with cultures representing six species of coliform bacteria and two of Proteus. When the ratio was 1:1, all effectors either greatly delayed the staphylococcus or prevented it from reaching hazardous numbers at 15 C, six of the eight caused a delay of 2 to 3 hr at 22 C, and only Escherichia coli delayed the coccus at 30 C. All effectors were ineffective at 22 and 30 C when original numbers of effectors and staphylococci were in the ratio 1:100. Greatest overall inhibition was by E. coli, E. freundii, and Proteus vulgaris, and these species were more effective than the others at 22 and 30 C. Aerobacter cloacae and Paracolobactrum aerogenoides were more effective at 15 C. In general, results were similar with different strains of a species. Except for Aerobacter aerogenes, Klebsiella sp., and P. aerogenoides, which apparently did not compete for nutrients, inhibition of the staphylococcus was by a combination of antibiotic substances and competition for nutrients.

  11. Sunlight Inactivation of Fecal Bacteriophages and Bacteria in Sewage-Polluted Seawater

    PubMed Central

    Sinton, Lester W.; Finlay, Rochelle K.; Lynch, Philippa A.

    1999-01-01

    Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kDs), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kDs were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS), as a function of cumulative global solar radiation (insolation), were all higher than the kDs with a consistent kS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibited kSs similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, the kS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival

  12. Microbiological Indices for total coliform and E. coli bacteria in estuarine waters.

    PubMed

    Neill, Michael

    2004-11-01

    Bacterial counts for total coliforms and E. coli in estuaries are normally orders of magnitude greater at the freshwater end than at the seaward end and tidal movements and variations in freshwater flows produce continual change in the freshwater/seawater mix--this causes the bacterial counts to vary greatly throughout the estuary and the complexity creates difficulty in appraising or assessing the bacterial counts (i.e. difficulties arise when deciding if the bacterial counts for estuarine water samples are within an acceptable range--relative to their corresponding salinities). The situation is further complicated in estuaries where sewage is discharged directly. Microbiological criteria and indices that can be used in a practical way to overcome these difficulties were developed. The procedure is summarised as follows: 1. Primary criteria are proposed for total coliform and for E. coli bacteria in the freshwater at the head of the estuary and in full seawater at the mouth of the estuary. 2. For estuarine or transitional waters (i.e. waters with salinity ranging from 0 per thousand to 35 per thousand), distinct criteria are calculated for each individual sample--with a separate criterion for total coliforms and for E. coli--the individual criteria are founded on the primary criteria and vary with salinity on a pro-rata or linear basis. 3. Finally, the Microbiological Index for each result is obtained by dividing the actual bacterial count by the corresponding criterion--the acceptable Index is then equal to 1--at any salinity (i.e. where the Index is <1 then the bacterial count complies with the criterion, and where the Index is >1 then the count breaches the criterion). The Index also indicates the extent of the compliance or non-compliance with the corresponding criteria. An example of the application of the Microbiological Index is also presented--including examples of graphs that demonstrate how microbiological data for estuarine waters can be summarised and

  13. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis.

    PubMed

    Rizzo, Luigi

    2009-06-15

    In this study the potential application of TiO(2) photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.

  14. Fecal indicator bacteria contamination of fomites and household demand for surface disinfection products: a case study from Peru.

    PubMed

    Julian, Timothy R; MacDonald, Luke H; Guo, Yayi; Marks, Sara J; Kosek, Margaret; Yori, Pablo P; Pinedo, Silvia Rengifo; Schwab, Kellogg J

    2013-11-01

    Surface-mediated disease transmission is understudied in developing countries, particularly in light of the evidence that surface concentrations of fecal bacteria typically exceed concentrations in developed countries by 10- to 100-fold. In this study, we examined fecal indicator bacterial contamination of dinner plates at 21 households in four peri-urban communities in the Peruvian Amazon. We also used surveys to estimate household use of and demand for surface disinfectants at 280 households. Despite detecting total coliform, enterococci, and Escherichia coli on 86%, 43%, and 24% of plates sampled, respectively, less than one-third of households were regularly using bleach to disinfect surfaces. Among non-users of bleach, only 3.2% of respondents reported a new demand for bleach, defined as a high likelihood of using bleach within the next year. This study highlights the potential for marketing approaches to increase use of and demand for surface disinfectants to improve domestic hygiene.

  15. Coliform bacteria removal from sewage in constructed wetlands planted with Mentha aquatica.

    PubMed

    Avelar, Fabiana F; de Matos, Antonio T; de Matos, Mateus P; Borges, Alisson C

    2014-08-01

    The present study evaluated the performance of the species Mentha aquatica in constructed wetlands of horizontal subsurface flow (CW-HSSF) with regard to the removal of coliforms bacteria in an effluent from the primary treatment of sewage as well as to obtain adjustment parameters of the bacterial decay kinetic model along the length of the CW-HSSF. Therefore, four CW-HSSFs measuring 24.0 m x 1.0 m x 0.35 m were built and filled with number 0 gravel as the support medium to a height of 0.20m. Two of the CW-HSSFs were planted with the species M. aquatica, while the other two remained uncultivated. Cultivation of M. aquatica in CW-HSSF resulted in total coliforms (TC) and Escherichia coli (EC) removals from 0.9 to 1.3 log units greater than those obtained in the uncultivated experimental plots, for the hydraulic retention times (HRTs) of 4.5 and 6.0 days. For HRT ranged from 1.5 to 6.0 days, the highest removal efficiencies in counts of TC and EC were obtained when using longer HRT. The mathematical models evaluated showed good fit to average counts of TC and EC highlighting the modified first-order kinetic model with the inclusion of the power parameter in the HRT variable.

  16. Fecal-indicator bacteria in the Yakima River Basin, Washington-An examination of 1999 and 2000 synoptic-sampling data and their relation to historical data

    USGS Publications Warehouse

    Morace, Jennifer L.; McKenzie, Stuart W.

    2002-11-27

    Looking forward relative to future monitoring goals, research needs, and best management practice development, four hypotheses that deal with processes and sources of bacteria were identified: (1) overland runoff transports bacteria from land surfaces to streams, (2) bacteria in the water column tend to associate with suspended matter, (3) with increasing densities of warm-blooded animals, the likelihood of fecal-coliform contamination in streams also increases, and (4) identifi- cation of bacterial sources is difficult, but must be attempted for remediation to be possible. 

  17. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  18. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  19. EFFECT OF OZONATED WATER ON THE ASSIMILABLE ORGANIC CARBON AND COLIFORM GROWTH RESPONSE VALUES AND ON PATHOGENIC BACTERIA SURVIVAL

    EPA Science Inventory

    The assimilable organic carbon (AOC) and coliform growth response (CGR) are bioassays used to determine water quality. AOC and CGR are better indexes in determining whether water can support the growth of bacteria than biological oxygen demand (BOD). The AOC value of reconditione...

  20. Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges.

    PubMed

    Beauchamp, Chantal J; Simao-Beaunoir, Anne-Marie; Beaulieu, Carole; Chalifour, François-Philippe

    2006-07-01

    Paper sludges are solid wastes material generated from the paper production, which have been characterized for their chemical contents. Some are rich in wood fiber and are a good carbon source, for example the primary and de-inking paper sludges. Others are made rich in nitrogen and phosphorus by pressing the activated sludge, resulting from the biological water treatments, with the primary sludge, yielding the combined paper sludge. Still, in the absence of sanitary effluents very few studies have addressed the characterization of their coliform microflora. Therefore, this study investigated the thermotolerant coliform population of one paper mill effluent and two paper mill sludges and wood chips screening rejects using chromogenic media. For the first series of analyses, the medium used was Colilert broth and positive tubes were selected to isolate bacteria in pure culture on MacConkey agar. In a second series of analyses, double selective media, based on ss-galactosidase and ss-glucuronidase activities, were used to isolate bacteria. First, the presence of thermotolerant coliforms was detected in low numbers in most water effluents, but showed that the entrance of the thermotolerant coliforms was early in the industrial process. Also, large numbers of thermotolerant coliforms, i.e., 7,000,000 MPN/g sludge (dry weight; d.w.), were found in combined sludges. From this first series of isolations, bacteria were purified on MacConkey medium and identified as Citrobacter freundii, Enterobacter sp, E. sakazakii, E. cloacae, Escherichia coli, K. pneumoniae, K. pneumoniae subsp. rhinoscleromatis, K. pneumoniae subsp. ozaenae, K. pneumoniae subsp. pneumoniae, Pantoea sp, Raoultella terrigena, R. planticola. Second, the presence of thermotolerant coliforms was measured at more than 3,700-6,000 MPN/g (d.w) sludge, whereas E. coli was detected from 730 to more than 3,300 MPN/g (d.w.) sludge. The presence of thermotolerant coliform bacteria and E. coli was sometimes detected

  1. Fecal Indicator Bacteria Entrainment from Streambed to Water Column: Transport by Unsteady Flow over a Sand Bed.

    PubMed

    Surbeck, Cristiane Q; Douglas Shields, F; Cooper, Alexandra M

    2016-05-01

    Storms cause a substantial increase in the fecal indicator bacteria (FIB) concentrations in stream water as a result of FIB-laden runoff and the release of FIB from stream sediments. Previous work has emphasized the association between FIB and bed sediments finer than sand. The objectives of this work were to elucidate the effect of various velocities on the entrainment of bed-dwelling coliforms in sand-bed streams and to refine methodologies for quantifying sandy streambeds as sources of FIB. Pump-induced hydrographs were created using a stainless steel nonrecirculating flume. Experiments consisted of simulating four storm hydrographs and collecting water samples upstream and downstream of a sand bed at selected intervals. Bed sediment samples were collected before and after each event. The highest concentrations of total coliform and suspended sediments generally occurred in the downstream samples during the rising limb of the hydrographs as a result of entrainment of coliforms and sand from the bed to the water column. There was a first flush effect in the system, as the upper layer of sand was influenced by a rapidly increasing velocity at ∼0.2 m s. Coliforms downstream of the sand bed increased rapidly as velocity exceeded this threshold but then declined even as velocity and discharge continued to increase. This likely reflects the depletion of coliforms as the more densely populated sediment layer was flushed out. There is evidence that streams with sand beds harbor enough FIB that development of total maximum daily loads (TMDLs) should include consideration of them as a source.

  2. Revised Total Coliform Rule

    EPA Pesticide Factsheets

    The Revised Total Coliform Rule (RTCR) aims to increase public health protection through the reduction of potential pathways for fecal contamination in the distribution system of a public water system (PWS).

  3. Climate change and land use drivers of fecal bacteria in tropical hawaiian rivers.

    PubMed

    Strauch, Ayron M; Mackenzie, Richard A; Bruland, Gregory L; Tingley, Ralph; Giardina, Christian P

    2014-07-01

    Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500-4500 mm) of mean annual rainfall (MAR) to investigate the effects of short-term (24-h) and long-term (MAR) rainfall on three fecal indicator bacteria (FIB) (enterococci, total coliforms, and ). All sample sites were in native Ohia dominated forest above 600 m in elevation. Additional samples were collected just above sea level where the predominant land cover is pasture and agriculture, permitting the additional study of interactions between land use across the MAR gradient. We found that declines in MAR significantly amplified concentrations of all three FIB and that FIB yield increased more rapidly with 24-h rainfall in low-MAR watersheds than in high-MAR watersheds. Because storm frequency decreases with declining MAR, the rate of change in water potential affects microbial growth, whereas increased rainfall intensity dislodges more soil and bacteria as runoff compared with water-logged soils of high-MAR watersheds. As expected, declines in % forest cover and increased urbanization increased FIB. Taken together, shifts in rainfall may alter bacterial inputs to tropical streams, with land use change also affecting water quality in streams and near-shore environments.

  4. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    PubMed

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers.

  5. Addressing uncertainty in fecal indicator bacteria dark inactivation rates.

    PubMed

    Gronewold, Andrew D; Myers, Luke; Swall, Jenise L; Noble, Rachel T

    2011-01-01

    Assessing the potential threat of fecal contamination in surface water often depends on model forecasts which assume that fecal indicator bacteria (FIB, a proxy for the concentration of pathogens found in fecal contamination from warm-blooded animals) are lost or removed from the water column at a certain rate (often referred to as an "inactivation" rate). In efforts to reduce human health risks in these water bodies, regulators enforce limits on easily-measured FIB concentrations, commonly reported as most probable number (MPN) and colony forming unit (CFU) values. Accurate assessment of the potential threat of fecal contamination, therefore, depends on propagating uncertainty surrounding "true" FIB concentrations into MPN and CFU values, inactivation rates, model forecasts, and management decisions. Here, we explore how empirical relationships between FIB inactivation rates and extrinsic factors might vary depending on how uncertainty in MPN values is expressed. Using water samples collected from the Neuse River Estuary (NRE) in eastern North Carolina, we compare Escherichia coli (EC) and Enterococcus (ENT) dark inactivation rates derived from two statistical models of first-order loss; a conventional model employing ordinary least-squares (OLS) regression with MPN values, and a novel Bayesian model utilizing the pattern of positive wells in an IDEXX Quanti-Tray®/2000 test. While our results suggest that EC dark inactivation rates tend to decrease as initial EC concentrations decrease and that ENT dark inactivation rates are relatively consistent across different ENT concentrations, we find these relationships depend upon model selection and model calibration procedures. We also find that our proposed Bayesian model provides a more defensible approach to quantifying uncertainty in microbiological assessments of water quality than the conventional MPN-based model, and that our proposed model represents a new strategy for developing robust relationships between

  6. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions

    PubMed Central

    Rochelle-Newall, Emma; Nguyen, Thi Mai Huong; Le, Thi Phuong Quynh; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2015-01-01

    Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics. PMID:25941519

  7. Discrimination Efficacy of Fecal Pollution Detection in Different Aquatic Habitats of a High-Altitude Tropical Country, Using Presumptive Coliforms, Escherichia coli, and Clostridium perfringens Spores

    PubMed Central

    Byamukama, Denis; Mach, Robert L.; Kansiime, Frank; Manafi, Mohamad; Farnleitner, Andreas H.

    2005-01-01

    The performance of rapid and practicable techniques that presumptively identify total coliforms (TC), fecal coliforms (FC), Escherichia coli, and Clostridium perfringens spores (CP) by testing them on a pollution gradient in differing aquatic habitats in a high-altitude tropical country was evaluated during a 12-month period. Site selection was based on high and low anthropogenic influence criteria of paired sites including six spring, six stream, and four lakeshore sites spread over central and eastern parts of Uganda. Unlike the chemophysical water quality, which was water source type dependent (i.e., spring, lake, or stream), fecal indicators were associated with the anthropogenic influence status of the respective sites. A total of 79% of the total variability, including all the determined four bacteriological and five chemophysical parameters, could be assigned to either a pollution, a habitat, or a metabolic activity component by principal-component analysis. Bacteriological indicators revealed significant correlations to the pollution component, reflecting that anthropogenic contamination gradients were followed. Discrimination sensitivity analysis revealed high ability of E. coli to differentiate between high and low levels of anthropogenic influence. CP also showed a reasonable level of discrimination, although FC and TC were found to have worse discrimination efficacy. Nonpoint influence by soil erosion could not be detected during the study period by correlation analysis, although a theoretical contamination potential existed, as investigated soils in the immediate surroundings often contained relevant concentrations of fecal indicators. The outcome of this study indicates that rapid techniques for presumptive E. coli and CP determination may be reliable for fecal pollution monitoring in high-altitude tropical developing countries such as those of Eastern Africa. PMID:15640171

  8. Discrimination efficacy of fecal pollution detection in different aquatic habitats of a high-altitude tropical country, using presumptive coliforms, Escherichia coli, and Clostridium perfringens spores.

    PubMed

    Byamukama, Denis; Mach, Robert L; Kansiime, Frank; Manafi, Mohamad; Farnleitner, Andreas H

    2005-01-01

    The performance of rapid and practicable techniques that presumptively identify total coliforms (TC), fecal coliforms (FC), Escherichia coli, and Clostridium perfringens spores (CP) by testing them on a pollution gradient in differing aquatic habitats in a high-altitude tropical country was evaluated during a 12-month period. Site selection was based on high and low anthropogenic influence criteria of paired sites including six spring, six stream, and four lakeshore sites spread over central and eastern parts of Uganda. Unlike the chemophysical water quality, which was water source type dependent (i.e., spring, lake, or stream), fecal indicators were associated with the anthropogenic influence status of the respective sites. A total of 79% of the total variability, including all the determined four bacteriological and five chemophysical parameters, could be assigned to either a pollution, a habitat, or a metabolic activity component by principal-component analysis. Bacteriological indicators revealed significant correlations to the pollution component, reflecting that anthropogenic contamination gradients were followed. Discrimination sensitivity analysis revealed high ability of E. coli to differentiate between high and low levels of anthropogenic influence. CP also showed a reasonable level of discrimination, although FC and TC were found to have worse discrimination efficacy. Nonpoint influence by soil erosion could not be detected during the study period by correlation analysis, although a theoretical contamination potential existed, as investigated soils in the immediate surroundings often contained relevant concentrations of fecal indicators. The outcome of this study indicates that rapid techniques for presumptive E. coli and CP determination may be reliable for fecal pollution monitoring in high-altitude tropical developing countries such as those of Eastern Africa.

  9. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water.

    PubMed

    Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip

    2005-01-01

    Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.

  10. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir.

    PubMed

    Wang, Zhaodan; Xiao, Guosheng; Zhou, Nong; Qi, Wenhua; Han, Lin; Ruan, Yu; Guo, Dongqin; Zhou, Hong

    2015-12-01

    Scientifically sound methods to rapidly measure fecal indicator bacteria are important to ensure safe water for drinking and recreational purposes. A total of 200 water samples obtained from the Three Gorges Reservoir during three successive one-year study periods (October 2009 to September 2012) were analyzed using multiple-tube fermentation (MTF) and most probable numbers combined with polymerase chain reaction (MPN-PCR). The MPN-PCR method was found to be significantly more sensitive than the MTF method for detecting Escherichia coli and Enterococcus spp., and of equal sensitivity for detecting total coliforms when all surface water samples were grouped together. The two analytical methods had a strong, significant relationship, but MPN-PCR took only 12-18hr, compared with the 3-8days needed using the MTF method. Bacterial concentrations varied per sampling site but were significantly lower in the mainstream of the Yangtze River than those in the backwater areas of tributaries. The water quality of 85.8% of water samples from the mainstream was suitable for use as a centralized potable water source, while the water quality of 52.5% of water samples from the backwater areas was unsuitable for recreational activities. Relationships between fecal indicator bacteria showed significant correlation (r=0.636-0.909, p<0.01, n=200), while a weak but significant correlation was found between fecal indicators and water turbidity, water temperature, daily inflow, and total dissolved solids (r=0.237-0.532, p<0.05, n=200). The study indicated that MPN-PCR is a rapid and easily performed deoxyribonucleic acid (DNA)-based method for quantitative detection of viable total coliforms, E. coli, and Enterococcus spp. in surface water.

  11. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  12. Spatio-Temporal Variability in Fecal Indicator Bacteria Concentrations at Huntington Beach: Connections to Physical Forcing

    NASA Astrophysics Data System (ADS)

    Rippy, M. A.; Feddersen, F.; Leichter, J.; Omand, M.; Moore, D. F.; McGee, C.; Franks, P. J.

    2007-05-01

    Two major factors determine the spatial and temporal distributions of fecal indicator bacteria (FIB) at a given beach: local circulation & mixing patterns, and bacterial inactivation rates. High frequency and spatial resolution bacterial sampling combined with measurements of physical processes can be used to infer inactivation rates, enabling differentiation between dilution & mortality as factors driving variability in nearshore FIB abundance. A FIB sampling experiment (HB06) took place on 16 October 2006, at Huntington State Beach, a site selected due to its persistent problems with FIB pollution. Water samples were taken at 20-minute intervals (from 6:50am to 11:50am) at ten locations; four in an alongshore transect spanning 1 km at the shoreline, and the remainder in a 300-m long cross-shore transect. All samples were analyzed for FIB concentration (Total Coliforms, E. coli & Enterococci) and, for a subset, species level Enterococcus composition was determined. As part of the HB06 experiment, currents, temperature, waves, and chlorophyll fluorescence were measured simultaneously in the cross-shore direction with rapid CTD casts 300 m offshore. Results indicate that E. coli and Enterococcus concentrations exhibit exponential decreases with time, with smaller decay rates associated with depth and with sites in the Talbert Marsh and Santa Ana River. FIB concentrations are also noticeably lower farther offshore (300 m). Spatio-temporal patterns in FIB concentration will be presented in conjunction with the nearshore physical data allowing the relationship between physical dynamics and biological variability to be addressed.

  13. Description and field test of an in situ coliform monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Wilkins, J. R.

    1979-01-01

    A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.

  14. Longitudinal Poisson regression to evaluate the epidemiology of Cryptosporidium, Giardia, and fecal indicator bacteria in coastal California wetlands.

    PubMed

    Hogan, Jennifer N; Daniels, Miles E; Watson, Fred G; Conrad, Patricia A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Byrne, Barbara A; Dominik, Clare; Melli, Ann; Jessup, David A; Miller, Woutrina A

    2012-05-01

    Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters.

  15. Addressing Uncertainty in Fecal Indicator Bacteria Dark Inactivation Rates

    EPA Science Inventory

    Fecal contamination is a leading cause of surface water quality degradation. Roughly 20% of all total maximum daily load assessments approved by the United States Environmental Protection Agency since 1995, for example, address water bodies with unacceptably high fecal indicator...

  16. Fecal-indicator bacteria and Escherichia coli pathogen data collected near a novel sub-irrigation water-treatment system in Lenawee County, Michigan, June-November 2007

    USGS Publications Warehouse

    Duris, Joseph W.; Beeler, Stephanie

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Lenawee County Conservation District in Lenawee County, Mich., conducted a sampling effort over a single growing season (June to November 2007) to evaluate the microbiological water quality around a novel livestock reservoir wetland sub-irrigation system. Samples were collected and analyzed for fecal coliform bacteria, Escherichia coli (E. coli) bacteria, and six genes from pathogenic strains of E. coli.A total of 73 water-quality samples were collected on nine occasions from June to November 2007. These samples were collected within the surface water, shallow ground water, and the manure-treatment system near Bakerlads Farm near Clayton in Lenawee County, Mich. Fecal coliform bacteria concentrations ranged from 10 to 1.26 million colony forming units per 100 milliliters (CFU/100 mL). E. coli bacteria concentrations ranged from 8 to 540,000 CFU/100 mL. Data from the E. coli pathogen analysis showed that 73 percent of samples contained the eaeA gene, 1 percent of samples contained the stx2 gene, 37 percent of samples contained the stx1 gene, 21 percent of samples contained the rfbO157 gene, and 64 percent of samples contained the LTIIa gene.

  17. Spatial and temporal variability of fecal indicator bacteria in an urban stream under different meteorological regimes.

    PubMed

    Cha, Sung Min; Lee, Seung Won; Park, Yong Eun; Cho, Kyung Hwa; Lee, Seungyoon; Kim, Joon Ha

    2010-01-01

    As a representative urban stream in Korea, the Gwangju (GJ) stream suffers from chronic fecal contamination. In this study, to characterize levels of fecal pollution in the GJ stream, the monthly monitoring data for seven years (from 2001 to 2007) and the hourly monitoring data from two field experiments were examined with respect to seasonal/daily variations and spatial distribution under wet and dry weather conditions. This research revealed that concentrations of fecal indicator bacteria strongly varied depending on the prevalent meteorological conditions. That is, during the dry daytime, fecal indicator bacteria concentrations decreased due to inactivation from solar irradiation, but rapidly increased in the absence of sunlight, suggesting external source inputs. In addition, bacterial concentrations substantially increased during rainfall events, due probably to a major contribution from combined sewer overflow. The observations in this study can be useful for implementing fecal pollution management strategies and for predicting fecal contamination as a function of meteorological conditions.

  18. Total Coliform Rule (TCR) Federal Register Notice

    EPA Pesticide Factsheets

    This document provides the FR notice to 40 CFR Parts 141 and 142 Drinking Water: National Primary Drinking Water Regulations; Total Coliforms (Including Fecal Coliforms and E. Coli); Final Rule (26 pp, 5 M).

  19. Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001-2002

    USGS Publications Warehouse

    Schumacher, John G.

    2003-01-01

    Densities of fecal coliform bacteria along a 5.7-mi (mile) reach of Shoal Creek extending upstream from State Highway 97 (site 3) to State Highway W (site 2) and in two tributaries along this reach exceeded the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. A combination of techniques was used in this report to provide information on the source, transport, and survival of fecal bacteria along this reach of Shoal Creek. Results of water-quality samples collected during dye-trace and seepage studies indicated that at summer low base-flow conditions, pastured cattle likely were a substantial source of fecal bacteria in Shoal Creek at the MDNR monitoring site (site 3) at State Highway 97. Using repeat element Polymerase Chain Reaction (rep-PCR), cattle were the presumptive source of about 50 percent of the Escherichia coli (E. coli) isolates in water samples from site 3. Cattle, horses, and humans were the most common presumptive source of E. coli isolates at sites further upstream. Poultry was identified by rep-PCR as a major source of E. coli in Pogue Creek, a tributary in the upper part of the study area. Results of the rep-PCR were in general agreement with the detection and distribution of trace concentrations of organic compounds commonly associated with human wastewater, such as caffeine, the antimicrobial agent triclosan, and the pharmaceutical compounds acetaminophen and thiabendazole (a common cattle anthelmintic). Significant inputs of fecal bacteria to Shoal Creek occurred along a 1.6-mi reach of Shoal Creek immediately upstream from site 3. During a 36-hour period in July 2001, average densities of fecal coliform and E. coli bacteria increased from less than or equal to 500 col/100 mL upstream from this stream reach (sample site 2c) to 2,100 and 1,400 col/100 mL, respectively, at the MDNR sampling site. Fecal bacteria densities exhibited diurnal variability at all

  20. Coliform Bacteria as Indicators of Diarrheal Risk in Household Drinking Water: Systematic Review and Meta-Analysis

    PubMed Central

    Gruber, Joshua S.; Ercumen, Ayse; Colford, John M.

    2014-01-01

    Background Current guidelines recommend the use of Escherichia coli (EC) or thermotolerant (“fecal”) coliforms (FC) as indicators of fecal contamination in drinking water. Despite their broad use as measures of water quality, there remains limited evidence for an association between EC or FC and diarrheal illness: a previous review found no evidence for a link between diarrhea and these indicators in household drinking water. Objectives We conducted a systematic review and meta-analysis to update the results of the previous review with newly available evidence, to explore differences between EC and FC indicators, and to assess the quality of available evidence. Methods We searched major databases using broad terms for household water quality and diarrhea. We extracted study characteristics and relative risks (RR) from relevant studies. We pooled RRs using random effects models with inverse variance weighting, and used standard methods to evaluate heterogeneity and publication bias. Results We identified 20 relevant studies; 14 studies provided extractable results for meta-analysis. When combining all studies, we found no association between EC or FC and diarrhea (RR 1.26 [95% CI: 0.98, 1.63]). When analyzing EC and FC separately, we found evidence for an association between diarrhea and EC (RR: 1.54 [95% CI: 1.37, 1.74]) but not FC (RR: 1.07 [95% CI: 0.79, 1.45]). Across all studies, we identified several elements of study design and reporting (e.g., timing of outcome and exposure measurement, accounting for correlated outcomes) that could be improved upon in future studies that evaluate the association between drinking water contamination and health. Conclusions Our findings, based on a review of the published literature, suggest that these two coliform groups have different associations with diarrhea in household drinking water. Our results support the use of EC as a fecal indicator in household drinking water. PMID:25250662

  1. Distribution of Fecal Indicator Bacteria along the Malibu, California, Coastline

    USGS Publications Warehouse

    Izbicki, John

    2011-01-01

    Each year, over 550 million people visit California's public beaches. To protect beach-goers from exposure to waterborne disease, California state law requires water-quality monitoring for fecal indicator bacteria (FIB), such as enterococci and Escherichia coli (E. coli), at beaches having more than 50,000 yearly visitors. FIB are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the occurrence of certain waterborne diseases. Tests show that FIB concentrations occasionally exceed U.S. Environmental Protection Agency (USEPA) public health standards for recreational water in Malibu Lagoon and at several Malibu beaches (Regional Water Quality Control Board, 2009). Scientists from the U.S. Geological Survey's (USGS) California Water Science Center are doing a study to identify the distribution and sources of FIB in coastal Malibu waters (fig. 1). The study methods were similar to those used in a study of FIB contamination on beaches in the Santa Barbara, California, area (Izbicki and others, 2009). This report describes the study approach and presents preliminary results used to evaluate the distribution and source of FIB in the Malibu area. Results of this study will help decision-makers address human health issues associated with FIB contamination in Malibu, and the methods used in this study can be used in other coastal areas affected by FIB contamination.

  2. Predicting Fecal Indicator Bacteria Concentrations in the South Fork Broad River Watershed Using Virtual Beach

    EPA Science Inventory

    Virtual Beach (VB) is a decision support tool that constructs site-specific statistical models to predict fecal indicator bacteria (FIB) at recreational beaches. Although primarily designed for making decisions regarding beach closures or issuance of swimming advisories based on...

  3. The Effectiveness of Sanitary Inspections as a Risk Assessment Tool for Thermotolerant Coliform Bacteria Contamination of Rural Drinking Water: A Review of Data from West Bengal, India.

    PubMed

    Snoad, Christian; Nagel, Corey; Bhattacharya, Animesh; Thomas, Evan

    2017-01-23

    The use of sanitary inspections combined with periodic water quality testing has been recommended in some cases as screening tools for fecal contamination. We conducted sanitary inspections and tested for thermotolerant coliforms (TTCs), a fecal indicator bacteria, among 7,317 unique water sources in West Bengal, India. Our results indicate that the sanitary inspection score has poor ability to identify TTC-contaminated sources. Among deep and shallow hand pumps, the area under curve (AUC) for prediction of TTC > 0 was 0.58 (95% confidence interval [CI] = 0.53-0.61) and 0.58 (95% CI = 0.54-0.62), respectively, indicating that the sanitary inspection score was only marginally better than chance in discriminating between contaminated and uncontaminated sources of this type. A slightly higher AUC value of 0.64 (95% CI=0.57-0.71) was observed when the sanitary inspection score was used for prediction of TTC > 0 among the gravity-fed piped sources. Among unprotected springs (AUC = 0.48, 95% CI = 0.38-0.55) and unprotected dug wells (AUC = 0.41, 95% CI = 0.20-0.66), the sanitary inspection score performed more poorly than chance in discriminating between sites with TTC < 1 and TTC > 0. Aggregating over all source types, the sensitivity (true positive rate) of a high/very high sanitary inspection score for TTC contamination (TTC > 1 CFU/100 mL) was 29.4% and the specificity (true negative rate) was 77.9%, resulting in substantial misclassification of the sites when using the established risk categories. These findings suggest that sanitary surveys are inappropriate screening tools for identifying TTC contamination at water points.

  4. Narrowing the Search for Sources of Fecal Indicator Bacteria with a Simple Salinity Mixing Model

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Ahn, J.; Litton, R.; Grant, S. B.

    2006-12-01

    Newport Bay, the second largest estuarine embayment in Southern California, provides critical natural habitat for terrestrial and aquatic species and is a regionally important recreational area. Unfortunately, the beneficial uses of Newport Bay are threatened by numerous sources of pollutant loading, either through direct discharge into the bay or through its tributaries. Fecal indicator bacteria (FIB) are associated with human pathogens and are present in high concentrations in sewage and urban runoff. Standardized and inexpensive assays used for the detection of FIB have allowed their concentrations to be used as a common test of water quality. In order to assess FIB impairment in Newport Bay, weekly transects of FIB concentrations were conducted, specifically Total Coliform, Escherichia coli and Enterococci spp., as well as salinity, temperature, and transmissivity, from the upper reaches of the estuary to an offshore control site. Using salinity as a conservative tracer for water mass mixing and determining the end-member values of FIB and transmissivity in both the creek sites and the offshore control site, we created a simple, two end-member mixing model of FIB and transmissivity within Newport Bay. Deviations from the mixing model would suggest either an additional source of FIB to the bay (e.g. bird feces) or regrowth of FIB within the bay. Our results indicate that, with a few notable exceptions, salinity is a good tracer for FIB concentrations along the transect, but is not particularly effective for transmissivity. This suggests that the largest contributor of FIB loading to Newport Bay comes from the discharge of creeks into the upper reaches of the estuary.

  5. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was

  6. Ammonia-induced injury in pure cultures and natural populations of coliform bacteria.

    PubMed

    Naundorf, G; Aumen, N G

    1989-11-01

    Ammonia-induced injury was investigated in pure cultures of Escherichia coli and Enterobacter aerogenes, and in natural coliform populations obtained from the oligotrophic Luxapallila and the eutrophic Sunflower Rivers in northern Mississippi. Pure cultures were affected by ammonia exposure as indicated by changes in the injury ratio (IR) of CFU on m-T7 agar/CFU on m-Endo agar. Ammonia concentrations between 0 and 20 (mg NH3-N/1) had little or no effect and concentrations between 40 and 80 caused the greatest injury. Natural coliform populations from the oligotrophic river were more prone to ammonia-induced injury than those from the eutrophic river. The results stress the need for the routine use of m-T7 media and the enumeration of injured cells when using the membrane filter procedure to ascertain domestic water quality.

  7. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  8. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  9. The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods

    PubMed Central

    Martin, Nicole H.; Trmčić, Aljoša; Hsieh, Tsung-Han; Boor, Kathryn J.; Wiedmann, Martin

    2016-01-01

    Testing for coliforms has a long history in the dairy industry and has helped to identify raw milk and dairy products that may have been exposed to unsanitary conditions. Coliform standards are included in a number of regulatory documents (e.g., the U.S. Food and Drug Administration’s Grade “A” Pasteurized Milk Ordinance). As a consequence, detection above a threshold of members of this method-defined, but diverse, group of bacteria can result in a wide range of regulatory outcomes. Coliforms are defined as aerobic or facultatively anaerobic, Gram negative, non-sporeforming rods capable of fermenting lactose to produce gas and acid within 48 h at 32–35°C; 19 genera currently include at least some strains that represent coliforms. Most bacterial genera that comprise the coliform group (e.g., Escherichia, Klebsiella, and Serratia) are within the family Enterobacteriaceae, while at least one genus with strains recognized as coliforms, Aeromonas, is in the family Aeromonadaceae. The presence of coliforms has long been thought to indicate fecal contamination, however, recent discoveries regarding this diverse group of bacteria indicates that only a fraction are fecal in origin, while the majority are environmental contaminants. In the US dairy industry in particular, testing for coliforms as indicators of unsanitary conditions and post-processing contamination is widespread. While coliforms are easily and rapidly detected, and are not found in pasteurized dairy products that have not been exposed to post-processing contamination, advances in knowledge of bacterial populations most commonly associated with post-processing contamination in dairy foods has led to questions regarding the utility of coliforms as indicators of unsanitary conditions for dairy products. For example, Pseudomonas spp. frequently contaminate dairy products after pasteurization, yet they are not detected by coliform tests. This review will address the role that coliforms play in raw and

  10. The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods.

    PubMed

    Martin, Nicole H; Trmčić, Aljoša; Hsieh, Tsung-Han; Boor, Kathryn J; Wiedmann, Martin

    2016-01-01

    Testing for coliforms has a long history in the dairy industry and has helped to identify raw milk and dairy products that may have been exposed to unsanitary conditions. Coliform standards are included in a number of regulatory documents (e.g., the U.S. Food and Drug Administration's Grade "A" Pasteurized Milk Ordinance). As a consequence, detection above a threshold of members of this method-defined, but diverse, group of bacteria can result in a wide range of regulatory outcomes. Coliforms are defined as aerobic or facultatively anaerobic, Gram negative, non-sporeforming rods capable of fermenting lactose to produce gas and acid within 48 h at 32-35°C; 19 genera currently include at least some strains that represent coliforms. Most bacterial genera that comprise the coliform group (e.g., Escherichia, Klebsiella, and Serratia) are within the family Enterobacteriaceae, while at least one genus with strains recognized as coliforms, Aeromonas, is in the family Aeromonadaceae. The presence of coliforms has long been thought to indicate fecal contamination, however, recent discoveries regarding this diverse group of bacteria indicates that only a fraction are fecal in origin, while the majority are environmental contaminants. In the US dairy industry in particular, testing for coliforms as indicators of unsanitary conditions and post-processing contamination is widespread. While coliforms are easily and rapidly detected, and are not found in pasteurized dairy products that have not been exposed to post-processing contamination, advances in knowledge of bacterial populations most commonly associated with post-processing contamination in dairy foods has led to questions regarding the utility of coliforms as indicators of unsanitary conditions for dairy products. For example, Pseudomonas spp. frequently contaminate dairy products after pasteurization, yet they are not detected by coliform tests. This review will address the role that coliforms play in raw and finished

  11. Distribution and Significance of Fecal Indicator Organisms in the Upper Chesapeake Bay

    PubMed Central

    Sayler, G. S.; Nelson, J. D.; Justice, A.; Colwell, R. R.

    1975-01-01

    Total viable aerobic, heterotrophic bacteria, total coliforms, fecal coliforms, and fecal streptococci were enumerated in samples collected at five stations located in the Upper Chesapeake Bay, December 1973 through December 1974. Significant levels of pollution indicator organisms were detected at all of the stations sampled. Highest counts were observed in samples collected at the confluence of the Susquehanna River and the Chesapeake Bay. The indicator organisms examined were observed to be quantitatively distributed independently of temperature and salinity. Counts were not found to be correlated with concentration of suspended sediment. However, significant proportions of both the total viable bacteria (53%) and fecal indicator organisms (>80%) were directly associated with suspended sediments. Correlation coefficients (r) for the indicator organisms examined in this study ranged from r = 0.80 to r = 0.99 for bottom water and suspended sediment, respectively. Prolonged survival of fecal streptococci in most of the sediment samples was observed, with concomitant reduction of the correlation coefficient from r = 0.99, fecal streptococci to total coliforms in water, to r = 0.01, fecal streptococci to fecal coliforms in sediments. The results of this study compared favorably with fecal coliforms: fecal streptococci ratios for the various sample types. Characterization of organisms beyond the confirmed most-probable-number procedure provided good correlation between bacterial indicator groups. PMID:811167

  12. Automated Coliform Analysis

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Nibley, D.; Jeffers, E.; Brooks, R.

    1984-01-01

    Hydrogen evolved by coliform bacteria transferred to separate measurement cell. Electroanalytic cell mounted in insulated temperature-control bath cycled between culturing temperature and sterilizing temperature. Flow of materials into and out of cell controlled by electrically operated valves.

  13. [The importance of water testing for public health in two regions in Rio de Janeiro: a focus on fecal coliforms, nitrates, and aluminum].

    PubMed

    Freitas, M B; Brilhante, O M; Almeida, L M

    2001-01-01

    In developing countries, due to poor sanitation conditions and poor quality of drinking water, typical water-borne diseases and more recently diseases caused by drinking water with high concentrations of nitrates and certain metals like aluminum have increased the concern over the health effects of these compounds. Several articles have shown associations between nitrates and methemoglobinemia in children, and aluminum and Alzheimer disease in adults. This study identified water quality with several parameters in non-conformity with Brazilian drinking water standards (Ruling 36/90): more than 50% of all samples from both regions contained fecal coliforms; some 31% of water samples from wells in Duque de Caxias had excessive nitrate concentrations; 100% of all groundwater samples from both regions showed aluminum concentrations not conforming to the norm, with the same result for 100% of samples from the drinking water distribution system in São Gonçalo and 75% of same in Duque de Caxias. This lack of conformity poses several health risks for the local population.

  14. Survival of manure-borne and fecal coliforms in soil: temperature dependence as affected by site-specific factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce, and making appropriate management decisions. The objective of this work was to evaluate effects of soil and management factors on temperature de...

  15. Matrix Extension Study: Validation of the Compact Dry CF Method for Enumeration of Total Coliform Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Green, Becky; Jewell, Keith; Monadjemi, Farinaz; Chen, Yi; Salfinger, Yvonne; Fernandez, Maria Cristina

    2016-01-01

    The Compact Dry "Nissui" CF method, Performance Tested Method(SM) 110401, was originally certified for enumeration of coliform bacteria by the AOAC Research Institute Performance Tested Methods(SM) program for raw meat products. Compact Dry CF is a ready-to-use dry media sheet, containing a cold-soluble gelling agent, a chromogenic medium, and selective agents, which are rehydrated by adding 1 mL of diluted sample. Coliform bacteria produce blue/blue-green colonies on the Compact Dry CF, allowing a coliform colony count to be determined in the sample after 24 ± 2 h incubation. A validation study was organized by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology, Ltd), Chipping Campden, United Kingdom, to extend the method's claim to include cooked chicken, fresh bagged prewashed shredded iceberg lettuce, frozen fish, milk powder, and pasteurized 2% milk. Campden BRI collected single-laboratory data for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Thirteen laboratories participated in the interlaboratory study. The Compact Dry CF method was compared to ISO 4832:2006 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coliforms-Colony-count technique," the current version at the time this study was conducted. Each matrix was evaluated at either four or five contamination levels of coliform bacteria (including an uncontaminated level). After logarithmic transformation of counts at each level, the data for pasteurized whole milk were analyzed for sr, sR, RSDr, and RSDR. Regression analysis was also performed and r(2) was reported. Mean difference between methods with 95% confidence interval (CI) was calculated. A log10 range of -0.5 to 0.5 for the CI was used as the acceptance criterion to establish significant statistical difference between methods. In the single-laboratory evaluation (for cooked chicken, lettuce, frozen

  16. Relationships among bather density, levels of human waterborne pathogens, and fecal coliform counts in marine recreational beach water.

    PubMed

    Graczyk, Thaddeus K; Sunderland, Deirdre; Awantang, Grace N; Mashinski, Yessika; Lucy, Frances E; Graczyk, Zofi; Chomicz, Lidia; Breysse, Patrick N

    2010-04-01

    During summer months, samples of marine beach water were tested weekly for human waterborne pathogens in association with high and low bather numbers during weekends and weekdays, respectively. The numbers of bathers on weekends were significantly higher than on weekdays (P < 0.001), and this was associated with a significant (P < 0.04) increase in water turbidity. The proportion of water samples containing Cryptosporidium parvum, Giardia duodenalis, and Enterocytozoon bieneusi was significantly higher (P < 0.03) on weekends than on weekdays, and significantly (P < 0.01) correlated with enterococci counts. The concentration of all three waterborne pathogens was significantly correlated with bather density (P < 0.01). The study demonstrated that: (a) human pathogens were present in beach water on days deemed acceptable for bathing according to fecal bacterial standards; (b) enterococci count was a good indicator for the presence of Cryptosporidium, Giardia, and microsporidian spores in recreational marine beach water; (c) water should be tested for enterococci during times when bather numbers are high; (d) re-suspension of bottom sediments by bathers caused elevated levels of enterococci and waterborne parasites, thus bathers themselves can create a non-point source for water contamination; and (e) exposure to recreational bathing waters can play a role in epidemiology of microsporidiosis. In order to protect public health, it is recommended to: (a) prevent diapered children from entering beach water; (b) introduce bather number limits to recreational areas; (c) advise people with gastroenteritis to avoid bathing; and (d) use showers prior to and after bathing.

  17. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  18. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system.

    PubMed

    Beardsley, Christine; Moss, Shaun; Malfatti, Francesca; Azam, Farooq

    2011-07-01

    Microorganisms play integral roles in the cycling of carbon (C) and nitrogen (N) in recirculating aquaculture systems (RAS) for fish and shellfish production. We quantified the pathways of shrimp fecal bacterial activities and their role in C- and N-flux partitioning relevant to culturing Pacific white shrimp, Penaeus (Litopenaeus) vannamei, in RAS. Freshly produced feces from P. vannamei contained 0.6-7 × 10(10) bacteria g(-1) dry wt belonging to Bacteroidetes (7%), Alphaproteobacteria (4%), and, within the Gammaproteobacteria, almost exclusively to the genus Vibrio (61%). Because of partial disintegration of the feces (up to 27% within 12 h), the experimental seawater became inoculated with fecal bacteria. Bacteria grew rapidly in the feces and in the seawater, and exhibited high levels of aminopeptidase, chitinase, chitobiase, alkaline phosphatase, α- and β-glucosidase, and lipase activities. Moreover, fecal bacteria enriched the protein content of the feces within 12 h, potentially enriching the feces for the coprophagous shrimp. The bacterial turnover time was much faster in feces (1-10 h) than in mature RAS water (350 h). Thus, shrimp fecal bacteria not only inoculate RAS water but also contribute to bacterial abundance and productivity, and regulate system processes important for shrimp health.

  19. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds.

    PubMed

    Unno, Tatsuya; Jang, Jeonghwan; Han, Dukki; Kim, Joon Ha; Sadowsky, Michael J; Kim, Ok-Sun; Chun, Jongsik; Hur, Hor-Gil

    2010-10-15

    While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.

  20. Comparison of membrane filtration and multiple-tube fermentation by the colilert and enterolert methods for detection of waterborne coliform bacteria, Escherichia coli, and enterococci used in drinking and bathing water quality monitoring in southern sweden.

    PubMed

    Eckner, K F

    1998-08-01

    A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods.

  1. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  2. Rapid determination of the presence of enteric bacteria in water.

    PubMed

    Kenard, R P; Valentine, R S

    1974-03-01

    A rapid and sensitive method is described for the detection of bacteria in water and various other natural substrates by the isolation of specific bacteriophage. By the addition of large numbers of the organism in question to the sample, the presence of virulent bacteriophage can be demonstrated in as little as 6 to 8 h. Fecal coliform, total coliform, and total coliphage counts were determined for over 150 water samples from several geographical areas over a period of 2 years. Computer analysis of the data shows a high degree of correlation between fecal coliforms and the coliphage present in the samples. With a high correlation coefficient between fecal coliform and coliphage counts, predictions of the fecal coliforms may be made by enumeration of the phage.

  3. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.

  4. Relation of bacteria in limestone aquifers to septic systems in Berkeley County, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    2000-01-01

    Water samples collected from 50 wells in Berkeley County, West Virginia, during June 2000 were analyzed for indicator bacteria. Of the 50 wells sampled, 62 percent (31 wells) contained total coliform bacteria, 32 percent (16 wells) contained Escherichia coli, and 30 percent (15 wells) contained fecal coliform bacteria. Although bacteria were present in many wells regardless of the number of septic systems in a 5-acre circular area around each well, no apparent correlation was detected between septic-system density and concentrations of bacteria colonies. There was also little difference in the frequency of total coliform bacteria detection between shallow and deep wells; however, the highest concentrations of E. coli and fecal coliform bacteria were found in the shallowest wells. At least one of the three bacteria types was found in samples of untreated water in 32 of the 50 wells. At 21 of the 32 wells with bacteria present, there was no treatment of the ground water to remove bacteria.

  5. Lack of Direct Effects of Agrochemicals on Zoonotic Pathogens and Fecal Indicator Bacteria

    PubMed Central

    Staley, Zachery R.; Senkbeil, Jacob K.; Rohr, Jason R.

    2012-01-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect. PMID:22961900

  6. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  7. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  8. Temporal Synchronization Analysis for Improving Regression Modeling of Fecal Indicator Bacteria Levels

    EPA Science Inventory

    Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...

  9. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  10. DNA analysis of fecal bacteria to augment an epikarst dye trace study at Crump's Cave, Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rainfall simulation experiment was performed to investigate the transport behavior of fecal-derived bacteria through shallow karst soils and through the epikarst. The experiment was conducted at Cave Springs Cavern located just south of Mammoth Cave National Park on the Sinkhole Plain of South Cen...

  11. Decay of Fecal Indicator Bacteria and Microbial Source Tracking Markers in Cattle Feces

    EPA Science Inventory

    The survival of fecal indicator bacteria (FIB) and microbial source tracking (MST) markers in water microcosms and manure amended soils has been well documented; however, little is known about the survival of MST markers in bovine feces deposited on pastures. We conducted a study...

  12. Comparison of FecalSwab and ESwab Devices for Storage and Transportation of Diarrheagenic Bacteria

    PubMed Central

    Kaukoranta, Suvi-Sirkku

    2014-01-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at −20°C or −70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At −70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At −20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions. PMID:24740083

  13. Comparison of FecalSwab and ESwab devices for storage and transportation of Diarrheagenic bacteria.

    PubMed

    Hirvonen, Jari J; Kaukoranta, Suvi-Sirkku

    2014-07-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at -20°C or -70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At -70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At -20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions.

  14. Age-related changes in select fecal bacteria in foals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult horses depend on the microbial community in the hindgut to produce VFAs that are utilized for energy. Microbial colonization in the gastrointestinal tract of foals is essential to develop a healthy symbiotic relationship and prevent proliferation of pathogenic bacteria. However, colonization i...

  15. Sources of fecal indicator bacteria to groundwater, Malibu Lagoon and the near-shore ocean, Malibu, California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Swarzenski, Peter W.; Burton, Carmen A.; Van De Werfhorst, Laurie; Holden, Patricia A.; Dubinsky, Eric A.

    2012-01-01

    Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage near Malibu, California have been implicated as a possible source of fecal indicator bacteria (FIB) to Malibu Lagoon and the near-shore ocean. For this to occur, treated wastewater must first move through groundwater before discharging to the Lagoon or ocean. In July 2009 and April 2010, δ18O and δD data showed that some samples from water-table wells contained as much as 70% wastewater; at that time FIB concentrations in those samples were generally less than the detection limit of 1 Most Probable Number (MPN) per 100 milliliters (mL). In contrast, Malibu Lagoon had total coliform, Escherichia coli, and enterococci concentrations as high as 650,000, 130,000, and 5,500 MPN per 100 mL, respectively, and as many as 12% of samples from nearby ocean beaches exceeded the U.S. Environmental Protection Agency single sample enterococci standard for marine recreational water of 104 MPN per 100 mL. Human-associated Bacteroidales, an indicator of human-fecal contamination, were not detected in water from wells, Malibu Lagoon, or the near-shore ocean. Similarly, microarray (PhyloChip) data show Bacteroidales and Fimicutes Operational Taxanomic Units (OTUs) present in OWTS were largely absent in groundwater; in contrast, 50% of Bacteroidales and Fimicutes OTUs present in the near-shore ocean were also present in gull feces. Terminal-Restriction Length Fragment Polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) data showed that microbial communities in groundwater were different and less abundant than communities in OWTS, Malibu Lagoon, or the near-shore ocean. However, organic compounds indicative of wastewater (such as fecal sterols, bisphenol-A and cosmetics) were present in groundwater having a high percentage of wastewater and were present in groundwater discharging to the ocean. FIB in the near-shore ocean varied with tides, ocean swells, and waves. Movement of water from

  16. Effects of hydrologic, biological, and environmental processes on sources and concentrations of fecal bacteria in the Cuyahoga River, with implications for management of recreational waters in Summit and Cuyahoga Counties, Ohio

    USGS Publications Warehouse

    Myers, Donna N.; Koltun, G.F.; Francy, Donna S.

    1998-01-01

    Discharges of fecal bacteria (fecal coliform bacteria and Escherichia coli ) to the middle main stem of the Cuyahoga River from storm water, combined sewers, and incompletely disinfected wastewater have resulted in frequent exceedances of bacteriological water-quality standards in a 23-mile reach of the river that flows through the Cuyahoga Valley National Recreation Area. Contamination of the middle main stem of the Cuyahoga River by bacteria of fecal origin and subsequent transport to downstream areas where water-contact recreation is an important use of the river are a concern because of the potential public-health risk from the presence of enteric pathogens. Independent field investigations of bacterial decay, dilution, dispersion, transport, and sources, and bacterial contamination of streambed sediments, were completed in 1991-93 during periods of rainfall and runoff. The highest concentration of fecal coliform bacteria observed in the middle main stem during three transport studies exceeded the single-sample fecal coliform standard applicable to primary-contact recreation by a factor of approximately 1,300 and exceeded the Escherichia coli standard by a factor of approximately 8,000. The geometric-mean concentrations of fecal bacteria in the middle main stem were 6.7 to 12.3 times higher than geometric-mean concentrations in the monitored tributaries, and 1.8 to 7.0 times larger than the geometric-mean concentrations discharged from the Akron Water Pollution Control Station. Decay rates of fecal bacteria measured in field studies in 1992 ranged from 0.0018 per hour to 0.0372 per hour for fecal coliform bacteria and from 0.0022 per hour to 0.0407 per hour for Escherichia coli. Most of the decay rates measured in June and August were significantly higher than decay rates measured in April and October. Results of field studies demonstrated that concentrations of fecal coliform bacteria were 1.2 to 58 times higher in streambed sediments than in the overlying

  17. Enzyme Characteristics of β-d-Galactosidase- and β-d-Glucuronidase-Positive Bacteria and Their Interference in Rapid Methods for Detection of Waterborne Coliforms and Escherichia coli

    PubMed Central

    Tryland, I.; Fiksdal, L.

    1998-01-01

    Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities of Bacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified as Aeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria. PMID:9501441

  18. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria.

    PubMed

    Signorini, M L; Soto, L P; Zbrun, M V; Sequeira, G J; Rosmini, M R; Frizzo, L S

    2012-08-01

    Before weaning, dairy calves are susceptible to many pathogens which can affect their subsequent performance. The use of lactic acid bacteria (LAB) has been identified as a tool to maintain the intestinal microbial balance and to prevent the establishment of opportunistic pathogenic bacterial populations. However, a consensus has not been reached as to whether probiotics may be effective in reducing the prevalence of gastrointestinal diseases in young calves. The aim of this meta-analysis was to assess the effect of probiotics on diarrhea incidence and the intestinal microbial balance. LAB supplementation has been shown to exert a protective effect and to reduce the incidence of diarrhea (relative risk, RR=0.437, 95% confidence interval (CI) 0.251-0.761). In the subanalysis, this protective effect of the probiotics against diarrhea was observed only in trials that used whole milk (RR=0.154, 95% CI 0.079-0.301) and trials that used multistrain inocula (RR=0.415, 95% CI 0.227-0.759). Probiotics did not improve the fecal characteristics (standardized mean difference, SMD=-0.4904, 95% CI -1.011-0.035) and were unable to change the LAB:coliforms ratio (SMD=0.016, 95% CI -0.701-0.733). Probiotics showed a beneficial impact on the LAB:coliforms ratio in the subanalysis that included trials that used whole milk (SMD=0.780, 95% CI 0.141-1.418) and monostrain inocula (SMD=0.990, 95% CI 0.340-1.641). The probability of significant effects (probiotic positive effect) in a new study was >0.70 for diarrhea and fecal consistency. Whole milk feeding improved the action of the probiotic effect on the incidence of diarrhea and LAB:coliforms ratio. The probability to find significant effects in the diarrhea frequency and LAB:coliforms ratio was higher (P>0.85) if the new studies were conducted using whole milk to feed calves. This paper defines the guidelines to standardize the experimental designs of future trials. LAB can be used as growth promoters in calves instead of antibiotics

  19. Coliform Contamination of Peri-urban Grown Vegetables and Potential Public Health Risks: Evidence from Kumasi, Ghana.

    PubMed

    Abass, Kabila; Ganle, John Kuumuori; Adaborna, Eric

    2016-04-01

    Peri-urban vegetable farming in Ghana is an important livelihood activity for an increasing number of people. However, increasing quality and public health concerns have been raised, partly because freshwater availability for irrigation purposes is a major constraint. This paper investigated on-farm vegetable contamination and potential health risks using samples of lettuce, spring onions and cabbage randomly selected from 18 vegetable farms in peri-urban Kumasi, Ghana. Vegetable samples were tested for total coliform, fecal coliform, Escherichia coli and Salmonella spp. bacteria contamination using the Most Probable Number method. Results show high contamination levels of total and fecal coliforms, and Escherichia coli bacteria in all 18 vegetable samples. The mean total coliform/100 ml concentration for spring onions, lettuce and cabbage were 9.15 × 10(9), 4.7 × 10(7) and 8.3 × 10(7) respectively. The mean fecal coliform concentration for spring onions, lettuce and cabbage were also 1.5 × 10(8), 4.15 × 10(7) and 2.15 × 10(7) respectively, while the mean Escherichia coli bacteria contamination for spring onions, lettuce and cabbage were 1.4 × 10(8), 2.2 × 10(7) and 3.2 × 10(7) respectively. The level of total coliform, fecal coliform and Escherichia coli bacteria contamination in all the vegetable samples however declined as the distance between the main water source (Wiwi River) and farms increases. Nonetheless, all contamination levels were well above acceptable standards, and could therefore pose serious public health risks to consumers. Increased education and supervision of farmers, as well as public health and food hygiene education of consumers, are critical to reducing on-farm vegetable contamination and the health risks associated with consumption of such vegetables.

  20. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  1. Changes in antimicrobial resistance in fecal bacteria associated with pig transit and holding times at slaughter plants.

    PubMed Central

    Molitoris, E; Fagerberg, D J; Quarles, C L; Krichevsky, M I

    1987-01-01

    Fecal coliforms, fecal streptococci, and antimicrobial resistance (AMR) associated with various pig transit and holding times were investigated at slaughter plants. Changes in the relative abundance of two biotypes of Streptococcus faecium were associated with transit and holding of pigs, although approximately 20% of the isolates were unidentified. The greatest variety of coliforms was isolated from porcine feces after short transit (2 h) or holding (3 h) times and was qualitatively similar to those from pigs on farms. Isolates from pigs with longer average transit or holding times were almost all Escherichia coli (four biotypes). Streptococcal resistance to most antimicrobial agents was significantly greater (P less than 0.05) in isolates from live pigs at slaughter plants than in those from pigs at farms and was apparent after a short transit time (2 h). Streptococci from pigs held an average of 15 h were less resistant to most antimicrobial agents than those from pigs held 3 or 43 h. When compared with short transit times, moderate transit times (6 h) were associated with significantly decreased (P less than 0.05) coliform resistance and decreased resistance transfer but a greater diversity of AMR patterns. Holding pigs overnight (14 h) was associated with lowered coliform resistance to several antimicrobial agents, compared with the resistance of isolates from pigs held 3 or 39 h. A substantial increase (18 to 48%) in the ability to transfer streptomycin resistance was demonstrated in coliforms from pigs held 39 h, when compared with those from pigs held 3 h.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3606107

  2. Weather and environmental factors associated with F+ coliphages and fecal indicator bacteria in beach sand at two recreational marine beaches

    EPA Science Inventory

    Studies have demonstrated that fecal indicator bacteria (FIB) and pathogens may be present in beach sand and suggest an increased risk of enteric illness among beachgoers contacting sand. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR...

  3. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria.

    PubMed Central

    McCambridge, J; McMeekin, T A

    1981-01-01

    The effect of solar radiation and predacious microorganisms on the survival of bacteria of fecal and plant origin was studied. The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently. The effect of solar radiation on microbial predators was negligible, whereas the susceptibility of bacteria to light-induced decay varied from one organism to another, as follows: Klebsiella pneumoniae greater than E. coli greater than Salmonella typhimurium, Streptococcus faecium, Enterobacter aerogenes, Erwinia herbicola. PMID:7020590

  4. Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution.

    PubMed

    McQuaig, Shannon; Griffith, John; Harwood, Valerie J

    2012-09-01

    Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided.

  5. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  6. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  7. Impact of Fertilizing with Raw or Anaerobically Digested Sewage Sludge on the Abundance of Antibiotic-Resistant Coliforms, Antibiotic Resistance Genes, and Pathogenic Bacteria in Soil and on Vegetables at Harvest

    PubMed Central

    Rahube, Teddie O.; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R.

    2014-01-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864

  8. Long-Term Survival of Fecal Indicator Bacteria in Estuarine Sediment

    NASA Astrophysics Data System (ADS)

    Ferguson, A. S.; Layton, A.; Culligan, P. J.; Kenna, T. C.; Mailloux, B. J.

    2010-12-01

    Fecal contamination of marine and freshwater environments can negatively impact water quality, leading to contaminated drinking water as well as the closure of recreational beaches and waterways. Fecal contamination is routinely assessed using fecal indicator bacteria (FIB), and even though the potential for their long-term survival or proliferation in sediments exist, information linking deposition of FIB with sediment age is scarce. We evaluate sediments as a reservoir for culturable FIB, by examining dated sediments from the lower Hudson River estuary for Escherichia coli (E. coli), enterococcus, and Bacteroides. Sediment cores were collected from in the vicinity of the George Washington (GWB) and Tappan Zee (TZB) Bridges NY. Sediment deposition ages were constrained using gamma emitting radionuclides and pollution chronology. Culturable E. coli and enterococcus were quantified using a culture-based most probable number method (ColilertTM, Idexx Laboratories). Molecular based methods were used to quantify E. coli and Bacteroides. In the GWB core, viable enterococcus or E. coli were consistently detected in sediment younger than the 1960s with maximum concentrations of 39 and 171 cells/g, respectively. In the TZB core, only enterococcus was sporadically detected in sediment younger than 1950 with a maximum concentration of 79 cells/g. Molecular Bacteroides and E. coli were detected in all core samples with a geometric mean of 4.2x104 and 1.2x105 copies/g, respectively. Results indicate that fecal bacteria can survive within estuarine sediments for decades, suggesting that sediments could be a significant and persistent source of bacterial pollution.

  9. An assessment of fecal indicator and other bacteria from an urbanized coastal lagoon in the City of Los Angeles, California, USA.

    PubMed

    Dorsey, John H; Carmona-Galindo, Víctor D; Leary, Christopher; Huh, Julie; Valdez, Jennifer

    2013-03-01

    A study was performed in Del Rey Lagoon, City of Los Angeles, to determine if the lagoon was as a source or sink for fecal indicator bacteria (FIB: total coliforms, Escherichia coli, enterococci) and to screen for the presence of other potentially pathogenic bacteria. The lagoon receives tidal flows from the adjacent Ballona Estuary whose water usually is contaminated with FIB originating from the highly urbanized Ballona Creek Watershed. During 16 sampling events from February 2008 through March 2009, replicate water samples (n = 3) were collected 1 h prior to the high tide and 1 h prior to the following low tide. FIB concentrations were measured by the defined substrate method (IDEXX, Westbrook, Me) followed by culturing of bacterial isolates sampled from positive IDEXX Quanti-Tray wells and were identified using the Vitek 2 Compact (bioMérieux, Durham, NC). Mean concentrations of FIB often differed by an order of magnitude from flood to ebb flow conditions. The lagoon tended to act as a sink for total coliforms based on the ratio of mean flood to ebb densities (R (F/E)) >1.0 during 56 % of the sampling events and during ebb flows, as a source for E. coli and enterococci (R (F/E) <1.69 % of events). Approximately 54 species were identified from 277 isolates cultured from the IDEXX Quanti-Trays. Of these, 54 % were species known to include pathogenic strains that can be naturally occurring, introduced in runoff, or originated from other sources. Diversity and cluster analyses indicated a dynamic assemblage that changes in species composition with day-to-day fluctuations as well as tidal action. The concept of monitoring the lagoon and estuary as a sentinel habitat for pathogenic assemblages is discussed.

  10. Comparison of m-Endo LES, MacConkey, and Teepol media for membrane filtration counting of total coliform bacteria in water.

    PubMed Central

    Grabow, W O; du Preez, M

    1979-01-01

    Total coliform counts obtained by means of standard membrane filtration techniques, using MacConkey agar, m-Endo LES agar, Teepol agar, and pads saturated with Teepol broth as growth media, were compared. Various combinations of these media were used in tests on 490 samples of river water and city wastewater after different stages of conventional purification and reclamation processes including lime treatment, and filtration, active carbon treatment, ozonation, and chlorination. Endo agar yielded the highest average counts for all these samples. Teepol agar generally had higher counts then Teepol broth, whereas MacConkey agar had the lowest average counts. Identification of 871 positive isolates showed that Aeromonas hydrophila was the species most commonly detected. Species of Escherichia, Citrobacter, Klebsiella, and Enterobacter represented 55% of isolates which conformed to the definition of total coliforms on Endo agar, 54% on Teepol agar, and 45% on MacConkey agar. Selection for species on the media differed considerably. Evaluation of these data and literature on alternative tests, including most probable number methods, indicated that the technique of choice for routine analysis of total coliform bacteria in drinking water is membrane filtration using m-Endo LES agar as growth medium without enrichment procedures or a cytochrome oxidase restriction. PMID:394678

  11. Source tracking fecal bacteria in water: a critical review of current methods.

    PubMed

    Meays, Cynthia L; Broersma, Klaas; Nordin, Rick; Mazumder, Asit

    2004-10-01

    Many molecular and biochemical methods and techniques are being developed to track sources of bacteria in water and food. Currently, there is no standard method proposed for source tracking. This manuscript is a critical evaluation of the various methods used in watersheds, and highlights some of the advantages and disadvantages of each method. Making a decision on a single or combination of methods to use under a particular situation will depend on a number of factors including: question(s) to be answered, scale of identification (broad scale versus specific species identification), available expertise, cost of analysis, turnaround time, and access to facilities. This manuscript reviews several source tracking methodologies which are in current use for source tracking fecal bacteria in the environment including: ribotyping, pulse-field gel electrophoresis, denaturing-gradient gel electrophoresis, repetitive DNA sequences (Rep-PCR), host-specific 16S rDNA genetic markers, and antibiotic resistance analysis.

  12. Continuous, low-dose oral exposure to sodium chlorate reduces fecal Enterobacteriaceae coliforms in sheep feces without inducing subclinical chlorate toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were to determine a minimal daily dose of sodium chlorate, to be included in the drinking water for 5 days, that is safe yet maintains efficacy in reducing fecal shedding of Escherichia coli in mature ewes. In a complete randomized experimental design, 25 Targhee ewes (age = 18- to 20...

  13. Method for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)

    1983-01-01

    A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.

  14. Coliform contamination of a coastal embayment: Sources and transport pathways

    USGS Publications Warehouse

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, < 0.006 x 1012 FC yr-1, reached bay waters (<0.01% of annual input to bay). Instead, surface water flows, via storm drains and natural streams under both wet- and dry-weather conditions, contributed the major terrestrial input, 12 x 1012 FC yr-1 (24% of annual input), all from animal sources. Since most of the surface water FC inputs were associated with periodic, short-duration rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily

  15. Caffeine as an indicator of human fecal contamination in the Sinos River: a preliminary study.

    PubMed

    Linden, R; Antunes, M V; Heinzelmann, L S; Fleck, J D; Staggemeier, R; Fabres, R B; Vecchia, A D; Nascimento, C A; Spilki, F R

    2015-05-01

    The preservation of hydric resources is directly related to fecal contamination monitoring, in order to allow the development of strategies for the management of polluting sources. In the present study, twenty-five water samples from six water public supply collection sites were used for the evaluation of the presence of caffeine, total and fecal coliforms. Caffeine was detected in all samples, with concentrations ranging from 0.15 ng mL-1 to 16.72 ng mL-1. Total coliforms were detected in all samples, with concentrations in the range of 52 NMP/100 mL to higher than 24196 NMP/100 mL, whether the concentration range for fecal coliforms was in the range of below 1 NMP/100 mL to 7800 NMP/100 mL. No significant correlation was found between total coliforms and caffeine concentrations (rs = 0.35, p = 0.09). However, a moderate correlation between fecal coliforms and caffeine concentrations was found (rs = 0.412, p <0.05), probably indicating a human source for these bacteria. Caffeine determination in water may be a useful strategy to evaluate water contamination by human fecal waste.

  16. Characterization of E. coli and total coliform organisms isolated from Wisconsin Waters and Reassessment of their public health significance

    SciTech Connect

    Standridge, J.; Barman, M.; Sonzogni, W.C.

    1996-11-01

    In 1989 the U.S. Environmental Protection Agency promulgated Revised National Primary Drinking Water Regulations pursuant to the federal Safe Drinking Water Act. For Wisconsin, the law drastically increased the number of water systems required to test for microbiological contaminants. The law also introduced the requirement that laboratories not only look for the {open_quotes}total coliform{close_quotes} group of bacteria, but also the subgroup of fecal coliforms or E. coli are found and thus dictates public notification or {open_quotes}boil water orders.{close_quotes} The number of microbiological contamination events detected and the frequency of {open_quotes}boil{close_quotes} orders has increased drastically because of the Act. Concurrent with this increased visibility of microbiological contamination events has come a growing suspicion that we, as public health officials, may be unnecessarily alarming the public when, in fact, there is no real public health threat. This suspicion if fueled by recent reports documenting a number of situations in wells and distribution systems where coliform organisms were growing and multiplying in biofilms yielding positive tests, but where no fecal contamination had actually occurred. The fact that the profile of coliform species found in drinking water is very different from the coliform profile of feces, also leads one to question the significance of total coliform presence in potable water.

  17. Influence of manure age and sunlight on the community structure of cattle fecal bacteria as revealed by Illumina sequencing

    NASA Astrophysics Data System (ADS)

    Wong, K.; Shaw, T. I.; Oladeinde, A.; Molina, M.

    2013-12-01

    Fecal pollution of environmental waters is a major concern for the general public because exposure to fecal-associated pathogens can have severe impacts on human health. Stream and river impairment due to fecal pollution is largely the result of agricultural activities in the United States. In the last few years, numerous metagenomic studies utilized next generation sequencing to develop microbial community profiles by massively sequencing the 16sRNA hypervariable region. This technology supports the application of water quality assessment such as pathogen detection and fecal source tracking. The bacteria communities of samples in these studies were determined when they were freshly collected; therefore, little is known about how feces age or how environmental stress influences the microbial ecology of fecal materials. In this study we monitored bacteria community changes in cattle feces for 57 days after excretion (day 0, 2, 4 8, 15, 22, 29, 43, 57) by sequencing the 16s variable region 4, using Illumnia MiSeq. Twelve cattle feces were studied; half of the samples were directly exposed to sunlight (unshaded) and half were shaded. Results indicate that the relative abundance (RA) profile in both shaded and unshaded samples rapidly changed from day 0 to 15, but stabilized from day 22 to 57. Firmcutes were the most abundant phylum (~40%) at day 0, but were reduced to <10% by day 57. The RA of Proteobacteria was only 1% at day 0, but increased to ~50% by day 57in both shaded and unshaded samples. By the end of the study, shaded and unshaded samples had a similar RA of Firmcutes and Proteobacteria but the RA of Bacteroidetes and Actinobacteria was, respectively, about 7% lower and 10% higher for unshaded samples. UV intensity, moisture, and temperature were significantly different between shaded and unshaded plots, indicating that these environmental stresses could influence the structure of fecal bacteria community in the natural environment. According to the

  18. Stochastic Analysis of Non Point Source Loading of Fecal Bacteria in a Shallow Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Cook, S. J.; Li, X.; Atwill, R.; Packman, A. I.; Harter, T.

    2011-12-01

    Manure and wastewater irrigation (MWI) presents a microbiological risk to shallow groundwater quality. Particularly vulnerable are domestic wells in rural areas where treatment systems may be limited or unreliable. However, despite multiple and persistent sources of fecal contamination, cross sectional monitoring of fecal bacteria in groundwater indicates a high degree of variability in both prevalence and measured concentrations. Apparently random variation occurs both between wells and samples at individual wells. In contrast, deliberate longitudinal studies of MWIs, particularly in the laboratory, tend to exhibit relatively smooth breakthrough curves consistent with colloid filtration theory. To better characterize potential sources of variability in observed field data, a 3D stochastic groundwater modeling approach representative of irrigation applications to vulnerable alluvial aquifers was developed. Heterogeniety is assessed by incorporating multiple loading functions and hydrostratigraphic representations of a heterogeneous alluvial aquifer. Simulations indicate that irrigation water breakthroughs to wells are generally limited to shallow depths, suggesting limited risk to domestic wells screened several tens of meters below the water table. Whilst the presence of aquifer heterogeneity significantly extends the transport distance and tailing of breakthrough curves, owing to macro-dispersion and in-well mixing, simulated breakthrough curves are relatively smooth and consistent with observed longitudinal studies. This suggests that the highly erratic and variable nature of microorganism detection may be due to highly transient processes, including but not limited to spatio-temporal variations in source variability and limitations in infrequent monitoring programs to properly determine variability.

  19. Chlorine injury and the comparative performance of Colisure (TM), ColiLert (TM) and ColiQuik (TM) for the enumeration of coliform bacteria and E.coli in drinking water.

    PubMed

    McFeters, G A; Pyle, B H; Gillis, S J; Acomb, C J; Ferrazza, D

    1993-01-01

    Several factors have stimulated interest in recently developed substrate specific media for the detection of coliform bacteria in water. This study compared the performance of Colisure (TM) (Millipore), ColiLert (TM) (Environetics) and ColiQuick (TM) (Hach) with accepted membrane filtration and MPN methodologies for the enumeration of total coliforms and E. coli in chlorinated water. The performance of all three media was compared, in MPN configuration, with LTB/MPN (confirmed) using a variety of drinking and source water samples, both with and without chlorination. The Cochran-Mantel-Haenszel test yielded statistical correlations between results obtained with each of the three new enzyme detection media and accepted reference methods for the detection of low numbers of total coliforms. Another series of tests compared the performance of Colisure with accepted methods (LTB/MPN confirmed with BGLB and EC-MUG) in the detection of total coliforms and E. coli in sewage-spiked samples simulating contaminated drinking water, using an USEPA/AWWA test protocol. The results demonstrated that Colisure detected these indicator bacteria with greater sensitivity than the accepted methods and that this difference increased between 24 and 28 hours of incubation. The results of this study collectively support the validity of the new enzyme detection method for the detection of low levels of coliform bacteria and E. coli in source water and contaminated drinking water.

  20. Post-Katrina fecal contamination in Violet Marsh near New Orleans.

    PubMed

    Furey, John S; Fredrickson, Herbert; Foote, Chris; Richmond, Margaret

    2007-06-01

    Fecal material entrained in New Orleans flood waters was pumped into the local environment. Violet Marsh received water pumped from St. Bernard Parish and the Lower Ninth Ward. Sediment core samples were collected from canals conducting water from these areas to pump stations and from locations within Violet Marsh. Viable indicator bacteria and fecal sterols were used to assess the levels of fecal material in sediment deposited after the levee failures and deeper sediments deposited before. Most of the cores had fecal coliform levels that exceed the biosolids criterion. All of the cores had fecal sterols that exceeded the suggested environmental quality criterion. Our data show both a long history of fecal contamination in Violet Marsh and an increase in fecal loading corresponding to the failure of the levee system. The work was performed as part of the Interagency Performance Evaluation Task Force investigation into the consequences of the failures of the New Orleans levee system.

  1. Persistence and distribution of pollution indicator bacteria on land used for disposal of piggery effluent.

    PubMed Central

    Chandler, D S; Farran, I; Craven, J A

    1981-01-01

    Numbers of pollution indicator bacteria (fecal coliforms and fecal streptococci) were assessed on land to which effluent from intensively housed pigs had been applied. Topsoil (to a 30-mm depth) was found to provide a more favorable environment for fecal coliform persistence than was pasture or subsoil. Times required for a 90% reduction in number (T90) in topsoil (calculated by linear regression of log counts obtained in a 6-week period after effluent application) ranged from 7 to 20 days (mean T90, 11 days). T90 values for fecal coliforms fell within this range irrespective of the season of application and for a number of soil types and climatic conditions. The range in die-off times was encountered irrespective of the fecal coliform count in the applied effluent or the application regimen (125 to 1,000 kg of elemental nitrogen in the form of effluent per ha; return periods, 3 to 12 months). Autumn and winter conditions were conducive to the persistence of a survivor tail of these bacteria at 10(1) to 10(3) cells per g of topsoil. Fecal streptococci survived similarly on soil and pasture (T90, ca. 14 days) and appeared slightly more suited to survival in the environment than did fecal coliforms. Contamination of subsoils after effluent applications occurred at a rate well in excess of the infiltration capacity of the soil, presumably by percolation of the effluent through soil cracks. Contamination levels of subsoils in the experimental area generally remained low. PMID:7294782

  2. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  3. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    EPA Science Inventory

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  4. COMPARISON OF REAL-TIME PCR FECAL BACTERIA MEASUREMENTS IN RECREATIONAL WATERS USING DIFFERENT INSTRUMENTS AND REAGENT SYSTEMS

    EPA Science Inventory

    U.S. EPA guidance on the safety of surface waters for recreational use is currently based on concentrations of culturable fecal indicator bacteria. Attention is now shifting to more rapid molecular monitoring methods. A multi-year epidemiological study is in progress to determine...

  5. Assessing Environmental Impacts of Treated Wastewater through Monitoring of Fecal Indicator Bacteria and Salinity in Irrigated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the potential for bacterial persistence and/or growth in reclaimed water irrigation systems and in irrigated soils, and to quantify the effects of wastewater application on soil salinity, levels of fecal indicator bacteria (E. coli, Enterococcus) and environmental covariates were measured ...

  6. Inter-laboratory Comparison of Real-time PCR Methods for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized prot...

  7. Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches

    USGS Publications Warehouse

    Brooks, Wesley R.; Fienen, Michael N.; Corsi, Steven R.

    2013-01-01

    At public beaches, it is now common to mitigate the impact of water-borne pathogens by posting a swimmer's advisory when the concentration of fecal indicator bacteria (FIB) exceeds an action threshold. Since culturing the bacteria delays public notification when dangerous conditions exist, regression models are sometimes used to predict the FIB concentration based on readily-available environmental measurements. It is hard to know which environmental parameters are relevant to predicting FIB concentration, and the parameters are usually correlated, which can hurt the predictive power of a regression model. Here the method of partial least squares (PLS) is introduced to automate the regression modeling process. Model selection is reduced to the process of setting a tuning parameter to control the decision threshold that separates predicted exceedances of the standard from predicted non-exceedances. The method is validated by application to four Great Lakes beaches during the summer of 2010. Performance of the PLS models compares favorably to that of the existing state-of-the-art regression models at these four sites.

  8. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry.

    PubMed

    Huong, Luu Quynh; Forslund, Anita; Madsen, Henry; Dalsgaard, Anders

    2014-09-01

    Small-scale biogas digesters are widely promoted worldwide as a sustainable technology to manage livestock manure. In Vietnam, pig slurry is commonly applied to biogas digesters for production of gas for electricity and cooking with the effluent being used to fertilize field crops, vegetables and fish ponds. Slurry may contain a variety of zoonotic pathogens, e.g. Salmonella spp., which are able to cause disease in humans either through direct contact with slurry or by fecal contamination of water and foods. The objective of this study was to evaluate the survival of Salmonella spp. and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms with and 6 farms without toilet connected) located in Hanam province, Vietnam. Sampling of pig slurry and biogas effluent was done during two seasons. Results showed that the concentration of enterococci, E. coli, and Clostridium perfringens spores was overall reduced by only 1-2 log10-units in the biogas digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw and that indiscriminate discharge of effluent are likely to contaminate water recipients, e.g. drinking water sources, with pathogens. Relevant authorities should promote safe animal manure management

  9. Survival of Manure-borne Escherichia coli and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors

    EPA Science Inventory

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the a...

  10. HOLDING TIME STUDY FOR FECALS/SALMONELLA & CONNECTING LANGUAGE FOR 503 REGULATIONS

    EPA Science Inventory

    Current federal regulations required monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella have been developed and are currently in use for quantification of these organisms. Recently c...

  11. Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L) or ribwort (Plantago lanceolata L) forage.

    PubMed

    Ivarsson, E; Frankow-Lindberg, B E; Andersson, H K; Lindberg, J E

    2011-02-01

    Twenty-five weaned 35-day-old piglets were used in a 35-day growth experiment to evaluate the effect of inclusion of chicory and ribwort forage in a cereal-based diet on growth performance, feed intake, digestibility and shedding of faecal coliform bacteria. A total of seven experimental diets were formulated, a cereal-based basal diet (B), and six diets with inclusion of 40, 80 and 160 g/kg chicory (C40, C80 and C160) or ribwort (R40, R80 and R160). Piglets had ad libitum access to feed and water throughout the experiment. Three and five weeks post-weaning faeces samples for determination of digestibility were collected once a day for five subsequent days. Additional faeces samples for determination of coliform counts were collected at days 1, 16 and 35 post-weaning. Piglets fed diet R160 had the lowest average daily feed intake (DFI) and daily weight gain (DWG), and differed (P < 0.05) from piglets fed diets B, R40 and R80. There were no differences in DFI and DWG between the chicory diets and diet B. Inclusion of chicory or ribwort had a minor negative impact on the coefficient of total tract apparent digestibility (CTTAD) of dry matter, organic matter and crude protein, whereas inclusion of both chicory and ribwort resulted in higher CTTAD of non-starch polysaccharides and neutral detergent fibre (NDF). The CTTAD of arabinose were higher for diets C160 and R160 than for diet B (P < 0.05), and the CTTAD of uronic acid was higher for diets C40, C80, C160, R80 and R160 than for diet B (P < 0.05). Age affected the CTTAD for all parameters (P < 0.05) except for NDF, with higher values at 5 than at 3 weeks post-weaning. The coliform counts decreased with increasing age (P < 0.05), but was not affected by treatment. The results indicate that inclusion of up to 160 g/kg of chicory do not negatively affect performance, whereas high inclusion of ribwort have a negative impact on feed consumption and consequently on growth rate. Both herbs have a higher digestibility of

  12. Fecal culture

    MedlinePlus

    ... fecal culture is a lab test to find organisms in the stool (feces) that can cause gastrointestinal ... Results There are no abnormal bacteria or other organisms in the sample. Talk to your provider about ...

  13. Viral and bacterial contamination in a sedimentary aquifer in Uruguay: evaluation of coliforms as regional indicators of viral contamination.

    NASA Astrophysics Data System (ADS)

    Gamazo, Pablo; Colina, Rodney; Victoria, Matias; Alvareda, Elena; Burutatran, Luciana; Ramos, Julian; Olivera, María; Soler, Joan

    2015-04-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological (fecal) analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus and fecal bacteria in groundwater on an intensive agriculture area of the Salto district. An initial screening campaign of 44 wells was performed in which, besides total and fecal coliforms, rotavirus and adenovirus were detected. A subgroup of the screening wells (15) where selected for bimonthly sampling during a year. In accordance with literature results, single well data analysis shows that coliform and viral contamination can be considered as independent variables. However, when spatial data is integrated, coliform and viral contamination show linear correlation. In this work we present the survey results, we analyse the temporal incidence of variables like precipitation, temperature and chemical composition in well contamination and we discuss the value of coliforms as global indicator of viral contamination for the Salto aquifer.

  14. Treating Stormwater with Green Infrastructure: Plants, Residence Time Distributions, and the Removal of Fecal Indicator Bacteria

    NASA Astrophysics Data System (ADS)

    Parker, E.; Grant, S. B.; Rippy, M.; Winfrey, B.; Mehring, A.

    2015-12-01

    In many cities, green infrastructure is increasingly used to capture and treat stormwater runoff, due to the many opportunities these systems afford for protecting receiving water quality and ecology while mitigating water scarcity. Here, we focus on how plants affect the removal of fecal indicator bacteria (FIB) in newly-constructed stormwater biofilters, a type of green infrastructure consisting of unconsolidated granular media containing one or more plant species. Input-response experiments were carried out using both non-reactive (salt) and reactive (sewage) tracers on six laboratory-scale (~1m long by 24 cm diameter) biofilters, half of which were planted with the sedge Carex appressa (treatment replicates) and half of which were unplanted (control replicates). C. appressa modifies the residence time distribution (RTD) in a biofilter by creating preferential flow paths along which water and mass can move quickly, but does not appear to alter the intrinsic rate at which FIB are removed. Thus, the "green" component of green infrastructure can alter pollutant removal by changing the RTD, with or without a concomitant change in pollutant reactivity.

  15. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  16. Detection of Helicobacter pylori and fecal indicator bacteria in five North American rivers.

    USGS Publications Warehouse

    Voytek, M.A.; Ashen, J.B.; Fogarty, L.R.; Kirshtein, J.D.; Landa, E.R.

    2005-01-01

    This study examines the use of fecal indicator bacteria (FIB) as a predictor of the presence of Helicobacter spp. A combination of standard culture and molecular techniques were used to detect and quantify FIB, Helicobacter spp. and H. pylori from five North American rivers of different size and with different land use characteristics. Primers designed to amplify genes specific to Helicobacter spp. and H. pylori were evaluated for their efficacy in detection and quantification in environmental samples. Helicobacter spp. were detected in 18/33 (55%) of river samples. H. pylori was detected in 11/33 (33%) of river samples. FIB were found in 32/33 (96%) of river samples. When FIB abundance exceeded USEPA water quality standards for single samples, Helicobacter or H. pylori were detected in 7/15 (47%) cases. No numerical correlation was found between the presence of FIB and either Helicobacter spp. or H. pylori. This suggests that the presence of FIB will be of limited use for detection of Helicobacter spp. or H. pylori by public health agencies.

  17. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    USGS Publications Warehouse

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  18. Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of Sandhill Cranes (Grus canadensis) at the Central Platte River

    EPA Science Inventory

    The annual Sandhill crane (Grus canadensis) migration through Nebraska is thought to be a major source of fecal pollution to the Platte River, but of unknown human health risk. To better understand potential risks, the presence of Campylobacter species and fecal bacteria were exa...

  19. The Effect of the Surrounding Land Use on the Amount of Fecal Contamination in Ponds

    NASA Astrophysics Data System (ADS)

    Walker, A. L.

    2002-05-01

    : Water is a gift of nature. It is provided by the environment in which people live and grow everyday. In order to truly treasure this gift, one must appreciate it and take all the necessary precautions to care for it and keep it clean. Coliform bacteria present in the feces of mammals are amongst the many things that should be cleaned from the water. The focus of this study was to compare the amount of fecal coliform colonies present in a rural and an urban pond. It was hypothesized that there would be a greater number of fecal coliform colonies present in the rural pond. Samples were taken form each site and then plated using a special method to test for the presence of coliforms. The number of coliform colonies on each plate were counted. When the results from the bacteria plated from the urban and rural ponds were compared, it was found that there was a significantly higher number of fecal coliform colonies present in the rural pond. One factor impacting the difference between the number of fecal coliform colonies in the urban and rural ponds is land use. The urban pond has a more human activity. As a result of the surrounding land use, there were fewer wildlife sources of fecal coliform contamination in the urban area. In addition, the city of Richmond cleans and maintains the pond on a regular basis. Because the rural park is not used as often, there is a greater opportunity for more mammals and other wildlife such as birds to enter the pond creating a significantly higher level of fecal contamination. More urban and rural ponds need to be studied to support the conclusions drawn from this study. Because the ponds studied were in public parks, the findings of this study suggest a need for parks and recreation of rural areas to assist in finding a solution for the problem. The people in rural areas should become more aware that there is contamination in ponds. Further research can be conducted to account for the different types of coliforms present. This

  20. Modeling fecal bacteria transport and retention in agricultural and urban soils under saturated and unsaturated flow conditions.

    PubMed

    Balkhair, Khaled S

    2017-03-01

    Pathogenic bacteria, that enter surface water bodies and groundwater systems through unmanaged wastewater land application, pose a great risk to human health. In this study, six soil column experiments were conducted to simulate the vulnerability of agricultural and urban field soils for fecal bacteria transport and retention under saturated and unsaturated flow conditions. HYDRUS-1D kinetic attachment and kinetic attachment-detachment models were used to simulate the breakthrough curves of the experimental data by fitting model parameters. Results indicated significant differences in the retention and drainage of bacteria between saturated and unsaturated flow condition in the two studied soils. Flow under unsaturated condition retained more bacteria than the saturated flow case. The high bacteria retention in the urban soil compared to agricultural soil is ascribed not only to the dynamic attachment and sorption mechanisms but also to the greater surface area of fine particles and low flow rate. All models simulated experimental data satisfactorily under saturated flow conditions; however, under variably saturated flow, the peak concentrations were overestimated by the attachment-detachment model and underestimated by the attachment model with blocking. The good match between observed data and simulated concentrations by the attachment model which was supported by the Akaike information criterion (AIC) for model selection indicates that the first-order attachment coefficient was sufficient to represent the quantitative and temporal distribution of bacteria in the soil column. On the other hand, the total mass balance of the drained and retained bacteria in all transport experiments was in the range of values commonly found in the literature. Regardless of flow conditions and soil texture, most of the bacteria were retained in the top 12 cm of the soil column. The approaches and the models used in this study have proven to be a good tool for simulating fecal

  1. Salmonella and fecal indicator bacteria in tile waters draining poultry litter application fields in central Iowa

    NASA Astrophysics Data System (ADS)

    Hruby, C.; Soupir, M.

    2012-12-01

    E. coli and enterococci are commonly used as pathogen indicators in surface waters. Along with these indicators, pathogenic Salmonella are prevalent in poultry litter, and have the potential to be transported from land-application areas to tile waters and ultimately to impact waters that are used for drinking-water and recreation. The fate and transport of these bacteria to drainage tiles from application fields, and the correlation of fecal indicator bacteria to pathogens in this setting, is poorly understood. In this field study, samples were obtained from poultry litter, soil, and drainage tile waters below chisel-plowed and no-till cornfields in central Iowa where poultry litter was applied each year in late spring prior to planting. Litter was applied at three different rates; commercial fertilizer with no litter, a low application rate based on the nitrogen requirements of the corn (PL1), and double the low rate (PL2). This site is characterized by low sloping (0-9%) Clarion and Nicollet soils, which are derived from glacial till. Samples were collected from April to September for three years (2010-12) when tiles were flowing. Record high precipitation fell during the sampling period in 2010, while 2011 and 2012 were exceptionally dry years at this location. Grab samples were taken directly from flowing tiles after every rainfall event (>2 cm in less than 24 hours) and samples were collected hourly throughout selected events using an automatic sampling device. Concentrations of E. coli, enterococci and Salmonella spp. were quantified by membrane filtration and growth on selective agars. Peak bacteria concentrations following rainfall events were often one order of magnitude higher in tile waters discharging from no-till plots, despite the smaller size and lower tile flow rates at these plots compared to the chisel-plowed plots. Bacteria concentrations regularly varied by two orders of magnitude in response to rainfall events. Bacteria transport via macropores

  2. Effects of receiving-water quality and wastewater treatment on injury, survival, and regrowth of fecal-indicator bacteria and implications for assessment of recreational water quality

    USGS Publications Warehouse

    Francy, D.S.; Hart, T.L.; Virosteck, C.M.

    1996-01-01

    Bacterial injury, survival, and regrowth were investigated by use of replicate flow-through incubation chambers placed in the Cuyahoga River or Lake Erie in the greater Cleveland metropolitan area during seven 4-day field studies. The chambers contained wastewater or combined-sewer-overflow (CSO) effluents treated three ways-unchlorinated, chlorinated, and dechlorinated. At timestep intervals, the chamber contents were analyzed for concentrations of injured and healthy fecal coliforms by use of standard selective and enhanced-recovery membrane-filtration methods. Mean percent injuries and survivals were calculated from the fecal-coliform concentration data for each field study. The results of analysis of variance (ANOVA) indicated that treatment affected mean percent injury and survival, whereas site did not. In the warm-weather Lake Erie field study, but not in the warm-weather Cuyahoga River studies, the results of ANOVA indicated that dechlorination enhanced the repair of injuries and regrowth of chlorine-injured fecal coliforms on culture media over chlorination alone. The results of ANOVA on the percent injury from CSO effluent field studies indicated that dechlorination reduced the ability of organisms to recover and regrow on culture media over chlorination alone. However, because of atypical patterns of concentration increases and decreases in some CSO effluent samples, more work needs to be done before the effect of dechlorination and chlorination on reducing fecal-coliform concentrations in CSO effluents can be confirmed. The results of ANOVA on percent survivals found statistically significant differences among the three treatment methods for all but one study. Dechlorination was found to be less effective than chlorination alone in reducing the survival of fecal coliforms in wastewater effluent, but not in CSO effluent. If the concentration of fecal coliforms determined by use of the enhanced-recovery method can be predicted accurately from the

  3. Validation of the H2S method to detect bacteria of fecal origin by cultured and molecular methods.

    PubMed

    McMahan, Lanakila; Devine, Anthony A; Grunden, Amy M; Sobsey, Mark D

    2011-12-01

    Using biochemical and molecular methods, this research determined whether or not the H(2)S test did correctly identify sewage-contaminated waters by being the first to use culturing and molecular methods to identify the types and numbers of fecal indicator organisms, pathogens, and other microbes present in sewage samples with positive H(2)S test results. For the culture-based method, samples were analyzed for the presence of fecal bacteria by spread plating the sewage sample onto differential and selective media for Aeromonas spp., Escherichia coli, sulfite-reducing clostridia, H(2)S-producing bacteria, and Salmonella/Shigella spp. The isolates were then: (1) tested to determine whether they were H(2)S-producing organisms and (2) identified to the genus and species level using biochemical methods. The molecular method used to characterize the microbial populations of select samples was terminal restriction fragment length polymorphisms. These experiments on sewage provided evidence that positive H(2)S tests consistently contained fecal bacteria and pathogens. There were strong relationships of agreement between the organisms identified by both methods tested. This study is an important advance in microbial water quality detection since it is focused on the evaluation of a novel, low-cost, water microbiology test that has the potential to provide millions of people worldwide access to water quality detection technology. Of prime consideration in evaluating water quality tests is the determination of the test's accuracy and specificity, and this article is a fundamental step in providing that information.

  4. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the Upper Mississippi River

    EPA Science Inventory

    Sanitary quality of recreational waters is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); organisms present in the gastrointestinal tract of humans and many other animals, hence providing no information about the pollution source. Micro...

  5. Community structure of cattle fecal bacteria from different animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity, but also in methane emissions, food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provide adequate detail ab...

  6. Community structures of fecal bacteria in cattle from different animal feeding operations

    EPA Science Inventory

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity, but also in methane emissions, food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provid...

  7. Matrix Extension Study: Validation of the Compact Dry EC Method for Enumeration of Escherichia coli and non-E. coli Coliform Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Green, Becky; Jewell, Keith; Monadjemi, Farinaz; Chen, Yi; Salfinger, Yvonne; Fernandez, Maria Cristina

    2016-01-01

    The Compact Dry "Nissui" EC method, originally certified by the AOAC Research Institute Performance Test Method(SM) program for enumeration of Escherichia coli and non-E. coli coliforms in raw meat products (Performance Tested Method(SM) 110402), has undergone an evaluation to extend the method's claim to cooked chicken, prewashed bagged shredded iceberg lettuce, frozen cod filets, instant nonfat dry milk powder, and pasteurized milk (2% fat). Compact Dry EC is a ready-to-use dry media sheet containing a cold-soluble gelling agent, selective agents, and a chromogenic medium, which are rehydrated by adding 1 mL diluted sample. E. coli form blue/blue-purple colonies, whereas other coliform bacteria form red/pink colonies. Users can obtain an E. coli count (blue/blue-purple colonies only) and a total coliform count (red/pink plus blue/blue-purple colonies) after 24 ± 2 h of incubation at 37 ± 1°C. The matrix extension study was organized by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology, Ltd), Chipping Campden, United Kingdom. Method comparison data for cooked chicken, prewashed bagged shredded iceberg lettuce, frozen cod filets, and instant nonfat dry milk powder were collected in a single-laboratory evaluation by Campden BRI. A multilaboratory study was conducted on pasteurized milk (2% fat), with 13 laboratories participating. The Compact Dry EC method was compared to ISO 16649-2:2001 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli-Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide" and to ISO 4832:2006 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coliforms-Colony-count technique," the current standards at the time of this study. Each matrix was evaluated separately for E. coli and non-E. coli coliforms at each contamination level (including an

  8. Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA

    USGS Publications Warehouse

    Shellenbarger, G.G.; Athearn, N.D.; Takekawa, J.Y.; Boehm, A.B.

    2008-01-01

    Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.

  9. Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA.

    PubMed

    Shellenbarger, Gregory G; Athearn, Nicole D; Takekawa, John Y; Boehm, Alexandria B

    2008-06-01

    Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.

  10. Locating sources of surf zone pollution: a mass budget analysis of fecal indicator bacteria at Huntington Beach, California.

    PubMed

    Kim, Joon Ha; Grant, Stanley B; McGee, Charles D; Sanders, Brett F; Largier, John L

    2004-05-01

    The surf zone is the unique environment where ocean meets land and a place of critical ecological, economic, and recreational importance. In the United States, this natural resource is increasingly off-limits to the public due to elevated concentrations of fecal indicator bacteria and other contaminants, the sources of which are often unknown. In this paper, we describe an approach for calculating mass budgets of pollutants in the surf zone from shoreline monitoring data. The analysis reveals that fecal indicator bacteria pollution in the surf zone at several contiguous beaches in Orange County, California, originates from well-defined locations along the shore, including the tidal outlets of the Santa Ana River and Talbert Marsh. Fecal pollution flows into the ocean from the Santa Ana River and Talbert Marsh outlets during ebb tides and from there is transported parallel to the shoreline by wave-driven surf zone currents and/or offshore tidal currents, frequently contaminating >5 km of the surf zone. The methodology developed here for locating and quantifying sources of surf zone pollution should be applicable to a wide array of contaminants and coastal settings.

  11. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  12. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria.

    PubMed

    Hamilton, Matthew J; Weingarden, Alexa R; Unno, Tatsuya; Khoruts, Alexander; Sadowsky, Michael J

    2013-01-01

    Fecal microbiota transplantation (FMT) is becoming a more widely used technology for treatment of recurrent Clostridum difficile infection (CDI). While previous treatments used fresh fecal slurries as a source of microbiota for FMT, we recently reported the successful use of standardized, partially purified and frozen fecal microbiota to treat CDI. Here we report that high-throughput 16S rRNA gene sequencing showed stable engraftment of gut microbiota following FMT using frozen fecal bacteria from a healthy donor. Similar bacterial taxa were found in post-transplantation samples obtained from the recipients and donor samples, but the relative abundance varied considerably between patients and time points. Post FMT samples from patients showed an increase in the abundance of Firmicutes and Bacteroidetes, representing 75-80% of the total sequence reads. Proteobacteria and Actinobacteria were less abundant (< 5%) than that found in patients prior to FMT. Post FMT samples from two patients were very similar to donor samples, with the Bacteroidetes phylum represented by a great abundance of members of the families Bacteroidaceae, Rikenellaceae and Porphyromonadaceae, and were largely comprised of Bacteroides, Alistipes and Parabacteroides genera. Members of the phylum Firmicutes were represented by Ruminococcaceae, Lachnospiraceae, Verrucomicrobiaceae and unclassified Clostridiales and members of the Firmicutes. One patient subsequently received antibiotics for an unrelated infection, resulting in an increase in the number of intestinal Proteobacteria, primarily Enterobacteriaceae. Our results demonstrate that frozen fecal microbiota from a healthy donor can be used to effectively treat recurrent CDI resulting in restoration of the structure of gut microbiota and clearing of Clostridum difficile.

  13. Occurrence and levels of fecal indicators and pathogenic bacteria in market-ready recycled organic matter composts.

    PubMed

    Brinton, W F; Storms, P; Blewett, T C

    2009-02-01

    Landfill diversion of organic wastes through composting is making compost products available for agricultural and horticultural crops. On certified organic farms, nonsludge green waste and manure composts are widely used because the use of these products removes harvest date restrictions imposed by the U.S. Department of Agriculture when raw manure is applied. We quantified several pathogens in point-of-sale composts from 94 nonsludge facilities processing 2.2 million m3 year(-1) of recycled green waste. Only one compost contained Salmonella (1.8 most probable number [MPN]/4 g), 28% had fecal coliforms exceeding the Environmental Protection Agency 503 sludge hygiene limits (1000 MPN g(-1)), and 6% had detectable Escherichia coli O157:H7. In 22 of 47 samples, very low levels of Listeria spp. were found. However, in one sample the Listeria level was very high, coinciding with the highest overall level of all pathogen indicators. Seventy percent of the compost samples were positive for Clostridium perfringens, but only 20% of the samples had levels >1000 CFU/g. All samples were positive for fecal streptococci, and 47% had >1000 MPN g(-1). Statistical analyses conducted using documented site characteristics revealed that factors contributing to elevated pathogen levels were large facility size, large pile size, and immaturity of compost. Application of the California Compost Maturity Index distinguished compost products that had very low levels of E. coli from those with high levels. Products produced with windrow methods were of higher microbiological quality than were those produced with static pile methods, and point-of-sale bagged composts scored very high. These data indicate that compost that is hygienic by common standards can be produced, but more effort is required to improve hygiene consistency in relation to management practices.

  14. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant.

    PubMed

    Okeke, Benedict C; Thomson, M Sue; Moss, Elica M

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R(2)=0.998) and turbidity (R(2)=0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P<0.05), fecal coliforms (P<0.01) and enterococci (P<0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern can be

  15. Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater.

    PubMed

    Varma, M; Field, R; Stinson, M; Rukovets, B; Wymer, L; Haugland, R

    2009-11-01

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. These methods were used in the analyses of wastewater samples to investigate their feasibility as alternatives to current fecal indicator bacteria culture methods for predicting the efficiency of viral pathogen removal by standard treatment processes. PMA treatment was effective in preventing qPCR detection of target sequences from non-viable cells. Concentrates of small volume, secondary-treated wastewater samples, collected from a publicly owned treatment works (POTW) under normal operating conditions, had little influence on this effectiveness. Higher levels of total suspended solids, such as those associated with normal primary treatment and all treatment stages during storm flow events, appeared to interfere with PMA effectiveness under the sample preparation conditions employed. During normal operating conditions at three different POTWs, greater reductions were observed in PMA-qPCR detectable target sequences of both Enterococcus and Bacteroidales than in total qPCR detectable sequences. These reductions were not as great as those observed for cultivable fecal indicator bacteria in response to wastewater disinfection. Reductions of PMA-qPCR as well as total qPCR detectable target sequences from enterococci and, to a lesser extent, Bacteroidales correlated well with reductions in infectious viruses during both normal and storm flow operating conditions and therefore may have predictive value in determining the efficiency at which these pathogens are removed.

  16. The effects of amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses, growth and ampicillin resistance of intestinal coliform bacteria in weaned pigs

    PubMed Central

    Yun, Jinhyeon; Olkkola, Satu; Hänninen, Marja-Liisa; Oliviero, Claudio; Heinonen, Mari

    2017-01-01

    This study investigated the effects of a single amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses until the age of nine weeks. We also studied whether the treatment was associated with growth and mortality, the need for treatment of other diseases, the proportions of ampicillin resistant coliforms and antimicrobial resistance patterns of intestinal Escherichia coli (E. coli). A total of 7156 piglets, from approximately 480 litters, were divided into two treatment groups: ANT (N = 3661) and CON (N = 3495), where piglets were treated with or without a single intramuscular injection of 75 mg amoxicillin one day after birth, respectively. The umbilical and inguinal areas of weaned pigs were palpated at four and nine weeks of age. At the same time, altogether 124 pigs with hernias or abscesses and 820 non-defective pigs from three pens per batch were weighed individually. Mortality and the need to treat piglets for other diseases were recorded. Piglet faecal samples were collected from three areas of the floors of each pen at four weeks of age. The prevalence of umbilical hernias or abscesses did not differ between the groups at four weeks of age, but it was higher in the CON group than in the ANT group at nine weeks of age (2.3% vs. 0.7%, P < 0.05). Numbers of inguinal hernias and abscesses did not differ between the groups at four or nine weeks of age. The ANT group, when it compared with the CON group, increased the weight gain between four and nine weeks of age (LS means ± SE; 497.5 g/d ± 5.0 vs. 475.3 g/d ± 4.9, P < 0.01), and decreased piglet mortality (19.5% ± 1.0 vs. 6.9% ± 1.0, P < 0.05) and the need to treat the piglets for leg problems (3.4% ± 0.3 vs. 1.9% ± 0.3%, P < 0.01) but not for other diseases by the age of four weeks. The proportion of ampicillin resistant intestinal coliform bacteria and the resistance patterns of the E. coli isolates were not different between the ANT and CON groups. In conclusion, our

  17. Influence of weaning on fecal shedding of pathogenic bacteria in dairy calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the current research were to determine the effect of weaning on fecal shedding of Salmonella and E. coli O157:H7 in dairy calves and to examine cultured isolates (to include Enterococcus) for antimicrobial susceptibility. This research was conducted on one large commercial dairy (...

  18. FECAL BACTERIA SOURCE TRACKING AND BACTEROIDES SPP. HOST SPECIES SPECIFICITY ANALYSIS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...

  19. Distribution of Genetic Marker Concentrations for Fecal Indicator Bacteria in Sewage and Animal Feces

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) methods for the identification of fecal microorganisms in surface waters has the potential to revolutionize water quality monitoring worldwide. Unlike traditional cultivation methods, qPCR estimates the concentration of gen...

  20. Characterization of fecal indicator bacteria in sediments cores from the largest freshwater lake of Western Europe (Lake Geneva, Switzerland).

    PubMed

    Thevenon, Florian; Regier, Nicole; Benagli, Cinzia; Tonolla, Mauro; Adatte, Thierry; Wildi, Walter; Poté, John

    2012-04-01

    This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at ∼500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coli and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 × 10(8) and 6.6 × 10(6)CFU g(-1) dry sediment for E. coli and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s, whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the

  1. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons.

    PubMed

    Shepherd, Megan L; Swecker, William S; Jensen, Roderick V; Ponder, Monica A

    2012-01-01

    The diversity of the equine fecal bacterial community was evaluated using pyrosequencing of 16S rRNA gene amplicons. Fecal samples were obtained from horses fed cool-season grass hay. Fecal bacteria were characterized by amplifying the V4 region of bacterial 16S rRNA gene. Of 5898 mean unique sequences, a mean of 1510 operational taxonomic units were identified in the four fecal samples. Equine fecal bacterial richness was higher than that reported in humans, but lower than that reported in either cattle feces or soil. Bacterial classified sequences were assigned to 16 phyla, of which 10 were present in all samples. The largest number of reads belonged to Firmicutes (43.7% of total bacterial sequences), Verrucomicrobia (4.1%), Proteobacteria (3.8%), and Bacteroidetes (3.7%). The less abundant Actinobacteria, Cyanobacteria, and TM7 phyla presented here have not been previously described in the gut contents or feces of horses. Unclassified sequences represented 38.1% of total bacterial sequences; therefore, the equine fecal microbiome diversity is likely greater than that described. This is the first study to characterize the fecal bacterial community in horses by the use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the fecal microbiota of forage-fed horses.

  2. Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream

    NASA Astrophysics Data System (ADS)

    Grant, Stanley B.; Litton-Mueller, Rachel M.; Ahn, Jong H.

    2011-05-01

    Sediments are a pervasive source of fecal indicator bacteria (FIB) in rivers, lakes, estuaries, and oceans and may constitute a long-term reservoir of human disease. Previous attempts to quantify the flux of FIB across the sediment-water interface (SWI) are limited to extreme flow events, for which the primary mechanism of bacterial release is disruption and/or erosion of the sediment substrate. Here we report measurements of FIB flux across the SWI in a turbulent stream that is not undergoing significant erosion. The stream is formed by the steady discharge of bacteria-free disinfected and highly treated wastewater effluent to an earthen channel harboring high concentrations of FIB in the sediment from in situ growth. The flux j″ of FIB across the SWI, estimated from mass balance on FIB measurements in the water column, scales linearly with the concentration of bacteria in sediment pore fluids Cpore over a 3 decade change in both variables: ? The magnitude of the observed mass transfer velocity (? m s-1) is significantly larger than values predicted for either the diffusion of bacteria across a concentration boundary layer (? m s-1) or sweep and eject fluid motions at the SWI (? m s-1) but is similar to the flux of water between the stream and its hyporheic zone estimated from dye injection experiments. These results support the hypothesis that hyporheic exchange controls the trafficking of bacteria, and perhaps other types of particulate organic matter, across the SWI in turbulent streams.

  3. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.

    PubMed

    Mohanty, Sanjay K; Torkelson, Andrew A; Dodd, Hanna; Nelson, Kara L; Boehm, Alexandria B

    2013-10-01

    Bioinfiltration systems facilitate the infiltration of urban stormwater into soil and reduce high flow events and flooding. Stormwater carries a myriad of pollutants including fecal indicator bacteria (FIB). Significant knowledge gaps exist about the ability of bioinfiltration systems to remove and retain FIB. The present study investigates the ability of model, simplified bioinfiltration systems containing quartz sand and iron oxide-coated quartz sand (IOCS) to remove two FIB (Enterococcus faecalis and Escherichia coli) suspended in synthetic stormwater with and without natural organic matter (NOM) as well as the potential for accumulated FIB to be remobilized during intermittent flow. The experiments were conducted in two phases: (1) the saturated columns packed with either sand or IOCS were contaminated by injecting stormwater with bacteria followed by injection of sterile stormwater and (2) the contaminated columns were subjected to intermittent infiltration of sterile stormwater preceded by a pause during which columns were either kept saturated or drained by gravity. During intermittent flow, fewer bacteria were released from the saturated column compared to the column drained by gravity: 12% of attached E. coli and 3% of attached Ent. faecalis were mobilized from the drained sand column compared to 3% of attached E. coli and 2% attached Ent. faecalis mobilized from the saturated sand column. Dry and wet cycles introduce moving air-water interfaces that can scour bacteria from grain surfaces. During intermittent flows, less than 0.2% of attached bacteria were mobilized from IOCS, which bound both bacteria irreversibly in the absence of NOM. Addition of NOM, however, increased bacterial mobilization from IOCS: 50% of attached E. coli and 8% of attached Ent. faecalis were released from IOCS columns during draining and rewetting. Results indicate that using geomedia such as IOCS that promote irreversible attachment of bacteria, and maintaining saturated

  4. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale

    PubMed Central

    Verhougstraete, Marc P.; Martin, Sherry L.; Kendall, Anthony D.; Hyndman, David W.; Rose, Joan B.

    2015-01-01

    Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan’s Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL−1). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems. PMID:26240328

  5. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale.

    PubMed

    Verhougstraete, Marc P; Martin, Sherry L; Kendall, Anthony D; Hyndman, David W; Rose, Joan B

    2015-08-18

    Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan's Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL(-1)). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems.

  6. Occurrence and trends in the concentrations of fecal-indicator bacteria and the relation to field water-quality parameters in the Allegheny, Monongahela, and Ohio Rivers and selected tributaries, Allegheny County, Pennsylvania, 2001–09

    USGS Publications Warehouse

    Fulton, John W.; Koerkle, Edward H.; McCoy, Jamie L.; Zarr, Linda F.

    2016-01-21

    A total of 1,742 water samples were collected at 52 main-stem and tributary sites. Quantifiable concentrations of Escherichia coli (E. coli) were reported in 1,667 samples, or 97.0 percent of 1,719 samples; concentrations in 853 samples (49.6 percent) exceeded the U.S. Environmental Protection Agency (EPA) recreational water-quality criterion of 235 colonies per 100 milliliters (col/100 mL). Quantifiable concentrations of fecal coliform (FC) bacteria were reported in 1,693 samples, or 98.8 percent of 1,713 samples; concentrations in 780 samples (45.5 percent) exceeded the Commonwealth of Pennsylvania water contact criterion of 400 col/100 mL. Quantifiable concentrations of enterococci bacteria were reported in 912 samples, or 87.5 percent of 1,042 samples; concentrations in 483 samples (46.4 percent) exceeded the EPA recreational water-quality criterion of 61 col/100 mL. The median percentage of samples in which bacteria concentrations exceeded recreational water-quality standards across all sites with five or more samples was 48 for E. coli, 43 for FC, and 75 for enterococci. E. coli, FC, and enterococci concentrations at main-stem sites had significant positive correlations with streamflow under all weather conditions, with rho values ranging from 0.203 to 0.598. Seasonal Kendall and logistic regression were evaluated to determine whether statistically significant trends were present during the period 2001–09. In general, Seasonal Kendall tests for trends in E. coli and FC bacteria were inconclusive. Results of logistic regression showed no significant trends in dry-weather exceedance of the standards; however, significant decreases in the likelihood that wet-weather E. coli and FC bacteria concentrations will exceed EPA recreational standards were found at the USGS streamgaging station Allegheny River at 9th Street Bridge. Nonparametric correlation analysis, including Spearman’s rho and the paired Prentice-Wilcoxon test, was used to screen for associations

  7. Monitoring E. coli and total coliforms in natural spring water as related to recreational mountain areas.

    PubMed

    An, Youn-Joo; Breindenbach, G Peter

    2005-03-01

    Natural spring water has unique properties, as it is rich in minerals that are considered to be beneficial to human health. A survey of the microbiological quality of natural spring water was conducted to assess possible risks from the consumption of the water by visitors in recreational mountain areas located in Seoul, South Korea. The densities of total coliforms and Escherichia coli were measured during the spring and the summer of 2002 to investigate the presence of coliform bacteria in the drinking spring waters. Total coliforms were detected in all samples and the mean density of total coliforms was up to a maximum of 228 CFU/mL. Detectable E. coli was found in 78% of all samples and the mean densities of E. coli varied from a minimum of 0 CFU/mL to a maximum of 15 CFU/mL in all samples. Malfunctioning septic systems and wildlife population appear to be the main source of E. coli contamination. Presence of E. coli in natural spring water indicates potential adverse health effects for individuals or populations exposed to this water. The fecal contaminated spring water may present an unacceptable risk to humans if it is used as raw drinking water.

  8. Conclusions and future use of fecal indicator bacteria for monitoring water quality and protecting human health

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    A summary of the focus and the recurring theme of the book is presented in this chapter. It includes the use of faecal bacteria as an indicator of faecal pollution and water quality, ubiquity of faecal bacteria, and sources and movement of faecal bacteria in the environment.

  9. Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    PubMed Central

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Huq, Md. R.; Mey, Jacob; Feighery, John E.; Culligan, Patricia J.; Mailloux, Brian J.; Zhuang, Jie; Escamilla, Veronica; Emch, Michael; Perfect, Edmund; Sayler, Gary S.; Ahmed, Kazi M.; van Geen, Alexander

    2012-01-01

    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log10/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater. PMID:22191430

  10. Implications of fecal bacteria input from latrine-polluted ponds for wells in sandy aquifers.

    PubMed

    Knappett, Peter S K; McKay, Larry D; Layton, Alice; Williams, Daniel E; Alam, Md J; Huq, Md R; Mey, Jacob; Feighery, John E; Culligan, Patricia J; Mailloux, Brian J; Zhuang, Jie; Escamilla, Veronica; Emch, Michael; Perfect, Edmund; Sayler, Gary S; Ahmed, Kazi M; van Geen, Alexander

    2012-02-07

    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5 to 1.3 log(10)/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence the how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater.

  11. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  12. Physical and biological factors influencing environmental sources of fecal indicator bacteria in surface water

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Przybyla-Kelly, Katarzyna; Byappanahalli, Muruleedhara N.; Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    This paper describes the environmental populations of faecal indicator bacteria, and the processes by which these populations become nonpoint sources and influence nearshore water quality. The different possible sources of these indicator bacteria are presented. These include groundwater, springs and seeps, aquatic sediments, beach sand, birds, Cladophora and plant wrack. Also discussed are the environmental factors (moisture, sunlight, temperature and salinity) influencing their survival.

  13. Determining Sources of Fecal Pollution in a Rural Virginia Watershed with Antibiotic Resistance Patterns in Fecal Streptococci

    PubMed Central

    Hagedorn, Charles; Robinson, Sandra L.; Filtz, Jennifer R.; Grubbs, Sarah M.; Angier, Theresa A.; Reneau, Raymond B.

    1999-01-01

    Nonpoint sources of pollution that contribute fecal bacteria to surface waters have proven difficult to identify. Knowledge of pollution sources could aid in restoration of the water quality, reduce the amounts of nutrients leaving watersheds, and reduce the danger of infectious disease resulting from exposure to contaminated waters. Patterns of antibiotic resistance in fecal streptococci were analyzed by discriminant and cluster analysis and used to identify sources of fecal pollution in a rural Virginia watershed. A database consisting of patterns from 7,058 fecal streptococcus isolates was first established from known human, livestock, and wildlife sources in Montgomery County, Va. Correct fecal streptococcus source identification averaged 87% for the entire database and ranged from 84% for deer isolates to 93% for human isolates. To field test the method and the database, a watershed improvement project (Page Brook) in Clarke County, Va., was initiated in 1996. Comparison of 892 known-source isolates from that watershed against the database resulted in an average correct classification rate of 88%. Combining all animal isolates increased correct classification rates to ≥95% for separations between animal and human sources. Stream samples from three collection sites were highly contaminated, and fecal streptococci from these sites were classified as being predominantly from cattle (>78% of isolates), with small proportions from waterfowl, deer, and unidentified sources (≈7% each). Based on these results, cattle access to the stream was restricted by installation of fencing and in-pasture watering stations. Fecal coliforms were reduced at the three sites by an average of 94%, from prefencing average populations of 15,900 per 100 ml to postfencing average populations of 960 per 100 ml. After fencing, <45% of fecal streptococcus isolates were classified as being from cattle. These results demonstrate that antibiotic resistance profiles in fecal streptococci can

  14. Effect of Temperature, Grain Size and Organic Content on Persistence of Fecal Indicator Bacteria in Aquatic Sediments

    NASA Astrophysics Data System (ADS)

    Martinez, N. T.; Juhl, A. R.; O'Mullan, G. D.

    2011-12-01

    Pathogenic bacteria from poorly treated sewage present a health threat in recreational waters. Sewage derived bacteria can attach to particles and sink to the bottom, where they may persist longer than in the water column. If sewage derived bacteria persist, contaminated sediments may function as a reservoir for indicator bacteria and pathogens that can be resuspended, recontaminating the water column. We quantified the persistence of the fecal indicator bacteria (FIB), Escherichia coli and Enterococcus sp., in aquatic sediment microcosms in relation to sediment organic content, grain size and temperature. Surface sediment used for microcosms came from 5 near shore Hudson River estuary sites with different grain size distributions and organic content. Sediments from each location were divided into three separate containers that were then incubated in darkness at 18°, 25° and 30° C for several weeks. Subsamples were collected from each microcosm approximately weekly to track the decay of the FIB as a function of time. Duration required for 90% decay in different microcosms ranged from 6.7 to 63 days for E. coli and 5.1 to 60 days for Enterococcus sp., longer than has been typically observed in the water column. Our measurements of E. coli persistence were also longer than described in previous work. We found that E. coli persistence was strongly related to temperature with faster decay at higher temperatures. In contrast, Enterococcus sp. persistence was weakly related to temperature but was strongly related to sediment organic content and grain size distribution with decay rate increasing in sediments of low organic content and coarser grain size. Quantification of FIB persistence in sediment reservoirs can be used in water quality and public health predictions. The contrasting responses of E. coli and Enterococcus sp. persistence to sediment characteristics implies different suitability as indicators depending on environmental conditions.

  15. TEMPORAL AND SPATIAL VARIABILITY OF FECAL INDICATOR BACTERIA: IMPLICATIONS FOR THE APPLICATION OF MST METHODOLOGIES TO DIFFERENTIATE SOURCES OF FECAL CONTAMINATION

    EPA Science Inventory

    Temporal variability in the gastrointestinal flora of animals impacting water resources with fecal material can be one of the factors producing low source identification rates when applying microbial source tracking (MST) methods. Understanding how bacterial species and genotype...

  16. Storm flow dynamics and loads of fecal bacteria associated with ponds in southern piedmont and coastal plain watersheds with animal agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storm events that increase hydrologic flow rates can disturb sediments and produce overland runoff in watersheds with animal agriculture, and, thus, can increase surface water concentrations of fecal bacteria and risk to public health. We tested the hypothesis that strategically placed ponds in wate...

  17. Rainfall and tillage effects on transport of fecal bacteria and sex hormones 17ß-estradiol and testosterone from broiler litter applications to a Georgia Piedmont Ultisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter provides plant nutrients for crop and pasture production. Fecal bacteria, sex hormones (17ß-estradiol and testosterone) and antibiotic residues are litter components, however, that may contaminate surface waters and become a public health risk. Our objective was to quantify transpor...

  18. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    EPA Science Inventory

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial ...

  19. Influences of sample interference and interference controls on quantification of enterococci fecal indicator bacteria in surface water samples by the qPCR method

    EPA Science Inventory

    A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...

  20. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  1. Variations in the fecal occurrences of antimicrobial-resistant bacteria are greater between seasons than between "raised without antibiotics" and "conventional" cattle production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare, over a year, fecal occurrences of antimicrobial-resistant bacteria (ARB) in fed-cattle between two production systems: "raised without antibiotics" (RWA) and “conventional” (CONV). Feces were recovered from colons at a commercial beef processing plant obta...

  2. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. These contaminants can be mobilized into the water column due to resuspension events, thus affecting overall water quality. Along with the contaminants, other markers such as microbia...

  3. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations.

    PubMed

    Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R

    2015-04-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events.

  4. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations

    PubMed Central

    Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.

    2015-01-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418

  5. Bacteria and disinfection byproducts in water from southern Mexico City.

    PubMed

    Mazari-Hiriart, Marisa; Lopez-Vidal, Yolanda; Ponce de Leon, Sergio; Castillo-Rojas, Gonzalo; Hernandez-Eugenio, Cristina; Rojo, Francisco

    2003-04-01

    Disinfection byproducts and microorganisms present in drinking water may have deleterious effects on human health. The authors examined bacterial indicators (enterobacteria and Helicobacter pylori [H. pylori]), physicochemical parameters, and trihalomethane (THM) levels to conduct a water quality evaluation in Mexico City, where little is known about disinfection byproducts and microbial counts. Analyses were performed by standard membrane filtration for the enumeration of total coliforms, fecal coliforms, fecal streptococci, and Vibrio species. Other testing consisted of polymerase chain reaction (PCR) for H. pylori, physicochemical parameters by selective electrodes, and THMs by head-space with the use of a gas chromatograph. Indicator bacteria and enterobacteria were detected in 23% of samples, with significant differences between total coliforms, fecal coliforms, and fecal streptococci before and after chlorination. H. pylori was detected in 69% of samples prior to chlorination and 57% postchlorination. THM levels were < 200 microg/l. Chlorine concentrations ranged from < 0.05 mg/l to 35 mg/l. Disinfection at the well does not ensure good water quality for the Mexico City population. The next step will be the monitoring of water quality in the distribution system that supplies dwellings, as well as water obtained directly from the tap.

  6. Cattle-level risk factors associated with fecal shedding of Shiga toxin-encoding bacteria on dairy farms, Minnesota, USA.

    PubMed

    Cho, Seongbeom; Fossler, Charles P; Diez-Gonzalez, Francisco; Wells, Scott J; Hedberg, Craig W; Kaneene, John B; Ruegg, Pamela L; Warnick, Lorin D; Bender, Jeffrey B

    2009-04-01

    The objective of this study was to identify individual cattle-level risk factors associated with fecal shedding of Shiga toxin-encoding bacteria (STB), a surrogate for Shiga toxin-producing E. coli (STEC), on 28 organic and conventional dairy farms. It was found that small organic herds (fewer than 100 cows) were associated with higher odds of Shiga toxin-encoding bacteria (STB) shedding from 2 (all cattle and all cows) of 3 cattle models, followed by small conventional herds, compared with large conventional herds. Preweaned calves [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.2, 5.7] had higher odds of shedding STB compared with adult cows. Calves more than 28 days of age (OR = 2.0, 95%CI: 1.0, 4.4) were more likely to shed STB than calves less than 28 days of age. This information may be helpful for identifying potential control strategies such as targeted vaccination or management practices.

  7. Effects of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans from pasture can be fermented by Gram-positive bacteria (e.g., Streptococcus bovis) in the equine hindgut, increasing production of lactic acid and decreasing pH. The degree of polymerization (DP) of fructans has been suggested to influence fermentation rates. The objective of the current ...

  8. Factors Influencing the Accumulation and Subsurface Transport of Fecal Indicator Bacteria near the Shoreline at Freshwater Beaches

    NASA Astrophysics Data System (ADS)

    Wu, M. Z.; O'Carroll, D. M.; Vogel, L. J.; Robinson, C. E.

    2015-12-01

    Beach sand near the shoreline acts as a reservoir for fecal contaminants with fecal indicator bacteria (FIB) often orders of magnitude higher than in adjacent surface waters. This reservoir poses a human health risk and can also act as an important non-point contamination source for surface waters. Beach water quality advisories or closures can be issued when FIB (Escherichia coli (E. coli), enterococci (ENT)) concentrations are elevated in the surface water. The factors controlling the transport and accumulation of FIB in the foreshore sand are not well understood, though this is required to manage and mitigate this source. Multiple sources may contribute to the accumulation of FIB in sand, with recent studies suggesting that the continuous influx of surface water across the sediment-water interface may be a dominant source at many beaches.The study objective was to develop understanding of the physical processes controlling the accumulation and transport of FIB in beach sand. Field measurements were combined with numerical modelling to evaluate the role of low-energy lapping waves in delivering FIB to the saturated foreshore sand at freshwater beaches. E. coli and ENT were measured at two beaches in Ontario, Canada at depths of up to 1 and 2 m, respectively, below the water table. A numerical model simulating wave-induced groundwater recirculations coupled with microbial transport (using colloid filtration theory) showed that the different FIB distributions measured at the two beaches was due mainly to the different beach slope and terrestrial groundwater flow. The model was applied to assess the impact of beach, wave and bacterial parameters on FIB accumulation. The infiltration zone width, average infiltration velocity and infiltration rate were shown to ultimately control the amount and spatial distribution of FIB in the sand. The study findings are important in understanding factors controlling the transport of FIB at the sediment-water interface of

  9. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters

    USGS Publications Warehouse

    Gonzalez, Raul; Conn, Kathleen E.; Crosswell, Joey; Noble, Rachel

    2012-01-01

    Coastal and estuarine waters are the site of intense anthropogenic influence with concomitant use for recreation and seafood harvesting. Therefore, coastal and estuarine water quality has a direct impact on human health. In eastern North Carolina (NC) there are over 240 recreational and 1025 shellfish harvesting water quality monitoring sites that are regularly assessed. Because of the large number of sites, sampling frequency is often only on a weekly basis. This frequency, along with an 18–24 h incubation time for fecal indicator bacteria (FIB) enumeration via culture-based methods, reduces the efficiency of the public notification process. In states like NC where beach monitoring resources are limited but historical data are plentiful, predictive models may offer an improvement for monitoring and notification by providing real-time FIB estimates. In this study, water samples were collected during 12 dry (n = 88) and 13 wet (n = 66) weather events at up to 10 sites. Statistical predictive models for Escherichiacoli (EC), enterococci (ENT), and members of the Bacteroidales group were created and subsequently validated. Our results showed that models for EC and ENT (adjusted R2 were 0.61 and 0.64, respectively) incorporated a range of antecedent rainfall, climate, and environmental variables. The most important variables for EC and ENT models were 5-day antecedent rainfall, dissolved oxygen, and salinity. These models successfully predicted FIB levels over a wide range of conditions with a 3% (EC model) and 9% (ENT model) overall error rate for recreational threshold values and a 0% (EC model) overall error rate for shellfish threshold values. Though modeling of members of the Bacteroidales group had less predictive ability (adjusted R2 were 0.56 and 0.53 for fecal Bacteroides spp. and human Bacteroides spp., respectively), the modeling approach and testing provided information on Bacteroidales ecology. This is the first example of a set of successful statistical

  10. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models.

  11. Efficacy of β-mannanase supplementation to corn-soya bean meal-based diets on growth performance, nutrient digestibility, blood urea nitrogen, faecal coliform and lactic acid bacteria and faecal noxious gas emission in growing pigs.

    PubMed

    Upadhaya, Santi Devi; Park, Jae Won; Lee, Jae Hwan; Kim, In Ho

    2016-01-01

    A study was conducted to determine the efficacy of β-mannanase supplementation to a diet based on corn and soya bean meal (SBM) on growth performance, nutrient digestibility, blood urea nitrogen (BUN), faecal coliforms and lactic acid bacteria, and noxious gas emission in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc; average body weight 25 ± 3 kg] were randomly allotted to a 2 × 2 factorial arrangement with dietary treatments consisting of hulled or dehulled SBM without or with supplementation of 400 U β-mannanase/kg. During the 6 weeks of experimental feeding, β-mannanase supplementation had no effect on body weight gain, feed intake and gain:feed (G:F) ratio. Compared with dehulled SBM, feeding hulled SBM caused an increased feed intake of pigs in the entire trial (p = 0.05). The G:F ratio was improved in pigs receiving dehulled SBM (p < 0.05). Dietary treatments did not influence the total tract digestibility of dry matter, nitrogen and gross energy. Enzyme supplementation reduced (p < 0.05) the population of faecal coliforms and tended to reduce the NH3 concentration after 24 h of fermentation in a closed box containing faecal slurry. Feeding hulled SBM tended to reduce NH3 emission on days 3 and 5 of fermentation. In conclusion, mannanase supplementation had no influence on growth performance and nutrient digestibility but showed a positive effect on reducing coliform population and tended to reduce NH3 emission. Dehulled SBM increased G:F ratio and hulled SBM tended to reduce NH3 emission.

  12. Water quality in the Withers Swash Basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991-93

    USGS Publications Warehouse

    Guimaraes, W.B.

    1995-01-01

    Water samples were collected in 1991-93 from Withers Swash and its two tributaries (the Mainstem and KOA Branches) in Myrtle Beach, S.C., and analyzed for physical properties, organic and inorganic constituents, and fecal coliform and streptococcus bacteria. Samples were collected during wet- and dry-weather conditions to assess the water quality of the streams before and after storm runoff. Water samples were analyzed for over 200 separate physical, chemical, and biological constituents. Concentrations of 11 constituents violated State criteria for shellfish harvesting waters, and State Human Health Criteria. The 11 constituents included concentrations of dissolved oxygen, arsenic, lead, cadmium, mercury, chlordane, dieldrin, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and fecal coliform bacteria. Water samples were examined for the presence of enteric bacteria (fecal coliform and fecal streptococcus) at 46 sites throughout the Withers Swash Basin and 5 sites on the beach and in the Atlantic Ocean. Water samples were collected just upstream from all confluences in order to determine sources of bacterial contamination. Temporally and spatially high concentrations of enteric bacteria were detected throughout the Withers Swash Basin; however, these sporadic bacteria concentrations made it difficult to determine a single source of the contamination. These enteric bacteria concentrations are probably derived from a number of sources in the basin including septic tanks, garbage containers, and the feces of waterfowl and domestic animals.

  13. Transport of free and particulate-associated bacteria in karst

    USGS Publications Warehouse

    Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.

    2000-01-01

    Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The

  14. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed.

    PubMed Central

    Carrillo, M; Estrada, E; Hazen, T C

    1985-01-01

    The density of Bifidobacterium spp., fecal coliforms, Escherichia coli, and total anaerobic bacteria, acridine orange direct counts, percentages of total bacterial community activity and respiration, and 12 physical and chemical parameters were measured simultaneously at six sites for 12 months in the Mameyes River rain forest watershed, Puerto Rico. The densities of all bacteria were higher than those reported for uncontaminated temperate rivers, even though other water quality parameters would indicate that all uncontaminated sites were oligotrophic. The highest densities for all indicator bacteria were at the site receiving sewage effluent; however, the highest elevation site in the watershed had the next highest densities. Correlations between bacterial densities, nitrates, temperature, phosphates, and total phosphorus indicated that all viable counts were related to nutrient levels, regardless of the site sampled. In situ diffusion chamber studies at two different sites indicated that E. coli could survive, remain physiologically active, and regrow at rates that were dependent on nutrient levels of the ambient waters. Bifidobacterium adolescentis did not survive at either site but did show different rates of decline and physiological activity at the two sites. Bifidobacteria show promise as a better indicator of recent fecal contamination in tropical freshwaters than E. coli or fecal coliforms; however, the YN-6 medium did not prove to be effective for enumeration of bifidobacteria. The coliform maximum contaminant levels for assessing water usability for drinking and recreation appear to be unworkable in tropical freshwaters. PMID:3901921

  15. ESCHERICHIA COLI AND TOTAL COLIFORMS IN WATER AND SEDIMENTS AT LAKE MARINAS

    EPA Science Inventory

    Escherichia coli, a fecal coliform, and total coliforms were monitored between September 1999 to October 2001 in five marinas on Lake Texoma, located on the Oklahoma and Texas border. General trend was that densities of E. coli were lower in the summer season due to the lower ...

  16. Herd-level risk factors associated with fecal shedding of Shiga toxin-encoding bacteria on dairy farms in Minnesota, USA.

    PubMed

    Cho, Seongbeom; Fossler, Charles P; Diez-Gonzalez, Francisco; Wells, Scott J; Hedberg, Craig W; Kaneene, John B; Ruegg, Pamela L; Warnick, Lorin D; Bender, Jeffrey B

    2013-07-01

    This study aimed to identify herd-level risk factors associated with fecal shedding of Shiga toxin-encoding bacteria (STB) on dairy cattle farms in Minnesota, USA. After adjustment for farm size, risk factors included: use of total mixed ration (TMR) for lactating dairy cows [odds ratio (OR) = 3.0; 95% confidence interval (CI): 1.8 to 5.1], no use of monensin for weaned calves (OR = 4.8, 95% CI: 2.5, 9.3), and no use of decoquinate for preweaned calves (OR = 2.2, 95% CI: 1.4, 3.6). Fecal shedding of STB was more common in small herds (< 100 cows, OR = 3.6, 95% CI: 2.1, 6.2) than in large herds (≥ 100 cows). Herd management factors related to cattle feeding practices were associated with fecal shedding of STB.

  17. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    PubMed

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  18. Coliforms and Salmonella in seawater near to domestic sewage sources in Fortaleza (Ceará, Brazil).

    PubMed

    Melo, M T; Vieira, R H; Saker-Sampaio, S; Hofer, E

    1997-12-01

    The bacteriological conditions of the coastal region of Fortaleza (Ceará, Brasil), including the coastal zones of the Ceará and Cocó rivers, were examined. The study was conducted during June, September and December 1993, and March 1994. The region was divided into two areas: (i) Direct Influence Area (DIA), consisting of 20 sampling stations located near to discharge zones of the submarine pipeline system, where collections were carried out at the surface, and (ii) Indirect Influence Area (IIA), located near to the coastal zone, including Barra do Ceará, Kartódromo, Volta de Jurema, Mucuripe, Farol and Caça e Pesca beaches, totalling 26 sampling stations. The most probable number (MPN) of both total and fecal coliforms in DIA was positive only in station number 6, near to the sewage discharge exit. The following bacteria were identified: Citrobacter sp., Enterobacter aerogenes and Escherichia coli. Kartódromo beach was contaminated throughout the sampling period. Results of total fecal MPN was essentially lower than 3.0 x 10(2) coliforms/100 ml at Caça e Pesca beach. In December, at both DIA and IIA, Salmonella was identified in several samples. In DIA, the spatial distribution for Salmonella suggests that there should be a coastal sea current from east to west along the coastline. In IIA, Salmonella was identified at Kartódromo and Farol beaches throughout the sampling period.

  19. Effects of land uses on fecal indicator bacteria in the water and soil of a tropical watershed.

    PubMed

    Goto, Dustin K; Yan, Tao

    2011-01-01

    Effects of different land uses on densities of Escherichia coli, enterococci, and Clostridium perfringens in the water and soil of a tropical watershed were investigated. Densities of fecal indicator bacteria (FIBs) in the watershed exhibited a clear land-use dependency in the stream water. Significantly higher concentrations were detected in the urban portion of the stream (417, 420, and 44 CFU 100 mL(-1) for E. coli, enterococci, and C. perfringens, respectively) than in the forest portion (54, 32, and 5 CFU 100 mL(-1) for E. coli, enterococci, and C. perfringens, respectively). High concentrations of FIBs were also detected in the soil of the watershed with concentration ranges of 603-1,820,000, 69-17,000, and 0-525 CFU 100 g soil(-1) for E. coli, enterococci, and C. perfringens, respectively, which however were not affected by the different land uses. Prior cumulative rainfall significantly correlated with concentrations of E. coli and enterococci in the urban stream water (r=0.73-0.87, P<0.05), but not with the alternative FIB C. perfringens. Poor correlations were observed in the forest reach of the stream for all FIBs. Furthermore, the concentration of C. perfringens only correlated strongly and significantly with E. coli and enterococci in stream water (r=0.70-0.82, P<0.05), but not in tropical soil, indicating different survival and transport behaviors.

  20. Sensitivity Analysis of Factors Influencing the Fate and Transport of Fecal Indicator Bacteria in Southern Lake Michigan

    NASA Astrophysics Data System (ADS)

    Thupaki, P.; Phanikumar, M. S.; Schwab, D. J.; Whitman, R. L.; Nevers, M. B.; Shively, D. A.

    2007-05-01

    To understand the factors that influence the fate and transport of fecal indicator bacteria (FIB) in the nearshore waters of the Great Lakes, we examined two southern Lake Michigan beaches (as well as the tributaries discharging into the lake in the vicinity of the beaches). A three-dimensional, σ-coordinate Princeton Ocean Model (POM) with a nested-grid was used to describe wind-driven circulation in Lake Michigan. A biological model coupled to the hydrodynamic and temperature fields in the lake was used to describe the observed FIB levels near the beaches. We report simulation results for the summers of 2004 and 2006. Inactivation of pathogens in the nearshore region is influenced by a complex set of factors including solar insolation, water temperature, settling of particulate matter, resuspension, turbulent diffusion, loading from tributaries etc. Efforts to systematically quantify the relative contributions of these complex and often inter-related processes are somewhat limited, especially for freshwater environments. Here we describe sensitivity analyses based on our numerical simulations with the objective of ranking the various processes involved in terms of their relative importance. We also examine the performance of different mathematical formulations of inactivation in order to identify their relative merits.

  1. In vitro fermentation of oat bran obtained by debranning with a mixed culture of human fecal bacteria.

    PubMed

    Kedia, Gopal; Vázquez, José A; Charalampopoulos, Dimitris; Pandiella, Severino S

    2009-04-01

    The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.

  2. The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design and interpretation of results.

    PubMed

    Gronewold, Andrew D; Sobsey, Mark D; McMahan, Lanakila

    2017-06-01

    For the past several years, the compartment bag test (CBT) has been employed in water quality monitoring and public health protection around the world. To date, however, the statistical basis for the design and recommended procedures for enumerating fecal indicator bacteria (FIB) concentrations from CBT results have not been formally documented. Here, we provide that documentation following protocols for communicating the evolution of similar water quality testing procedures. We begin with an overview of the statistical theory behind the CBT, followed by a description of how that theory was applied to determine an optimal CBT design. We then provide recommendations for interpreting CBT results, including procedures for estimating quantiles of the FIB concentration probability distribution, and the confidence of compliance with recognized water quality guidelines. We synthesize these values in custom user-oriented 'look-up' tables similar to those developed for other FIB water quality testing methods. Modified versions of our tables are currently distributed commercially as part of the CBT testing kit.

  3. Evaluation of the quality of coastal bathing waters in Spain through fecal bacteria Escherichia coli and Enterococcus.

    PubMed

    Aragonés, L; López, I; Palazón, A; López-Úbeda, R; García, C

    2016-10-01

    Sun. and beach tourism is very important to the economy of Spain, so the control of the quality of the environment on the beaches is essential. Therefore, the analysis and control of the quality of bathing water is necessary, which is defined by the European Directive 2006/7/EC as excellent, good or sufficient depending on the presence of microbiological contamination or other organisms or waste presenting a risk to bathers' health. For that, 1392 beaches of the Iberian Peninsula and its islands were analysed, taking into account: fecal bacteria (Escherichia coli and Enterococcus), physical characteristics of sediment, level of urbanization, climatic and anthropogenic factors, and maritime climate. Thus, it was observed that urban sand beaches located in seas with fewer hours of sunshine and important tide have higher concentrations of E. coli and Enterococcus. There is also an indirect relationship between these microorganisms with salinity (R(2) 0.746 for E. coli and 0.606 for Enterococcus), temperature (R(2) 0.743 for E. coli and 0.604 for Enterococcus) and hours of sunshine (R(2) 0.781 for E. coli and 0.706 for Enterococcus), while this relationship is direct with rainfall (R(2) 0.640 for E. coli and 0.607 for Enterococcus) or wave height (R(2) 0.769 for E. coli and 0.601 for Enterococcus). From all this, it follows that the Directive 2006/7/EC should define more specific criteria as to the place and time of sampling, and take into account the different environment variables that influence the survival of bacteria, so that the results may reflect reality, and avoid staff responsible for sampling freely choose the place and time of sampling.

  4. Assessing environmental impacts of treated wastewater through monitoring of fecal indicator bacteria and salinity in irrigated soils.

    PubMed

    McLain, Jean E T; Williams, Clinton F

    2012-03-01

    To assess the potential for treated wastewater irrigation to impact levels of fecal indicator bacteria (FIB) and salinity in irrigated soils, levels of Escherichia coli, Enterococcus, and environmental covariates were measured in a treated wastewater holding pond (irrigation source water), water leaving the irrigation system, and in irrigated soils over 2 years in a municipal parkland in Arizona. Higher E. coli levels were measured in the pond in winter (56 CFU 100 mL(-1)) than in summer (17 CFU 100 mL(-1)); however, in the irrigation system, levels of FIB decreased from summer (26 CFU 100 mL(-1)) to winter (4 CFU 100 mL(-1)), possibly related to low winter water use and corresponding death of residual bacteria within the system. For over 2 years, no increase in FIB was found in irrigated soils, though highest E. coli levels (700 CFU g(-1) soil) were measured in deeper (20-25 cm) soils during summer. Measurements of water inputs vs. potential evapotranspiration indicate that irrigation levels may have been sufficient to generate bacterial percolation to deeper soil layers during summer. No overall increase in soil salinity resulting from treated wastewater irrigation was detected, but distinct seasonal peaks as high as 4 ds m(-1) occurred during both summers. The peaks significantly declined in winter when surface ET abated and more favorable water balances could be maintained. Monitoring of seasonal shifts in irrigation water quality and/or factors correlated with increases and decreases in FIB will aid in identification of any public health or environmental risks that could arise from the use of treated wastewater for irrigation.

  5. Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates.

    PubMed

    Nguyen, Mi T; Jasper, Justin T; Boehm, Alexandria B; Nelson, Kara L

    2015-10-15

    A pilot-scale open-water unit process wetland was monitored for one year and found to be effective in enhancing sunlight inactivation of fecal indicator bacteria (FIB). The removal of Escherichia coli and enterococci in the open-water wetland receiving non-disinfected secondary municipal wastewater reached 3 logs and 2 logs in summer time, respectively. Pigmented enterococci were shown to be significantly more resistant to sunlight inactivation than non-pigmented enterococci. A model was developed to predict the inactivation of E. coli, and pigmented and non-pigmented enterococci that accounts for endogenous and exogenous sunlight inactivation mechanisms and dark processes. Endogenous inactivation rates were modeled using the sum of UVA and UVB irradiance. Exogenous inactivation was only significant for enterococci, and was modeled as a function of steady-state singlet oxygen concentration. The rate constants were determined from lab experiments and an empirical correction factor was used to account for differences between lab and field conditions. The model was used to predict removal rate constants for FIB in the pilot-scale wetland; considering the variability of the monitoring data, there was general agreement between the modeled values and those determined from measurements. Using the model, we estimate that open-water wetlands at 40° latitude with practical sizes can achieve 3-log (99.9%) removal of E. coli and non-pigmented enterococci throughout the year [5.5 ha and 7.0 ha per million gallons of wastewater effluent per day (MGD), respectively]. Differences in sunlight inactivation rates observed between pigmented and non-pigmented enterococci, as well as between lab-cultured and indigenous wastewater bacteria highlight the challenges of using FIB as model organisms for actual pathogens in natural sunlit environments.

  6. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica.

    PubMed

    Miller, Robert V; Gammon, Katharine; Day, Martin J

    2009-01-01

    Antibiotic resistance in aquatic bacteria has increased steadily as a consequence of the widespread use of antibiotics, but practice and international treaty should have limited antibiotic contamination in Antarctica. We estimated antibiotic resistance in microorganisms isolated from the Antarctic marine waters and a penguin rookery, for 2 reasons: (i) as a measure of human impact and (ii) as a potential "snapshot" of the preantibiotic world. Samples were taken at 4 established sampling sites near Palmer Station, which is situated at the southern end of the Palmer Archipelago (64 degrees 10'S, 61 degrees 50'W). Sites were chosen to provide different potentials for human contamination. Forty 50 mL samples of seawater were collected and colony-forming units (CFU)/mL were determined at 6 and 20 degrees C. For this study, presumed psychrophiles (growth at 6 degrees C) were assumed to be native to Antarctic waters, whereas presumed mesophiles (growth at 20 degrees C but not at 6 degrees C) were taken to represent introduced organisms. The 20-6 degrees C CFU/mL ratio was used as a measure of the relative impact to the ecosystem of presumably introduced organisms. This ratio was highest at the site nearest to Palmer Station and decreased with distance from it, suggesting that human presence has impacted the natural microbial flora of the site. The frequency of resistance to 5 common antibiotics was determined in each group of isolates. Overall drug resistance was higher among the presumed mesophiles than the presumed psychrophiles and increased with proximity to Palmer Station, with the presumed mesophiles showing higher frequencies of single and multiple drug resistance than the psychrophile population. The frequency of multidrug resistance followed the same pattern. It appears that multidrug resistance is low among native Antarctic bacteria but is increased by human habitation.

  7. Health significance and occurrence of injured bacteria in drinking water.

    PubMed

    McFeters, G A; LeChevallier, M W; Singh, A; Kippin, J S

    1986-01-01

    Enteropathogenic and indicator bacteria become injured in drinking water with exposure to sublethal levels of various biological, chemical and physical factors. One manifestation of this injury is the inability to grow and form colonies on selective media containing surfactants. The resulting underestimation of indicator bacteria can lead to a false estimation of water potability. m-T7 medium was developed specifically for the recovery of injured coliforms (both "total" and fecal) in drinking water. The m-T7 method was used to survey operating drinking water treatment and distribution systems for the presence of injured coliforms that were undetected with currently used media. The mean recovery with m-Endo LES medium was less than 1/100 ml while it ranged between 6 and 68/100ml with m-T7 agar. The majority of samples giving positive results with m-T7 medium yielded no detectable coliforms with m-Endo LES agar. Over 95% of the coliform bacteria in these samples were injured. Laboratory experiments were also done to ascribe the virulence of injured waterborne pathogens. Enteropathogens including Salmonella typhimurium, Yersinia enterocolitica and Shigella spp. required up to 20 times the chlorine levels to produce the same injury in enterotoxigenic Escherichia coli (ETEC) and nonpathogenic coliforms. Similar results were seen with Y. enterocolitica exposed to copper. The recovery of ETEC was followed by delayed enterotoxin production, both in vitro and in the gut of experimental animals. This indicates that injured waterborne enteropathogenic bacteria can be virulent.

  8. Health significance and occurrence of injured bacteria in drinking water

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; LeChevallier, M. W.; Singh, A.; Kippin, J. S.

    1986-01-01

    Enteropathogenic and indicator bacteria become injured in drinking water with exposure to sublethal levels of various biological, chemical and physical factors. One manifestation of this injury is the inability to grow and form colonies on selective media containing surfactants. The resulting underestimation of indicator bacteria can lead to a false estimation of water potability. m-T7 medium was developed specifically for the recovery of injured coliforms (both "total" and fecal) in drinking water. The m-T7 method was used to survey operating drinking water treatment and distribution systems for the presence of injured coliforms that were undetected with currently used media. The mean recovery with m-Endo LES medium was less than 1/100 ml while it ranged between 6 and 68/100ml with m-T7 agar. The majority of samples giving positive results with m-T7 medium yielded no detectable coliforms with m-Endo LES agar. Over 95% of the coliform bacteria in these samples were injured. Laboratory experiments were also done to ascribe the virulence of injured waterborne pathogens. Enteropathogens including Salmonella typhimurium, Yersinia enterocolitica and Shigella spp. required up to 20 times the chlorine levels to produce the same injury in enterotoxigenic Escherichia coli (ETEC) and nonpathogenic coliforms. Similar results were seen with Y. enterocolitica exposed to copper. The recovery of ETEC was followed by delayed enterotoxin production, both in vitro and in the gut of experimental animals. This indicates that injured waterborne enteropathogenic bacteria can be virulent.

  9. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.

    PubMed

    Stumpf, Curtis H; Piehler, Michael F; Thompson, Suzanne; Noble, Rachel T

    2010-09-01

    In the New River Estuary (NRE) in eastern North Carolina (NC), fecal indicator bacteria (FIB) levels exceed water quality standards, leading to closure of estuarine waters for shellfishing and classification of parts of the estuary as "impaired" per the Clean Water Act section 303(d) list. As a means to investigate fecal contamination and loading of FIB to the NRE, a continuous automated sampler (ISCO) outfitted with flow modules and water quality probes was placed in four first-order tidal creek headwaters. Total storm discharge and bacterial load for Escherichia coli (EC) and Enterococcus spp. (ENT) were calculated using graphical volumetric flow calculations and interpolation of FIB measurements over each storm's duration for 10 storms. Mean total load of 10(9)-10(12) EC and ENT cells (MPN) occurred over the course of each storm. Total storm loading, averaged across all storms, was as much as 30 and 37 times greater than equivalent duration of baseflow loading for EC and ENT, respectively. Within the first 30% of creek storm volume for all storms and all creeks combined, a mean cumulative load of only 37% and 44% of the total EC and ENT cells, respectively, was discharged, indicating these creeks are not demonstrating a 'first flush' scenario for FIB. The median storm Event Mean Concentrations (EMCs) were 6.37 × 10(2) and 2.03 × 10(2) MPN/100 mL, for EC and ENT, respectively, compared with median baseflow concentrations of 1.48 × 10(2) and 4.84 × 10(1) for EC and ENT, respectively, and were significantly different between base and storm flow events. FIB was correlated with TSS (weak), flow rate (strong), and different stages (base, rising, peak, and falling) of the hydrograph (strong). Pollutographs indicate large intra-storm variability of FIB, and the need for more intensive sampling throughout a storm in order to attain accurate FIB contaminant estimates. Instream sediment concentrations ranged from 5 to 478 (MPN/g) and 13 to 776 (MPN/g) for EC and ENT

  10. Effect of Sunlight on the Divergence of Community Structure of Fecal Bacteria in Cowpats Collected from Three Different Farms

    EPA Science Inventory

    Fecal pollution of environmental waters is a major concern for the general public because exposure to fecal-associated pathogens can have severe impacts on human health. In the last few years, numerous metagenomic studies applied next generation sequencing to understand the shift...

  11. Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats.

    PubMed

    Rendón-Huerta, Juan A; Juárez-Flores, Bertha; Pinos-Rodríguez, Juan M; Aguirre-Rivera, J Rogelio; Delgado-Portales, Rosa E

    2012-03-01

    Fructans contribute significantly to dietary fiber with beneficial effects on gastrointestinal physiology in healthy individuals and offer a promising approach to treating some diseases. Two experiments (Experiment 1 = rats with normal weight; Experiment 2 = obese rats) were developed to compare the effects of three fructan sources (Cichorium intybus L. Asteraceae, Helianthus tuberosus L. Asteraceae and Agave angustifolia ssp. tequilana Haw, Agavaceae) on body weight change, blood metabolites and fecal bacteria in non-diabetic (ND) and diabetic (D) rats. In Experiment 1 total body weight gain and daily feed intake in D and ND rats decreased (P < 0.05) with supplements of fructan. Only in D rats, blood glucose concentrations, fecal Clostrodium spp. counts, and liver steatosis decreased, while blood HDL concentrations and fecal Lactobacillus spp. and Bifidobacterium spp. counts increased due to fructans. In Experiment 2, total body weight gain and feed intake in ND and D rats were also decreased by fructans. In ND rats, fructan decreased blood glucose concentrations. In D rats, fructans from A. angustifolia ssp. tequilana decreased blood cholesterol and LDL and liver steatosis. For both ND and D rats, fecal Lactobacillus spp. and Bifidobacterium spp. counts were higher (P < 0.05) with fructan supplements.

  12. Persistence of fecal indicator bacteria in sediment of an oligotrophic river: comparing large and lab-scale flume systems.

    PubMed

    Walters, Evelyn; Kätzl, Korbinian; Schwarzwälder, Kordula; Rutschmann, Peter; Müller, Elisabeth; Horn, Harald

    2014-09-15

    In this study, both a lab and a large-scale flume system were used to investigate the survival of fecal indicator bacteria (FIB) in bed sediments of an alpine oligotrophic river. To determine the influence of substratum on persistence, survival within 3-cm-deep substratum cages versus on thin, biofilm-covered ceramic tiles was tested. Moreover, the impact of bed shear stress on survival in bed sediments was explored. It was seen that in the lab-scale flume having a very low bed shear stress (0.3 N m(-2)), E. coli and enterococci survival in 3-cm-deep substratum cages was nearly the same as in a thin biofilm (200 μm). However, in the large-scale flume system characterized by a bed shear stress of 9 N m(-2), the added protection of the deeper substratum cages promoted considerably longer survival of E. coli and enterococci than the thin biofilm. Additionally, the FIB removal mechanisms in the two flume systems varied. At the lab-scale, enterococci was seen to persist twice as long as E. coli, while in the large-scale flume the two FIB were removed at the same rate. A comparison of qPCR analyses performed in both flumes suggests that bed sediment erosion and the influence of grazers/predators were responsible for FIB removal from the sediments in the large-scale flume, whereas in the lab flume FIB inactivation caused removal. These results indicate that hydraulic parameters such as bed shear stress as well as the presence of macroinvertebrates in a system are both important factors to consider when designing flumes as they can significantly impact FIB persistence in sediments of fast-flowing, alpine streams.

  13. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment.

  14. Occurrence and distribution of fecal indicator bacteria, and physical and chemical indicators of water quality in streams receiving discharge from Dallas/Fort Worth International Airport and vicinity, North-Central Texas, 2008

    USGS Publications Warehouse

    Harwell, Glenn R.; Mobley, Craig A.

    2009-01-01

    This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact

  15. Detection of coliform organisms in drinking water by radiometric method.

    PubMed

    Khurshid, S J; Bibi, S

    1991-07-01

    The radiometric method has been used for detection of coliform bacteria in water. The method is based on measuring the released metabolic 14CO2 from 14C-lactose in growth media containing coliform organisms incubated at 37 degrees C under continuous shaking. This rapid and sensitive radiometric method permits the detection of even single coliform organisms within 6 hours of incubation. Using this automated method, a total of 102 samples (in duplicate) collected from different areas in and around Rawalpindi and Islamabad were assessed for coliform bacteria. Of these 102 samples, 50 were tap water samples, 40 from wells and 6 each were from Rawal and Simly dams. About 47% and 67% tap water samples, while 62% and 74% well water samples were found unsatisfactory from around Islamabad and Rawalpindi areas, respectively. About 83% and 66% water samples from Rawal dam and Simly dam respectively were found to be unsatisfactory.

  16. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.

    PubMed

    McMahan, Lanakila; Grunden, Amy M; Devine, Anthony A; Sobsey, Mark D

    2012-04-15

    The sensitivity and specificity of the H(2)S test to detect fecal bacteria in water has been variable and uncertain in previous studies, partly due to its presence-absence results. Furthermore, in groundwater samples false-positive results have been reported, with H(2)S-positive samples containing no fecal coliforms or Escherichia coli. False-negative results also have been reported in other studies, with H(2)S-negative samples found to contain E. coli. Using biochemical and molecular methods and a novel quantitative test format, this research identified the types and numbers of microbial community members present in natural water samples, including fecal indicators and pathogens as well as other bacteria. Representative water sources tested in this study included cistern rainwater, a protected lake, and wells in agricultural and forest settings. Samples from quantitative H(2)S tests of water were further cultured for fecal bacteria by spread plating onto the selective media for detection and isolation of Aeromonas spp., E. coli, Clostridium spp., H(2)S-producers, and species of Salmonella and Shigella. Isolates were then tested for H(2)S production, and identified to the genus and species level using biochemical methods. Terminal Restriction Fragment Length Polymorphisms (TRFLP) was the molecular method employed to quantitatively characterize microbial community diversity. Overall, it was shown that water samples testing positive for H(2)S bacteria also had bacteria of likely fecal origin and waters containing fecal pathogens also were positive for H(2)S bacteria. Of the microorganisms isolated from natural water, greater than 70 percent were identified using TRFLP analysis to reveal a relatively stable group of organisms whose community composition differed with water source and over time. These results further document the validity of the H(2)S test for detecting and quantifying fecal contamination of water.

  17. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia.

    PubMed

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-02

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation.

  18. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia

    PubMed Central

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-01

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation. PMID:26729150

  19. Evaluation of potential sources and transport mechanisms of fecal indicator bacteria to beach water, Murphy Park Beach, Door County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.

    2013-01-01

    Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at

  20. Identification of lactic acid bacteria isolated from the fecal samples of healthy humans and patients with dyspepsia, and determination of their ph, bile, and antibiotic tolerance properties.

    PubMed

    Kiliç, Gülden Başyiğit; Karahan, Aynur Gül

    2010-01-01

    The research of novel probiotic strains is important in order to satisfy the increasing request of the market and to obtain functional products in which the probiotic cultures are more active and have better probiotic characteristics than those already on the market. In this study, the probiotic potential of Lactobacillus and Enterococcus strains isolated from human feces was investigated. One hundred seven strains of lactic acid bacteria were isolated from the fecal samples of 19 adult volunteers with stomach problems and the fecal samples of 12 healthy adult volunteers. The strains were identified by 16S rRNA analysis and examined for resistance to gastric acidity (pH 3.5) and bile salts (0.3% bile salt). The antibiotic susceptibility of the strains was also determined. The counts of lactic acid bacteria in the fecal samples ranged from 1.7 x 10(7) to 3.1 x 10(10) CFU/g. The species present in those samples were found to be Lactobacillusplantarum, L. fermentum, Enterococcus faecium and E. durans. Results indicated that L. plantarum (AA1-2, AA17-73, AC18-88, AK4-11, and AK7-28), L. fermentum (AB5-18, BB16-75, and AK4-180), E. faecium (AB20-98 and BK11-50) and E. durans (AK4-14 and BK9-40) showed good pH and bile tolerance. These strains are potentially good candidates for use as health-promoting bacteria.

  1. Hormones, sterols, and fecal indicator bacteria in groundwater, soil, and subsurface drainage following a high single application of municipal biosolids to a field.

    PubMed

    Gottschall, N; Topp, E; Edwards, M; Payne, M; Kleywegt, S; Russell, P; Lapen, D R

    2013-04-01

    A land application of dewatered municipal biosolids (DMB) was conducted on an agricultural field in fall 2008 at a rate of 22Mg dry weight (dw) ha(-1). Pre- and post- application, hormone, sterol and fecal indicator bacteria concentrations were measured in tile drainage water, groundwater (2, 4, 6m depth), surface soil cores, and DMB aggregates incorporated in the soil (∼0.2m depth) for a period of roughly 1year post-application. Hormones and sterols were detected up to 1year post-application in soil and in DMB aggregates. Hormone (androsterone, desogestrel, estrone) contamination was detected briefly in tile water samples (22d and ∼2months post-app), at lowngL(-1) concentrations (2-34ngL(-1)). Hormones were not detected in groundwater. Sterols were detected in tile water throughout the study period post-application, and multiple fecal sterol ratios suggested biosolids as the source. Coprostanol concentrations in tile water peaked at >1000ngL(-1) (22d post-app) and were still >100ngL(-1) at 6months post-application. Fecal indicator bacteria were detected throughout the study period in tile water, groundwater (⩽2m depth), soil and DMB aggregate samples. These bacteria were strongly linearly related to coprostanol in tile water (R(2)>0.92, p<0.05). The limited transport of hormones and sterols to tile drainage networks may be attributed to a combination of the hydrophobicity of these compounds and limited macroporosity of the field soil. This transitory contamination from hormones and sterols is unlikely to result in any significant pulse exposure risk in subsurface drainage and groundwater.

  2. Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island.

    PubMed

    Ardiles-Villegas, Karen; González-Acuña, Daniel; Waldenström, Jonas; Olsen, Björn; Hernández, Jorge

    2011-09-01

    Antibiotic use and its implications have been discussed extensively in the past decades. This situation has global consequences when antibiotic resistance becomes widespread in the intestinal bacterial flora of stationary and migratory birds. This study investigated the incidence of fecal bacteria and general antibiotic resistance, with special focus on extended spectrum beta-lactamase (ESBL) isolates, in two species of seabirds at remote Easter Island. We identified 11 species of bacteria from masked booby (Sula dactylatra) and Christmas shearwater (Puffinus nativitatis); five species of gram-negative bacilli, four species of Streptococcus (Enterococcus), and 2 species of Staphylococcus. In addition, 6 types of bacteria were determined barely to the genus level. General antibiotic susceptibility was measured in the 30 isolated Enterobacteriaceae to 11 antibiotics used in human and veterinary medicine. The 10 isolates that showed a phenotypic ESBL profile were verified by clavulanic acid inhibition in double mixture discs with cefpodoxime, and two ESBL strains were found, one strain in masked booby and one strain in Christmas shearwater. The two bacteria harboring the ESBL type were identified as Serratia odorifera biotype 1, which has zoonotic importance. Despite minimal human presence in the masked booby and Christmas shearwater habitats, and the extreme geographic isolation of Easter Island, we found several multiresistant bacteria and even two isolates with ESBL phenotypes. The finding of ESBLs has animal and public health significance and is of potential concern, especially because the investigation was limited in size and indicated that antibiotic-resistant bacteria now are distributed globally.

  3. USE OF COMPETITIVE GENOMIC HYBRIDIZATION TO ENRICH FOR GENOME-SPECIFIC DIFFERENCES BETWEEN TWO CLOSELY RELATED HUMAN FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...

  4. MONITORING FECAL INDICATOR BACTERIA WITH ALTERNATIVE REAL-TIME PCR INSTRUMENTS TO ASSESS HEALTH RISKS ASSOCIATED WITH RECREATIONAL WATER USE

    EPA Science Inventory

    U.S. EPA guidance on the safety of surface waters for recreational use is currently based on epidemiological studies conducted in the 1980?s that demonstrated a strong positive correlation between bathing-associated illness rates and concentrations of culturable fecal indicator b...

  5. TRACKING FECAL CONTAMINATION WITH BACTEROIDALES MOLECULAR MARKERS: AN ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION IN THE TILLAMOOK BASIN, OREGON

    EPA Science Inventory

    Although amplification of source-specific molecular markers from Bacteroidales fecal bacteria can identify several different kinds of fecal contamination in water, it remains unclear how this technique relates to fecal indicator measurements in natural waters. The objectives of t...

  6. COMPARISON OF THE RECOVERIES OF ESCHERICHIA COLI AND TOTAL COLIFORMS FROM DRINKING WATER BY THE MI AGAR METHOD AND THE U.S. ENVIRONMENTAL PROTECTION AGENCY-APPROVED MEMBRANE FILTER METHOD

    EPA Science Inventory

    Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. c...

  7. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-07-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence

  8. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed Central

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-01-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence

  9. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria.

    PubMed Central

    Corfield, A P; Wagner, S A; Clamp, J R; Kriaris, M S; Hoskins, L C

    1992-01-01

    Oligosaccharide side chains of human colonic mucins contain O-acetylated sialic acids and glycosulfate esters. Although these substituents are considered to protect the chains against degradation by bacterial glycosidases, sialate O-acetylesterase, N-acetylneuraminate lyase, and glycosulfatase activities have been found in fecal extracts. To better define the source of these activities, we measured extracellular and cell-bound sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities produced by 23 isolates of human fecal bacteria grown anaerobically in a hog gastric mucin culture medium; these represented dominant populations of fecal anaerobes, facultative anaerobes, and the subset of mucin oligosaccharide-degrading bacteria. Every strain produced sialidase and high levels of arylesterase, and all but five facultative anaerobes produced sialate O-acetylesterase. Sialic acids containing 2 mol or more of O-acetyl ester per mol of sialic acid were cleaved from mucin glycoproteins more slowly by sialidases of mucin oligosaccharide-degrading stains than were sialic acids containing 1 or 0 mol, and only N-acetyl- and mono-O-acetylated sialic acids were recovered from enzyme digests of a mucin containing di-O-acetylated sialic acids. No detectable N-acetylneuraminate lyase activity was produced by any strain, but low activity was induced by increasing the glycoprotein-bound sialic acid concentration in the culture medium of six Escherichia coli strains. Using lactitol-6-sulfate as a substrate, we found weak glycosulfatase activity in the partially purified, concentrated enzyme mixture in the culture supernatants of four mucin oligosaccharide-degrading strains but in none of the unconcentrated culture fractions. We conclude that the presence of two or more O-acetyl groups on sialic acids inhibits enteric bacterial sialidases but that production of sialate O-acetylesterases by several populations of enteric bacteria

  10. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination.

    PubMed

    Wallace, Alison J; Eady, Sarah L; Hunter, Denise C; Skinner, Margot A; Huffman, Lee; Ansell, Juliet; Blatchford, Paul; Wohlers, Mark; Herath, Thanuja D; Hedderley, Duncan; Rosendale, Douglas; Stoklosinski, Halina; McGhie, Tony; Sun-Waterhouse, Dongxiao; Redman, Claire

    2015-01-01

    This study examined the effect of a Boysenberry beverage (750 mg polyphenols), an apple fiber beverage (7.5 g dietary fiber), and a Boysenberry plus apple fiber beverage (750 mg polyphenols plus 7.5 g dietary fiber) on gut health. Twenty-five individuals completed the study. The study was a placebo-controlled crossover study, where every individual consumed 1 of the 4 treatments in turn. Each treatment phase was 4-week long and was followed by a 2-week washout period. The trial beverages were 350 g taken in 2 doses every day (ie, 175 mL taken twice daily). The hypothesis for the study was that the combination of polyphenols and fiber would have a greater benefit on gut health than the placebo product or the fiber or polyphenols on their own. There were no differences in fecal levels of total bacteria, Bacteroides-Prevotella-Porphyromonas group, Bifidobacteriumspecies, Clostridium perfringens, or Lactobacillus species among any of the treatment groups. Fecal short chain fatty acid concentrations did not vary among treatment groups, although prostaglandin E2 concentrations were higher after consumption of the Boysenberry juice beverage. No significant differences were found in quantitative measures of gut health between the Boysenberry juice beverage, the apple fiber beverage, the Boysenberry juice plus apple fiber beverage, and the placebo beverage.

  11. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome

    PubMed Central

    De Angelis, Maria; Montemurno, Eustacchio; Vannini, Lucia; Cosola, Carmela; Cavallo, Noemi; Gozzi, Giorgia; Maranzano, Valentina; Di Cagno, Raffaella; Gesualdo, Loreto

    2015-01-01

    In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples. PMID:26386056

  12. Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics: A cohort study of beach goers in Brazil?

    PubMed

    Lamparelli, Claudia Condé; Pogreba-Brown, Kristen; Verhougstraete, Marc; Sato, Maria Inês Zanoli; Bruni, Antonio de Castro; Wade, Timothy J; Eisenberg, Joseph N S

    2015-12-15

    Regulating recreational water exposure to pathogens within the tropics is a major public health and economic concern. Although numerous epidemiological studies estimating the risk to recreational marine water exposure have been conducted since the 1950s, few studies have been done in the tropics. Furthermore, many have suggested that the use of fecal indicator bacteria for monitoring recreational water quality in temperate regions is not appropriate in the tropics. We analyzed a large cohort study of five beaches in Sao Paulo, Brazil, conducted during consecutive weekends in the summer of 1999 that estimated risk to water, sand, and food exposures. Enterococci and Escherichia coli concentrations were measured each day of the study. Elevated risks were estimated for both swimming (OR = 1.36 95% CI: 1.05-1.58) and sand contact (OR = 1.29 95% CI 1.05-1.58). A 1 log increase in enterococci concentration was associated with an 11% increase in risk (OR = 1.11 95% CI: 1.04-1.19). For E. coli a 1-log increase in concentration was associated with 19% increase in risk (OR = 1.19 95% CI: 1.14-1.28). Most countries with beaches in the tropics are lower or middle income countries (LMIC) and rely on tourism as a major source of income. We present data that suggests fecal indicator bacteria such as enterococci are an appropriate indicator of risk in tropical urban settings where contamination is coming from predominantly human sources. Additional studies in tropical settings could help inform and refine guidelines for safe use of recreational waters.

  13. The Relationship Between Land Management, Fecal Indicator Bacteria, and the Occurrence of Campylobacter and Listeria Spp. in Water and Sediments During Synoptic Sampling In The South Fork Broad River Watershed, Northeast Georgia, U.S.A.

    EPA Science Inventory

    Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathog...

  14. Effects of Holding Time, Storage, and the Preservation of Samples on Sample Integrity for the Detection of Fecal Indicator Bacteria by Quantitative Polymerase Chain Reaction (qPCR)-based assays.

    EPA Science Inventory

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...

  15. Method and automated apparatus for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Dill, W. P.; Taylor, R. E.; Jeffers, E. L. (Inventor)

    1980-01-01

    Method and automated apparatus are disclosed for determining the time of detection of metabolically produced hydrogen by coliform bacteria cultured in an electroanalytical cell from the time the cell is inoculated with the bacteria. The detection time data provides bacteria concentration values. The apparatus is sequenced and controlled by a digital computer to discharge a spent sample, clean and sterilize the culture cell, provide a bacteria nutrient into the cell, control the temperature of the nutrient, inoculate the nutrient with a bacteria sample, measures the electrical potential difference produced by the cell, and measures the time of detection from inoculation.

  16. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area.

    PubMed

    Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa

    2009-05-01

    The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.

  17. A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water

    PubMed Central

    Williams, Ashley R.; Bain, Robert E. S.; Fisher, Michael B.; Cronk, Ryan; Kelly, Emma R.; Bartram, Jamie

    2015-01-01

    Background Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety. Objectives To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources. Methods We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of Escherichia coli, thermotolerant or total coliforms were included provided they tested at least ten samples or brands. Results A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6–8.1) and 13.6 (95% CI: 6.9–26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17–0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption. Conclusions Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks. PMID:26505745

  18. Effect of dietary inorganic sulfur level on growth performance, fecal composition, and measures of inflammation and sulfate-reducing bacteria in the intestine of growing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J; Spence, C; Cotta, M A; Whitehead, T R

    2011-02-01

    Two experiments investigated the impact of dietary inorganic S on growth performance, intestinal inflammation, fecal composition, and the presence of sulfate-reducing bacteria (SRB). In Exp. 1, individually housed pigs (n = 42; 13.8 kg) were fed diets containing 2,300 or 2,100 mg/kg of S for 24 d. Decreasing dietary S had no effect on ADG, ADFI, or G:F. In Exp. 2, pigs (n = 64; 13.3 kg) were fed diets containing 0, 0.625, 1.25, 2.5, or 5.0% CaSO(4), thereby increasing dietary S from 2,900 to 12,100 mg/kg. Two additional diets were fed to confirm the lack of an impact due to feeding low dietary S on pig performance and to determine if the increased Ca and P content in the diets containing CaSO(4) had an impact on growth performance. Pigs were fed for 35 d. Ileal tissue, ileal mucosa, and colon tissue were harvested from pigs fed the 0 and 5% CaSO(4) diets (low-S and high-S, respectively) to determine the impact of dietary S on inflammation-related mRNA, activity of mucosal alkaline phosphatase and sucrase, and pathways of inflammatory activation. Real-time PCR was used to quantify SRB in ileal and colon digesta samples and feces. Fecal pH, sulfide, and ammonia concentrations were also determined. There was no impact on growth performance in pigs fed the diet reduced in dietary S or by the increase of dietary Ca and P. Increasing dietary S from 2,900 to 12,100 mg/kg had a linear (P < 0.01) effect on ADG and a cubic effect (P < 0.05) on ADFI and G:F. Real-time reverse-transcription PCR analysis revealed that pigs fed high-S increased (P < 0.05) the relative abundance of intracellular adhesion molecule-1, tumor necrosis factor-α, and suppressor of cytokine signaling-3 mRNA, and tended (P = 0.09) to increase the relative abundance of IL-6 mRNA in ileal tissue. Likewise, pigs fed high-S had reduced (P < 0.05) abundance of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor-α and increased (P < 0.05) phospho-p44/p42 mitogen-activated protein kinase

  19. Confidential: Local Bay Area Community College Hides Poo [|#11#|]BACTERIA on Computer Mice

    NASA Astrophysics Data System (ADS)

    Pimienta, R.

    2010-12-01

    Fomites are hazardous objects that spread infections when they come in contact with the skin. Prior to this project, a pilot study was done in which various surfaces were tested for indicator bacteria. Only computer mice had indicator microorganism present in them. Therefore, in this project, computer mice were analyzed to determine if they can pose a potential risk to human health. The computer mice were tested for two fecal indicator bacteria: Enterococcus and Fecal Coliform. Out of all the mice tested, only one had indicator bacteria present on its surface. Hence, it can be concluded that computer mice are not a health risk to the public. Also, no direct correlations were found with physical contact time with the mouse and user behaviors to an increase in the number of indicator organisms. Further assumptions of conditions that may have inhibited the presence of indicator bacteria on computer mice are discussed.

  20. Comparison of the hydrophobic-grid membrane filter procedure and standard methods for coliform analysis of water.

    PubMed

    McDaniels, A E; Bordner, R H; Menkedick, J R; Weber, C I

    1987-05-01

    The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters.

  1. Comparison of the hydrophobic-grid membrane filter procedure and standard methods for coliform analysis of water.

    PubMed Central

    McDaniels, A E; Bordner, R H; Menkedick, J R; Weber, C I

    1987-01-01

    The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters. Images PMID:3606086

  2. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus.

    PubMed

    Zhang, Xichang; Zhang, Wei; Xue, Lingyun; Zhang, Bi; Jin, Meifang; Fu, Wantao

    2010-01-01

    Sessile filter-feeding marine sponges (Porifera) have been reported to possess high efficiency in removing bacteria pollution from natural or aquaculture seawater. However, no investigation has been carried out thus far in a true mariculture farm water system. Therefore this study sought to investigate the ability of the marine sponge Hymeniacidon perlevis to bioremediate the bacteria pollution in the intensive aquaculture water system of turbot Scophthalmus maximus. Sponge specimens were hung in fish culture effluent at different temperature to investigate the optimal temperature condition for bacteria removal by H. perlevis. Turbots S. maximus were co-cultured with sponge H. perlevis in 1.5 m(3) of water system at 15-18 degrees C for 6 weeks to control the growth of bacteria. It was found that H. perlevis was able to remove pathogenic bacteria efficiently at 10-20 degrees C, with a maximal removal of 71.4-78.8% of fecal coliform, 73.9-98.7% of pathogenic vibrio, and 75.0-83.7% of total culturable bacteria from fish-culture effluent at 15 degrees C; H. perlevis continuously showed good bioremediation of bacteria pollution in the S. maximus culture water system, achieving removal of 60.0-90.2% of fecal coliform, 37.6-81.6% of pathogenic vibrio, and 45.1-83.9% of total culturable bacteria. The results demonstrate that H. perlevis is an effective bioremediator of bacteria pollution in the turbot S. maximus culture farm water system.

  3. Use of salinity mixing models to estimate the contribution of creek water fecal indicator bacteria to an estuarine environment: Newport Bay, California.

    PubMed

    McLaughlin, Karen; Ahn, Jong Ho; Litton, Rachel M; Grant, Stanley B

    2007-08-01

    The contribution of freshwater discharge to fecal indicator bacteria (FIB) impairment of an estuarine environment can be approximated from simple, two end-member mixing models using salinity as a tracer. We conducted a yearlong time series investigation of Newport Bay, a regionally important estuarine embayment in southern California, assessing the concentrations of FIB, specifically Escherichia coli and enterococci bacteria, and salinity. In total, eight within-bay stations and one offshore control site were sampled nearly once per week and the three tributaries draining into Newport Bay were sampled approximately daily. Using salinity as a conservative tracer for water mass mixing and determining the end-member values of FIB in both the creek sites and the offshore site, we created a linear, two end-member mixing model of FIB within Newport Bay. Deviations from the mixing model suggest either an additional source of FIB to the bay (e.g. bird feces, storm drain discharge) or regrowth and/or die-off of FIB within the bay. Our results indicate that salinity mixing models can be useful in predicting changes in FIB concentrations in the estuarine environments and can help narrow the search for sources of FIB to the bay and enhance our understanding of the fate of FIB within the bay.

  4. Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems.

    PubMed

    Siefring, S; Varma, M; Atikovic, E; Wymer, L; Haugland, R A

    2008-06-01

    Previously reported and redesigned primer and probe assays were evaluated for the quantitative analysis of the fecal indicator bacterial groups, Enterococcus and Bacteroidetes with three real-time PCR instrument and reagent systems. The efficiency and sensitivity of the original assays varied between systems in analyses of DNA extracts from pure cultures of Enterococcus faecalis and Bacteroides fragilis, whereas the modified assays gave more consistent results. Distinctions between original and modified assays also occurred in analyses of known spike levels of E. faecalis and B. fragilis cells on filters with diverse surface water retentates. Percentages of samples causing PCR failures due to inhibition were lower using the modified assays. The accuracy and precision of spiked bacteria measurements were also generally higher, although mean measurements of both target organisms were still significantly different between systems (p < 0.05). The accuracy and precision of spiked bacteria measurements by both modified assays were further improved using a new sample matrix control spike consisting of cultured Lactococcus lactis cells and a reference assay for this organism. Corrections provided by the L. lactis assay eliminated significant differences in E. faecalis measurements between all three systems and between two of the three systems in B. fragilis measurements.

  5. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces.

  6. 75 FR 14607 - Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... are Escherichia coli (E. coli), an indicator of fecal contamination. FDA also amended its bottled... and E. coli; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food... ``Bottled Water: Total Coliform and E. coli--Small Entity Compliance Guide'' for a final rule published...

  7. Survival dynamics of fecal bacteria in ponds in agricultural watersheds of the Piedmont and Coastal Plain of Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal agriculture in watersheds can be a source of manure bacteria that can contaminate surface waters and put public health at risk. Because of the expanding urban-agriculture interface preventing surface water contamination with manure pathogens is important for sustaining surface water quality. ...

  8. Comparison of the Multiple-sample means with composite sample results for fecal indicator bacteria by quantitative PCR and culture

    EPA Science Inventory

    ABSTRACT: Few studies have addressed the efficacy of composite sampling for measurement of indicator bacteria by QPCR. In this study, composite results were compared to single sample results for culture- and QPCR-based water quality monitoring. Composite results for both methods ...

  9. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed.

    PubMed

    Bradshaw, J Kenneth; Snyder, Blake J; Oladeinde, Adelumola; Spidle, David; Berrang, Mark E; Meinersmann, Richard J; Oakley, Brian; Sidle, Roy C; Sullivan, Kathleen; Molina, Marirosa

    2016-09-15

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial source tracking (MST) markers, developed to determine potential sources of fecal contamination, can also be resuspended from bed sediments. The primary objective of this study was to predict occurrence of waterborne pathogens in water and streambed sediments using a simple statistical model that includes traditionally measured FIB, environmental parameters and source allocation, using MST markers as predictor variables. Synoptic sampling events were conducted during baseflow conditions downstream from agricultural (AG), forested (FORS), and wastewater pollution control plant (WPCP) land uses. Concentrations of FIB and MST markers were measured in water and sediments, along with occurrences of the enteric pathogens Campylobacter, Listeria and Salmonella, and the virulence gene that carries Shiga toxin, stx2. Pathogens were detected in water more often than in underlying sediments. Shiga toxin was significantly related to land use, with concentrations of the ruminant marker selected as an independent variable that could correctly classify 76% and 64% of observed Shiga toxin occurrences in water and sediment, respectively. FIB concentrations and water quality parameters were also selected as independent variables that correctly classified Shiga toxin occurrences in water and sediment (54%-87%), and Salmonella occurrences in water (96%). Relationships between pathogens and indicator variables were generally inconsistent and no single indicator adequately described occurrence of all pathogens. Because of inconsistent relationships between individual pathogens and FIB/MST markers, incorporating a combination of FIB, water quality measurements, and MST markers may be the best way to assess

  10. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  11. Evaluation of Fecal Indicators and Pathogens in a Beef Cattle Feedlot Vegetative Treatment System.

    PubMed

    Durso, Lisa M; Miller, Daniel N; Snow, Daniel D; Henry, Christopher G; Santin, Monica; Woodbury, Bryan L

    2017-01-01

    Runoff from open-lot animal feeding areas contains microorganisms that may adversely affect human and animal health if not properly managed. One alternative to full manure containment systems is a vegetative treatment system (VTS) that collects runoff in a sediment basin and then applies it to a perennial vegetation (grass) treatment area that is harvested for hay. Little is known regarding the efficacy of large-scale commercial VTSs for the removal of microbial contaminants. In this study, an active, pump-based VTS designed and built for a 1200-head beef cattle feedlot operation was examined to determine the effects of repeated feedlot runoff application on fecal indicator microorganisms and pathogens over short-term (2 wk) and long-term (3 yr) operations and whether fecal bacteria were infiltrating into deeper soils within the treatment area. In a short-term study, fecal bacteria and pathogen numbers declined over time in soil. Measurements of total coliforms and Enterococcus counts taken on control soils were not effective as fecal indicators. The repeated application of manure-impacted runoff as irrigation water did not enrich the pathogens or fecal indicators in the soil, and no evidence was seen to indicate that pathogens were moving into the deeper soil at this site. These results indicate that large-scale, active VTSs reduce the potential for environmental contamination by manure-associated bacteria. Also, this study has implications to full-containment systems that apply runoff water to land application areas (cropland) and the fate of pathogens in the soils of land application sites.

  12. Immunological Interrelationships of Coliform Heat-Labile and Heat-Stable Enterotoxins

    DTIC Science & Technology

    1981-09-01

    FA, Engert RF: Immunological interrelationships between cholera toxin and the heat -labile and hoat-stable enterotoxins of coliform bacteria . Infec...When Date Enterd) -3- SUMMARY These investigations (a) established the fact that species of coliform bacteria other than ETEC strains of E. coZi...elaborate enterotoxins which alter gastrointestinal physiology, and (b) showed that immunization with either E. coli (ETEC) LT or ST toxin arouses an

  13. Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting.

    PubMed

    Sharma, Ranjana; Munns, Krysty; Alexander, Trevor; Entz, Toby; Mirzaagha, Parasto; Yanke, L Jay; Mulvey, Michael; Topp, Edward; McAllister, Tim

    2008-10-01

    Escherichia coli strains isolated from fecal samples were screened to examine changes in phenotypic and genotypic characteristics including antimicrobial susceptibility, clonal type, and carriage of resistance determinants. The goal of this 197-day study was to investigate the influence of administration of chlortetracycline alone (T) or in combination with sulfamethazine (TS) on the development of resistance, dissemination of defined strain types, and prevalence of resistance determinants in feedlot cattle. Inherent tetracycline resistance was detected in cattle with no prior antimicrobial exposure. Antimicrobial administration was not found to be essential for the maintenance of inherently ampicillin-resistant and tetracycline-resistant (Tet(r)) E. coli in control animals; however, higher Tet(r) E. coli shedding was observed in animals subjected to the two treatments. At day 0, high tetracycline (26.7%), lower sulfamethoxazole-tetracycline (19.2%), and several other resistances were detected, which by the finishing phase (day 197) were restricted to ampicillin-tetracycline (47.5%), tetracycline (31.7%), and ampicillin-tetracycline-sulfamethoxazole (20.8%) from both treated and untreated cattle. Among the determinants, bla(TEM1), tet(A), and sul2 were prevalent at days 0 and 197. Further, E. coli from day 0 showed diverse antibiogram profiles and strain types, which by the finishing phase were limited to up to three, irrespective of the treatment. Some genetically identical strains expressed different phenotypes and harbored diverse determinants, indicating that mobile genetic elements contribute to resistance dissemination. This was supported by an increased linked inheritance of ampicillin and tetracycline resistance genes and prevalence of specific strains at day 197. Animals in the cohort shed increasingly similar genotypes by the finishing phase due to animal-to-animal strain transmission. Thus, characterizing inherent resistance and propagation of cohort

  14. Identification of fecal contamination sources in water using host-associated markers.

    PubMed

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  15. Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin

    PubMed Central

    Kirchner, Miranda; Mafura, Muriel; Hunt, Theresa; Abu-Oun, Manal; Nunez-Garcia, Javier; Hu, Yanmin; Weile, Jan; Coates, Anthony; Card, Roderick; Anjum, Muna F.

    2014-01-01

    A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being blaTEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of blaTEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. PMID:25566232

  16. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  17. Enchanced accuracy of coliform testing in seawater by a modification of the most-probable-number method.

    PubMed Central

    Olson, B H

    1978-01-01

    A 1-year study of marine water sample from six beach locations showed that the most-probable-number method failed to recover significant numbers of coli-forms. Modifying this method by transferring, after 48 h, presumptive negatives (growth and no gas production) to confirmed and fecal coliform media significantly improved recovery. Tests which were presumptive negative but confirmed as fecal coliform positive were designated as false negatives. Most-probable-number method false negatives occurred throughout the year, with 143 of 270 samples collected producing false negatives. More than 50% of fecal coliform false-negative isolates were Escherichia coli. Inclusion of false-negative tubes into the coliform most-probable-number method data resulted in increased violation of the California ocean water contact sports standard at all sites. More than 20% of the samples collected were in violation of this standard. These data indicate that modification of the most-probable-number method increases detection of coliform numbers in the marine environment. PMID:365107

  18. Automated electrochemical selection of coliforms

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Dill, W. P.; Jeffers, E. L.

    1978-01-01

    Computer-controlled sensor system monitors and quantifies coliform organisms in waste water samples through molecular hydrogen detection techniques. System includes cleanup procedures, external sterilization of each sensor interface with working fluid as well as incubation cell interiors. Sensor system may also be operated manually.

  19. Effect of Low Energy Waves on the Accumulation and Transport of Fecal Indicator Bacteria in Sand and Pore Water at Freshwater Beaches.

    PubMed

    Wu, Ming Zhi; O'Carroll, Denis M; Vogel, Laura J; Robinson, Clare E

    2017-03-07

    Elevated fecal indicator bacteria (FIB) in beach sand and pore water represent an important nonpoint source of contamination to surface waters. This study examines the physical processes governing the accumulation and distribution of FIB in a beach aquifer. Field data indicate E. coli and enterococci can be transported 1 and 2 m, respectively, below the water table. Data were used to calibrate a numerical model whereby FIB are delivered to a beach aquifer by wave-induced infiltration across the beach face. Simulations indicate FIB rapidly accumulate in a beach aquifer with FIB primarily associated with sand rather than freely residing in the pore water. Simulated transport of E. coli in a beach aquifer is complex and does not correlate with conservative tracer transport. Beaches with higher wave-induced infiltration rate and vertical infiltration velocity (i.e., beaches with higher beach slope and wave height, and lower terrestrial groundwater discharge) had greater E. coli accumulation and E. coli was transported deeper below the beach face. For certain beach conditions, the amount of FIB accumulated in sand over 5-6 days was found to be sufficient to trigger a beach advisory if eroded to surface water.

  20. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  1. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes.

    PubMed

    Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle

    2014-05-15

    Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with

  2. Identification of hotspots and trends of fecal surface water pollution in developing countries

    NASA Astrophysics Data System (ADS)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal

  3. Fecal Indicator and Pathogenic Bacteria and Their Antibiotic Resistance in Alluvial Groundwater of an Irrigated Agricultural Region with Dairies.

    PubMed

    Li, Xunde; Atwill, Edward R; Antaki, Elizabeth; Applegate, Olin; Bergamaschi, Brian; Bond, Ronald F; Chase, Jennifer; Ransom, Katherine M; Samuels, William; Watanabe, Naoko; Harter, Thomas

    2015-09-01

    Surveys of microbiological groundwater quality were conducted in a region with intensive animal agriculture in California, USA. The survey included monitoring and domestic wells in eight concentrated animal feeding operations (CAFOs) and 200 small (domestic and community supply district) supply wells across the region. was not detected in groundwater, whereas O157:H7 and were each detected in 2 of 190 CAFO monitoring well samples. Nonpathogenic generic and spp. were detected in 24.2% (46/190) and 97.4% (185/190) groundwater samples from CAFO monitoring wells and in 4.2% (1/24) and 87.5% (21/24) of CAFO domestic wells, respectively. Concentrations of both generic and spp. were significantly associated with well depth, season, and the type of adjacent land use in the CAFO. No pathogenic bacteria were detected in groundwater from 200 small supply wells in the extended survey. However, 4.5 to 10.3% groundwater samples were positive for generic and . Concentrations of generic were not significantly associated with any factors, but concentrations of were significantly associated with proximity to CAFOs, seasons, and concentrations of potassium in water. Among a subset of and isolates from both surveys, the majority of (63.6%) and (86.1%) isolates exhibited resistance to multiple (≥3) antibiotics. Findings confirm significant microbial and antibiotic resistance loading to CAFO groundwater. Results also demonstrate significant attenuative capacity of the unconfined alluvial aquifer system with respect to microbial transport.

  4. Formative Research on Hygiene Behaviors and Geophagy among Infants and Young Children and Implications of Exposure to Fecal Bacteria

    PubMed Central

    Ngure, Francis M.; Humphrey, Jean H.; Mbuya, Mduduzi N. N.; Majo, Florence; Mutasa, Kuda; Govha, Margaret; Mazarura, Exevia; Chasekwa, Bernard; Prendergast, Andrew J.; Curtis, Valerie; Boor, Kathyrn J.; Stoltzfus, Rebecca J.

    2013-01-01

    We conducted direct observation of 23 caregiver–infant pairs for 130 hours and recorded wash-related behaviors to identify pathways of fecal–oral transmission of bacteria among infants. In addition to testing fingers, food, and drinking water of infants, three infants actively ingested 11.3 ± 9.2 (mean ± SD) handfuls of soil and two ingested chicken feces 2 ± 1.4 times in 6 hours. Hand washing with soap was not common and drinking water was contaminated with Escherichia coli in half (12 of 22) of the households. A one-year-old infant ingesting 1 gram of chicken feces in a day and 20 grams of soil from a laundry area of the kitchen yard would consume 4,700,000–23,000,000 and 440–4,240 E. coli, respectively, from these sources. Besides standard wash and nutrition interventions, infants in low-income communities should be protected from exploratory ingestion of chicken feces, soil, and geophagia for optimal child health and growth. PMID:24002485

  5. Fecal impaction

    MedlinePlus

    ... hard and dry. This makes it difficult to pass. Fecal impaction often occurs in people who have ... Small, semi-formed stools Straining when trying to pass stools Other possible symptoms include: Bladder pressure or ...

  6. Fecal Incontinence

    MedlinePlus

    ... org editorial staff Tags: bowel management program, bowel movements, defecation, fecal incontinence, leaking feces, leaking stool, perineal exercises Family Health, Seniors, Women September 2000 Copyright © American Academy of Family PhysiciansThis ...

  7. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle.

    PubMed

    Jacob, M E; Fox, J T; Narayanan, S K; Drouillard, J S; Renter, D G; Nagaraja, T G

    2008-05-01

    Distillers grains, a coproduct of ethanol production from cereal grains, are composed principally of the bran, protein, and germ fractions and are commonly supplemented in ruminant diets. The objective of this study was to assess the effect of feeding wet distillers grains with solubles (WDGS) and monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne and commensal bacteria in feedlot cattle. Cattle were fed 0 or 25% WDGS in steam-flaked corn-based diets with the addition of no antimicrobials, monensin, or monensin and tylosin. Fecal samples were collected from each animal (n = 370) on d 122 and 136 of the 150-d finishing period and cultured for Escherichia coli O157. Fecal samples were also pooled by pen (n = 54) and cultured for E. coli O157, Salmonella, commensal E. coli, and Enterococcus species. Antimicrobial resistance was assessed by determining antimicrobial susceptibilities of pen bacterial isolates and quantifying antimicrobial resistance genes in fecal samples by real-time PCR. Individual animal prevalence of E. coli O157 in feces collected from cattle fed WDGS was greater (P < 0.001) compared with cattle not fed WDGS on d 122 but not on d 136. There were no treatment effects on the prevalence of E. coli O157 or Salmonella spp. in pooled fecal samples. Antimicrobial susceptibility results showed Enterococcus isolates from cattle fed monensin or monensin and tylosin had greater levels of resistance toward macrolides (P = 0.01). There was no effect of diet or antimicrobials on concentrations of 2 antimicrobial resistance genes, ermB or tetM, in fecal samples. Results from this study indicate that WDGS may have an effect on the prevalence of E. coli O157 and the concentration of selected antimicrobial resistance genes, but does not appear to affect antimicrobial susceptibility patterns in Enterococcus and generic E. coli isolates.

  8. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  9. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  10. [Isolation and characterization of injured coliforms from the drinking water distribution network of La Plata, Argentina].

    PubMed

    Basualdo, J A; Córdoba, M A; De Luca, M M; Roccia, I L; Pezzani, B C; Vay, C; Ageron, E; Grimont, P A

    2001-01-01

    We screened the La Plata drinking water distribution network for fecal and total coliform bacterial indicator by purification procedures, cultivating 66 membrane-filtered samples from the two networks on m-T7 agar. Subterranean and river-derived water yielded 13 and 18 confirmed gram-negative bacillus isolates, with 54% and 72% representing total coliforms, respectively. Those from the former source were Klebsiella oxytoca, Enterobacter agglomerans, and Enterobacter aerogenes and from the latter Klebsiella oxytoca, Enterobacter agglomerans, and Enterobacter cloacae, genomic group 3. Since 58% of the samples were positive using m-T7 medium it is suggested that the inclusion in standard quality control protocols should be implemented.

  11. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge.

    PubMed

    García-Orenes, F; Roldán, A; Guerrero, C; Mataix-Solera, J; Navarro-Pedreño, J; Gómez, I; Mataix-Beneyto, J

    2007-01-01

    Sewage sludges are increasingly used in soil amendment programmes, although not without risk since they contain, among other potential hazards, high concentrations of total coliform bacteria. In this paper we have studied the effect of irrigation on the survival of total coliforms in three semiarid degraded soils with different agricultural practices. Fresh sewage sludge was added at 50 g kg(-1) soil, and incubated in both the presence and absence of irrigation. The absence of irrigation led to a sharp decrease in the number of total coliforms in all soils, with the bacteria disappearing in 40 days. Irrigation produced a substantial initial increase in the number of coliforms in the three soils, although after 80 days there was none growing in any of the soils. The results showed that there were significant differences in the survival of coliform bacteria due to the presence or absence of irrigation.

  12. Modelling faecal coliform mortality in water hyacinths ponds

    NASA Astrophysics Data System (ADS)

    Mayo, A. W.; Kalibbala, M.

    Removal of faecal coliforms was investigated in pilot-scale water hyacinths ponds. The investigation was conducted to evaluate the role of solar intensity, pH, dissolved oxygen, temperature, sedimentation, and attachment of faecal coliforms on Eichhornia crassipes on disappearance of bacteria in water hyacinths ponds. A mathematical model that used the plug flow philosophy and incorporating the aforementioned factors was developed to predict faecal coliform mortality rate. The proposed multifactor model satisfactorily predicted mortality rate of faecal coliforms in a pilot-scale water hyacinths ponds. After optimization of the parameters, mortality rate constant for pH ( kpH) was 0.001, mortality rate constant for DO ( kDO) was 0.0037 and solar intensity mortality rate constant k s was 0.0102 cm 2/cal. The results also showed that the thickness of biofilm ( Lf) was 2.5 × 10 -4 m, and the effective surface area of water hyacinths roots per unit surface area of pond ( Rs) was 10.4 m 2/m 2. The results further showed that environmental factors such as solar intensity and pH were the key factors when water hyacinths ponds have a large exposed surface area. However, attachment of bacteria to water hyacinths played a major role in ponds fully covered with water hyacinths. The inclusion of sedimentation parameters in the model improved model efficiency by only 3.2%. It was concluded that sedimentation is not a major factor governing faecal coliform disappearance in water hyacinths pond systems receiving pretreated wastewaters.

  13. Biotic Interactions and Sunlight Affect Persistence of Fecal Indicator Bacteria and Microbial Source Tracking Genetic Markers in the Upper Mississippi River

    PubMed Central

    McMinn, Brian R.; Shanks, Orin C.; Sivaganesan, Mano; Fout, G. Shay; Ashbolt, Nicholas J.

    2014-01-01

    The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r2, 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence. PMID:24747902

  14. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river.

    PubMed

    Korajkic, Asja; McMinn, Brian R; Shanks, Orin C; Sivaganesan, Mano; Fout, G Shay; Ashbolt, Nicholas J

    2014-07-01

    The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r(2), 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence.

  15. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  16. Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli

    PubMed Central

    Aperce, C. C.; Amachawadi, R.; Van Bibber-Krueger, C. L.; Nagaraja, T. G.; Scott, H. M.; Vinasco-Torre, J.; Drouillard, J. S.

    2016-01-01

    The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P < 0.02). Although the mechanism by which menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria. PMID:28030622

  17. Factors Associated with the Presence of Coliforms in the Feed and Water of Feedlot Cattle

    PubMed Central

    Sanderson, Michael W.; Sargeant, Jan M.; Renter, David G.; Griffin, D. Dee; Smith, Robert A.

    2005-01-01

    The objective of this study was to investigate coliform counts in feedlot cattle water and feed rations and their associations with management, climate, fecal material, and water Escherichia coli O157 using a cross-sectional study design. Coliform counts were performed on feed samples from 671 pens on 70 feedlots and on water samples from 702 pens on 72 feedlots in four U.S. states collected between May and August 2001. Management and climate factors were obtained by survey and observation. Month of sampling (higher in May and June), presence of corn silage in the ration (negative association), temperature of the feed 1 in. (ca. 2.5 cm) below the surface at the time of sampling (negative association), and wind velocity at the time of sampling (positive association) were significantly associated with log10 coliform levels in feed. Month of sampling (lower in May versus June July and August), water pH (negative association), and water total solids (positive association) were significantly associated with log10 water coliform levels. Coliform counts in feed and water were not associated with prevalence of E. coli O157 in cattle feces or water. Management risk factors must be interpreted with caution but the results reported here do not support the use of coliform counts as a marker for E. coli O157 contamination of feed or water. PMID:16204517

  18. Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms.

    PubMed Central

    Camper, A K; Jones, W L; Hayes, J T

    1996-01-01

    Laboratory reactors operated under oligotrophic conditions were used to evaluate the importance of initial growth rate and substratum composition on the long-term persistence of coliforms in mixed-population biofilms. The inoculum growth rate had a dramatic effect on the ability of coliforms to remain on surfaces. The most slowly grown coliforms (mu = 0.05/h) survived at the highest cell concentration. Antibody staining revealed that Klebsiella pneumoniae existed primarily as discrete microcolonies on the surface. Both coliforms and heterotrophic plate count bacteria were supported in larger numbers on a reactive substratum, mild steel, than on polycarbonate. PMID:8899991

  19. Identification of human and animal fecal contamination after rainfall in the Han River, Korea.

    PubMed

    Kim, Ji Young; Lee, Heetae; Lee, Jung Eun; Chung, Myung-Sub; Ko, Gwang Pyo

    2013-01-01

    We investigated the effect of rainfall on the levels and sources of microbial contamination in the Han River, Korea. Thirty-four samples were collected at two sampling sites located upstream and downstream in the river from July 2010 to February 2011. Various fecal indicator microorganisms, including total coliform, fecal coliform, Escherichia coli, Enterococcus spp., somatic and male-specific (F+) coliphage, and four major enteric viruses were analyzed. Rainfall was positively correlated with the levels of fecal coliform and norovirus at both sampling sites. Additionally, rainfall was positively correlated with the levels of total coliform, E. coli, Enterococcus spp., and F+ coliphage at the upstream site. To identify the source of fecal contamination, microbial source tracking (MST) was conducted using both male-specific (F+) RNA coliphage and the Enterococcus faecium esp gene as previously described. Our results clearly indicated that the majority of fecal contamination at the downstream Han River site was from a human source. At the upstream sampling site, contamination from human fecal matter was very limited; however, fecal contamination from non-point animal sources increased following rainfall. In conclusion, our data suggest that rainfall significantly affects the level and source of fecal contamination in the Han River, Korea.

  20. Analytical notes - Electrochemical method for early detection and monitoring of coliforms

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Boykin, E. H.

    1976-01-01

    An electrochemical method for detecting bacteria, based on a linear relationship between inoculum size and the time of hydrogen evolution, was tested for the early detection and monitoring of coliforms in naturally contaminated estuarine and fresh water samples. Standard methods for coliform analysis were performed on each sample, and membrane filtration counts were used to construct dose-response curves; relationships and results are discussed herein.

  1. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant.

    PubMed

    Łuczkiewicz, A; Jankowska, K; Fudala-Książek, S; Olańczuk-Neyman, K

    2010-09-01

    Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 10(4) CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes

  2. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    EPA Science Inventory

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  3. DYNAMICS OF AQUATIC FECAL CONTAMINATION, FECAL SOURCE IDENTIFICATION, AND CORRELATION OF BACTEROIDALES HOST-SPECIFIC MARKERS DETECTION WITH FECAL PATHOGENS

    EPA Science Inventory

    Fecal pollution impairs the health and productivity of coastal waters and causes human disease. PCR of host-specific 16S rDNA sequences from anaerobic Bacteroidales bacteria offers a promising method of tracking fecal contamination and identifying its source(s). Before Bacteroida...

  4. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

    PubMed

    Hernandez, Rafael J; Hernandez, Yasiel; Jimenez, Nasly H; Piggot, Alan M; Klaus, James S; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M

    2014-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm

  5. Effects of Full-Scale Beach Renovation on Fecal Indicator Levels in Shoreline Sand and Water

    PubMed Central

    Hernandez, Rafael J.; Hernandez, Yasiel; Jimenez, Nasly H.; Piggot, Alan M.; Klaus, James S.; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M.

    2013-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3 to 72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8 CFU/g to 12 CFU/g) (p<0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 1011 CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 1011 CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in

  6. Fecal Incontinence

    MedlinePlus

    ... Adults Making Your Wishes Known Home & Community Home › Aging & Health A to Z › Fecal Incontinence Font size A A A Print Share Glossary Basic Facts & Information Causes & Symptoms Diagnosis & Tests Care & Treatment Lifestyle & Management Other Resources Caregiving How ...

  7. Growing season surface water loading of fecal indicator organisms within a rural watershed.

    PubMed

    Sinclair, A; Hebb, D; Jamieson, R; Gordon, R; Benedict, K; Fuller, K; Stratton, G W; Madani, A

    2009-03-01

    The loading of microbial contaminants was examined within the Thomas Brook watershed, a 784 ha mixed land-use catchment located in the headwaters of the Cornwallis River drainage basin (Nova Scotia, Canada). The objectives were to: (i) examine spatial and temporal characteristics of fecal bacteria loading during the growing season from five subwatersheds, and (ii) develop areal fecal indicator organism export coefficients for rural landscapes. Fecal coliform, Escherichia coli, total suspended solids (TSS) concentrations and stream flow were monitored at five locations in the watershed over six consecutive growing seasons (May-Oct, 2001-2006). A nested watershed monitoring approach was used to determine bacterial loading from distinct source types (residential vs. agricultural) during both baseflow and stormflow periods. Areal bacterial loading rates increased in each nested watershed moving downstream through the watershed and were highest in the three subcatchments dominated by agricultural activities. Upper watershed bacterial loading throughout the growing season from an agricultural subcatchment (Growing Season Avg 8.92 x 10(10) CFU ha(-1)) was consistently higher than a residential subcatchment (Growing Season Avg 8.43 x 10(9) CFU ha(-1)). As expected, annual average stormflow bacterial loads were higher than baseflow loads, however baseflow loads still comprised between 14 and 35% of the growing season bacterial loads in the five subwatersheds. Fecal bacteria loads were greater during years with higher annual precipitation. A positive linear relationship was observed between E. coli and TSS loading during the 2005 and 2006 growing seasons when both parameters were monitored, indicating that the processes of sediment transport and bacterial transport are linked. It is anticipated that computed areal microbial loading coefficients will be useful in developing watershed management plans. More intensive sampling during stormflow events is recommended for

  8. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays.

    PubMed

    Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Hokajärvi, Anna-Maria; Siponen, Sallamaari; Vepsäläinen, Asko; Räsänen, Pia; Santo Domingo, Jorge W

    2013-01-01

    In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments.

  9. Water-Quality Data for Navajo National Monument, Northeastern Arizona-2001-02

    DTIC Science & Technology

    2003-01-01

    total coliforms indicates only possible contamination. Fecal coliform and E . coli bacteria come from human or animal fecal waste only, so the...indicators of human or animal wastes—fecal coliform and E . coli bacteria . No fecal coliform or E . coli bacteria were found in water samples from...or animal wastes—fecal coliform and E . coli bacteria . REFERENCES CITED Britton, L.J., and Greeson, P.E., 1988, Methods for collection and analysis of

  10. Fecal Transplant Shows Early Promise Against Autism

    MedlinePlus

    ... 163263.html Fecal Transplant Shows Early Promise Against Autism Small study found giving healthy gut bacteria to ... study suggests a novel treatment for kids with autism: Give these young patients a fresh supply of ...

  11. 40 CFR 141.803 - Coliform sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... E. coli; a determination of density of these organisms is not required. (3) Air carriers must conduct analyses for total coliform and E. coli in accordance with the analytical methods approved in... analyze that total coliform-positive culture medium to determine if E. coli is present. (6) Routine...

  12. 40 CFR 141.803 - Coliform sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... E. coli; a determination of density of these organisms is not required. (3) Air carriers must conduct analyses for total coliform and E. coli in accordance with the analytical methods approved in... analyze that total coliform-positive culture medium to determine if E. coli is present. (6) Routine...

  13. 40 CFR 141.803 - Coliform sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... E. coli; a determination of density of these organisms is not required. (3) Air carriers must conduct analyses for total coliform and E. coli in accordance with the analytical methods approved in... culture medium to determine if E. coli is present. (6) Routine total coliform samples must not...

  14. 40 CFR 141.21 - Coliform sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the sample produces a turbid culture in the absence of gas production using an analytical method where gas formation is examined (e.g., the Multiple-Tube Fermentation Technique), produces a turbid culture... total coliform-positive, the system must analyze that total coliform-positive culture medium...

  15. 40 CFR 141.21 - Coliform sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the sample produces a turbid culture in the absence of gas production using an analytical method where gas formation is examined (e.g., the Multiple-Tube Fermentation Technique), produces a turbid culture... total coliform-positive, the system must analyze that total coliform-positive culture medium...

  16. 40 CFR 141.21 - Coliform sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the sample produces a turbid culture in the absence of gas production using an analytical method where gas formation is examined (e.g., the Multiple-Tube Fermentation Technique), produces a turbid culture... total coliform-positive, the system must analyze that total coliform-positive culture medium...

  17. Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs.

    PubMed

    Chu, Gyo Moon; Jung, Cheol Kyu; Kim, Hoi Yun; Ha, Ji Hee; Kim, Jong Hyun; Jung, Min Seob; Lee, Shin Ja; Song, Yuno; Ibrahim, Rashid Ismael Hag; Cho, Jae Hyeon; Lee, Sung Sill; Song, Young Min

    2013-02-01

    This study was carried out to investigate the effects of bamboo charcoal and bamboo vinegar as alternatives of antibiotics in the diet of fattening pigs and their influence on growth performance, immune responses and fecal microflora populations. Crossed pigs (n = 144, 79 kg body weight) were divided into 12 heads per pen, four diets and three replications. The basal diet (negative control: NC) was supplemented with 0.3% antibiotics (positive control: PC), 0.3% bamboo charcoal (BC) and 0.3% bamboo vinegar (BV). Average daily weight gain and feed efficiency were higher (P < 0.05) in PC, BC and BV. The concentration of lactate dehydrogenase and cortisol were lower (P < 0.05), but the concentration of immunoglobulin G (IgG) and IgA were higher (P < 0.05) in PC, BC and BV. Counts of coliform bacteria and Salmonella spp. were lower (P < 0.05), while the counts of fecal anaerobic total bacteria and lactic acid bacteria were higher (P < 0.05) in PC, BC and BV. A reasonable inclusion of bamboo charcoal or bamboo vinegar as antibiotics in the diet of fattening pigs leads to a better growth performance, immune responses and fecal microflora populations. The results of the present study suggest that bamboo charcoal or bamboo vinegar could be a potential additives in animal production as an alternative to antibiotics.

  18. [Fecal microbiota transplantation].

    PubMed

    García-García-de-Paredes, Ana; Rodríguez-de-Santiago, Enrique; Aguilera-Castro, Lara; Ferre-Aracil, Carlos; López-Sanromán, Antonio

    2015-03-01

    Bacteria can no longer be seen as an enemy. Nowadays, there is enough evidence to place the microbiota as a key element in human homeostasis. Despite initial skepticism, fecal microbiota transplantation (FMT) is a real therapeutic alternative for patients with recurrent Clostridium difficile infection. Moreover, this procedure has shown promising results in ulcerative colitis and other non-gastrointestinal disorders. There is still a lack of knowledge and clinical trials with long- term follow-up. Therefore, the available data should be interpreted with caution. In this document we provide a detailed review of the literature on the intestinal microbiota and FMT.

  19. Antibiotic-Resistant Enterococci and Fecal Indicators in Surface Water and Groundwater Impacted by a Concentrated Swine Feeding Operation

    PubMed Central

    Sapkota, Amy R.; Curriero, Frank C.; Gibson, Kristen E.; Schwab, Kellogg J.

    2007-01-01

    Background The nontherapeutic use of antibiotics in swine feed can select for antibiotic resistance in swine enteric bacteria. Leaking swine waste storage pits and the land-application of swine manure can result in the dispersion of resistant bacteria to water sources. However, there are few data comparing levels of resistant bacteria in swine manure–impacted water sources versus unaffected sources. Objectives The goal of this study was to analyze surface water and groundwater situated up and down gradient from a swine facility for antibiotic-resistant enterococci and other fecal indicators. Methods Surface water and groundwater samples (n = 28) were collected up and down gradient from a swine facility from 2002 to 2004. Fecal indicators were isolated by membrane filtration, and enterococci (n = 200) were tested for susceptibility to erythromycin, tetracycline, clindamycin, virginiamycin, and vancomycin. Results Median concentrations of enterococci, fecal coliforms, and Escherichia coli were 4- to 33-fold higher in down-gradient versus up-gradient surface water and groundwater. We observed higher minimal inhibitory concentrations for four antibiotics in enterococci isolated from down-gradient versus up-gradient surface water and groundwater. Elevated percentages of erythromycin- (p = 0.02) and tetracycline-resistant (p = 0.06) enterococci were detected in down-gradient surface waters, and higher percentages of tetracycline- (p = 0.07) and clindamycin-resistant (p < 0.001) enterococci were detected in down-gradient groundwater. Conclusions We detected elevated levels of fecal indicators and antibiotic-resistant enterococci in water sources situated down gradient from a swine facility compared with up-gradient sources. These findings provide additional evidence that water contaminated with swine manure could contribute to the spread of antibiotic resistance. PMID:17637920

  20. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.

    PubMed

    Bourquin, L D; Titgemeyer, E C; Fahey, G C

    1993-05-01

    Dietary fiber from eight vegetables (broccoli, carrot, cauliflower, celery, cucumber, lettuce, onion and radish) was analyzed for chemical composition and potential in vitro fermentation by human fecal bacteria. Total dietary fiber concentration of substrates ranged from 34.9 (broccoli) to 5.8 (cucumber) g/kg edible matter. Substrate fiber fractions were composed primarily of pectic substances and cellulose with smaller concentrations of hemicelluloses and lignin. Total dietary fiber residues isolated from substrates were fermented in vitro for 24 h with fecal bacteria obtained from each of three human volunteers. Substrate dry matter disappearance during fermentation was highest for carrot (63.7%) and lowest for cucumber (49.4%). Averaged across all substrates, disappearances of arabinose, galactose, glucose, mannose, xylose and uronic acids during fermentation were 96, 90, 54, 68, 51 and 97%, respectively. Short-chain fatty acid (SCFA) production during substrate fermentation averaged 10.5 mmol SCFA/g dry matter fermented. Averaged across all substrates, production of the major SCFA, acetate, propionate and butyrate, occurred in the molar ratio 76:14:10. Potential water-holding capacity of substrates was not influenced by fiber source and averaged 2.04 g H2O/g original substrate dry matter. Extent of substrate fermentation, SCFA production and substrate potential water-holding capacity were significantly different among inoculum donors, indicating that considerable inter-individual variation exists in the potential in vivo fermentation of vegetable fiber.

  1. Use of radon-222 to evaluate the influence of groundwater discharge on fecal indicator bacteria concentrations in the near-shore ocean, Malibu, California

    NASA Astrophysics Data System (ADS)

    Izbicki, J. A.; Burton, C.; Swarzenski, P. W.

    2011-12-01

    To protect beach-goers from waterborne disease, California requires water-quality monitoring for fecal indicator bacteria (FIB) at beaches having more than 50,000 visits annually. The source(s) of FIB in ocean beaches in excess of marine recreational water standards is often not known, or may be incorrectly identified. Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage have been implicated by regulatory agencies as a possible source of FIB to recreational ocean beaches, near Malibu, California. For this to occur, treated wastewater must first move through groundwater prior to discharge at the ocean. Groundwater discharge to the ocean near Malibu Lagoon (the estuary of Malibu Creek) is complicated by seasonally changing water levels in the lagoon. The lagoon is isolated from the ocean by a sand berm that develops across the mouth of the lagoon during the dry season. Higher water levels in the lagoon during the dry season, and lower water-levels during the wet season, cause seasonal changes in the direction of groundwater flow and the magnitude of discharge from the adjacent small (3,400 hectare), alluvial aquifer. Radon-222, an indicator of groundwater discharge, was measured in Malibu Lagoon, in the near-shore ocean adjacent to the lagoon, and in the near-shore ocean adjacent to unsewered residential development to determine the timing and magnitude of groundwater discharge. During the dry season, when the berm of the lagoon was closed and the lagoon was isolated from the ocean, radon-222 concentrations in the near-shore ocean during low tide increased as water discharged from the lagoon through the berm. Enterococcus concentrations in the near-shore ocean increased to almost 600 Most Probable Number (MPN) per 100 milliliter at this time. Radon-222 concentrations also increased at low tide as groundwater discharged to the ocean from the adjacent alluvial aquifer underlying the unsewered residential development, but there was

  2. Elimination of viruses and indicator bacteria at each step of treatment during preparation of drinking water at seven water treatment plants.

    PubMed Central

    Payment, P; Trudel, M; Plante, R

    1985-01-01

    Seven drinking water treatment plants were sampled twice a month for 12 months to evaluate the removal of indicator bacteria and cytopathogenic enteric viruses. Samples were obtained at each level of treatment: raw water, postchlorination, postsedimentation, postfiltration, postozonation, and finished (tap) water. Raw water quality was usually poor, with total coliform counts exceeding 105 to 106 CFU/liter and the average virus count in raw water of 3.3 most probable number of cytopathogenic units (MPNCU)/liter; several samples contained more than 100 MPNCU/liter. All plants distributed finished water that was essentially free of indicator bacteria as judged by analysis of 1 liter for total coliforms, fecal coliforms, fecal streptococci, coagulase-positive staphylococci, and Pseudomonas aeruginosa. The total plate counts at 20 and 35 degrees C were also evaluated as a measure of the total microbial population and were usually very low. Viruses were detected in 7% (11 of 155) of the finished water samples (1,000 liters) at an average density of 0.0006 MPNCU/liter the highest virus density measured being 0.2 MPNCU/liter. The average cumulative virus reduction was 95.15% after sedimentation and 99.97% after filtration and did not significantly decrease after ozonation or final chlorination. The viruses isolated from treated waters were all enteroviruses: poliovirus types 1, 2, and 3, coxsackievirus types B3, B4, and B5, echovirus type 7, and untyped picornaviruses. PMID:2990337

  3. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATION RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Contamination of watersheds by fecal bacteria is a frequent cause for surface waters to be placed on the national impaired waters list. However, since the presence of fecal bacteria does not always indicate human fecal input, it is necessary to distinguish between fecal sources. ...

  4. Coliform and metal contamination in Lago de Colina, a recreational water body in Chihuahua State, Mexico.

    PubMed

    Rubio-Arias, Hector; Rey, Nora I; Quintana, Rey M; Nevarez, G Virginia; Palacios, Oskar

    2011-06-01

    Lago de Colina (Colina Lake) is located about 180 km south of the city of Chihuahua (Mexico), and during the Semana Santa (Holy Week) vacation period its recreational use is high. The objective of this study was to quantify coliform and heavy metal levels in this water body before and after the Holy Week vacation period in 2010. Twenty sampling points were randomly selected and two water samples were collected at each point near the surface (0.30 m) and at 1 m depth. After the Holy Week vacation the same twenty points were sampled at the same depths. Therefore, a total 80 water samples were analyzed for fecal and total coliforms and levels of the following metals: Al, As, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Si and Zn. It was hypothesized that domestic tourism contaminated this water body, and as a consequence, could have a negative impact on visitor health. An analysis of variance (ANOVA) study was performed for each element and its interactions considering a factorial design where factor A was sample date and factor B was sample depth. Fecal coliforms were only detected at eight sampling points in the first week, but after Holy Week, both fecal and total coliforms were detected at most sampling points. The concentrations of Al, B, Na, Ni and Se were only statistically different for factor A. The levels of Cr, Cu, K and Mg was different for both date and depth, but the dual factor interaction was not significant. The amount of Ca and Zn was statistically different due to date, depth and their interaction. No significant differences were found for any factor or the interaction for the elements As, Fe and Mn. Because of the consistent results, it is concluded that local tourism is contaminating the recreational area of Colina Lake, Chihuahua, Mexico.

  5. Coliform and Metal Contamination in Lago de Colina, a Recreational Water Body in Chihuahua State, Mexico

    PubMed Central

    Rubio-Arias, Hector; Rey, Nora I.; Quintana, Rey M.; Nevarez, G. Virginia; Palacios, Oskar

    2011-01-01

    Lago de Colina (Colina Lake) is located about 180 km south of the city of Chihuahua (Mexico), and during the Semana Santa (Holy Week) vacation period its recreational use is high. The objective of this study was to quantify coliform and heavy metal levels in this water body before and after the Holy Week vacation period in 2010. Twenty sampling points were randomly selected and two water samples were collected at each point near the surface (0.30 m) and at 1 m depth. After the Holy Week vacation the same twenty points were sampled at the same depths. Therefore, a total 80 water samples were analyzed for fecal and total coliforms and levels of the following metals: Al, As, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Si and Zn. It was hypothesized that domestic tourism contaminated this water body, and as a consequence, could have a negative impact on visitor health. An analysis of variance (ANOVA) study was performed for each element and its interactions considering a factorial design where factor A was sample date and factor B was sample depth. Fecal coliforms were only detected at eight sampling points in the first week, but after Holy Week, both fecal and total coliforms were detected at most sampling points. The concentrations of Al, B, Na, Ni and Se were only statistically different for factor A. The levels of Cr, Cu, K and Mg was different for both date and depth, but the dual factor interaction was not significant. The amount of Ca and Zn was statistically different due to date, depth and their interaction. No significant differences were found for any factor or the interaction for the elements As, Fe and Mn. Because of the consistent results, it is concluded that local tourism is contaminating the recreational area of Colina Lake, Chihuahua, Mexico. PMID:21776236

  6. Application of leftover sample material from waterborne protozoa monitoring for the molecular detection of Bacteroidales and fecal source tracking markers

    EPA Science Inventory

    In this study, we examined the potential for detecting fecal bacteria and microbial source tracking markers in samples discarded during the concentration of Cryptosporidium and Giardia using USEPA Method 1623. Recovery rates for different fecal bacteria were determined using sp...

  7. Revised Total Coliform Webinar for Primacy Agencies

    EPA Pesticide Factsheets

    This webinar was created to assist Primacy Agencies in the implementation of the Revised Total Coliform Rule. It provides an overview of the requirements in the rule and implementation guidance for Primacy Agencies.

  8. Enumeration of total coliforms and E. coli in foods by the SimPlate coliform and E. coli color indicator method and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Lienau, Andrew H; Roa, Nerie H; Green, Shannon T

    2005-01-01

    The relative effectiveness of the SimPlate Coliform and E. coli Color Indicator (CEc-CI) method was compared to the AOAC 3-tube Most Probable Number (MPN) methods for enumerating and confirming coliforms and Escherichia coli in foods (966.23 and 966.24). In this study, test portions were prepared and analyzed according to the conditions stated in both the AOAC methods and SimPlate directions for use. Six food types were artificially contaminated with coliform bacteria and E. coli: frozen burritos, frozen broccoli, fluid pasteurized milk, whole almond nut meats, cheese, and powdered cake mix. Method comparisons were conducted. Overall, the SimPlate method demonstrated <0.3 log difference for total coliform and E. coli counts compared to the AOAC reference methods for the majority of food types and levels analyzed. In all cases, the repeatability and reproducibility of the SimPlate CEc-CI method were not different from those of the reference methods and in certain cases, were statistically better than those of the AOAC 3-tube MPN methods. These results indicate that the SimPlate CEc-CI method and the reference culture methods are comparable for enumeration of both total coliforms and E. coli in foods.

  9. The effect of dietary phosphorus and calcium level, phytase supplementation, and ileal infusion of pectin on the chemical composition and carbohydrase activity of fecal bacteria and the level of microbial metabolites in the gastrointestinal tract of pigs.

    PubMed

    Metzler, B U; Mosenthin, R; Baumgärtel, T; Rodehutscord, M

    2008-07-01

    Two experiments with growing pigs were conducted to determine the effects of dietary P and Ca level, phytase supplementation, and ileal pectin infusion on ileal and fecal P and Ca balance, chemical composition of fecal mixed bacterial mass (MBM), and bacterial metabolic activity. Pigs (initial BW = 30 kg) were fitted with simple T-cannulas at the distal ileum. They were fed a low-P corn-soybean meal control diet (3 g of P/kg) or the control diet supplemented with monocalcium phosphate (MCP; 7 g of P/kg; Exp. 1) or 1,000 FTU phytase/kg (Exp. 2). The daily infusion treatments consisted of 60 g of pectin dissolved in 1.8 L of demineralized water or 1.8 L of demineralized water as the control infusion, infused via the ileal cannula. In each experiment, 8 barrows were assigned to 4 dietary treatments according to a double, incomplete 4 x 2 Latin square. The dietary treatments in Exp. 1 were the control (Con-) diet with water infusion; the control (Con+) diet with pectin infusion; the MCP diet with water infusion; and the MCP diet with pectin infusion. In Exp. 2, the pigs received the same Con- and Con+ treatments as in Exp. 1 and, in addition, the phytase-supplemented diet in combination with water or pectin infusion. After a 15-d adaptation period, feces were collected for 5 d followed by ileal digesta collection for 24 h. In Exp. 1, supplemental MCP increased (P fecal P and Ca recovery as well as P and Ca content of the MBM. Pectin infusion increased the N content of the MBM (P = 0.054) and polygalacturonase activity (P = 0.032) in feces. In addition, pectin decreased (P = 0.049) ileal and tended (P < 0. 079) to increase fecal VFA concentrations. In Exp. 2, phytase decreased ileal and fecal P recovery (P < 0.001) and the P content of the MBM (P = 0.045), whereas the N content of the MBM (P = 0.094) and fecal cellulase activity (P = 0.089) tended to decrease. Similarly, pectin infusion decreased (P = 0.036) fecal cellulase activity but increased (P

  10. Molecular method for detection of total coliforms in drinking water samples.

    PubMed

    Maheux, Andrée F; Boudreau, Dominique K; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G; Rodriguez, Manuel J

    2014-07-01

    This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality.

  11. Thermotolerant coliforms are not a good surrogate for Campylobacter spp. in environmental water.

    PubMed

    St-Pierre, Karen; Lévesque, Simon; Frost, Eric; Carrier, Nathalie; Arbeit, Robert D; Michaud, Sophie

    2009-11-01

    This study aimed to assess the importance of quantitatively detecting Campylobacter spp. in environmental surface water. The prevalence and the quantity of Campylobacter spp., thermotolerant coliforms, and Escherichia coli in 2,471 samples collected weekly, over a 2-year period, from 13 rivers and 12 streams in the Eastern Townships, Québec, Canada, were determined. Overall, 1,071 (43%), 1,481 (60%), and 1,463 (59%) samples were positive for Campylobacter spp., thermotolerant coliforms, and E. coli, respectively. There were weak correlations between the weekly distributions of Campylobacter spp. and thermotolerant coliforms (Spearman's rho coefficient = 0.27; P = 0.008) and between the quantitative levels of the two classes of organisms (Kendall tau-b correlation coefficient = 0.233; P < 0.0001). Well water samples from the Eastern Townships were also tested. Five (10%) of 53 samples from private surface wells were positive for Campylobacter jejuni, of which only 2 were positive for thermotolerant coliforms. These findings suggest that microbial monitoring of raw water by using only fecal indicator organisms is not sufficient for assessing the occurrence or the load of thermophilic Campylobacter spp. Insights into the role of environmental water as sources for sporadic Campylobacter infection will require genus-specific monitoring techniques.

  12. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual–Level Data from Multiple Studies

    PubMed Central

    Hodge, James; Chang, Howard H.; Boisson, Sophie; Collin, Simon M.; Peletz, Rachel; Clasen, Thomas

    2016-01-01

    Background: Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. Objectives: We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. Methods: We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. Results: The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11–100, 101–1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Conclusions: Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Citation: Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant

  13. Differential decay of Enterococci and Escherichia coli originating from two fecal pollution sources

    EPA Science Inventory

    Using in situ subtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater and Escherichia coli in marine habita...

  14. Variations of indicator bacteria in a large urban watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of water resources by nonpoint-source fecal pollution is a major concern to human health and water quality throughout the world. The Santa Ana River (SAR) in southern California is an impaired stream with historically high fecal coliform counts. This study evaluated the presence of...

  15. Evaluation of finishing performance, carcass characteristics, acid-resistant E. coli and total coliforms from steers fed combinations of wet corn gluten feed and steam-flaked corn.

    PubMed

    Sindt, J J; Drouillard, J S; Thippareddi, H; Phebus, R K; Lambert, D L; Montgomery, S P; Farran, T B; LaBrune, H J; Higgins, J J; Ethington, R T

    2002-12-01

    Crossbred beef steers (n = 615) were used in a 152-d experiment to compare steam-flaked corn (SFC) diets containing 0, 30, or 60% wet corn gluten feed (WCGF). On d 114 to 118, ruminal and fecal samples were collected from 180 steers and analyzed for pH, VFA, and total and acid-resistant Escherichia coli and coliforms. Acid resistance of E. coli and coliform populations was determined by exposure of the samples for 1 h in pH 2, 4, and 7 citric acid/sodium phosphate buffers. Increasing levels of WCGF linearly decreased total ruminal VFA (P = 0.01) and total fecal VFA (P = 0.06), but linearly increased ruminal and fecal acetate:propionate (P < 0.01) ratio and ruminal and fecal pH (P < 0.05). Feeding increasing WCGF levels resulted in a quadratic response (P < 0.05) with respect to numbers of ruminal E. coli and total coliform populations resistant to pH 4 exposure. Steers fed 30% WCGF had higher (0.7 log units) ruminal E. coli and total coliforms after exposure at pH 4 compared to steers fed 0 or 60% WCGF. Populations of E. coli and total coliforms at pH 2 and 7 were similar for all dietary treatments. Dietary WCGF linearly increased DMI (P = 0.07) and liver abscesses (P = 0.03) and linearly decreased dietary NEg (P = 0.02). Average daily gain and feed efficiencies were greatest when steers were offered 30% WCGF (quadratic, P < 0.05). Dietary manipulations that reduce acid concentrations may not correspond to changes in acid resistance of E. coli and total coliform populations detected in the gastrointestinal tracts of cattle. Moderate levels of WCGF complement SFC finishing diets.

  16. Molecular Detection of Campylobacter spp. and Fecal Indicator Bacteria during the Northern Migration of Sandhill Cranes (Grus canadensis) at the Central Platte River

    PubMed Central

    Ryu, Hodon; Vogel, Jason; Santo Domingo, Jorge; Ashbolt, Nicholas J.

    2013-01-01

    The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 108 cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 105 CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (∼3.3 × 105 CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 103 CE/g), E. coli (2.2 × 103 CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds. PMID:23584775

  17. Discovering new indicators of fecal pollution

    PubMed Central

    McLellan, Sandra L.; Eren, A. Murat

    2014-01-01

    Fecal pollution indicators are essential to identify and remediate contamination sources and protect public health. Historically, easily cultured facultative anaerobes such as fecal coliforms, Escherichia coli, or enterococci have been used, but these indicators generally provide no information as to their source. More recently, molecular methods have targeted fecal anaerobes, which are much more abundant in humans and other mammals and some strains appear to be associated with certain host sources. Next-generation sequencing and microbiome studies have created an unprecedented inventory of microbial communities associated with fecal sources, allowing reexamination of which taxonomic groups are best suited as informative indicators. The use of new computational methods, such as oligotyping coupled with well-established machine learning approaches, is providing new insights into patterns of host association. In this review we examine the basis for host-specificity and the rationale for using 16S rRNA gene targets for alternative indicators and highlight two taxonomic groups, Bacteroidales and Lachnospiraceae, which are rich in host-specific bacterial organisms. Finally, we discuss considerations for using alternative indicators for water quality assessments with a particular focus on detecting human sewage sources of contamination. PMID:25199597

  18. The prevalence and distribution of indicators of fecal contamination in the sand from beaches of Oran coast

    NASA Astrophysics Data System (ADS)

    Messaoui, N.; Matallah-Boutiba, A.; Boutiba, Z.

    2017-02-01

    The microbiological quality of water at public bathing beaches is regularly monitored using fecal indicator bacteria (FIB) as a surrogate for the presence of human sewage and pathogens. The common feature of all these routine screening procedures is that the primary analysis is for indicator organisms rather than the pathogens that might cause concern. Indicator organisms are bacteria such as non-specific coliforms, Escherichia coli and Pseudomonas aeruginosa that are very commonly found in the human or animal gut and which, if detected, may suggest the presence of sewage. Indicator organisms are used because even when a person is infected with more pathogenic bacteria, they will still be excreting many millions times more indicator organisms than pathogens. It is therefore reasonable to surmise that if indicator organism levels are low, then pathogen levels will be very much lower or absent. Judgments as to suitability of water for use are based on very extensive precedents and relate to the probability of any sample population of bacteria being able to be infective at a reasonable statistical level of confidence. Exposure to FIB and associated pathogens may also occur through contact with contaminated beach sand, but no standards limiting levels of microbes in sand or required monitoring program has been established. As a result, the factors affecting FIB and pathogen survival/persistence in sand remain largely unstudied. A possible contamination of the sand by bacterial communities could be a source of transmission of certain pathogenic bacteria. The goal of this study was to look for a presence of certain bacteria that could be a source of illness to swimmers and compare the different levels of contamination between beach sand and sea water in four sites along the Western Oranian coast. First analysis were made during the dry season and rainy season from December 2010 to June 2012 to estimate fecal coliforms, Pseudomonas spp and total germs levels. E.coli and

  19. Verifying apple cider plant sanitation and hazard analysis critical control point programs: choice of indicator bacteria and testing methods.

    PubMed

    Lang, M M; Ingham, S C; Ingham, B H

    1999-08-01

    The objectives of this study were (i) to evaluate the survival of coliforms, Escherichia coli, and enterococci in refrigerated apple cider; (ii) to develop simple and inexpensive presumptive methods for detection of these bacteria; (iii) to perform a field survey to determine the prevalence of these bacteria on apples and in apple cider; and (iv) based on our results, to recommend the most useful of these three indicator groups for use in verifying apple cider processing plant sanitation and hazard analysis critical control point (HACCP) programs. Eight of 10 coliform strains (5 E. coli, 1 Enterobacter aerogenes, and 2 Klebsiella spp.) inoculated into preservative-free apple cider (pH 3.4, 13.3(o) Brix) survived well at 4 degrees C for 6 days (< or = 3.0 log10 CFU/ml decrease). Of 21 enterococci strains (Enterococcus faecalis, E. faecium, and E. durans), only 2 E. durans and 3 E. faecium strains survived well. Simple broth-based colorimetric methods were developed that detected the presence of approximately 10 cells of coliforms or enterococci. In three field studies, samples of unwashed apples (drops and picked), washed apples, and freshly pressed cider were presumptively analyzed for total coliforms, E. coli, and enterococci using qualitative and/or quantitative methods. Drop apples were more likely than picked apples to be contaminated with E. coli (26.7% vs. 0%) and enterococci (20% vs. 0%). Washing had little effect on coliform populations and in one field study was associated with increased numbers. Total coliform populations in cider ranged from < 1 CFU/ml to > 738 most probable number/ml, depending on the enumeration method used and the sample origin. E. coli was not recovered from washed apples or cider, but enterococci were present on 13% of washed apple samples. The qualitative coliform method successfully detected these bacteria on apples and in cider. Based on its exclusively fecal origin, good survival in apple cider, and association with drop apples

  20. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia.

    PubMed

    Birošová, Lucia; Mackulak, Tomáš; Bodík, Igor; Ryba, Jozef; Škubák, Jaroslav; Grabic, Roman

    2014-08-15

    This work presents environmental and quality-control data from the analyses of 33 antibiotics in influent and effluent water from two waste water treatment plants (WWTPs) in the capital and the biggest city of Slovakia. Seeing that consumption of antibiotics depends on epidemiological season, samples were collected during February and August. Among assessed antibiotics ciprofloxacin and clarithromycin were detected in highest concentrations in influent water. Seasonal changes were observed only in plant A when antibiotic concentrations decreased. On the other hand an increase in some cases was observed in plant B. Insufficient degradation of some macrolides, sulfonamides and trimethoprim was detected according to their higher concentrations in effluent water. Contact of antibiotics in subinhibitory concentrations and sludge bacteria in WWTPs represent the base for the development of significant levels of microbial resistance. Simultaneously, antibiotic resistance of fecal coliforms and fecal streptococci from sewage sludge was evaluated. Majority of coliform bacteria were found to be resistant to ampicillin and gentamicin. A significant seasonal difference was determined only in case of high-level resistance. In summer samples, an increase in the strains resistant to concentrations higher than the resistance breakpoints established by EUCAST and NCCLS was observed. No antibiotic resistance in streptococci was observed. However, as a part of sewage sludge is mixed with compost and utilized in agriculture, better processing of sludge should be considered.

  1. Evaluation of Peel Plate™ EC for Determination of E. coli and Coliform or Total Coliform in Dairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ EC is a low-profile plastic, 47 mm culture dish with an adhesive top that contains a dried medium with Gram-negative selective agents and with enzyme substrate indicators for β-galactosidase (coliform) and β-glucuronidase (Escherichia coli). The method provides a conventional quantitative coliform (red) and E. coli (blue/purple/black) count with simple rehydration and incubation for 24 ± 2 h at 35 ± 1°C, while providing a total coliform result, sum of E. coli, and coliform without color differential in dairy products at 32 ± 1°C for 24 ± 2 h. Dairy matrixes claimed and supported with total coliform data are whole milk, skim milk, chocolate milk (2% fat), heavy cream (35% fat), pasteurized whole goat milk, ultra-high-temperature pasteurized milk, powdered milk, lactose-reduced milk, strawberry milk, shredded cheddar cheese, raw cow milk, raw goat milk, raw sheep milk, sour cream, condensed milk, eggnog, vanilla ice cream, condensed whey, yogurt, and cottage cheese. Matrixes claimed for E. coli and total coliform detection are raw ground beef, mixed cellulose 0.45 μm filtered bottled water, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, leafy green (mixed greens) rinse/flume water, irrigation water, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for total coliform in whole milk, skim milk, chocolate milk, and heavy cream. The method was also independently evaluated for E. coli and coliform in ground beef, filtered bottled water, and sponge rinse from stainless steel surfaces. In inclusivity and exclusivity studies, the method detected 57 of 58 different strains of coliform and E. coli at 32 ± 1°C and 35 ± 1°C in and excluded 31 of 32 different noncoliform strains consisting of Gram-negative and Gram-positive bacteria. In the matrix study, each matrix was assessed separately at each contamination level in comparison

  2. Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of poultry manure (PM) to cropland as fertilizer is a common practice in artificially drained regions of the Upper Midwest. To assess the potential for PM to contribute pathogenic bacteria to downstream waters, information is needed on the impacts of manure management and tillage practi...

  3. Current and future trends in fecal source tracking and deployment in the Lake Taihu Region of China

    NASA Astrophysics Data System (ADS)

    Hagedorn, Charles; Liang, Xinqiang

    The emerging discipline of microbial and/or chemical source tracking (collectively termed fecal source tracking (FST)) is being used to identify origins of fecal contamination in polluted waters in many countries around the world. FST has developed rapidly because standard methods of measuring contamination in water by enumerating fecal indicator bacteria (FIB) such as fecal coliforms and enterococci do not identify the sources of the contamination. FST is an active area of research and development in both the academic and private sectors and includes: Developing and testing new microbial and chemical FST methods. Determining the geographic application and animal host ranges of existing and emerging FST techniques. Conducting experimental comparisons of FST techniques. Combining direct monitoring of human pathogens associated with waterborne outbreaks and zoonotic pathogens responsible for infections among people, wildlife, or domesticated animals with the use of FST techniques. Applying FST to watershed analysis and coastal environments. Designing appropriate statistical and probability analysis of FST data and developing models for mass loadings of host-specific fecal contamination. This paper includes a critical review of FST with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), which methods are applicable to different situations, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper addresses the broader question of whether FST and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many FST methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the “real” answer is not known, so their comparative performance and accuracy cannot be assessed. For FST to be

  4. 40 CFR 141.803 - Coliform sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alternatives to water from the aircraft water system, such as bottled water for drinking and coffee or tea....803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.803 Coliform sampling....

  5. 40 CFR 141.803 - Coliform sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total coliform-negative before the air carrier provides water for human consumption from the aircraft... this section prior to providing water for human consumption from the aircraft water system. A complete... paragraph (e) of this section prior to providing water for human consumption from the aircraft water...

  6. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    USGS Publications Warehouse

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the

  7. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).

    PubMed

    Harmon, S Michele; West, Ryan T; Yates, James R

    2014-12-01

    Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M(™) Petrifilm(™) count plates. We were able to narrow down the study's focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.

  8. Revised Total Coliform Rule Assessments and Corrective Actions

    EPA Pesticide Factsheets

    EPA has developed the Revised Total Coliform Rule Assessment and Corrective Actions Guidance Manual for public water systems (e.g., owners and operators) to assist in complying with the requirements of the Revised Total Coliform Rule.

  9. 33 CFR 159.53 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... having a fecal coliform bacteria count not greater than 1,000 per 100 milliliters and no visible floating... having a fecal coliform bacteria count not greater than 200 per 100 milliliters and suspended solids...

  10. 33 CFR 159.53 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... having a fecal coliform bacteria count not greater than 1,000 per 100 milliliters and no visible floating... having a fecal coliform bacteria count not greater than 200 per 100 milliliters and suspended solids...

  11. 33 CFR 159.53 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... having a fecal coliform bacteria count not greater than 1,000 per 100 milliliters and no visible floating... having a fecal coliform bacteria count not greater than 200 per 100 milliliters and suspended solids...

  12. 33 CFR 159.53 - General requirements.