Science.gov

Sample records for fecob alloy particles

  1. Enhanced spin-orbit coupling in tetragonally strained Fe-Co-B films

    NASA Astrophysics Data System (ADS)

    Salikhov, R.; Reichel, L.; Zingsem, B.; Abrudan, R.; Edström, A.; Thonig, D.; Rusz, J.; Eriksson, O.; Schultz, L.; Fähler, S.; Farle, M.; Wiedwald, U.

    2017-07-01

    Tetragonally strained interstitial Fe-Co-B alloys were synthesized as epitaxial films grown on a 20 nm thick Au0.55Cu0.45 buffer layer. Different ratios of the perpendicular to in-plane lattice constant c/a  =  1.013, 1.034 and 1.02 were stabilized by adding interstitial boron with different concentrations 0, 4, and 10 at.%, respectively. Using ferromagnetic resonance (FMR) and x-ray magnetic circular dichroism (XMCD) we found that the total orbital magnetic moment significantly increases with increasing c/a ratio, indicating that reduced crystal symmetry and interstitial B leads to a noticeable enhancement of the effect of spin-orbit coupling (SOC) in the Fe-Co-B alloys. First-principles calculations reveal that the increase in orbital magnetic moment mainly originates from B impurities in octahedral position and the reduced symmetry around B atoms. These findings offer the possibility to enhance SOC phenomena—namely the magnetocrystalline anisotropy and the orbital moment—by stabilizing anisotropic strain by doping 4 at.% B. Results on the influence of B doping on the Fe-Co film microstructure, their coercive field and magnetic relaxation are also presented.

  2. Tribological Properties of Al Alloy Particle Composites

    NASA Astrophysics Data System (ADS)

    Prasad, S. V.; Rohatgi, P. K.

    1987-11-01

    In recent years, a variety of particle dispersed aluminum alloy composites have been synthesized. The tribological properties of these materials include sliding wear, friction, seizure resistance and abrasive wear (of composites containing solid lubricant as well as hard ceramic particles). The potential high-performance applications of Al-alloy-graphite composites include pistons for internal combustion engines and bearings. For such applications, the low stress abrasive wear rates of composites, containing high volume fractions (0.20-0.35), are comparable to that of heat treated 1045 steel.

  3. Ostwald ripening of binary alloy particles.

    PubMed

    Burlakov, V M; Kantorovich, L

    2011-01-14

    Classical Lifshitz-Slyozov-Wagner theory is generalized for Ostwald ripening of particles composed of random binary alloy. We show that the steady state ripening process is characterized by self-similar particle size and composition distributions. The shape of particle size distribution depends on whether the process is diffusion controlled (Lifshitz-Slyozov) or reaction controlled (Wagner) and is consistent with the predictions of classical theory for one-component materials. The steady state composition distribution, in contrast, has the same functional form in both extreme cases featuring a universal dependence of the composition upon particle size. We also found that transients in particle's composition can be very quick resulting in a steady state distribution well before it is reached by particles sizes. These transients involve significant changes in particle sizes and open an opportunity for producing metastable particle size distributions of required shape.

  4. Mössbauer and Kerr microscopy investigation of crystallization in FeCoB ribbons

    SciTech Connect

    Reddy, V. Raghavendra E-mail: vrreddy@csr.res.in; Hussain, Zaineb; Babu, Hari; Shrivastava, Namrata; Gupta, Ajay

    2016-05-23

    The present work reports the crystallization study of amorphous FeCoB ribbons using x-ray diffraction, {sup 57}Fe Mössbauer spectroscopy in transmission mode and magneto-optical Kerr (MOKE) microscopy. Annealing at 673 K is found to result in crystallization. From the Mossbauer measurements it is observed that the Fe magnetic moments are in the plane of sample for as-cast ribbon; α-FeCo, (Fe{sub 0.5}Co{sub 0.5}){sub 2}B and Fe{sub 2}B phases are formed after crystallization. MOKE microscopy revealed that wide 180° domain walls & narrow fingerprint domains are observed before crystallization and fine domains are observed after crystallization. The results are explained in terms of the presence of internal stresses and their annealing with thermal heat treatment.

  5. Preparation of particle-dispersion alloys (M-6)

    NASA Technical Reports Server (NTRS)

    Muramatsu, Yuji

    1993-01-01

    A particle dispersion alloy is one type of metal-ceramic composite material, and is used as heat resistance material, wear resistance material, and electrical material. This material consists of a metal matrix and dispersed particles, and for its unique structure it has both tenacity as a metal and hardness as a ceramic. Its properties improve when the particles become finer and disperse more uniformly. Most of the particle dispersion alloys are produced by the powder metallurgical process. This process is favorable for uniform dispersion of particles, but it consists of complicated techniques such as mechanical alloying and hot extrusion, and has the following drawbacks: (1) it is difficult to fabricate large-sized products; (2) the amount of particles is limited to a few percent; and (3) the process is complicated and expensive. To overcome these drawbacks, recently special attention has been paid to conventional melting process. However, under terrestrial conditions, dispersions separate immediately due to the different specific gravities of the metal matrix and the particles and thermal convection effects. The microgravity environment is, therefore, considered to be an attractive place for fabricating the dispersion alloy. This space experiment is carried out to clarify the influence of microgravity on the properties of the particle dispersion alloy and to obtain a deeper understanding of the experiment under the microgravity environment.

  6. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  7. The kinetics of composite particle formation during mechanical alloying

    NASA Technical Reports Server (NTRS)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  8. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L)(1.5)/min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L)(1.5)/min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ignition of metals and alloys by high-velocity particles

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Williams, R. E.; Armstrong, D.

    1986-01-01

    The ignition of metals and alloys by impacting high-velocity particles in gaseous oxygen was investigated. A convergent/divergent nozzle was used to accelerate the flowing oxygen, which in turn accelerated the particles to velocities greater than 305 m/s (1000 ft/s). The test sample (target) was placed at the end of the chamber in the flow path. Aluminum 6061, type 316 stainless steel, type 304 stainless steel, and Inconel 718 were ignited with 1600-micron aluminum 2017 particles at elevated temperatures and pressures whereas Monel 400 could not be ignited. The ignition susceptibility of metals and alloys appeared to increase as the inlet pressure, sample temperature, and particle size were increased. Type 304 stainless steel particles required more extreme conditions for ignition of materials than similar sized aluminum particles. The results indicated that ignition and subsequent burning of the particles were required for ignition of the target materials with the possible exception of aluminum 6061.

  10. Preparation of cast aluminum alloy-mica particle composites

    NASA Technical Reports Server (NTRS)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  11. Engineering optical mode ferromagnetic resonance in FeCoB films with ultrathin Ru insertion

    PubMed Central

    Li, Shandong; Wang, Cuiling; Chu, Xian-Ming; Miao, Guo-Xing; Xue, Qian; Zou, Wenqin; Liu, Meimei; Xu, Jie; Li, Qiang; Dai, Youyong; Yan, Shishen; Kang, Shishou; Long, Yunze; Lü, Yueguang

    2016-01-01

    Ferromagnetic resonance (FMR) in soft magnetic films (SMFs) to a large extent determines the maximum working frequency of magnetic devices. The FMR frequency (fr) in an optical mode is usually much higher than that in the corresponding acoustic mode for exchange coupled ferromagnet/nonmagnet/ferromagnet (FM/NM/FM) trilayers. In this study, we prepared a 50 nm FeCoB film with uniaxial magnetic anisotropy (UMA), showing a high acoustic mode fr of 4.17 GHz. When an ultrathin Ru spacer was inserted in the very middle of the UMA-FeCoB film, the zero-field FMR was abruptly switched from an acoustic mode to an optical one with fr dramatically enhanced from 4.17 GHz to 11.32 GHz. Furthermore, the FMR mode can be readily tuned to optical mode only, acoustic mode only, or double mode by simply varying the applied filed, which provides a flexible way to design multi-band microwave devices. PMID:27628089

  12. Cast aluminum alloys containing dispersions of zircon particles

    NASA Astrophysics Data System (ADS)

    Banerji, A.; Surappa, M. K.; Rohatgi, P. K.

    1983-06-01

    A process for preparing Al-alloy castings containing dispersions of zircon particles is described. Composites were prepared by stirring zircon particles (40 to 200 µm size) in commercially pure Al (99.5 pct)* and Al-11.8 pct Si melts and subsequently casting these melts in permanent molds. It was found to be necessary to alloy the above two melts with 3 pct Mg to disperse substantial amounts of zircon particles (25 to 30 pct). Further, it was possible to disperse up to 60 wt pct zircon by adding up to 5 pct Mg; however, the melts containing above 30 wt pct zircon showed insufficient fluidity for gravity diecasting and had to be pressure diecast. Microstructural studies of cast composites indicated the presence of a reaction zone at the periphery of zircon particles, and electron probe microanalysis showed concentrations of Mg and Si at the particle-matrix interface. Hardness, abrasive wear resistance, elastic modulus, 0.2 pct proof stress, and tensile strength of cast Al-3 pct Mg alloy were found to improve with the dispersions of zircon particles. Scanning electron micrographs of abraded and fractured surfaces did not show any evidence of particle pull-outs or voids at the particle matrix interface, indicating strong continuous bonding.

  13. [Investigation of nascent polypropylene in-reactor alloy particles].

    PubMed

    Luo, Hua-Lin; Zhang, Chun-Bo; Niu, Hui; Zhao, Ying; Dong, Jin-Yong; Wu, Jin-Guang; Wang, Du-Jin

    2013-02-01

    Heterogeneous nascent particles were observed in a pilot product of polypropylene in-reactor alloy, which was polymerized by Ziegler-Natta/Metallocene hybrid catalyst using Spheripol technology. Most of the particles in the product are translucent, and opaque particles were observed as well. The differences in morphology, composition, chain structure, thermal properties and mechanical properties between these two kinds of particles were investigated by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), polarized optical microscopy (POM), and differential scanning calorimetry (DSC) techniques. The results of FTIR, NMR and SEM indicate that different morphology of these two different particles is caused by different content of ethylene-propylene copolymers. The results of DSC and POM showed that the translucent particles has higher crystallization rate than opaque particles due to the presence of ethylene-propylene copolymers. The mechanical properties results showed that the impact resistance property of opaque particles is obviously lower than that of translucent particles, while its tensile strength and bending modulus are much higher than that of translucent particles. Based on the process of Spheripol technology, a preliminary explanation for the formation of different nascent PP in-reactor alloy particles is proposed.

  14. Characteristics of alumina particles in dispersion-strengthened copper alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-hui; Li, Xiao-xian

    2014-11-01

    Two types of alumina dispersion-strengthened copper (ADSC) alloys were fabricated by a novel in-situ reactive synthesis (IRS) and a traditional internal oxidation (IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.

  15. Composite of coated magnetic alloy particle

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  16. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  17. Molecular basis of carcinogenicity of tungsten alloy particles

    SciTech Connect

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J.

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  18. Erosion of iron-chromium alloys by glass particles

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1984-01-01

    The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.

  19. Dissolution of particles in binary alloys: part II. experimental investigation on an Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Tundal, Ulf H.; Ryum, Nils

    1992-02-01

    A detailed experimental study of the dissolution kinetics of Si particles in an Al-Si alloy has been carried out in order to test the validity of the two models presented in the accompanying article.[1] In these models, the dissolution kinetics are dependent on the particle size distribution of the alloy. An alloy with composition Co = 0.77 at. pct Si was heat-treated in order to obtain rather coarse spherical particles (1 to 10 μn). The size distribution of the particles was found to be close to the log-normal distribution. At high temperatures, when the solvus concentration was well above Co, the experimental values were very close to the values of the model which predicted the highest dissolution rates. At lower temperatures, when the solvus concentration was closer to C o, the experimental values lay in between the values predicted by the two models. The results clearly demonstrate that a size distribution of particles must be included in the model if an accurate prediction of the dissolution kinetics is to be achieved.

  20. Kinetics of small single particle combustion of zirconium alloy

    SciTech Connect

    Wei Haoyan; Yoo, Choong-Shik

    2012-01-15

    We present quantitative kinetic information regarding small, 1-10 {mu}m in diameter, single particle combustion of Zr-rich metal alloy foils subjected to either mechanical impacts or laser-ablation. The lights from combustion of metal fragments were recorded on a high-speed camera. The particle size was determined by the motion analysis of individual particle trajectory based on an aerodynamic drag law and further verified by the microstructure and chemical composition analysis of recovered post-burn particles. The measured particle sizes show a log-normal distribution centered at around 3.1 {mu}m in diameter, and the composition of recovered particles is that of fully oxidized ZrO{sub 2}. The temperature evolution of each particle along the space/time-trajectory is determined based on the thermal emission from combustion using a single-color photographic spectro-pyrometry. The result indicates that the particle has reached the maximum combustion temperature of 4000 K, well beyond the melting temperature of ZrO{sub 2}, and undergone the solidification of molten ZrO{sub 2} during the cooling stage. It also shows that the maximum combustion temperature decreases linearly with increasing the particle diameter, following the correlation t aD{sup 1.5-1.8} between the burn time (t) and the particle diameter (D). Combining the particle size, the burn time, and the particle temperature, both temperature and mass burn rates are obtained as a function of particle size. As the particle size increases, the temperature burn rate decreases, whereas the mass burn rate goes in the opposite direction.

  1. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  2. Magnetization of nano-fine particles of Pd/Ni alloys

    NASA Astrophysics Data System (ADS)

    Nunomura, N.; Teranishi, T.; Miyake, M.; Oki, A.; Yamada, S.; Toshima, N.; Hori, H.

    1998-01-01

    In order to investigate the giant magnetic moment problem in nano-fine Pd alloys particles, enough amount of Pd/Ni fine particles with quite narrow diameter distribution have been prepared by chemical method. The magnetization of Pd/Ni alloy ultrafine particles has been systematically investigated by using a SQUID magnetometer. The magnetization remarkably increases above the concentration of 8% of Ni. This result indicates the giant moment in the ultrafine Pd/Ni alloy particles.

  3. Cell damage in vitro following direct contact with fine particles of titanium, titanium alloy and cobalt-chrome-molybdenum alloy.

    PubMed

    Evans, E J

    1994-07-01

    Fibroblastic cells in vitro were exposed to powders of titanium, titanium-aluminium-vanadium alloy and cobalt-chrome-molybdenum (Co-Cr-Mo) alloy, either in direct contact with the cells or separated from the cells by a microporous membrane. Fine particles of all the materials reduced cell growth when in direct contact with cells, but only the finest particles of Co-Cr-Mo alloy caused cell damage through the microporous membrane. This provides further evidence that there is a mechanism of cell damage in vitro which depends on a direct interaction between cells and particles and is largely independent of the chemical nature of the particle.

  4. Secondary particles precipitates in Be-Fe alloys

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Petrov, V. I.; Martynenko, S. S.; Salomasov, V. A.

    2016-12-01

    Mössbauer spectra of monocrystalline Be-Fe alloy (0.85 % Fe) were obtained with the use of resonant detector after isothermal annealing at 600 °C for total duration of 2659 hours, and Mössbauer spectra of coarse-grained Be-Fe alloys (0,09-0,80 % Fe) samples were obtained after annealing at 500-600 °C for different durations. The alloys were prepared from the beryllium of different purity. Spectra of phases were fitted by a convolution equation of the three Lorentz lines. The coherent analysis of the solid solution decomposition process by means of the kinetic law classification and the secondary particles precipitate growth processes based on the diffusion models has been implemented. Nucleation on the numerous dislocation clusters and diffusion growth of the FeBe 11 nano-particles are the dominant processes in the analyzed materials. The phase distribution, the incubation period and the diffusion path were obtained. The dependence between the impurity concentration and Mössbauer parameters of the phases is discussed.

  5. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  6. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  7. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  8. A surface analytical examination of Stringer particles in Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1983-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys was characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used were SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and Li with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  9. A surface-analytical examination of stringer particles in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1984-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys are characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used where SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and LI with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  10. Angular distribution of particles sputtered from metals and alloys

    SciTech Connect

    Wucher, A.; Reuter, W.

    1988-07-01

    The angular distributions of atoms sputtered from pure Cu and Be as well as Cu/sub 98/Be/sub 2/, Cu/sub 71/Zn/sub 29/, Co/sub 3/Au, and WSi/sub 2.3/ were investigated for bombardment with Ar/sup +/ ions of 250 eV and 2 keV under normal incidence. Between polar emission angles theta = 0/sup 0/ and 60/sup 0/, for the higher bombarding energy all observed angular distributions look very much alike and follow essentially a cos/sup 3/ theta law. For the low bombarding energy, however, significant differences between the angular distributions of the alloy constituents are found. The effect, which is most pronounced for CuBe, seems to scale with the atomic mass in the way that the lower mass particles are sputtered preferentially along the surface normal.

  11. Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages.

    PubMed

    Dalal, Ali; Pawar, Vivek; McAllister, Kyron; Weaver, Carolyn; Hallab, Nadim J

    2012-08-01

    The performance of total joint arthroplasty (TJA) depends on the size/shape, material, and amounts of implant debris. Much remains unknown in terms of which types of debris are most reactive. We compared the responses of human periimplant cells, osteoblasts, fibroblasts, and macrophages, exposed to particles of different metal-based particles (i.e., cobalt-chromium-molybdenum (CoCrMo) alloy, titanium (Ti) alloy, zirconium (Zr) oxide, and Zr alloy. CoCrMo-alloy particles were by far the most toxic (p < 0.05) and decreased viability and proliferation of human osteoblasts, fibroblasts, and macrophages by >50% at a dose of only 50 particles per cell. All particle types induced the production of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-8 by osteoblasts, fibroblasts, and monocytes/macrophages. However, the greatest cytokine responses of macrophages were to CoCrMo alloy (TNF-α and IL-8) and Ti alloy (IL-1β). Likewise, the greatest responses of fibroblasts and osteoblasts were to CoCrMo alloy (IL-6 and TNF-α) (i.e., IL-6 300 pg/mL; 30-fold max, TNF-α 150 pg/mL; 15-fold max) versus controls. For macrophages, CoCrMo particles induced IL-8 (> 2000 pg/mL; approx 100-fold max) above controls and were also significantly elevated above levels produced by Zr-based particles. Submicron sized (0.2-0.9 μm) Zr-based particles (originally presumed to be more reactive) induced less toxicity and inflammatory responses when compared with larger (approx 1 μm) CoCrMo-alloy and Ti-alloy particles. Copyright © 2012 Wiley Periodicals, Inc.

  12. Damage by eutectic particle cracking in aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.; Caceres, C. H.; Griffiths, J. R.

    2003-12-01

    The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large π-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large π-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.

  13. In Situ Reaction Kinetics and Microstructure Evolution in Preparing Particle-Containing Copper Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Guo, Mingxing; Wang, Fei; Zhang, Yan; Zhang, Xukai

    2015-04-01

    To improve alloy properties and the distribution level of TiB2 particles in the alloy matrix, mechanical alloying was used to prepare the Cu-TiB2 alloy. But even after long-time ball milling, the in situ reaction between Cu-B and Cu-Ti alloy powders still cannot be observed in the whole process. The kinetics of the in situ reaction during high-temperature heat treatment was first investigated and led to the following results. With the increase of heat-treatment time t or diffusion depth X, both the moving speed Δ x/Δ t of reaction front edge and nucleation rate Z( x) of TiB2 particles decrease at a fast rate and finally stabilize at a very low level. The falling rate of moving speed Δ x/Δ t increases with the decrease of temperature. Although the C Ti' value of the Ti element gives a poor effect on the moving speed Δ x/Δ t, it significantly affects the nucleation rate of TiB2 particles, and its falling rate increases with a decreasing C Ti' value. And for the same diffusion depth X and C Ti', the nucleation rate of TiB2 decreases with increasing the heat-treatment temperature. These results were verified by the microstructure change after the heat treatments at temperatures of 773 K, 973 K, and 1173 K (500 °C, 700 °C, and 900 °C), respectively. Finally, the best combination of ball-milling and heat-treatment conditions was obtained.

  14. Development of porosity in an oxide dispersion strengthened ferritic alloy containing nanoscale oxide particles

    SciTech Connect

    Schneibel, Joachim H; Liu, Chain T; Hoelzer, David T; Mills, Michael J.; Sarosi, P. M.; Hayashi, Taisuke; Wendt, Ullrich; Heyse, Hartmut

    2007-01-01

    The development of porosity at 1000 C in an oxide dispersion strengthened ferritic alloy containing ultra-fine oxide particles with diameters on the order of a few nm is investigated. A comparison with an alloy fabricated by internal oxidation demonstrates that the porosity formation is associated with mechanical alloying with Y2O3 in argon. The pores grow in spite of a sub-micron grain size suggesting that the grain boundaries are not effective paths for removing entrapped gas from the pores.

  15. Structure of strengthening particles of niobium carbide in Fe-Cr-Ni cast refractory alloys

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, S. Yu.; Svyatisheva, E. V.; Anastasiadi, G. P.; Petrov, S. N.

    2017-07-01

    Methods of optical and electron microscopies were used to study the structure of particles of niobium carbide in a cast refractory Fe-Cr-Ni-C alloy modified by Nb and Ti. Particles of niobium carbide in the structure of the cast alloy are predominantly multiphase polycrystalline clusters that are inhomogeneous in the chemical composition and crystal structure. The misorientation angle between individual crystals that compose the carbide particles is 30°-60°. The polycrystalline character of carbides is probably associated with significant thermal stresses that arise at the interphase boundaries in the structure of the alloy upon the primary cooling of the ingot. To explain the polymorphism of the cluster of niobium carbide, a further analysis of the structural and geometrical crystallography is required.

  16. Microstructure and wear property of Fe-Cr13-C hardfacing alloy reinforced by WC particles

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Li, Jiaqi; Bao, Yefeng; Jiang, Yongfeng

    2017-07-01

    Tungsten as the most effective carbide-forming element was added in the Fe-Cr13-C hardfacing alloy to precipitate WC particles. Optical microscope (OM), scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) were used to investigate the microstructures of the hardfacing alloy. The wear resistance was tested through a slurry rubber wheel abrasion test machine, and the wear behavior was also studied. The results indicate that the microstructures of the hardfacing alloy consist of lath martensite, residual austenite and WC particles. The wear resistance can be significantly improved through the addition of tungsten element being provided by the precipitation of WC particles. And the predominant wear mechanism was microcutting with shallow grooves and spalling.

  17. Characterizations of pore and constituent particle populations in 7050-T7451 aluminum plate alloys

    SciTech Connect

    Zhang, J.; Przystupa, M.A.; Luevano, A.J.

    1998-03-01

    Although qualitative relationships between fatigue lives and the sizes of the microstructural features, such as pores and particles, are well known, the quantitative models are lacking because of the unavailability of the required detailed microstructural data. The purpose of this work was to obtain such data for the high porosity (HP) and reduced porosity (RP) variants of the aluminum 7050-T7451 thick-plate alloys. Both alloys had similar tensile and fracture properties, but the reduced porosity variant showed superior fatigue performance attributed to the smaller sizes of the fatigue crack initiating particles and pores. Those size differences, as well as the differences in the through-thickness size gradients, have been characterized in this work. The sizes, shapes, and orientations of particles and pores were analyzed first on the plane sections and then converted to the true three-dimensional (3-D) characteristics using the moment method. In the conversions, the particle and pore shapes have been assumed as triaxial ellipsoids and their size distributions as lognormal. The spatial distributions were quantified using the nearest neighbor spacing method. Results confirmed that the reduced porosity alloy had smaller particles and pores than the high porosity variant. The size distributions in the former were also more confined. In both alloys, the largest particles and pores were at the plate centers and the smallest at the surface. Their spatial distributions could be categorized as random with clusters.

  18. The effect of dispersoid particle size on the superplasticity of Al-Mg alloy

    SciTech Connect

    Chanda, T.; Ghosh, A.K.; Lavender, C.

    1995-12-31

    An Al-Mg alloy containing dispersoid forming elements such as Mn, Cr and Zr was thermomechanically processed with variations in processing history to produce nearly the same grain size ({approximately}6 {micro}m), but different distribution of size and density of intermetallic particles. Mechanical response of these materials were studied within the superplastic deformation regime in terms of stress-strain, stress-strain rate characteristics, cavitation and grain growth, and superplastic tensile elongation. In this work particles of approximately 500 nm size have been found to cause grain refinement after 90% rolling reduction contrary to previous findings of 2 {micro}m particles in an Al-0.45% Cu alloy. Particles with 200 to 500 nm size favorably influence superplastic elongation, but particle sizes in the range of 600 to 900 nm appear to have adverse effect in terms of superplastic flow properties, due to excessive cavitation.

  19. Long-term effects of intraarticular cobalt-chrome alloy wear particles in rats.

    PubMed

    Howie, D W; Vernon-Roberts, B

    1988-01-01

    The long-term effects of cobalt-chrome alloy prosthesis wear particles were studied using intraarticular injection of particles into rat knees and killing the rats at regular periods from 1 week to 2 years following injection. The initial response was synovial ulceration, macrophage infiltration, and necrosis. A transient lymphocyte response was present at 1 week. Fibrosis of the subsynovium occurred subsequently at the sites of necrosis. A semiquantitative assessment of the number of particles and macrophages in the synovium demonstrated that the distribution of particles did not alter during the period from 1 week to 1 year. The macrophage response decreased between 1 and 2 weeks and then remained constant for 1 year. No tumors developed. This study emphasizes that cobalt-chrome wear particles and the associated macrophage response persist in the tissues for up to 2 years. The findings are relevant to the effects of wear of all designs of cobalt-chrome alloy prostheses.

  20. Embedded Shape Memory Alloy Particles for the Self-Sensing of Fatigue Crack Growth in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Leser, William Paul

    Future aerospace vehicles will be built using novel materials for mission conditions that are difficult to replicate in a laboratory. Structural health monitoring and condition-based maintenance will be critical to ensure the reliability of such vehicles. A multi-functional aluminum alloy containing embedded shape memory alloy (SMA) particles to detect fatigue crack growth is proposed. The regions of intensified strain near the tip of a growing fatigue crack cause the SMA particles to undergo a solid-to-solid phase transformation from austenite to martensite, releasing a detectable and identifiable acoustic emission (AE) signal that can be used to locate the crack in the affected component. This study investigates the AE response of two SMA systems, Ni-Ti, and Co-Ni-Al. Tensile (Ni-Ti) and compressive (Co-Ni-Al) tests were conducted to study the strain-induced transformation response in both of the alloy systems. It was found that the critical stress for transformation in both SMA systems was easily identified by a burst of AE activity during both transformation and reverse transformation. AE signals from these experiments were collected for use as training data for a Bayesian classifier to be used to identify transformation signals in a Al7050 matrix with embedded SMA particles. The Al/SMA composite was made by vacuum hot pressing SMA powder between aluminum plates. The effect of hot pressing temperature and subsequent heat treatments (solutionizing and peak aging) on the SMA particles was studied. It was found that, at the temperatures required, Co-Ni-Al developed a second phase that restricted the transformation from austenite to martensite, thus rendering it ineffective as a candidate for the embedded particles. Conversely, Ni-Ti did survive the embedding process and it was found that the solutionizing heat treatment applied after hot pressing was the main driver in determining the final transformation temperatures for the Ni-Ti particles. The effect of hot

  1. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  2. Composite of ceramic-coated magnetic alloy particles

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  3. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures

    NASA Technical Reports Server (NTRS)

    Roberts, Ted A.; Burton, Rodney L.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20-micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 wt pct Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a single-pulse shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed that employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times.

  4. Cu-Ni nano-alloy: mixed, core-shell or Janus nano-particle?

    PubMed

    Guisbiers, Grégory; Khanal, Subarna; Ruiz-Zepeda, Francisco; Roque de la Puente, Jorge; José-Yacaman, Miguel

    2014-12-21

    Bimetallic nanoparticles like Cu-Ni are particularly attractive due to their magnetic and catalytic properties; however, their properties depend strongly on the structure of the alloy i.e. mixed, core-shell or Janus. To predict the alloy structure, this paper investigates the size and shape effects as well as the surface segregation effect on the Cu-Ni phase diagram. Phase maps have been plotted to determine the mixing/demixing behavior of this alloy according the particle shape. Cu-Ni nanoalloy can form a mixed particle or a Janus one depending on the synthesis temperature. Surface segregation is also considered and reveals a nickel surface-enrichment. Finally, this paper provides a useful roadmap for experimentalists.

  5. Solid-particle erosion behavior of cast alloys used in the mining industry

    NASA Astrophysics Data System (ADS)

    Atapek, Ş. Hakan; Fidan, Sinan

    2015-12-01

    The erosive-wear response of five commercial ferrous-based cast alloys used for crushing was examined in this study. The microstructures of the alloys were modified to elucidate the effect of microstructural features on wear. Erosion tests were conducted using aluminum oxide particles (90-125 μm) at 70 m/s and a normal impact angle (90°). The worn surfaces were characterized by scanning electron microscopy and 3D non-contact laser profilometry. It is found that (i) a pearlitic structure exhibiting a greater plastic deformation than both bainitic and martensitic structures shows the greatest resistance to erosive wear at normal impact and (ii) the fracture characteristics of carbide and graphite particles plays an important role in determining the erosion wear behavior of the cast alloy matrices.

  6. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferraro, Stefano; Timelli, Giulio

    2015-04-01

    The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

  7. Effect of nano-oxide particle size on radiation resistance of iron-chromium alloys

    NASA Astrophysics Data System (ADS)

    Xu, Weizong; Li, Lulu; Valdez, James A.; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2016-02-01

    Radiation resistance of Fe-14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700-1500 He bubbles at the depth of about 150-700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5-4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  8. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Nanbu, H.; Kameyama, Y.; Komotori, J.

    2010-06-01

    In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP) treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  9. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.

    PubMed

    Xu, Jie; Pu, Yuan; Yang, Xiao Jin; Wan, Pingyu; Wang, Rong; Song, Peng; Fisher, Adrian

    2017-09-05

    Water contamination with chlorinated hydrocarbons such as chloroform (CHCl3), carbon tetrachloride (CCl4) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl3, CCl4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl3, CCl4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al13Fe4, Fe3Al and FeAl2) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.

  10. [Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry].

    PubMed

    Avino, P; Manigrasso, M; Fanizza, Carla; Carrai, P; Solfanelli, Linda

    2013-01-01

    The toxicity of welding fumes depends on both chemical composition and ability to penetrate and deposit deeply in the lungs. Their penetration and deposition in the regions of the respiratory system is mainly determined by their size. The knowledge of the size distribution of welding fumes is a crucial information towards the estimate of the doses of toxic compounds delivered into the respiratory tract. Particle number size distribution was continuously measured during different welding operations by means of a Fast Mobility Particle Sizer, which counts and classifies particles, according to their electrical mobility, in 32 size-channels, in the range from 5.6 to 523 nm, with is time resolution. The temporal evolution of submicrometric particles (6-523 nm), nucleation mode particles (6-16 nm) and the fraction 19-523 nm before, during and after the welding operations performed with/without local exhaust ventilation are reported and extensively discussed. Before welding, nucleation mode particles represent about 7% of submicrometric particles; after about 40 s from the welding start, the percent contribution of nucleation mode particles increases to 60%. Total and nucleation mode particle concentrations increase from 2.1 x 10(4) to 2.0 x 10(6) and from 1.6 x 10(3) to 1.0 x 10(6), respectively. The temporal variation of the particle number size distribution across the peaks, evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to high deposition efficiency of the submicrometric particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  11. Enhancement of bronze alloy surface properties by FSP second-phase particle incorporation

    DOE PAGES

    Ajayi, O. O.; Lorenzo-Martin, Cinta

    2017-06-15

    This study presents results of an experimental study to evaluate friction stir processing (FSP) with and without hard second-phase particle incorporation as a means to enhance surface properties and wear performance of C86300 manganese bronze alloy. FSP of flat bronze alloy specimens was conducted with hardened H-13 tool steel to create a 3-mm-thick processed surface layer. The process was also used to incorporate B4C particles, thereby creating a metal-matrix composite layer on the alloy surface. FSP alone was observed to produce substantial reduction in grain size (from an initial value of 350 mu m to 1-5 μm). FSP without particlemore » incorporation resulted in modest surface hardening due to grain refinement and dispersion hardening. Under lubricated contact in block-on-ring testing with a hardened steel counter face, FSP produced substantial reduction (about 3X) in bronze wear after polishing of processing surface roughening. FSP with hard B4C second-phase particle incorporation further reduced wear by up to 20X. The improvement in wear behavior is attributed to grain refinement and load shielding by second-phase particles, as determined by wear mechanism analysis.« less

  12. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  13. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  14. A comparison of fracture behavior of low alloy steel with different sizes of carbide particles

    SciTech Connect

    Wang, G.Z.; Chen, J.H.

    1996-07-01

    The fracture behaviors of low alloy steels with similar grain sizes but different sizes of carbide particles were investigated using precracked and notched specimens. The results indicate that in precracked specimens (COD), steel with coarser carbide particles has a lower toughness than steel with finer carbide particles over a temperature range from {minus}196 C to {minus}90 C. However, in notched specimens (four-point bending (4PB) and Charpy V), these two steels shows similar toughness at low temperature where specimens are fractured by cleavage without fibrous cracking. In the transition temperature range, the steel with coarser carbide particles conversely shows a little higher toughness due to the longer extension length of the fibrous crack. This phenomenon indicates that in precracked specimens, the second-phase particles play a leading role in cleavage fracture, while in notched specimens, the grain size dominates the fracture behavior.

  15. Morphology Control of FeCo Alloy Particles Synthesized by Polyol Process

    SciTech Connect

    Kodama, D.; Sato, Y.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Sato, K.

    2007-03-20

    FeCo alloy is a soft magnetic material that possesses the highest saturation magnetization of 2.4 T and crystallizes in bcc structure as in the case of {alpha}-Fe. However, the particles synthesized were highly agglomerated. Thus, in this paper, an attempt was made to control the morphology of the particles using different types and concentrations of surfactants such as oleic acid, oleyl amine, polyvinylpyrrolidone (PVP), etc., during the synthesis of the particles. Though all the surfactant experimented partially prevented the agglomeration, products had larger size distribution except for PVP, which provided nearly monodispersed particles. Furthermore, the FeCo particles synthesized in the presence of PVP were either cubic or nearly spherical depending on the concentration of Fe.

  16. Morphology Control of FeCo Alloy Particles Synthesized by Polyol Process

    NASA Astrophysics Data System (ADS)

    Kodama, D.; Shinoda, K.; Sato, K.; Sato, Y.; Tohji, K.; Jeyadevan, B.

    2007-03-01

    FeCo alloy is a soft magnetic material that possesses the highest saturation magnetization of 2.4 T and crystallizes in bcc structure as in the case of α-Fe. However, the particles synthesized were highly agglomerated. Thus, in this paper, an attempt was made to control the morphology of the particles using different types and concentrations of surfactants such as oleic acid, oleyl amine, polyvinylpyrrolidone (PVP), etc., during the synthesis of the particles. Though all the surfactant experimented partially prevented the agglomeration, products had larger size distribution except for PVP, which provided nearly monodispersed particles. Furthermore, the FeCo particles synthesized in the presence of PVP were either cubic or nearly spherical depending on the concentration of Fe.

  17. Direct production of nanostructured copper-nickel (Cu-Ni) alloy particles

    SciTech Connect

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    2013-12-16

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 °C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structure and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.

  18. Effects of microstructure on the erosion of Al-Si alloys ny solid particles

    NASA Astrophysics Data System (ADS)

    Shin, Y. W.; Sargent, G. A.; Conrad, H.

    1987-03-01

    The effects of microstructure on the erosion of Al-Si alloys by 40 μm Al2O3 particles were investigated. The impact angle dependence of the erosion rate of Al and the Al-Si alloys exhibited the ductile signature, whereas that for pure Si showed the brittle signature. The eroded surface of pure Al was characterized by craters, lips, overlaps and folds, and platelets; that for pure Si exhibited complex radial and lateral cracking at the impact site. At shallow impact angles these features were elongated in the direction of the tangential component of the velocity in both materials. The measured erosion rates of the Al-Si alloys were found to be in accord with an inverse rule of mixtures based on pure Al and pure Si; better agreement was, however, obtained if pure Al and the eutectic were taken as the two constituents for the hypoeutectic alloys, and pure Si and the eutectic for the hypereutectic alloys. The microstructure size had two effects: (a) scaling with respect to the impact damage zone size and (b) an influence on the physical and mechanical properties which govern material removal. The present results are considered in terms of current models for the erosion of ductile and brittle materials.

  19. Evolution of Yb-particle fractals towards equilibrium morphology on CoYb alloy thin films

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Ding, J. R.

    1991-11-01

    Room temperature ageing and high temperature annealing were conducted to study the restructuring of the ion induced fractal aggregates on CoYb alloy thin films. The evolution of the nonequilibrium fractals towards equilibrium compact clusters was observed by tracing the microstructure change under transmission electron microscopy examination. The fractal aggregates restructured and eventually turned into an equilibrium morphology of Yb particles distributing uniformly on the film surfaces.

  20. The cracking mechanism of silicon particles in an A357 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei; Liu, Wen-Pin

    1996-11-01

    The cracking of Si particles in an A357 Al alloy has been investigated over a spectrum of stress and strain by varying aging strength and applying different tensile strains. The variation of the fraction of broken Si particles with stress, strain, and cleavage plane orientation has been obtained. The features of cracking reveal that cracking of Si particles is a very localized event. A dislocation pileup mechanism is the most probable one among all crack-initiation theories for explaining the behavior. Based on this mechanism, further deduction has been made to obtain the relationship between the fraction of broken particles and metallurgical factors. The present data, along with Gurlandrss and that of Low et al., have been found to verify this relationship for the effect of stress, strain, and cleavage plane orientation.

  1. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  2. Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant.

    PubMed

    Hernández-Pellón, Ana; Fernández-Olmo, Ignacio; Ledoux, Frédéric; Courcot, Lucie; Courcot, Dominique

    2017-05-01

    Numerous studies have associated air manganese (Mn) exposure with negative health effects, primarily neurotoxic disorders. Despite there is not a specific European regulation, institutions such as the World Health Organization (WHO) have proposed an annual average guideline value of 150 ng/m(3). Bioaccessibility and toxicity mechanisms of Mn remain unclear, however it is generally agreed that adverse health effects are strongly linked to particle size and morphology, chemical composition and oxidation state. This study aims to deepen the understanding of the physico-chemical characteristics of PM10 and deposition samples collected in an urban area in the proximities of a ferromanganese alloy plant. Total Mn content was determined by ICP-MS after a microwave-assisted acid digestion. The size, morphology and chemical composition of individual particles were studied by SEM-EDX. XRD was used to identify the major crystalline phases. Most of the particles observed by SEM-EDX contain Mn. 60% of Mn-PM10 particles were spheres of small size and were attributed to condensation processes at the smelting unit. Mn-bearing particles present in deposition were characterized by irregular shapes and bigger sizes, most of them consisting of SiMn slags and Mn ores and alloys, and attributed to diffuse emissions from raw material and product handling and processing. Due to the differences in the characteristics of Mn-bearing particles found in the different matrices, further studies on the potential toxicity and health effects of these particles should be done, especially in relation with the small and spherical particles present in PM10, which are expected to be more problematic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of Solute and Second-Phase Particles on the Texture of Nd-Containing Mg Alloys

    NASA Astrophysics Data System (ADS)

    Hadorn, Jason P.; Hantzsche, Kerstin; Yi, Sangbong; Bohlen, Jan; Letzig, Dietmar; Agnew, Sean R.

    2012-04-01

    Hot-rolled, binary Mg-Nd alloys with compositions ≥0.095 at. pct undergo the texture weakening phenomenon that has been reported in a number of Mg-rare earth (RE) alloys. However, alloys with compositions ≤0.01 at. pct retain a strong basal texture typical of pure Mg and other Mg alloys. Measurements of intragranular misorientation axes obtained using electron backscatter diffraction (EBSD) show that more dilute alloys contain predominantly basal < a > dislocations, while richer alloys contain primarily prismatic < a > dislocations. It is suggested that this change in dislocation content is related to a change in the dynamic recrystallization (DRX) mechanism. Metastable second-phase Mg x Nd1- x intermetallic particles are present within the alloys, and an annealing study indicates that the alloys undergoing texture weakening have grain sizes well predicted by classical Zener drag theory. Even though the more dilute alloys also contain second-phase particles, they are not sufficient to induce pinning. The promotion of nonbasal slip and the reduction in grain boundary mobility due to Zener drag are suggested as controlling mechanisms that promote the observed texture weakening phenomena.

  4. Microstructure Refinement After the Addition of Titanium Particles in AZ31 Magnesium Alloy Resistance Spot Welds

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Liu, L.; Esmaeili, S.; Zhou, Y.

    2012-02-01

    Microstructural evolution of AZ31 magnesium alloy welds without and with the addition of titanium powders during resistance spot welding was studied using optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The fusion zone of AZ31 magnesium alloy welds could be divided into columnar dendritic zone (CDZ) and equiaxed dendritic zone (EDZ). The well-developed CDZ in the vicinity of the fusion boundary was clearly restricted and the coarse EDZ in the central region was efficiently refined by adding titanium powders into the molten pool, compared with the as-received alloy welds. A microstructural analysis showed that these titanium particles of approximately 8 µm diameter acted as inoculants and promoted the nucleation of α-Mg grains and the formation of equiaxed dendritic grains during resistance spot welding. Tensile-shear testing was applied to evaluate the effect of titanium addition on the mechanical properties of welds. It was found that both strength and ductility of magnesium alloy welds were increased after the titanium addition. A TEM examination showed the existence of an orientation matching relationship between the added Ti particles and Mg matrix, i.e., [ {0 1bar{1}0} ]_{{Mg}} // [ { 1bar{2} 1bar{3}} ]_{{Ti}} {{and}} ( {000 2} )_{{Mg}} // ( 10bar{1}0)_{{Ti}} in some grains of Ti polycrystal particles. This local crystallographic matching could promote heterogeneous nucleation of the Mg matrix during welding. The diameter of the added Ti inoculant should be larger than 1.8 µm to make it a potent inoculant.

  5. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al-4Ti Master Alloy.

    PubMed

    Zhao, Jianhua; Wang, Tao; Chen, Jing; Fu, Lu; He, Jiansheng

    2017-02-27

    The Al-4Ti master alloy was fabricated by aluminum (Al) and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and SEM with energy dispersive spectroscopy (EDS). The results showed that various morphologies of TiAl3 particles in the Al-4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al-4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al-4Ti master alloy.

  6. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al–4Ti Master Alloy

    PubMed Central

    Zhao, Jianhua; Wang, Tao; Chen, Jing; Fu, Lu; He, Jiansheng

    2017-01-01

    The Al–4Ti master alloy was fabricated by aluminum (Al) and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and SEM with energy dispersive spectroscopy (EDS). The results showed that various morphologies of TiAl3 particles in the Al–4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al–4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al–4Ti master alloy. PMID:28772598

  7. Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.

    2016-04-01

    The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.

  8. Control of both particle and pore size in nanoporous palladium alloy powders

    SciTech Connect

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.

  9. Control of both particle and pore size in nanoporous palladium alloy powders

    DOE PAGES

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; ...

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less

  10. Morphology of an aluminum alloy eroded by a jet of angular particles impinging at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    The erosion of an aluminum alloy impinged by crushed glass particles at normal incidence was studied. The erosion patterns were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, and surface profilometer measurements. From the analysis of specimens tested at various driving gas pressures and time intervals, four distinct erosion regions were identified. A study of pit morphology and its relationship to cumulative erosion was made. Cutting wear is believed to be the predominant material removal mechanism; some evidence of deformation wear was found during the incubation period.

  11. Single-point scratching of 6061 Al alloy reinforced by different ceramic particles

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Zhang, Liangchi

    1994-11-01

    Aluminium alloys reinforced by ceramic particles have been widely used in aerospace and automotive industries for their high stiffness and wear resistance. However, the machining of such materials is difficult and would usually cause excessive tool wear. The effect of ceramic particles on the cutting mechanisms is also unclear. The purpose of this study is to investigate the cutting mechanisms and the relationship between specific energy of scratching and depth of cut (size effect). The single-point scratch test was carried out on 6061 Al and its composites reinforced by Al2O3 and SiC ceramic particles using a pyramid indenter. The results indicated that the scratch process was composed of rubbing, ploughing, plastic cutting and reinforcement fracture. A simple model was proposed to interpret the apparent size effect. The effect of reinforcement on the specific energy was correlated to the ratio of volume fraction to particle radius. The paper found that for machining MMCs, a larger depth of cut should be used to maintain a lower machining energy, especially for those with a larger ratio of volume fraction to particle radius.

  12. Electromagnetic properties of flake-shaped Fe-Si alloy particles prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Jiang, Jian-Tang; Wang, Zeng-Quan; Gong, Yuan-Xun; Liu, Chao; Zhen, Liang

    2014-11-01

    Flake-shaped Fe-Si alloy particles with high aspect ratios were fabricated by ball milling commercially available Fe-Si powder, aiming to fabricate high-performance microwave absorbing fillers for coatings applied in 1-4 GHz range. To compare with spherical particles, higher permittivity and permeability was observed by using flaky particles as fillers. High aspect ratios contributed to an enhanced dielectric relaxation in the 1-4 GHz band, resulting in an increased permittivity. The thin thickness together with the high resistivity of Fe-Si flakes was believed to be helpful for suppressing the effect of eddy current and thus lead to an increase in the permeability. The electromagnetic wave absorbing (EMA) performances were observed to be enhanced. With a thin thickness of 2 mm, a wide absorption band with a minimum reflection loss of -12 dB was achieved in 1-4 GHz range, when using 75 wt% of flaky Fe-Si particles as fillers. The study indicated that flake-shaped Fe-Si particles were a promising candidate for EMA materials in L and S bands.

  13. Spinel Oxides Growing on Fe—Cr Alloy Particles During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Schneeweiss, O.; Dubský, J.; Voleník, K.; Had, J.; Leitner, J.; Seberíni, M.

    2001-07-01

    Oxidation reactions during plasma spraying of metallic powders give rise to oxide crusts on powder particle surfaces. The first oxidation stage occurs in flight of molten particles. It is usually followed by the second stage after hitting a substrate. To investigate the oxidation products immediately after the first stage, abrupt stopping of in-flight oxidation is possible by trapping and quenching the flying particles in liquid nitrogen. In oxide crusts on plasma sprayed and liquid nitrogen quenched particles of a Fe-12%Cr alloy, two spinel oxides were indicated by Mössbauer spectroscopy and X-ray diffraction. Both are solid solutions of the type Fe3O4 - Cr3O4 (i.e., Fe3- x Cr x O4, 0 ≤ x ≤ 3). One of the oxides, tetragonally distorted spinel, is characterized by the mean value of x ≈ 2.3. It is only stable at very high temperatures. The other spinel oxide is cubic with x slightly lower than 2, i.e. almost stoichiometric chromite FeCr2O4. From thermodynamic considerations it follows that in the Fe3O4 - Cr3O4 system there is no miscibility gap at high temperatures. The simultaneous existence of both oxides is probably due to non-equilibrium conditions during liquid nitrogen quenching of trapped particles.

  14. High temperature high cycle fatigue behavior of new aluminum alloy strengthened by (Co, Ni)3Al4 particles

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Jung, Chang-Yeol; Lee, Kee-Ahn

    2014-03-01

    High cycle fatigue (HCF) behavior of a new heat-resistant aluminum alloy at elevated temperature was investigated. This alloy consists of an α-Al matrix, a small amount of precipitated Mg2Si, and distributed (Co, Ni)3Al4 strengthening particles. HCF tests were conducted with a stress ratio of (R)=0 and a frequency of (F)=30 Hz at 130 °C. The fatigue limit (maximum stress) of this alloy was 120 MPa at 107 cycles. This is a value superior to that of conventional heat-resistant aluminum alloys such as the A319 alloy. Furthermore, regardless of the stress conditions, the new heat-resistant Al alloy has an outstanding fatigue life at high temperatures. The results of fractography observation showed that second phases, especially (Co, Ni)3Al4 particles, were effective to the resistance of fatigue crack initiation and propagation. On the other hand, Mg2Si particles were more easily fractured by the fatigue crack. This study also clarifies the micromechanism of fatigue deformation behavior at elevated temperature related to its microstructure.

  15. Characterization of Wear Particles Generated from CoCrMo Alloy under Sliding Wear Conditions

    PubMed Central

    Pourzal, R.; Catelas, I.; Theissmann, R.; Kaddick, C.; Fischer, A.

    2011-01-01

    Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles. Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol. Particles isolated from tribometer samples had a size of 100 – 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 – 30 nm and 30 – 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr2O3 with no trace of cobalt. It optically appeared that these Cr2O3 particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding

  16. Characterization of Wear Particles Generated from CoCrMo Alloy under Sliding Wear Conditions.

    PubMed

    Pourzal, R; Catelas, I; Theissmann, R; Kaddick, C; Fischer, A

    2011-07-29

    Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles.Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol.Particles isolated from tribometer samples had a size of 100 - 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 - 30 nm and 30 - 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr(2)O(3) with no trace of cobalt. It optically appeared that these Cr(2)O(3) particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding

  17. Effect of Hf-Rich Particles on the Creep Life of a High-strength Nial Single Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Raj, S. V.; Darolia, R.

    1995-01-01

    Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.

  18. Wear behavior of self-lubricating Fe-Cr-C-Mn-Cu alloys: Smearing effect of second phase particles

    NASA Astrophysics Data System (ADS)

    Kim, Ki Nam; Kim, Byung Sik; Shin, Gyeong Su; Park, Myung Chul; Lee, Deok Hyun; Kim, Seon Jin

    2011-08-01

    Newly developed self-lubricating Fe-Cr-C-Mn-Cu cast composite alloys were investigated to study the role of Cu-rich second phase particles which smear on the wear surface during sliding. The wear resistance of the material was improved with an increasing copper concentration. The improved wear resistance was probably obtained by forming a protective tribofilm, which prevented metal-to-metal contact through smearing of the embedded Cu-rich second phase particles. This formation of protective oxide films during sliding is likely to improve the wear resistance of austenitic Fe-Cr-C-Mn-Cu cast composite alloys.

  19. Effect of Particle Size on Wear of Particulate Reinforced Aluminum Alloy Composites at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Pandey, Ratandeep; Panwar, Ranvir Singh; Pandey, O. P.

    2013-11-01

    The present paper describes the effect of particle size on operative wear mechanism in particle reinforced aluminum alloy composites at elevated temperatures. Two composites containing zircon sand particles of 20-32 μm and 106-125 μm were fabricated by stir casting process. The dry sliding wear tests of the developed composites were performed at low and high loads with variation in temperatures from 50 to 300 °C. The transition in wear mode from mild-to-severe was observed with variation in temperature and load. The wear at 200 °C presented entirely different wear behavior from the one at 250 °C. The wear rate of fine size reinforced composite at 200 °C at higher load was substantially lower than that of coarse size reinforced composite. Examination of wear tracks and debris revealed that delamination occurs after run in wear mode followed by formation of smaller size wear debris, transfer of materials from the counter surfaces and mixing of these materials on the contact surfaces. The volume loss was observed to increase with increase in load and temperature. Composite containing bigger size particles exhibit higher loss under similar conditions.

  20. Macrophages detoxify the genotoxic and cytotoxic effects of surgical cobalt chrome alloy particles but not quartz particles on human cells in vitro.

    PubMed

    Papageorgiou, I; Shadrick, V; Davis, S; Hails, L; Schins, R; Newson, R; Fisher, J; Ingham, E; Case, C P

    2008-08-25

    Particles of surgical cobalt chrome alloy are cytotoxic and genotoxic to human fibroblasts in vitro. In vivo orthopaedic patients are exposed to cobalt chrome particles as a result of wear of a joint replacement. Many of the wear debris particles that are produced are phagocytosed by macrophages that accumulate at the site of the worn implant and are disseminated to local and distant lymph nodes the liver and the spleen. In this study we have tested whether this process of phagocytosis could have altered the cytotoxic and genotoxic properties of the cobalt chrome particles. Quartz particles have been investigated as a control. Micron-sized particles of cobalt chrome alloy were internalised by either white cells of peripheral blood or by THP-1 monocytes for 1 week and 1 day, respectively. The particles were then extracted and presented at different doses to fibroblasts for 1 day. There was a reduction of the cytotoxicity and genotoxicity of the cobalt chrome particles after phagocytosis by white cells or THP-1 cells. Cobalt chrome particles that were internalised by fibroblasts also showed a reduction of their cytotoxicity but not their genotoxicity. In contrast the cytotoxicity and genotoxicity of quartz particles was increased after internalisation by THP-1 cells. The surface morphology of the cobalt chrome particles but not the quartz particles was changed after phagocytosis by THP-1 cells. This study suggests that the genotoxic and cytotoxic properties of particles that fall within the size range for phagocytosis may be highly complex in vivo and depend on the combination of material type and previous phagocytosis. These results may have relevance for particle exposure from orthopaedic implants and from environmental or industrial pollution.

  1. Effects of cobalt-chrome alloy wear particles on the morphology, viability and phagocytic activity of murine macrophages in vitro.

    PubMed

    Garrett, R; Wilksch, J; Vernon-Roberts, B

    1983-06-01

    Metallic wear particles were prepared from orthopaedic cobalt-chrome alloy by milling in medium supplemented with 20% foetal calf serum to maintain particle dispersion. The size distribution of particles was determined by sedimentation and centrifugation and particle concentration was assessed using light extinction. Monolayers of mouse peritoneal macrophages were exposed to metal particles at different concentrations for varying periods. After 4 h of exposure to particle concentrations exceeding 30 micrograms/ml there was a progressive decline in cell viability, and light and electron microscopy showed that surviving cells had assumed remarkably smooth profiles and contained abundant endocytosed metal. Phagocytic uptake of polystyrene spherules was inhibited markedly by exposure to metal particles even at concentrations at which macrophages remained 100% viable, and preceded the reduction of viability at higher concentrations. The findings are consistent with a pathological role for the metallic wear particles observed frequently within macrophages in the synovial tissues around loose artificial joints in humans.

  2. Evolution of aluminum iron silicide intermetallic particles during homogenization of aluminum alloy 6063

    NASA Astrophysics Data System (ADS)

    Claves, Steven R.

    As-cast 6xxx aluminum alloys contain beta-Al9Fe2Si 2 intermetallic particles that form at grain boundaries and interdendritic regions during solidification. This secondary phase has a considerable negative influence on the workability of the material during subsequent deformation processing; e.g. it has been linked to the extrusion pick-up defect. To lessen its deleterious effects, beta-Al9Fe2Si2 is transformed to alpha-Al8Fe2Si during the homogenization process, a typical heat treatment cycle at 540--580°C for 6--8 hours. The scientific objective of this Ph.D. research was to increase the understanding of morphological, chemical, and crystallographic aspects of the beta- to alpha-AlFeSi phase transformation. The two AlFeSi phases differ in size, shape, color, chemical composition, crystal structure, and bonding strength with the surrounding aluminum matrix. Various microscopy (optical and electron) techniques have been employed to examine these particle characteristics. This research investigates the particles' evolution during intermediate heat treatment conditions. Light optical microscopy was used to study the size, color, and two-dimensional shapes of AlFeSi particles. As homogenization progresses, microstructures contain long, charcoal-colored needles (beta-Al9Fe2Si 2), which slowly transform to shorter, gray spheroids (alpha-Al 8Fe2Si). Backscatter electron imaging in the scanning electron microscope was used for higher magnification micrographs and more detailed particle measurements. Due to the complex morphologies of the AlFeSi particles, planar imaging was insufficient to accurately describe their shape. Three-dimensional microstructures were obtained via serial sectioning performed on a dual-beam focused ion beam instrument. Particle-matrix interfaces from sequential images were extracted and compiled into isosurfaces. alpha-spheroids possess much lower surface area-to-volume ratios than beta-platelets. For intermediate homogenization times, the alpha

  3. Determination of isoelectric points of metals and metallic alloys by adhesion of latex particles.

    PubMed

    Lefèvre, Grégory; Cerović, Ljiljana; Milonjić, Slobodan; Fédoroff, Michel; Finne, Jörgen; Jaubertie, Anne

    2009-09-15

    A set-up and a method were developed to determine the isoelectric point of metals and metallic alloys samples (stainless steels, inconel, zircaloy, aluminum and dural) by measuring the adhesion rate of negative latex particles. The concentration of polystyrene spheres with surface carboxylate groups (initially 0.5-1 mg L(-1)) in contact with metallic samples was measured as a function of pH and time by turbidimetry. The simulation of measurements by a model predicting the sticking coefficient based on DLVO theory was used for the determination of the isoelectric point from experimental results. It was found that the isoelectric points of aluminum (8.7) and dural (9.1), treated by boiling water, are close to those of hydrated aluminum oxides powders. For stainless steels, inconel and zircaloy, the values of isoelectric points were found to be between 2.4 and 3.0, far below the isoelectric points measured for metallic oxides constituting the alloy surface layer. This difference was explained by two different charging mechanisms: (1) deprotonation of hydroxyl groups on the surface of the metal oxide in suspension or as a thick layer, (2) adsorption of hydroxide ions on a metal surface covered by a thin oxide layer, as observed on hydrophobic surfaces.

  4. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  5. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-01

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  6. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  7. Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age.

    PubMed

    Haynes, D R; Crotti, T N; Haywood, M R

    2000-02-01

    The biological response to prosthetic wear particles is thought to stimulate the bone loss that often leads to prosthetic joint failure. This in vitro study investigates how metal particles corrode under physiological conditions and how biological responses to particles may change as particles age. Cobalt chrome alloy (CoCr) and 316L stainless steel (SS) particles of a similar size, shape, and concentration to those found in revision tissues were used. The release of soluble metal (Co and Cr from CoCr particles and Fe from 316L SS) was markedly reduced with time under physiological conditions. CoCr particles released far more Co than Cr. The biological responses to aged and freshly produced particles were tested using human monocytes because wear particles are usually associated with this type of cell in the periarticular tissues. Aged particles of both metals were markedly less toxic to monocytes than freshly produced particles. Aged particles also appeared to stimulate the release of more IL-6 and prostaglandin E(2) from monocytes. The results show that CoCr and 316L SS particles become less toxic but may induce more bone resorbing mediators as they age in vivo. Copyright 2000 John Wiley & Sons, Inc.

  8. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  9. Deformation and fracture of a particle-reinforced aluminum alloy composite: Part I. Experiments

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Majumdar, B. S.; Miracle, D. B.

    2000-03-01

    Mechanical tests were performed on a powder-metallurgically processed 7093/SiC/15p discontinuously reinforced aluminum (DRA) composite in different heat-treatment conditions, to determine the influence of matrix characteristics on the composite response. The work-hardening exponent and the strain to failure varied inversely to the strength, similar to monolithic Al alloys, and this dependence was independent of the dominant damage mode. The damage consisted of SiC particle cracks, interface and near-interface debonds, and matrix rupture inside intense slip bands. Fracture surfaces revealed particle fracture-dominated damage for most of the heat-treatment conditions, including an overaged (OA) condition that exhibited a combination of precipitates at the interface and a precipitate-free zone (PFZ) in the immediate vicinity. In the highly OA conditions and in a 450°C as-rolled condition, when the composite strength became less than 400 MPa, near-interface matrix rupture became dominant. A combination of a relatively weak matrix and a weak zone around the particle likely contributed to this damage mode over that of particle fracture. Fracture-toughness tests show that it is important to maintain a proper geometry and testing procedure to obtain valid fracture-toughness data. Overaged microstructures did reveal a recovery of fracture toughness as compared to the peak-aged (PA) condition, unlike the lack of toughness recovery reported earlier for a similar 7XXX (Al-Zn-Cu-Mg)—based DRA. The PA material exhibited extensive localization of damage and plasticity. The low toughness of the DRA in this PA condition is explored in detail, using fractography and metallography. The damage and fracture micromechanisms formed the basis for modeling the strength, elongation, toughness, and damage, which are described in Part II of this work.

  10. Phosphatizing of Mg particles to improve the protective performance of Mg-rich primer on A2024 Al alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zuo, Yu; Tang, Yuming; Lu, Xiangyu

    2014-02-01

    Mg-rich primer as a new type protective coating provides cathodic protection for Al alloy. In this paper, a kind of phosphatizing surface treatment on Mg particles was studied in order to improve the protective performance of Mg-rich primer. After treated with phosphoric acid, a protective magnesium phosphate layer was formed on the surface of Mg particles, which had no negative influence on the cathodic protection of the Mg-rich primer for Al alloy. The coating resistance of the treated Mg-rich primer was bigger than that of untreated primer, meanwhile the coating capacitance of the treated Mg-rich primer was smaller than that of untreated primer, suggesting that the barrier effect of the primer was improved and the lifetime was extended. The magnesium phosphate layer could reduce the consumption rate of Mg particles. Meanwhile, the phosphate radicals transported to Al alloy substrate to form a product layer composed of magnesium phosphate and aluminum phosphate on the substrate surface, which decreased the corrosion rate of Al alloy and improved the protective performance of the primer.

  11. Time dependence of solid-particle impingement erosion of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Erosion studies were conducted on 6061-T6511 aluminum alloy by using jet impingement of glass beads and crushed glass particles to investigate the influence of exposure time on volume loss rate at different pressures. The results indicate a direct relationship between erosion-versus-time curves and pitmorphology (width, depth, and width-depth ratio)-versus-time curves for both glass forms. Extensive erosion data from the literature were analyzed to find the variations of erosion-rate-versus-time curves with respect to the type of device, the size and shape of erodent particles, the abrasive charge, the impact velocity, etc. Analysis of the experimental data, obtained with two forms of glass, resulted in three types of erosion-rate-versus-time curves: (1) curves with incubation, acceleration, and steadystate periods (type 1); (2) curves with incubation, acceleration, decleration, and steady-state periods (type 3); and (3) curves with incubation, acceleration, peak rate, and deceleration periods (type 4). The type 4 curve is a less frequently seen curve and was not reported in the literature. Analysis of extensive literature data generally indicated three types of erosion-rate-versus-time curves. Two types (types 1 and 3) were observed in the present study; the third type involves incubation (and deposition), acceleration, and steady-state periods (type 2). Examination of the extensive literature data indicated that it is absolutely necessary to consider the corresponding stages or periods of erosion in correlating and characterizing erosion resistance of a wide spectrum of ductile materials.

  12. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

    NASA Astrophysics Data System (ADS)

    Apaydın, Ramazan Oğuzhan; Ebin, Burçak; Gürmen, Sebahattin

    2016-07-01

    Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

  13. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl₃ Particles.

    PubMed

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-10-26

    A series of Al-4Ti master alloys with various TiAl₃ particles were prepared via pouring the pure aluminum added with K₂TiF₆ or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl₃ particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl₃ particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl₃ particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl₃ particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl₃ particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl₃ particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl₃ particles prepared through different processes was almost identical.

  14. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl3 Particles

    PubMed Central

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-01-01

    A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987

  15. The effect of coarse second phase particles on fatigue crack propagation of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Guerbuez, R.; Alpay, S.P. . Dept. of Metallurgical Engineering)

    1994-06-01

    The objective of this study is to determine the role of the most commonly observed coarse second phase particles; Al[sub 7]Cu[sub 2]Fe, Mg[sub 2]Si and CuAl[sub 2]Mg on the Stage 2 fatigue crack propagation of a 7050 aluminum alloy. The differences in the composition of this alloy when compared to the conventional 7075 alloy are: (1) increased Cu content for additional strengthening during aging and for increasing the temperature range of GP zone stability; (2) replacement of Cr by Zr to reduce quench sensitivity; (3) reduced Fe and Si contents to improve fracture toughness which, however, decreases fatigue crack growth threshold, [Delta]K[sub th], slightly; and (4) increased Zn content for strengthening.

  16. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  17. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    DOE PAGES

    Pei, Zongrui; Max-Planck-Inst. fur Eisenforschung, Duseldorf; Eisenbach, Markus

    2017-02-06

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), themore » local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.« less

  18. Acceleration of the Particle Swarm Optimization for Peierls-Nabarro modeling of dislocations in conventional and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus

    2017-06-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  19. Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation

    NASA Astrophysics Data System (ADS)

    He, Ri; Wang, Mingtao; Zhang, Xiangang; Yaping Zong, Bernie

    2016-06-01

    A phase-field model was established to simulate the refinement effect of different morphological factors of second-phase particles such as Al2O3 on the grain growth of AZ31 magnesium alloy during equal channel angular pressing (ECAP) in realistic spatiotemporal evolution. The simulation results agreed well with limited existing experimental data for the ECAP-processed AZ31 magnesium alloy and were consistent with the law of Zener. Simulations were performed to evaluate the influences of the fraction, size, distribution, and shape of incoherent second-phase particles. The simulation results showed that during high-temperature ECAP processes, the addition of 2 wt.% Al2O3 particles resulted in a strong refinement effect, reducing the grain size by 28.7% compared to that of the alloy without the particles. Nevertheless, when the fraction of particles was greater than 4 wt.%, adding more particles had little effect. In AZ31 Mg alloy, it was found that second-phase particles should have a critical size of 0.5-0.8 μm for the grain refinement effect to occur. If the size is smaller than the critical size, large particles will strongly hinder grain growth; in contrast, if the size is larger than the critical size, large particles will exhibit a weaker hindering effect than small particles. Moreover, the results showed that the refinement effect increased with increasing particle fraction located at grain boundaries with respect to the total particle content. However, the refinement effect was less pronounced when the fraction of particles located at boundaries was greater than 70%. Further simulations indicated that spherical second-phase particles hindered grain growth more than ellipsoid particles and much more than rod-shaped particles when the volume fraction of reinforcing particles was 2%. However, when the volume fraction was greater than 8%, rod-shaped particles best hindered grain growth, and spherical particles exhibited the weakest effect.

  20. An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys

    SciTech Connect

    Gao, M.; Feng, C.R.; Wei, R.P.

    1998-04-01

    To better understand the role of constituent particles in pitting corrosion, analytical electron microscopic studies were performed on the constituent particles in commercial 7075-T6 and 2024-T3 alloys. Five phases, namely, Al{sub 23}CuFe{sub 4} and amorphous SiO{sub 2} in 7075-T6 and Al{sub 2}CuMg, Al{sub 2}Cu, and (Fe,Mn){sub x}Si(Al,Cu){sub y} in 2024-T3, were identified. The crystal structure and chemistry of the Al{sub 23}CuFe{sub 4}, Al{sub 2}CuMg, and Al{sub 2}Cu phases in these alloys are in good agreement with the published data. Small deviations from their stoichiometric compositions were observed and are attributed to the influence of alloy composition on the phase chemistry. For the (Fe,Mn){sub x}Si(Al,Cu){sub y} (approximately, x = 3 and y = 11) phase, a rhombohedral structure, with lattice parameter a = b = c = 1.598 nm and {alpha} = {beta} = {gamma} = 75 deg, was identified and is believed to be a modified form of either Al{sub 8}Fe{sub 2}Si or Al{sub 10}Mn{sub 3}Si. Information from this study provided technical support for studying the electrochemical interactions between the individual particles (or phases) and the matrix. The corrosion results are reported in a companion article.

  1. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 1: Theoretical analysis

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    Frequently, particles get associated with gas bubbles in a melt and their interaction influences the final distribution of particles and porosity in the casting. An analytical model for the separation of a particle from a bubble in melts containing dispersed particles and bubbles is proposed. During centrifugal casting of alloys containing dispersed particles, both the particles and gas bubbles present in the melt move with the centrifugal forces. Using the force balance between surface tension and net centrifugal forces (centrifugal force minus buoyancy force), the critical rotational speed of the mold for the separation of the particles and the bubbles during centrifugal casting is calculated. The critical rotational speed of the mold to separate the particle from the bubble is lower for a small particle attached to a larger bubble, as compared to the case when a large particle is attached to a smaller bubble. For a given bubble size, the critical rotational speed of the mold to separate the bubble from the particle decreases with increasing particle size. For the specific case of spherical 5-{micro}m radius graphite particles dispersed in copper alloy melt, it was found that even at a low semiapical angle of about 9 deg, the critical rotational speed needs to be around 5000 rpm for a bubble size of 500-{micro}m radius and 0.09-m-diameter mold. The rotational speed decreases to 1000 rpm when the graphite particle radius increases to 100 {micro}m for the same bubble size in copper alloy melt.

  2. The Effect of SiC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Abdollahzadeh, A.; Bagheri, B.; Omidvar, H.

    2015-12-01

    Welding and joining of magnesium alloys exert a profound effect on magnesium application expansion, especially in ground and air transportations where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. In the current research, specimens from AZ31 magnesium alloy were welded together using the friction stir process with previously inserted SiC powder particles in the nugget zone. In other words, during the FSW process, the pre-placed SiC particles were stirred throughout the nugget zone of the weld. The results indicated that proper values of rotation and translation speeds led to good appearance of weld zone and suitable distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of FS-welded AZ31 with those of FS-welded one using pre-placed SiC particles showed that the addition of SiC particles decreased the grain size and increased the strength and the formability index.

  3. Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Adam, Khaled F.; Long, Zhengdong; Field, David P.

    2017-04-01

    In 7xxx series aluminum alloys, the constituent large and small second-phase particles present during deformation process. The fraction and spatial distribution of these second-phase particles significantly influence the recrystallized structure, kinetics, and texture in the subsequent treatment. In the present work, the Monte Carlo Potts model was used to model particle-stimulated nucleation (PSN)-dominated recrystallization and grain growth in high-strength aluminum alloy 7050. The driving force for recrystallization is deformation-induced stored energy, which is also strongly affected by the coarse particle distribution. The actual microstructure and particle distribution of hot-rolled plate were used as an initial point for modeling of recrystallization during the subsequent solution heat treatment. Measurements from bright-field TEM images were performed to enhance qualitative interpretations of the developed microstructure. The influence of texture inhomogeneity has been demonstrated from a theoretical point of view using pole figures. Additionally, in situ annealing measurements in SEM were performed to track the orientational and microstructural changes and to provide experimental support for the recrystallization mechanism of PSN in AA7050.

  4. Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Su, Hang; Yoshimura, Takuro; Toda, Hiroyuki; Bhuiyan, Md. Shahnewaz; Uesugi, Kentaro; Takeuchi, Akihisa; Sakaguchi, Nobuhito; Watanabe, Yoshio

    2016-12-01

    The combined effects of hydrogen micropores and intermetallic particles on the voids initiation and growth behavior of Al-Zn-Mg-Cu aluminum alloys during deformation and fracture are investigated with the help of the high-resolution X-ray tomography. It is interesting to note that the high-hydrogen concentration induced by an EDM cutting process results in the initiation of quasi-cleavage fracture near surface. With the increase of strain, the quasi-cleavage fracture is gradually replaced by dimple fracture. Voids initiation related to the dimple fracture is caused by both intermetallic particles fracture and interfacial debonding between particles and matrix. The nucleation of hydrogen micropores on intermetallic particles accelerates the voids initiation. The existence of triaxial stress ahead of the tip of a quasi-cleavage crack enhances growth rate for both hydrogen micropores and voids.

  5. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-04-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  6. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-01-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  7. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  8. Effects of thermal and mechanical processing on microstructures and desired properties of particle-strengthened copper-chromium-niobium alloys

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth Reed

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and high conductivity at low and high temperatures. This behavior---due to the insoluble and strong Cr2Nb intermetallic phase that forms from the 2:1 Cr/Nb ratio---has put Cu-Cr-Nb alloys at the forefront as the next-generation particle-strengthened Cu alloys for aerospace applications. The initial powder material, produced by Ar-gas atomization, has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates, formed congruently from the melt, are typically ˜1 mum in size, and secondary Cr2Nb particles, precipitated from atomized solid solution, are typically 30--200 nm in size. This study provides the first detailed examination of the stability and strengthening effects of these particles in Cu-Cr-Nb alloys. Extruded Cu-8 Cr-4 Nb exposed to temperatures of up to 1323 K for up to 100 hr sustained a drop in strength of only 25--30%. This investigation also revealed that the primary particles, usually situated at grain boundaries and triple points, provide a direct grain boundary pinning effect, and moreover, an indirect, grain boundary strengthening effect, but virtually no Orowan strengthening effect. The secondary Cr2Nb particles, typically found within grains (and to a lesser extent, at grain boundaries), do provide Orowan strengthening. For extruded material, it was established that grain-boundary strengthening (Hall-Petch effect) accounts for about two-thirds of the overall strength of material, with Orowan effects essentially contributing the remainder. The proven thermal stability, strengthening effects and, more importantly, strength retention, was the driving force to further improve upon these attributes via microstructural refinement of Cu-Cr-Nb alloys. Mechanical milling (MM) of Cu-4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. However, MM also

  9. Nano-size scaling of alloy intra-particle vs. inter-particle separation transitions: prediction of distinctly interface-affected critical behaviour.

    PubMed

    Polak, M; Rubinovich, L

    2016-07-21

    Phase-separation second-order transitions in binary alloy particles consisting of ∼1000 up to ∼70 000 atoms (∼1-10 nm) are modeled focusing on the unexplored issue of finite-size scaling in such systems, particularly on evaluation of correlation-length critical exponents. Our statistical-thermodynamic approach is based on mean-field analytical expression for the Ising model free energy that facilitates highly efficient computations furnishing comprehensive data for fcc rectangular nanoparticles (NPs). These are summed up in intra- and inter-particle scaling plots as well as in nanophase separation diagrams. Temperature-induced variations in the interface thickness in Janus-type intra-particle configurations and NP size-dependent shifts in the critical temperature of their transition to solid-solution reflect power-law behavior with the same critical exponent, ν = 0.83. It is attributed to dominant interfacial effects that are absent in inter-particle transitions. Variations in ν with nano-size, as revealed by a refined analysis, are linearly extrapolated in order to bridge the gap to larger particles within and well beyond the nanoscale, ultimately yielding ν = 1.0. Besides these findings, the study indicates the key role of the surface-area to volume ratio as an effective linear size, revealing a universal, particle-shape independent, nanoscaling of the critical-temperature shifts.

  10. Nano-Particle Formation of Mn/HA on the Ti-35Ta-xNb Alloy by Electrochemical Methods.

    PubMed

    Jo, Chae-Ik; Choe, Han-Cheol

    2015-08-01

    In this study, nano-particle formation of Mn/HA on the Ti-35Ta-xNb alloy by electrochemical methods has researched using various experiments. These alloys were performed by arc-melting furnace and then heat treated for 1000 °C at 12 h in Ar gas atmosphere and quenched at 0 °C water. Hydroxyapatite precipitation has been synthesized from 5 mM Ca(NO3)2 · 4 H2O+3 mM NH4H2PO4 at 80±1 °C. Manganese doped Hydroxyapatite precipitation has been synthesized from 4.95 mM Ca(NO3)2 · 4 H2O+3 mM NH4H2PO4+0.05 mM MnCl2 · 4 H2O at 80±1 °C. Morphology and structure were examined by FE-SEM, EDS and XRD. The microstructure of Ti-35Ta-xNb alloys was transformed from a phase to α phase as Nb content increased. The nano-scale HA shapes were plate-like precipitates and Mn doped HA shapes were net-like precipitates on Ti-35Ta-xNb alloys, and Ca, P and Mn peaks were detected on the Mn/HA deposited surface.

  11. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy.

    PubMed

    Sha, G; Cerezo, A

    2005-01-01

    Field ion microscope images have been used to measure the local evaporation field of a Al3Zr particle in 7050 Al alloy. Using the matrix Al evaporation field (19 V/nm) as a reference, the evaporation field of Al3Zr has been estimated to be 36 V/nm, similar to the theoretical value for the field evaporation of Al2+ or Zr3+ ions. A strong local magnification effect from the large difference in evaporation fields between the particle and matrix has been found to cause a severe distortion of the apparent particle morphology in a three-dimensional atom probe reconstruction when using parameters based on the Al matrix. Use of the measured evaporation field for Al3Zr has allowed accurate reconstruction of the morphology of the particle. A simple worst-case analysis predicts that trajectory overlaps increase with increasing cross-section of particle, and the calculated overlaps agree well with experimental estimates of approximately 1.4-2.0 nm for variations in the particle cross-section from 7 to 12 nm. The chemical composition of Al3Zr in a 7050 Al alloy has been measured to be 64.8-67.7 at% Al, 23.6-24.8 at% Zr, 6.9-9.1 at% Zn, 0.4-0.7 at% Cu, 0.5-1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Specimen analysis temperatures of either 25 or 80 K show little effect on the measured chemical compositions of the particle.

  12. Synthesis of Al2Ca Dispersoids by Powder Metallurgy Using a Mg–Al Alloy and CaO Particles

    PubMed Central

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-01-01

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al2Ca particles via a solid-state reaction between the Mg–Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg–Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)2Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al2Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)2Ca after a long heat treatment. PMID:28773074

  13. A transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys

    SciTech Connect

    Wei, R.P.; Liao, C.M.; Gao, M.

    1998-04-01

    To better understand particle-induced pitting corrosion in aluminum alloys, thin foil specimens of 7075-T6 and 2024-T3 aluminum alloys, with identified constituent particles, were immersed in aerated 0.5M NaCl solution and then examined by transmission electron microscopy (TEM). The results clearly showed matrix dissolution around the iron- and manganese-containing particles (such as Al{sub 23}CuFe{sub 4}), as well as the Al{sub 2}Cu particles. While Al{sub 2}CuMg particles tended to dissolve relative to the matrix, limited local dissolution of the matrix was also observed around these particles. These results are consistent with scanning electron microscopy (SEM) observations of pitting corrosion and are discussed in terms of the electrochemical characteristics of the particles and the matrix.

  14. Alloy Catalyst in a Reactive Environment: The Example of Ag-Cu Particles for Ethylene Epoxidation

    SciTech Connect

    Piccinin, Simone; Zafeiratos, Spiros; Stampfl, Catherine; Hansen, Thomas W.; Haevecker, Michael; Teschner, Detre; Girgsdies, Frank; Knop-Gericke, Axel; Schloegl, Robert; Scheffler, Matthias; Bukhtiyarov, Valerii I.

    2010-01-22

    Combining first-principles calculations and in situ photoelectron spectroscopy, we show how the composition and structure of the surface of an alloy catalyst is affected by the temperature and pressure of the reagents. The Ag-Cu alloy, recently proposed as an improved catalyst for ethylene epoxidation, forms a thin Cu-O surface oxide, while a Ag-Cu surface alloy is found not to be stable. Several possible surface structures are identified, among which the catalyst surface is likely to dynamically evolve under reaction conditions.

  15. The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits.

    PubMed

    Rhalmi, Souad; Charette, Sylvie; Assad, Michel; Coillard, Christine; Rivard, Charles H

    2007-07-01

    This investigation was undertaken to simulate in an animal model the particles released from a porous nitinol interbody fusion device and to evaluate its consequences on the dura mater, spinal cord and nerve roots, lymph nodes (abdominal para-aortic), and organs (kidneys, spleen, pancreas, liver, and lungs). Our objective was to evaluate the compatibility of the nitinol particles with the dura mater in comparison with titanium alloy. In spite of the great use of metallic devices in spine surgery, the proximity of the spinal cord to the devices raised concerns about the effect of the metal debris that might be released onto the neural tissue. Forty-five New Zealand white female rabbits were divided into three groups: nitinol (treated: N = 4 per implantation period), titanium (treated: N = 4 per implantation period), and sham rabbits (control: N = 1 per observation period). The nitinol and titanium alloy particles were implanted in the spinal canal on the dura mater at the lumbar level L2-L3. The rabbits were sacrificed at 1, 4, 12, 26, and 52 weeks. Histologic sections from the regional lymph nodes, organs, from remote and implantation sites, were analyzed for any abnormalities and inflammation. Regardless of the implantation time, both nitinol and titanium particles remained at the implantation site and clung to the spinal cord lining soft tissue of the dura mater. The inflammation was limited to the epidural space around the particles and then reduced from acute to mild chronic during the follow-up. The dura mater, sub-dural space, nerve roots, and the spinal cord were free of reaction. No particles or abnormalities were found either in the lymph nodes or in the organs. In contact with the dura, the nitinol elicits an inflammatory response similar to that of titanium. The tolerance of nitinol by a sensitive tissue such as the dura mater during the span of 1 year of implantation demonstrated the safety of nitinol and its potential use as an intervertebral fusion

  16. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  17. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    NASA Astrophysics Data System (ADS)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  18. Energetic-particle synthesis of high-strength Al(O) alloys

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Barbour, J.C.; Myers, S.M.; Dugger, M.T.

    1995-09-28

    High-strength Al(O) alloys, initially discovered by ion implantation, have now been produced with electron-cyclotron resonance plasma deposition and pulsed-laser deposition. The mechanical properties of these deposited alloy layers were examined with nanoindentation, and finite element modeling of the indented layer on Si substrates was used to determine yield stresses for the alloys of {approximately} 1--5 GPa. The key to these high strengths is the high density of nanometer-size {gamma}-Al{sub 2}O{sub 3} precipitates formed when high concentrations (5--30 at.%) of oxygen are introduced into aluminum as individual atoms or molecules. The strongest alloys have precipitates as small as 1 nm, implying that such small precipitates block dislocation motion. Based upon previous studies with oxygen-implanted aluminum, improved tribological properties are expected for layers made by the two new deposition methods.

  19. Atomistic modeling of the reordering process of γ‧ disordered particles in Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Soisson, Frédéric; Caro, Alfredo; Uberuaga, Blas P.

    2016-09-01

    Ni-based alloys are used in nuclear applications, including as a window material at isotope production facilities, withstanding high fluxes of different energetic particles like protons. Irradiation disorders the γ‧ precipitates that in large extent confer the mechanical properties characterizing these materials. Upon disordering, the γ‧ phase transforms into oversaturated γ, degrading the materials properties. Experimentally it is observed that disordering might take place at fairly low irradiation doses. Once the particles are disordered, a competition between dissolution, due to strong concentration gradients in an oversaturated solid solution, and reordering appears. Here, we examine this competition in a model Ni-Al alloy under thermal conditions for different precipitates sizes and temperatures. We observe Al interdiffusion from the supersaturated particle to the matrix. Also, stochasticity appears as an important factor in to where precipitates locate. Stress relaxation seems to modify the precipitation process, with a stronger interface effect compared to rigid lattice simulations.

  20. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    NASA Astrophysics Data System (ADS)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  1. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  2. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  3. Heterogeneous nucleation of β-type precipitates on nanoscale Zr-rich particles in a Mg-6Zn-0.5Cu-0.6Zr alloy

    PubMed Central

    2012-01-01

    Zirconium (Zr) is an important alloying element to Mg-Zn-based alloy system. In this paper, we report the formation of the β-type precipitates on the nanoscale Zr-rich particles in a Mg-6Zn-0.5Cu-0.6Zr alloy during ageing at 180°C. Scanning transmission electron microscopy examinations revealed that the nanoscale Zr-rich [0001]α rods/laths are dominant in the Zr-rich core regions of the as-quenched sample after a solution treatment at 430°C. More significantly, these Zr-rich particles served as favourable sites for heterogeneous nucleation of the Zn-rich β-type phase during subsequent isothermal ageing at 180°C. This research provides a potential route to engineer precipitate microstructure for better strengthening effect in the Zr-containing Mg alloys. PMID:22682092

  4. The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy

    SciTech Connect

    Gall, K.; Yang, N.; Horstemeyer, M.; McDowell, D.L.; Fan, J.

    1999-12-01

    Constant-amplitude high-cycle fatigue tests ({sigma}{sub max} = 133 MPa, {sigma}{sub max}/{sigma}{sub y} = 0.55, and R = 0.1) were conducted on a cylindrical samples machined from a cast A356-T6 aluminum plate: The fracture surface of the sample with the smallest fatigue-crack nucleating defect was examined using a scanning electron microscope (SEM). For low crack-tip driving forces (fatigue-crack growth rates of da/dN {lt} 1 x 10{sup {minus}7} m/cycle), the authors discovered that a small semicircular surface fatigue crack propagated primarily through the Al-1% Si dendrite cells. The silicon particles in the eutectic remained intact and served as barriers at low fatigue-crack propagation rates. when the semicircular fatigue crack inevitably crossed the three-dimensional Al-Si eutectic network, it propagated primarily along the interface between the silicon particles and the Al-1% Si matrix. Furthermore, nearly all of the silicon particles were progressively debonded by the fatigue cracks propagating at low rates, with the exception of elongated particles with a major axis perpendicular to the crack plane, which were fractured. As the fatigue cracks grew with a high crack-tip driving force (fatigue-crack growth rates of da/dN {gt} 1 x 10{sup {minus}6} m/cycle), silicon particles ahead of the crack tip were fractured, and the crack subsequently propagated through the weakest distribution of prefractured particles in the Al-Si eutectic. Only small rounded silicon particles were observed to debond while the fatigue crack grew at high rates. Using fracture-surface markings and fracture mechanics, a macroscopic measure of the maximum critical driving force between particle debonding vs fracture during fatigue-crack growth was calculated to be approximately K{sub max}{sup tr} {approx} 6.0 MPa {radical}m for the present cast A356 alloy.

  5. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  6. Effect of micro-particles on cavitation erosion of Ti6Al4V alloy in sulfuric acid solution.

    PubMed

    Li, D G; Long, Y; Liang, P; Chen, D R

    2017-05-01

    The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1M H2SO4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of TiB2 particles and Ag on the activation energy of Ω phase in Al alloys

    NASA Astrophysics Data System (ADS)

    Melotti, F.; Hirst, T.; Dustan, A.; Griffiths, W. D.

    2016-03-01

    This work analyses the effects of TiB2 reinforcement particles and silver additions on the activation energy of the GP zones and the Ω phase in an aluminium matrix composite (AMC). Several additions of TiB2 and Ag were made to a 2xxx series alloy. Differential scanning calorimetry (DSC) was used to identify the temperature peaks and the Kissinger approach used to calculate activation energies. Results showed that the activation energy for the Ω phase was greatly reduced by the addition of both elements; however, the TiB2 particles were more effective. In addition, experimental results show that the lowest value of the activation energy, 68 kJmol-1, was not affected by the silver content. This value is lower than any value found in literature and suggests that the formation of the Ω phase is related to the pipe diffusion of Cu in Al.

  8. Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro.

    PubMed

    Papageorgiou, Iraklis; Yin, Zhirong; Ladon, Dariusz; Baird, Duncan; Lewis, Andrew C; Sood, Aman; Newson, Roger; Learmonth, Ian D; Case, Charles Patrick

    2007-06-01

    Humans are exposed to metals from industry, the environment and from wear debris from worn orthopaedic joint replacements. Patients exposed to worn cobalt chrome hip replacements show an increase of chromosome aberrations in the bone marrow adjacent to the implant and an increase of chromosome translocations and aneuploidy in the peripheral blood. This study has tested whether particles of surgical cobalt chrome alloy are able to induce similar DNA damage and chromosome aberrations in human cells in vitro. Because increasingly young patients are receiving hip replacements it has also tested whether the response is altered at different cellular age in vitro. Primary human fibroblasts, were tested at different pre senescent population doublings (PD10 (young) and PD35 (older)) to particles of cobalt chrome alloy for up to 15 days. As in patients there was an increase of aneuploidy, chromosome translocations and DNA damage after exposure to the cobalt chrome particles in vitro. The overall level of DNA damage and numerical and structural aberrations was approximately the same in young and older cells. However, the cellular reaction to the DNA damage was different. Older cells showed a greater loss of viability and induction of senescence and a lesser rate of mitosis and cell growth than young cells. They showed less change in transcription, particularly of p38 and caspase 10 mRNA levels, than young cells. They showed more complex aneuploidy in association with unseparated or prematurely separated chromatids. This study suggests that at least part of the chromosome changes in patients with worn implants may be due to direct effects of the metal wear particles from the implant. It would be of interest to test whether the altered reaction of the human cells at different in vitro age might correspond with a different incidence of chromosome aberrations in patients at different ages.

  9. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  10. Microstructure and refinement performance of Al-Ti-C master alloy: Effect of excess Ti on the growth and nucleating ability of TiC particles

    NASA Astrophysics Data System (ADS)

    Svynarenko, Kateryna; Zhang, Yubo; Jie, Jinchuan; Kutsova, Valentyna; Li, Tingju

    2017-09-01

    Al-5Ti-0.2C, Al-0.8Ti-0.2C, Al-8Ti-2C, and Al-10Ti master alloys were prepared and used to investigate the influence of excess Ti on the growth of TiC particles and its ability to nucleate Al-grains. The results of a microstructure analysis of TiC-containing alloys and refined CPAl were interrelated to the results of a refinement test. It was found that the presence of excess Ti is essential at the stage of master alloy preparation, as it facilitates the growth and uniform distribution of TiC within the structure. In Al-5Ti-0.2C alloy containing excess Ti, carbide particles grow faster and to a higher extent (from 0.29 μm to 0.44 μm) compared to Al-0.8Ti-0.2C alloy produced without excess Ti (from 0.29 μm to 0.32 μm). The results support the "Ti-transition zone theory" as the mechanism of grain refinement by TiC-containing master alloys. The refinement performance of Al-5Ti-0.2C is superior compared to the one achieved by adding Al-8Ti-2C and Al-10Ti master alloys in corresponding concentrations. For the TiC particles to become favourable nucleating sites, they must undergo certain interaction with excess Ti at the stage of master alloy preparation.

  11. Effect of addition of soft magnetic alloy particles on the flux trapping in Gd123 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tsuzuki, K.; Zhang, Y.; Kimura, Y.; Izumi, M.

    2010-06-01

    Pinning stability and the introduction of magnetic flux pinning is an essential problem in applications of high-Tc superconductors. Study on the role of addition of a variety of metal oxides into GdBa2Cu3O7-δ (Gd123) bulk superconductors was carried out. We found that the addition of 0.05 wt. % of soft magnetic alloy particles Fe-Cu-Nb-Si-Cr-B (Fe-B) into the Gd123 contributes to the enhancement of the critical current density (Jc) under a wide range of applied magnetic fields up to 3 T. The Fe-B particles refined less than 10 μm by ball milling indicate no remarkable contribution on the Jc under the magnetic field. The reduction of the Ba content resulted in the appearance of a peak of Jc which has been observed in the Gd/Ba solid solution with rich Ba content. These results let us discriminate the effect of the magnetic particles from other conventional flux pinning mechanism. The peak of Jc under magnetic field was not only observed in the part along the c-axis under the seed of the sample but also in the growth sector around the periphery of the Gd123 bulk with Fe-B addition. It indicates that the magnetic particles inclusions play an important role on the homogeneous enhancement of Jc and the high flux pinning performance.

  12. Synthesis of anodizing composite films containing superfine Al 2O 3 and PTFE particles on Al alloys

    NASA Astrophysics Data System (ADS)

    Chen, Suiyuan; Kang, Chen; Wang, Jing; Liu, Changsheng; Sun, Kai

    2010-09-01

    Anodized composite films containing superfine Al 2O 3 and PTFE particles were prepared on 2024 Al alloy using an anodizing method. The microstructures and properties of the films were studied by scanning electron microscopy, optical microscopy and X-ray diffraction. Friction wear tests were performed to evaluate the mechanical properties of the composites. Results indicate that the composite films with reinforced Al 2O 3 and PTFE two-particles have reduced friction coefficients and relatively high microhardness. The friction coefficient can be as small as 0.15, which is much smaller than that of an oxide film prepared under the same conditions but without adding any particles (0.25), while the microhardness can reach as high as 404 HV. When rubbed at room temperature for 20 min during dry sliding friction tests, the wear loss of the film was about 16 mg, which is about the half of that of the samples without added particles. The synthesized composite films that have good anti-wear and self-lubricating properties are desirable for oil-free industrial machinery applications.

  13. Ignition of steel alloys by impact of low-velocity iron/inert particles in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, Frank J.; Mcilroy, Kenneth; Williams, Ralph E.

    1988-01-01

    The ignition of carbon steel and 316 and 304 stainless steels caused by the impact of low-velocity particles (a standard mixture consisting of 2 g of iron and 3 g of inert materials) in gaseous oxygen was investigated using NASA/White Sands Test Facility for the ignition test, and a subsonic particle impact chamber to accelerate the particles that were injected into flowing oxygen upstream of the target specimen. It was found that the oxygen velocities required to ignite the three alloys were the same as that required to ignite the particle mixture. Ignition occurred at oxygen velocities greater than 45 m/sec at 20 to 24 MPa and was found to be independent of pressure between 2 and 30 MPa. Comparison of the present results and the past results from Wegener (1964) with the Compressed Gas Association (CGA) oxygen velocity limits for safe operations indicates that the CGA limits may be excessively conservative at high pressures and too liberal at low pressures.

  14. The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits

    PubMed Central

    Rhalmi, Souad; Charette, Sylvie; Assad, Michel; Coillard, Christine

    2007-01-01

    This investigation was undertaken to simulate in an animal model the particles released from a porous nitinol interbody fusion device and to evaluate its consequences on the dura mater, spinal cord and nerve roots, lymph nodes (abdominal para-aortic), and organs (kidneys, spleen, pancreas, liver, and lungs). Our objective was to evaluate the compatibility of the nitinol particles with the dura mater in comparison with titanium alloy. In spite of the great use of metallic devices in spine surgery, the proximity of the spinal cord to the devices raised concerns about the effect of the metal debris that might be released onto the neural tissue. Forty-five New Zealand white female rabbits were divided into three groups: nitinol (treated: N = 4 per implantation period), titanium (treated: N = 4 per implantation period), and sham rabbits (control: N = 1 per observation period). The nitinol and titanium alloy particles were implanted in the spinal canal on the dura mater at the lumbar level L2–L3. The rabbits were sacrificed at 1, 4, 12, 26, and 52 weeks. Histologic sections from the regional lymph nodes, organs, from remote and implantation sites, were analyzed for any abnormalities and inflammation. Regardless of the implantation time, both nitinol and titanium particles remained at the implantation site and clung to the spinal cord lining soft tissue of the dura mater. The inflammation was limited to the epidural space around the particles and then reduced from acute to mild chronic during the follow-up. The dura mater, sub-dural space, nerve roots, and the spinal cord were free of reaction. No particles or abnormalities were found either in the lymph nodes or in the organs. In contact with the dura, the nitinol elicits an inflammatory response similar to that of titanium. The tolerance of nitinol by a sensitive tissue such as the dura mater during the span of 1 year of implantation demonstrated the safety of nitinol and its potential use as an intervertebral

  15. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  16. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 2: Experiments

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    During centrifugal casting of copper alloys containing graphite particles, both particles and bubbles move under the influence of centrifugal forces and influence the final microstructure, including porosity and the distribution of graphite. The movement of graphite particles and bubbles in the melts of copper alloys, originally containing 7 and 13 vol pct graphite particles and centrifugally cast at 800 and 1900 rpm in horizontal rotating molds, has been examined. Microstructural observations of sections of these centrifugal castings show that the graphite particles are segregated near the inner periphery and the amount of porosity in the graphite-rich zone is higher than the porosity in the graphite-free and transition zones. The intimate association of porosity with graphite particles in the graphite-rich zone was explained on the basis of attachment of graphite particles to bubbles in the melt and the viscosity of the melt, which increases with increasing concentration of graphite particles near the inner periphery of the castings. It was found that the amount of the porosity in the graphite-rich zone increases with volume fraction of graphite particles used in this study; the size of the porosity in the graphite-rich zone also increases with increasing rotational speed of the mold. This suggests that the graphite particles and bubbles were attached to each other in the melt and they did not get separated during centrifugal casting conditions of the present study. The present experiments qualitatively confirm theoretical computations.

  17. Effect of heterogeneous precipitation on age-hardening of Al{sub 2}O{sub 3} particle dispersion Al-4mass% Cu composite produced by mechanical alloying

    SciTech Connect

    Arakawa, S.; Hatayama, T.; Matsugi, K.; Yanagisawa, O.

    2000-04-14

    The acceleration of aging kinetics has been frequently observed in aluminum matrix composites produced by ingot or powder metallurgy. Recently, in the mechanically alloyed (MA) Al-4mass%Cu/Al{sub 2}O{sub 3} composites, the authors have found that the age-hardening response significantly decreases, and that considerable stable {theta} phases are formed at a very short aging time. The purposes of this study are to investigate the local precipitation behaviors, and attempt to clarify the dominant microstructural factors of the decrease in the age-harden ability and the acceleration of the age-hardening kinetics in the Al{sub 2}O{sub 3} particle dispersion Al-4mass%Cu composites produced by mechanical alloying. In order to build a basis for comparison, the age-hardening behaviors of the unreinforced matrix alloy (IM alloy), which is produced by ingot metallurgy technique, are also investigated.

  18. Chemical degradation of drinking water disinfection byproducts by millimeter-sized particles of iron-silicon and magnesium-aluminum alloys.

    PubMed

    Li, Tianyu; Chen, Yongmei; Wan, Pingyu; Fan, Maohong; Yang, X Jin

    2010-03-03

    The candidature of Fe-Si and Mg-Al alloys at millimeter-scale particle sizes for chemical degradation of disinfection byproducts (DBPs) in drinking water systems was substantiated by their enhanced corrosion resistance and catalytic effect on the degradation. The Mg-Al particles supplied electrons for reductive degradation, and the Fe-Si particles acted as a catalyst and provided the sites for the reaction. The alloy particles are obtained by mechanical milling and stable under ambient conditions. The proposed method for chemical degradation of DBPs possesses the advantages of relatively constant degradation performance, long-term durability, no secondary contamination, and ease of handling, storage and maintenance in comparison with nanoparticle systems.

  19. Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Nizery, E.; Proudhon, H.; Buffiere, J.-Y.; Cloetens, P.; Morgeneyer, T. F.; Forest, S.

    2015-09-01

    Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.

  20. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  1. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.

    PubMed

    Midander, Klara; de Frutos, Alfredo; Hedberg, Yolanda; Darrie, Grant; Wallinder, Inger Odnevall

    2010-07-01

    The European product safety legislation, REACH, requires that companies that manufacture, import, or use chemicals demonstrate safe use and high level of protection of their products placed on the market from a human health and environmental perspective. This process involves detailed assessment of potential hazards for various toxicity endpoints induced by the use of chemicals with a minimum use of animal testing. Such an assessment requires thorough understanding of relevant exposure scenarios including material characteristics and intrinsic properties and how, for instance, physical and chemical properties change from the manufacturing phase, throughout use, to final disposal. Temporary or permanent adverse health effects induced by particles depend either on their shape or physical characteristics, and/or on chemical interactions with the particle surface upon human exposure. Potential adverse effects caused by the exposure of metal particles through the gastrointestinal system, the pulmonary system, or the skin, and their subsequent potential for particle dissolution and metal release in contact with biological media, show significant gaps of knowledge. In vitro bioaccessibility testing at conditions of relevance for different exposure scenarios, combined with the generation of a detailed understanding of intrinsic material properties and surface characteristics, are in this context a useful approach to address aspects of relevance for accurate risk and hazard assessment of chemicals, including metals and alloys and to avoid the use of in vivo testing. Alloys are essential engineering materials in all kinds of applications in society, but their potential adverse effects on human health and the environment are very seldom assessed. Alloys are treated in REACH as mixtures of their constituent elements, an approach highly inappropriate because intrinsic properties of alloys generally are totally different compared with their pure metal components. A large

  2. The Correlation of Structural, Chemical, and Electronic Properties of Small Metal Particles and Their Alloys

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The low pressure interaction of CO with small Ru particles supported on ultrahigh vacuum (UHV) cleaved mica was studied using flash thermal desorption, Auger electron microscopy, transmission electron microscopy, and transmission electron diffraction. Average particle sizes for these experiments varied between 1.2 and 16 nm. A careful search for CO decomposition on the Ru particles revealed no evidence of dissociaiton over a temperature range and pressure range of 300 to 550 C and 10 to the minus 11th power to 10 to the minus 6th millibar, respectively. Cas and heat treatments caused significant morphological changes and dispersion in the Ru particles, which affected CO desorptiom These effects were dependent on the particle size.

  3. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact.

    PubMed

    Hedberg, Yolanda; Midander, Klara; Wallinder, Inger Odnevall

    2010-07-01

    Ferrochromium alloys are manufactured in large quantities and placed on the global market for use as master alloys (secondary raw materials), primarily for stainless steel production. Any potential human exposure to ferrochromium alloy particles is related to occupational activities during production and use, with 2 main exposure routes, dermal contact and inhalation and subsequent digestion. Alloy and reference particles exposed in vitro in synthetic biological fluids relevant for these main exposure routes have been investigated in a large research effort combining bioaccessibility; chemical speciation; and material, surface, and particle characteristics. In this paper, data for the dermal exposure route, including skin and eye contact, will be presented and discussed. Bioaccessibility data have been generated for particles of a ferrochromium alloy, stainless steel grade AISI 316L, pure Fe, pure Cr, iron(II,III)oxide, and chromium(III)oxide, upon immersion in artificial sweat (pH 6.5) and artificial tear (pH 8.0) fluids for various time periods. Measured released amounts of Fe, Cr, and Ni are presented in terms of average Fe and Cr release rates and amounts released per amount of particles loaded. The results are discussed in relation to bulk and surface composition of the particles. Additional information, essential to assess the bioavailability of Cr released, was generated by determining its chemical speciation and by providing information on its complexation and oxidation states in both media investigated. The effect of differences in experimental temperature, 30 degrees C and 37 degrees C, on the extent of metal release in artificial sweat is demonstrated. Iron was the preferentially released element in all test media and for all time periods and iron-containing particles investigated. The extent of metal release was highly pH dependent and was also dependent on the medium composition. Released amounts of Cr and Fe were very low (close to the limit of

  4. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  5. High-resolution chemical analysis by STEM-EELS of nanosized oxide particles in a mechanically-alloyed FeCrAl intermetallic

    SciTech Connect

    Morris, D.G. Muñoz-Morris, M.A.

    2015-05-15

    The chemical composition of nanosized oxides has been analysed in a mechanically-alloyed (MA) iron–chromium–aluminium intermetallic containing yttria additions using an aberration-corrected, high-resolution scanning transmission electron microscope (STEM). The oxide particles are seen to contain yttrium and oxygen only, but very little of the matrix metallic elements, while the matrix in the immediate vicinity shows a very low iron content. Possible reasons for the change of matrix composition outside the particle-matrix interface are discussed. - Highlights: • High-resolution chemical analysis of oxide particles was performed using STEM-EELS. • Oxide particles contain Y and O but essentially no elements from the Fe–Cr–Al matrix. • The matrix immediately outside the particles appears to be depleted in Fe. • Diffusion of Y during particle growth possibly transports vacancies to the interface.

  6. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  7. Particle induced gamma and X-ray emission spectroscopies of lithium based alloy coatings

    NASA Astrophysics Data System (ADS)

    Laird, Jamie S.; Hughes, Anthony E.; Ryan, Chris G.; Visser, P.; Terryn, H.; Mol, J. M. C.

    2017-08-01

    Lithium based inhibitors in aerospace coatings are seen as excellent replacements for their chromium counterparts which are both carcinogenic and heavier. However, Li is generally difficult to detect and following changes in its distribution due to corrosion is impossible with many standard techniques. Combining MeV Particle Induced Gamma and X-ray emission provides a powerful tool and in this paper we summarise some recent experiments on such coatings using the CSIRO Nuclear Microprobe. PIGE mapping of the LiCO3 particles and their patterning illustrates how the method will be extremely useful in monitoring surface corrosion.

  8. Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-03-01

    Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.

  9. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Tang, Fei

    2004-01-01

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  10. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    NASA Astrophysics Data System (ADS)

    Suemori, Kouji; Hoshino, Satoshi; Ibaraki, Nobuki; Kamata, Toshihide

    2017-04-01

    We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs) with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C-C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  11. Micro-alloying and the toughness of glasses: Modeling with pinned particles

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ratul; Mishra, Pankaj; Procaccia, Itamar; Samwer, Konrad

    2013-05-01

    The usefulness of glasses, and particularly of metallic glasses, in technological applications is often limited by their toughness, (which is defined as the area under the stress vs. strain curve before plastic yielding). Recently, toughness was found to increase significantly by the addition of small concentrations of foreign atoms that act as pinning centers. We model this phenomenon at zero temperature and quasi-static straining with randomly positioned particles that participate in the elastic deformation, but are pinned in the non-affine return to mechanical equilibrium. We find a very strong effect on toughness via the increase of both the shear modulus and the yield stress as a function of the density of pinned particles. Understanding the results calls for analyzing separately the elastic, or "Born term", and the contributions of the "excess modes" that result from glassy disorder. Finally, we present a scaling theory that collapses the data on one universal curve as a function of rescaled variables.

  12. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles.

    PubMed

    Roedel, Erik Q; Cafasso, Danielle E; Lee, Karen W M; Pierce, Lisa M

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals.

  13. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    SciTech Connect

    Roedel, Erik Q.; Cafasso, Danielle E.; Lee, Karen W.M.; Pierce, Lisa M.

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  14. Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within.

    PubMed

    Howe, James M; Yokota, Takeshi; Murayama, Mitsuhiro; Jesser, William A

    2004-01-01

    In situ heating and electron-beam irradiation in the transmission electron microscope were performed to study melting of Al-11.6 at.% Si alloy submicron particles supported on an amorphous-C thin film. It was found that electron irradiation could be used to melt the particles, even when the hot-stage specimen holder was kept at a much lower temperature than the bulk melting point (i.e. the eutectic temperature) of the particles. The critical current densities required to achieve partial melting increased linearly with the incident electron-beam energy for a given temperature. Comparison between this behavior and analytical calculations indicates that melting under electron-beam irradiation is caused by a temperature rise due to electron thermal spikes in the particles and poor thermal conduction away from the particles. The motion of the crystalline Al nanosphere inside the partially molten particles was also investigated, using the electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistent fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere, and that gravity and the oxide shell on the partially molten particle cause the antipersistent behavior. Another interesting phenomenon observed in this study was that the crystalline Al nanosphere inside the partially molten Al-Si alloy particle followed a focused electron beam as it was moved about on the partially molten particle. This observation suggests that it may be possible to manipulate metallic nanospheres inside opaque liquids using an electron beam.

  15. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    PubMed

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti2Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti2Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti2Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti2Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti2Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti2Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti2Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effects of an airborne-particle abrasion and silica-coating on the bond strength between grooved titanium alloy temporary cylinders and provisional veneering materials.

    PubMed

    Wei, Ann Yu-Chieh; Sharma, Arun B; Watanabe, Larry G; Finzen, Frederick C

    2011-03-01

    Even though mechanical retentive features, such as grooves, are incorporated into the surface of titanium alloy temporary cylinders, a reliable bond to veneering provisional materials is not always achievable for screw-retained provisional implant restorations. There is insufficient information about the effect of tribochemical silica coating on the bond strength between provisional materials and grooved titanium alloy temporary cylinders. The purpose of this study was to evaluate, in vitro, the effect of an airborne-particle abrasion and silica-coating technique on the bond strength between grooved titanium alloy temporary cylinders and provisional veneering bisphenol-A glycidyl methacrylate and polymethyl methacrylate materials. Forty grooved titanium alloy (Ti-6Al-4V) internal connection implant temporary cylinders were used. A disc of veneering material (7.1 × 3.4 mm) was created around the midsection of each cylinder. Forty specimens were divided into 4 groups (n=10): group NoTxPMMA, no surface treatment and polymethyl methacrylate veneering material; group NoTxBisGMA, no surface treatment and BisGMA veneering material; group AbPMMA, airborne-particle abrasion, silica-coating surface treatment (Rocatec), and polymethyl methacrylate; and group AbBisGMA, airborne-particle abrasion, silica-coating surface treatment (Rocatec), and BisGMA. Each specimen was subjected to ultimate shear load testing at the interface of the veneering material and the temporary cylinder in a universal testing machine at a constant crosshead speed of 5 mm/min. Data were analyzed with a 1-way ANOVA (α=.05) followed by post hoc Student-Newman-Keuls test. Each specimen underwent surface observation with a light microscope at ×40 magnification to compare fracture patterns. Airborne-particle abrasion and silica-coating surface treatment significantly lowered the shear bond strength (P<.05). The type of provisional material did not significantly affect the shear bond strength, with or

  17. Effect of Initial Aluminum Alloy Particle Size on the Damage of Carbon Nanotubes during Ball Milling

    PubMed Central

    Zhu, Xian; Zhao, Yu Guang; Wu, Min; Wang, Hui Yuan; Jiang, Qi Chuan

    2016-01-01

    Damage to carbon nanotubes (CNTs) during the fabrication process of CNT reinforced composites has great influence on their mechanical properties. In this study, the 2014 Al with powder sizes of 20, 9 and 5 μm was selected to study the effect of initial particle size on the damage to carbon nanotubes (CNTs) during ball milling. The result shows that for CNTs in the ball milled CNT/Al (with powder size of 20 and 9 μm) mixtures, the intensity ratio of the D band and the G band (ID/IG) first increased and then reached a plateau, mainly because most of the CNTs are embedded, to a certain extent, in the aluminum powder after milling, which could protect the CNTs from damage during further milling. While for CNTs in the ball milled CNT/Al (with powder size of 5 μm) mixture, the ID/IG ratio continues to climb from 1.31 to 2.33 with time, indicating continuous damage to the CNTs occurs during the milling. Differential scanning calorimetry (DSC) analysis demonstrates that the chemical instability increased with an increase in the damage level of CNTs, resulting in the formation of aluminum carbide (Al4C3) at a lower temperature before the melting of aluminum, which is detrimental to their mechanical properties. PMID:28773302

  18. Effect of Initial Aluminum Alloy Particle Size on the Damage of Carbon Nanotubes during Ball Milling.

    PubMed

    Zhu, Xian; Zhao, Yu Guang; Wu, Min; Wang, Hui Yuan; Jiang, Qi Chuan

    2016-03-08

    Damage to carbon nanotubes (CNTs) during the fabrication process of CNT reinforced composites has great influence on their mechanical properties. In this study, the 2014 Al with powder sizes of 20, 9 and 5 μm was selected to study the effect of initial particle size on the damage to carbon nanotubes (CNTs) during ball milling. The result shows that for CNTs in the ball milled CNT/Al (with powder size of 20 and 9 μm) mixtures, the intensity ratio of the D band and the G band (ID/IG) first increased and then reached a plateau, mainly because most of the CNTs are embedded, to a certain extent, in the aluminum powder after milling, which could protect the CNTs from damage during further milling. While for CNTs in the ball milled CNT/Al (with powder size of 5 μm) mixture, the ID/IG ratio continues to climb from 1.31 to 2.33 with time, indicating continuous damage to the CNTs occurs during the milling. Differential scanning calorimetry (DSC) analysis demonstrates that the chemical instability increased with an increase in the damage level of CNTs, resulting in the formation of aluminum carbide (Al₄C₃) at a lower temperature before the melting of aluminum, which is detrimental to their mechanical properties.

  19. Structure-property relationships in Al{sub 2}O{sub 3} short fiber and SiC particle reinforced aluminium alloys

    SciTech Connect

    Harris, S.J.; Cai, H.W.; Weatherburn, P.C.

    1993-12-31

    A study has been made of how Saffil {delta}-Al{sub 2}O{sub 3} fibres and {alpha}-SiC particles influence the microstructure and properties of two types of heat-treatable aluminium alloys, i.e. aluminum-copper and aluminium-copper-magnesium (2124, 2618A) alloys. Natural aging (T4) of the binary Al-Cu alloys was virtually prevented by the reinforcements, while in the case of the AlCu-Mg alloys, hardening did take place at a similar rate. Magnesium additions, it is believed, maintained the concentration of quenched in vacancies thus permitting GPB zone formation and in consequence increases in proof stress and tensile strength values. Artificial aging of these reinforcement composites helped to promote {theta}{prime}(CuAl{sub 2}) precipitation at lower temperatures. These precipitates nucleated on the increased dislocation density which arose from differential thermal effects between reinforcement and matrix. The limit of proportionality, tensile strength and ductility of short fiber reinforced composites are not as well developed as with the particulate systems because of enhanced tensile residual stresses in the matrix, fiber cracking and strong fiber-matrix bonding.

  20. Investigation into the Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy-Based ZrO2-Particle-Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abdizadeh, H.; Baghchesara, M. A.

    2013-11-01

    In the present study, an investigation has been carried out into the influence of ZrO2 content and casting temperature on the mechanical properties and fracture behavior of A356 Al/ZrO2 composites. A356 aluminum alloy matrix composites reinforced with 5, 10 and 15 vol.% ZrO2 were fabricated at 750, 850, and 95 0°C via the stir-casting method. Based on the results obtained, the optimum amount of reinforcement and casting temperature were determined by evaluating the density and mechanical properties of the composites through the use of hardness and tensile tests. The fracture surfaces of composite specimens were also studied to identify the main fracture mechanisms of the composites. The results obtained indicated that all samples fractured due to the interdendritic cracking of the matrix alloy. Reinforcing the Al matrix alloy with ZrO2 particles increased the hardness and ultimate tensile strength of the alloy to the maximum values of 70 BHN and 232 MPa, respectively. The best mechanical properties were obtained for the specimens with 15 vol.% of ZrO2 produced at 75 0°C.

  1. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  2. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  3. Electromagnetic properties of core-shell particles by way of electroless Ni-Fe-P alloy plating on flake-shaped diatomite

    NASA Astrophysics Data System (ADS)

    Zhang, Deyuan; Yuan, Liming; Lan, Mingming; Hu, Yanyan; Cai, Jun; Zhang, Wenqiang; Li, Haiyang

    2013-11-01

    Flake-shaped diatomite particles coated by Ni-Fe-P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni-Fe-P coating, and the phase constitution of the Ni-Fe-P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni-Fe-P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions.

  4. Enhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating.

    PubMed

    Shi, Yong-Juan; Pei, Jia; Zhang, Jian; Niu, Jia-Lin; Zhang, Hua; Guo, Sheng-Rong; Li, Zhong-Hua; Yuan, Guang-Yin

    2017-02-02

    A strategy of suppressing the fast degradation behaviour of Mg-based biomaterials by the introduction of one of Mg degradation products Mg(OH)2 was proposed according to the following degradation mechanism, Mg + 2H2O ⇋ Mg(OH)2 + H2↑. Specifically, Mg(OH)2 submicron particles were mixed into poly (L-lactic acid) (PLLA) to synthesize a composite coating onto hydrofluoric acid-pretreated Mg-Nd-Zn-Zr alloy. The in vitro degradation investigations showed that the addition of Mg(OH)2 particles not only slowed down the corrosion of Mg matrix, but also retarded the formation of gas pockets underneath the polymer coating. Correspondingly, cytocompatibility results exhibited significant improvement of proliferation of endothelial cells, and further insights was gained into the mechanisms how the introduction of Mg(OH)2 particles into PLLA coating affected the magnesium alloy degradation and cytocompatibility. The present study provided a promising surface modification strategy to tailor the degradation behaviour of Mg-based biomaterials.

  5. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposuremore » was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  6. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl2O4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposuremore » was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  7. Enhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating

    PubMed Central

    Shi, Yong-juan; Pei, Jia; Zhang, Jian; Niu, Jia-lin; Zhang, Hua; Guo, Sheng-rong; Li, Zhong-hua; Yuan, Guang-yin

    2017-01-01

    A strategy of suppressing the fast degradation behaviour of Mg-based biomaterials by the introduction of one of Mg degradation products Mg(OH)2 was proposed according to the following degradation mechanism, Mg + 2H2O ⇋ Mg(OH)2 + H2↑. Specifically, Mg(OH)2 submicron particles were mixed into poly (L-lactic acid) (PLLA) to synthesize a composite coating onto hydrofluoric acid-pretreated Mg-Nd-Zn-Zr alloy. The in vitro degradation investigations showed that the addition of Mg(OH)2 particles not only slowed down the corrosion of Mg matrix, but also retarded the formation of gas pockets underneath the polymer coating. Correspondingly, cytocompatibility results exhibited significant improvement of proliferation of endothelial cells, and further insights was gained into the mechanisms how the introduction of Mg(OH)2 particles into PLLA coating affected the magnesium alloy degradation and cytocompatibility. The present study provided a promising surface modification strategy to tailor the degradation behaviour of Mg-based biomaterials. PMID:28150751

  8. Porous Au-Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring.

    PubMed

    Cao, Qi; Yuan, Kaiping; Liu, Qinghe; Liang, Chongyun; Wang, Xiang; Cheng, Yi-Feng; Li, Qingqing; Wang, Min; Che, Renchao

    2015-08-26

    We present a novel porous Au-Ag alloy particles inlaid AgCl membrane as plasmonic catalytic interfaces with real-time, in situ surface-enhanced Raman spectroscopy (SERS) monitoring. The Au-Ag alloy particles inlaid AgCl membranes were obtained via a facile two-step, air-exposed, and room-temperature immersion reaction with appropriate annealing process. Owing to the designed integration of semiconductor component AgCl and noble metal Au-Ag particles, both the catalytic reduction and visible-light-driven photocatalytic activities toward organic contaminants were attained. Specifically, the efficiencies of about 94% of 4-nitrophenol (4-NP, 5 × 10(-5) M) reduction after 8 min of reaction, and degradation of rhodamine 6G (R6G, 10(-5) M) after 12 min of visible light irradiation were demonstrated. Moreover, efficiencies of above 85% of conversion of 4-NP to 4-aminophenol (4-AP) and 90% of R6G degradation were achieved as well after 6 cycles of reactions, by which robust recyclability was confirmed. Further, with distinct SERS signals generated simultaneously from the surfaces of Au-Ag particles under laser excitation, in situ SERS monitoring of the process of catalytic reactions with superior sensitivity and linearity has been realized. Overall, the capability of the Au-Ag particles inlaid AgCl membranes to provide SERS monitored catalytic and visible-light-driven photocatalytic conversion of organic pollutants, along with their mild and cost-effective fabrication method, would make sense for in-depth understanding of the mechanisms of (photo)catalytic reactions, and also future development of potable, multifunctional and integrated catalytic and sensing devices.

  9. Cellular proliferation and cytokine responses of murine macrophage cell line J774A.1 to polymethylmethacrylate and cobalt-chrome alloy particles.

    PubMed

    Prabhu, A; Shelburne, C E; Gibbons, D F

    1998-12-15

    Wear debris from orthopedic joint implants have been postulated to initiate a cascade of complex cellular events that results in aseptic loosening of the prosthesis and eventually in loss of function of the device. The impact of biomaterials used in these devices on host inflammatory response has not been examined extensively. Polymethylmethacrylate (PMMA) and cobalt-chrome alloy (CoCr) are biomaterials widely used in orthopedic implant devices. Macrophages are an important component of the host inflammatory response, and we have examined the effect of PMMA and CoCr particles on the murine macrophage cell line J774A.1. Our objective was to obtain a comprehensive analysis of the particle-macrophage interaction, and we examined a number of basic biological responses of the J774A.1 cell line, including cell proliferation, apoptosis, cytokines secreted into the culture supernatant (TNFalpha, IL-1alpha, IL-6, and IL-12) and mRNA expression of the cytokines (TNFalpha, IL-1alpha, IL-6, IFN-alpha, M-CSF, and TGF-beta) in response to PMMA and CoCr particles. Our results indicate that the relative contribution of PMMA and CoCr particles in J774A.1 activation is negligible, and we observed a change in metabolic activity of J774A.1 cells only at higher concentrations of CoCr particles.

  10. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles

  11. Further Precipitation Reactions Associated with Beta’ (Al3Zr) Particles in Al-Li-Cu-Mg-Zr Alloys

    DTIC Science & Technology

    1988-12-01

    Gregson 8’ precipitation in Al-Li-Mg-Cu-Zr alloys. H.M. Flower J. Mater. Sci. Lett., 3, 829 (1984) 5 P.L. Makin On the ageing of an aluminium-lithium...Technol., 2, 349 (1986) 8 H.M. Flower The effect of composition and heat treatment upon the et al microstructure/property relationships in Al-Li-Cu-Mg...1119 REFERENCES concluded) No. Author Title, etc 10 P.J. Gregon Microstructural control of toughness in aluminium- H.M. Flower lithium alloys. Acta

  12. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the <100> directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  13. Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids.

    PubMed

    Marzun, Galina; Bönnemann, Helmut; Lehmann, Christian; Spliethoff, Bernd; Weidenthaler, Claudia; Barcikowski, Stephan

    2017-05-05

    The role of molecular oxygen dissolved in the solvent is often discussed as being an influential factor on particle oxidation during pulsed laser ablation in liquids. However, the formation of the particles during laser synthesis takes place under extreme conditions that enable the decomposition of the liquid medium. Reactive species of the solvent may then affect particle formation due to a chemical reaction in the reactive plasma. Experimental results show a difference between the role of dissolved molecular oxygen and the contribution from the oxygen in water molecules. Using a metallic Cu target in air-saturated water, laser ablation led to 20.5 wt % Cu, 11.5 wt % Cu2 O, and 68 wt % CuO nanoparticles, according to X-ray diffraction results. In contrast to particles obtained in air-saturated water, no CuO was observed in the colloid synthesized in a Schlenk ablation chamber in completely oxygen-free water. Under these conditions, less-oxidized nanoparticles (25 wt % Cu and 75 wt % Cu2 O) were synthesized. The results show that nanoparticle oxidation during laser synthesis is mainly caused by reactive oxygen species from the decomposition of water molecules. However, the addition of molecular oxygen promotes particle oxidation. Storage of the Cu colloid in the presence of dissolved oxygen leads, due to aging, to nanostructures with a higher oxidation state than the freshly prepared colloid. The XRD pattern of the sample prepared in air-saturated acetone showed no crystalline phases, which is possibly due to small crystallites or low particle concentration. Concentration of the particles by centrifugation showed that in the large fraction (>20 nm), even less oxidized nanoparticles (46 wt % Cu and 54 wt % Cu2 O) were present, although the solubility of molecular oxygen is higher in acetone than in water. The nanoparticles in acetone were stable due to a Cu-catalyzed graphite layer formed on their surfaces. The influence of the solvent

  14. The introduction of fine SiC particles into a molten Al alloy matrix: Application to MMCs preparation via a foundry route

    SciTech Connect

    Kevorkijan, V.M.; Sustarsic, B.

    1995-12-31

    To be castable in both the economical and practical sense, an aluminum MMC must satisfy three basic criteria: (1) the ingot must be remeltable without impairment of its properties, (2) the melt must be amenable to standard aluminum foundry practices, and (3) the casting must be substantially defect-free, having mechanical properties that are both consistent and superior. In order to solve these problems, chemically treated fine SiC particles were first dispersed into a Si melt (at approx. 1,600 C in vacuum of approx. 10{sup {minus}5} Pa). The wettability of SiC by Si{sub (I)} was enhanced by chemical reaction between a carbon layer previously deposited on the surface of the SiC particles and the matrix. When a sufficient number of SiC particles was incorporated into the Si matrix (usually more than 40 wt%), an Al alloy (Al-4 wt% Mg) was carefully added at a controlled rate under vigorous stirring conditions and in a protective atmosphere in order to fit the final matrix composition of Al with 7--12 wt% Si and 1 wt% Mg, without SiC particulate rejection. In this way, a processing route for the production of Al-SiC composites with 10--20 wt% of SiC particles in the size range less than 10 {micro}m was developed.

  15. Effects of Al2O3 Nano-Particles on Corrosion Performance of Plasma Electrolytic Oxidation Coatings Formed on 6061 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Vakili-Azghandi, Mojtaba; Fattah-alhosseini, Arash; Keshavarz, Mohsen K.

    2016-12-01

    Corrosion resistance improvement of plasma electrolyte oxidation coatings on 6061 aluminum alloy in silicate electrolyte containing Al2O3 nano-particles was studied, with particular emphasis on the microstructure, coating growth, and corrosion behavior in 3.5 wt.% NaCl solution. The microstructure of coatings, their thickness, and phase composition were characterized using scanning electron microscopy and x-ray diffraction. All characterization data showed that the maximum coating thickness and lowest amount of porosity were obtained in a low concentration of KOH, a high concentration of Na2SiO3, and moderate concentration of Al2O3 nano-particles in the electrolyte. This combination describes the optimum plasma electrolytic oxidation electrolyte, which has the best conductivity and oxidizing state, as well as the highest incorporation of electrolyte components in the coating growth process. On the other hand, incorporation and co-deposition of Al2O3 nano-particles were more pronounced than SiO3 2- ions in some level of molar concentration, which is due to the higher impact of electron discharge force on the adsorption of Al2O3 nano-particles. The electrochemical results showed that the best protective behavior was obtained in the sample having a coat with the lowest porosity and highest thickness.

  16. Studies of waste-canister compatibility. [Waste forms: Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus SiC

    SciTech Connect

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300/sup 0/C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300/sup 0/C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800/sup 0/C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts.

  17. particles

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Chen, Zhihong; Zhang, Zhengguo; Fang, Xiaoming; Liang, Guozheng

    2014-05-01

    We explore a facile and nontoxic hydrothermal route for synthesis of a Cu2ZnSnS4 nanocrystalline material by using l-cysteine as the sulfur source and ethylenediaminetetraacetic acid (EDTA) as the complexing agent. The effects of the amount of EDTA, the mole ratio of the three metal ions, and the hydrothermal temperature and time on the phase composition of the obtained product have been systematically investigated. The addition of EDTA and an excessive dose of ZnCl2 in the hydrothermal reaction system favor the generation of kesterite Cu2ZnSnS4. Pure kesterite Cu2ZnSnS4 has been synthesized at 180°C for 12 h from the reaction system containing 2 mmol of EDTA at 2:2:1 of Cu/Zn/Sn. It is confirmed by Raman spectroscopy that those binary and ternary phases are absent in the kesterite Cu2ZnSnS4 product. The kesterite Cu2ZnSnS4 material synthesized by the hydrothermal process consists of flower-like particles with 250 to 400 nm in size. It is revealed that the flower-like particles are assembled from single-crystal Cu2ZnSnS4 nanoflakes with ca. 20 nm in size. The band gap of the Cu2ZnSnS4 nanocrystalline material is estimated to be 1.55 eV. The films fabricated from the hierarchical Cu2ZnSnS4 particles exhibit fast photocurrent responses under intermittent visible-light irradiation, implying that they show potentials for use in solar cells and photocatalysis.

  18. Particle Hardening in Creep-Resistant Mg-Alloy MRI 230D Probed by Nanoindenting Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Backes, Björn; Durst, Karsten; Amberger, Dorothea; Göken, Mathias

    2009-02-01

    Two different Mg alloys, AZ91 and MRI 230D, have been investigated with the objective to understand the differences in high-temperature deformation behavior. AZ91 is known for its rather poor creep resistance; in contrast to this, MRI 230D is known to have a rather high resistance against plastic deformation at elevated temperatures. The microstructure and mechanical properties of as-cast and crept specimens of two Mg alloys (AZ91 and MRI 230D) were characterized by nanoindenting atomic force microscopy (NI-AFM). In the cell interior, a significant higher hardness was found for MRI 230D in comparison to AZ91. Precipitates with an average size of about 50 nm found in the cell interior of MRI 230D after creep deformation are discussed as the major hardening component.

  19. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Eivani, A. R.; Ahmed, H.; Zhou, J.; Duszczyk, J.

    2009-10-01

    This research concerns the effect of homogenization treatment on the electrical resistivity of AA7020 aluminum alloy variants with different Zr and Cr contents. Small changes in the Zr and Cr contents of the as-cast alloy increase the electrical resistivity significantly. After employing various homogenization treatments, the electrical resistivity decreases, which is due to the depletion of Zr, Cr, and Mn in the matrix, by forming small dispersoids. The optimum treatment proposed in order to obtain the smallest recrystallized grains is to hold the material at 550 °C for 24 hours, which results in the lowest electrical resistivity. The viability of the proposed treatment was tested through hot compression tests and static annealing. Indeed, the samples homogenized at 550 °C for 24 hours showed the smallest recrystallized grains compared to those homogenized at other temperatures.

  20. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S. K.; Oraon, Ramesh

    2015-06-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of -7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed -13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to -22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy.

  1. Particle Size of Gamma Prime as a Result of Vacuum Heat Treatment of INCONEL 738 Super Alloy

    NASA Astrophysics Data System (ADS)

    Guzman, I.; Granda, E.; Mendez, R.; Lopez, G.; Acevedo, J.; Gonzalez, D.

    2013-04-01

    In this paper, the influence of the cooling rate and cooling media after a standard solution heat treatment on the size and distribution of the gamma prime phase (γ') in the nickel-based super alloy INCONEL 738 in over-aged conditions is described. The volume fraction of the gamma prime depends on the chemical composition of the alloy, the solution treatment temperature and the cooling rate; in over-aged alloys (i.e., with more than 25,000 h of service) the volume fraction of γ' is about 78.8%. However, it has been demonstrated that in order to maintain excellent creep strength a volume fraction of at least 60% or lower is required. In this work the volume fraction was optimized between 40 and 55% by means of a standard solution heat treatment at 1120 °C using different cooling gases. A γ' volume fraction of 54.8% was obtained by using argon as the cooling medium at a cooling rate of 87 °C/min, producing a precipitate of partial distribution of primary and secondary γ'. Better results were obtained in a nitrogen atmosphere at a cooling rate of 287 °C/min, leading to a volume fraction of 40% and obtaining a total re-precipitation of primary and secondary γ'.

  2. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Zhang, Deyuan; Cai, Jun; Zhang, Wenqiang; Yuan, Liming

    2011-12-01

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment.

  3. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  4. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  5. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  6. The effect of polyol on multiple ligand capped silver alloyed nanobimetallic particles in tri-n-octylphosphine oxide and oleic acid matrices

    NASA Astrophysics Data System (ADS)

    Adeyemi Adekoya, Joseph; Olugbenga Dare, Enock; Olurotimi Ogunniran, Kehinde; Oluwasegun Siyanbola, Tolutope; Oyewale Ajani, Olayinka; Osereme Ehi-Eromosele, Cyril; Revaprasadu, Neerish

    2016-12-01

    The syntheses of Ag/M (M is Co, Ni, Pd, Pt and Ru) alloyed nanobimetallic particles in tri-n-octylphosphine oxide and oleic acid matrices were successfully carried out by the successive reduction of ligand capped metal ions with polyols, which resulted in rapid precipitation of some fractal high index faceted hybrid Ag/M bimetal nanoparticles. The optical measurements revealed the existence of modified surface plasmon band and peak broadening resulting from reaction-limited growth processes of the metal sols, making it possible to monitor the changes spectrometrically. The bimetallic nanoparticles were further characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and electron microscopy techniques which confirmed the formation of novel core-shell and alloyed clusters. The Ag/M nanoparticles thus synthesized within TOPO/OA matrices indicated significant reduction potential as a result of their energy band gap 2.65-2.77 eV which points to the fact that they could serve as reducing agents for electrocatalytic reaction.

  7. Influence of shooting angle of polishing particle on surface roughness of a cobalt-chromium alloy using a centrifugal shooting type polishing machine.

    PubMed

    Ono, Takahiro; Ishikawa, Kaori; Yamaba, Osamu; Nokubi, Takashi

    2004-12-01

    The centrifugal shooting type polishing machine is a recently developed apparatus that seeks to improve the efficiency and environment of polishing removable prostheses. In an attempt to optimize the effectiveness of this apparatus, this study examined the influence of the shooting angle of polishing particle on the surface roughness of cobalt-chromium alloy casting specimens. Polishing was performed for three minutes under five shooting angle conditions: 90 degrees, 60 degrees, 45 degrees, 30 degrees, and 15 degrees. Surface roughness (Ra, Sm) was measured after each polishing stage. There were significant differences (p < 0.01) in Ra between shooting angle of 90 degrees (0.95 microm) and shooting angles of 45 degrees (0.62 microm) or less, and in Sm between 90 degrees (207 microm), 60 degrees (350 microm), and shooting angles of 45 degrees (868 microm) or less. These findings indicated that excellent surface texture was produced when shooting angle was 45 degrees or less.

  8. Cr depletion of the second phase particles in a Zr-Sn-Nb-Fe-Cr alloy: A TEM and SIMS study

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Zhou, Wei; Zhang, Jinchao; Liu, Xiankun; Feng, Qijie; An, Xianghai; Tang, Bin; Zhou, Xiaosong; Wang, Hongzu; Peng, Shuming

    2017-08-01

    Transmission electron microscopy (TEM) and Secondary Ion Mass Spectroscopy (SIMS) were used to investigate the microstructural and chemical evolution in a zirconium alloy processed by high pressure torsion (HPT) under 4 GPa at room temperature. Results showed that the grain sizes were significantly reduced and no α to ω phase transformation was detected after the HPT processing. A new phenomenon of which the Cr atoms diffused from the second phase particles (SPPs) to the zirconium matrix was confirmed. Further TEM analysis indicated that a large number of dislocations were generated especially in the vicinity of the SPPs. The possible mechanisms for the absence of the α to ω phase transformation and the Cr depletion of the SPPs were discussed.

  9. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy

    SciTech Connect

    Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Ahzi, Said; Khraisheh, Marwan; Khaleel, Moe

    2013-09-01

    We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has broad commercial application in the marine, aerospace, rail, and automotive industries. However, development of the FSW process for each new application has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material flow and mixing mechanisms. In this paper, we present a novel modeling approach to simulate FSW that may have significant advantages over current finite element or finite difference based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the material’s strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are performed. The temperature history and distribution, grain size, microhardness as well as the texture evolution are presented. Numerical results are found to be in good agreement with experimental observations.

  10. The use of mechanical alloying for the preparation of palladized magnesium bimetallic particles for the remediation of PCBs.

    PubMed

    Coutts, Janelle L; Devor, Robert W; Aitken, Brian; Hampton, Michael D; Quinn, Jacqueline W; Clausen, Christian A; Geiger, Cherie L

    2011-09-15

    The kinetic rate of dechlorination of a polychlorinated biphenyl (PCB-151) by mechanically alloyed Mg/Pd was studied for optimization of the bimetallic system. Bimetal production was first carried out in a small-scale environment using a SPEX 8000M high-energy ball mill with 4-μm-magnesium and palladium impregnated on graphite, with optimized parameters including milling time and Pd-loading. A 5.57-g sample of bimetal containing 0.1257% Pd and ball milled for 3 min resulted in a degradation rate of 0.00176 min(-1)g(-1) catalyst as the most reactive bimetal. The process was then scaled-up, using a Red Devil 5400 Twin-Arm Paint Shaker, fitted with custom plates to hold milling canisters. Optimization parameters tested included milling time, number of ball bearings used, Pd-loading, and total bimetal mass milled. An 85-g sample of bimetal containing 0.1059% Pd and ball-milled for 23 min with 16 ball bearings yielded the most reactive bimetal with a degradation rate of 0.00122 min(-1)g(-1) catalyst. Further testing showed adsorption did not hinder extraction efficiency and that dechlorination products were only seen when using the bimetallic system, as opposed to any of its single components. The bimetallic system was also tested for its ability to degrade a second PCB congener, PCB-45, and a PCB mixture (Arochlor 1254); both contaminants were seen to degrade successfully.

  11. Characterization and Formation of Rod-Shaped (Al,Si)3Ti Particles in an Al-7Si-0.35Mg-0.12Ti (Wt Pct) Alloy

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhu, Yuman; Easton, Mark A.; Rinderer, Barbara; Couper, Mal; Nie, Jian-Feng

    2015-08-01

    In this study, the rod-shaped particles in an Al-7Si-0.35Mg-0.12Ti (wt pct) casting alloy have been characterized using transmission electron microscopy. It is found that these particles invariably contain Ti, Al, and Si and that they have the structure of the equilibrium phase (Al,Si)3Ti. A near-rational orientation relationship is observed between the (Al,Si)3Ti particles and the α-Al matrix phase. For this orientation relationship, the long axes of the (Al,Si)3Ti rods are invariably parallel to the moiré planes defined by the intersection of closest-packed planes of the (Al,Si)3Ti and α-Al phases. In contrast to the (Al,Si)3Ti or Al3Ti particles form directly from the melt act as heterogeneous nucleation sites for aluminum grains and thus grain-refined Al-Si foundry alloys, the (Al,Si)3Ti particles are found to form during solution treatment at temperatures above 673 K (400 °C). Their formation occurs in the center of aluminum grains and/or dendrites which is Ti enriched due to partitioning during solidification. The low diffusivity of Ti in α-Al allows the particles to form in the Ti-enriched areas near the center of grains as the Ti concentration is not able to be homogenized during typical solution treatment times.

  12. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  13. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    NASA Astrophysics Data System (ADS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.; Pękała, M.; Kowalczyk, M.

    2017-07-01

    The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe52-xCoxPt28B20 (x = 0-26) and Fe60-yCoyPt25B15 (y = 0-40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840-880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe52-xCoxPt28B20 alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe60-yCoyPt25B15 ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L10 tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe52-xCoxPt28B20) or (Fe,Co)2B (for Fe60-yCoyPt25B15). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L10 phase and in iron borides. The nanocomposite Fe60-yCoyPt25B15 alloys exhibited significantly larger magnetic remanence and maximum energy products but a smaller coercivity than those observed for the Fe52-xCoxPt28B20 alloys. Co addition caused a reduction of the magnetization and the energy product in both series of the alloys. The largest magnetic remanence of 0.87 T and the highest energy product (BH)max = 80 kJ/m3 were obtained for the Co-free Fe52Pt28B20 alloy while the largest coercivity (HC > 950 kA/m) was observed for the Fe50Co10Pt25B15 and Fe30Co30Pt25B15 alloys. Differences in the hard magnetic properties of the nanocomposite alloys were related to different phase compositions influencing the strength of

  14. Characteristics and in vitro response of thin hydroxyapatite-titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions.

    PubMed

    Yeung, W K; Sukhorukova, I V; Shtansky, D V; Levashov, E A; Zhitnyak, I Y; Gloushankova, N A; Kiryukhantsev-Korneev, P V; Petrzhik, M I; Matthews, A; Yerokhin, A

    2016-02-12

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti-6Al-4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic

  15. Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    PubMed Central

    Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.

    2016-01-01

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of

  16. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  17. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  18. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  19. Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe—3wt.%Si alloys

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Meng, Li; Wang, Hongcai; Yan, Guochun; Mao, Weimin

    2016-03-01

    Manganese sulfide is often referred to as one of important inhibitors in grain-oriented electrical steels, which is of great importance to yield strong Goss texture. However, the early stage of nucleation for such inhibitors and their evolution during the processing has not been well understood. In present work we selected a Fe—3.12wt.%Si—0.11wt.%Mn—0.021wt.%S model system and used FE-SEM and atom probe tomography (APT) to investigate the precipitation behavior of MnS inhibitors at near atomic scale. It was found that the Si—S enriched clusters with sizes of 5—15 nm were formed close to the MnS particles. The density of inhibitors decreased after large pseudo-plane-strain compression because of the effect of dislocation motion, and then slightly increased again when sample was aged at 200°C for 48 h. The dislocations and grain boundaries can act as fast diffusion paths and assist the reemergence of Si—S enriched clusters.

  20. Weldable ductile molybdenum alloy development

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.; Ohriner, E. K.; Byun, T. S.; Miller, M. K.; Snead, L. L.

    2008-12-01

    Molybdenum and its alloys are attractive structural materials for high-temperature applications. However, various practical issues have limited its use. One concern relates to the loss of ductility occurring in the heat-affected weld zone caused by segregation of oxygen to grain boundaries. In this study, a series of arc melted molybdenum alloys have been produced containing controlled additions of B, C, Zr, and Al. These alloys were characterized with respect to their tensile properties, smooth bend properties, and impact energy for both the base metal and welds. These alloys were compared with a very high purity low carbon arc cast molybdenum reference. For discussion purposes the alloys produced are separated into two categories: Mo-Al-B alloys, and Mo-Zr-B alloys. The properties of Mo-Zr-B alloy welds containing higher carbon levels exhibited slight improvement over unalloyed molybdenum, though the base-metal properties for all Mo-Zr-B alloys were somewhat inconsistent with properties better, or worse, than unalloyed molybdenum. A Mo-Al-B alloy exhibited the best DBTT values for welds, and the base metal properties were comparable to or slightly better than unalloyed molybdenum. The Mo-Al-B alloy contained a low volume fraction of second-phase particles, with segregation of boron and carbon to grain boundaries believed to displace oxygen resulting in improved weld properties. The volume fractions of second-phase particles are higher for the Mo-Zr-B alloys, and these alloys were prone to brittle fracture. It is also noted that these Mo-Zr-B alloys exhibited segregation of zirconium, boron and carbon to the grain boundaries.

  1. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. Respiratory manganese particle size, time-course and neurobehavioral outcomes in workers at a manganese alloy production plant.

    PubMed

    Park, Robert M; Bouchard, Maryse F; Baldwin, Mary; Bowler, Rosemarie; Mergler, Donna

    2014-12-01

    The progression of manganism with chronic exposure to airborne manganese (Mn) is not well understood. Here, we further investigate the findings on exposure and neurobehavioral outcomes of workers from a silico- and ferromanganese production plant and non-exposed workers from the same community in 1990 and 2004, using a variety of exposure metrics that distinguish particle size and origin within the range of respirable airborne exposures. Mn exposure matrices for large respirable particulate (Mn-LRP, dust) and small respirable particulate (Mn-SRP, fume), based on process origins, were used together with detailed work histories since 1973 (plant opening), to construct exposure metrics including burdens and cumulative burdens with various clearance half-lives. For three out of eight 1990 neurobehavioral tests analyzed with linear regression models, duration of Mn exposure was the best predictor: Luria-Nebraska Neuropsychological Battery - Motor Scale, Trail-Making B and Finger Tapping. The Luria-Nebraska Motor Scale had the strongest association (t ∼ 5.0, p < 10(-6)). For outcomes on three other tests, the duration and Mn-SRP metrics were comparable: Trail Making Test A, Cancellation H and Stroop Color-Word Test (color/word subtest). Delayed Word Recall was best predicted by Mn-SRP (based on square root or truncated air-concentrations). The Word score on the Stroop Color-Word Test was the only outcome for which Mn-LRP was the leading predictor (t = -2.92, p = 0.003), while performance on the WAIS-R Digit Span Test was not significantly predicted by any metric. For outcomes evaluated in both 1990 and 2004, a mixed-effect linear regression model was used to examine estimates of within-individual trends. Duration and Mn-SRP were associated with performance on the Luria-Nebraska Motor Scale, as well as with other outcomes that appeared to have both reversible and progressive features, including Trail Making A and B, Cancellation H and Delayed Word Recall. With the mixed

  4. Respiratory manganese particle size, time-course and neurobehavioral outcomes in workers at a manganese alloy production plant

    PubMed Central

    Park, Robert M.; Bouchard, Maryse F.; Baldwin, Mary; Bowler, Rosemarie; Mergler, Donna

    2015-01-01

    The progression of manganism with chronic exposure to airborne manganese (Mn) is not well understood. Here, we further investigate the findings on exposure and neurobehavioral outcomes of workers from a silico- and ferromanganese production plant and non-exposed workers from the same community in 1990 and 2004, using a variety of exposure metrics that distinguish particle size and origin within the range of respirable airborne exposures. Mn exposure matrices for large respirable particulate (Mn-LRP, dust) and small respirable particulate (Mn-SRP, fume), based on process origins, were used together with detailed work histories since 1973 (plant opening), to construct exposure metrics including burdens and cumulative burdens with various clearance half-lives. For three out of eight 1990 neurobehavioral tests analyzed with linear regression models, duration of Mn exposure was the best predictor: Luria-Nebraska Neuropsychological Battery – Motor Scale, Trail-Making B and Finger Tapping. The Luria-Nebraska Motor Scale had the strongest association (t ~ 5.0, p < 10−6). For outcomes on three other tests, the duration and Mn-SRP metrics were comparable: Trail Making Test A, Cancellation H and Stroop Color-Word Test (color/word subtest). Delayed Word Recall was best predicted by Mn-SRP (based on square root or truncated air-concentrations). The Word score on the Stroop Color-Word Test was the only outcome for which Mn-LRP was the leading predictor (t = −2.92, p = 0.003), while performance on the WAIS-R Digit Span Test was not significantly predicted by any metric. For outcomes evaluated in both 1990 and 2004, a mixed-effect linear regression model was used to examine estimates of within-individual trends. Duration and Mn-SRP were associated with performance on the Luria-Nebraska Motor Scale, as well as with other outcomes that appeared to have both reversible and progressive features, including Trail Making A and B, Cancellation H and Delayed Word Recall. With the

  5. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    SciTech Connect

    Michelic, S.K.; Loder, D.; Reip, T.; Ardehali Barani, A.; Bernhard, C.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  6. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  7. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  8. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  9. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  10. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  11. Particle clearance and histopathology in lungs of C3H/HeJ mice administered beryllium/copper alloy by intratracheal instillation.

    PubMed

    Benson, J M; Holmes, A M; Barr, E B; Nikula, K J; March, T H

    2000-08-01

    Beryllium/copper (BeCu) alloys are commonly used in the electronics, automotive, consumer, defense, and aerospace industries. Some individuals exposed occupationally to BeCu alloys have developed chronic beryllium disease. However, little is known of the toxicity and fate of BeCu alloys in the respiratory tract. To begin to address this question, we investigated the pulmonary toxicity and clearance of BeCu alloy (2% Be; 98% Cu) in mice. Groups of 40 female C3H/HeJ mice were administered 12.5, 25, and 100 microg BeCu alloy or 2 and 8 microg Be metal by intratracheal instillation. Mice were sacrificed at 1 h and 1, 7, 14, and 28 days postinstillation. Left lungs were evaluated for histopathological change. Right lungs were analyzed for Be and Cu content. Twenty-five percent of the high-dose BeCu mice and 7.5% of the mid-dose BeCu mice died within 24 h of dosing. Acute pulmonary lesions included acute alveolitis and interstitial inflammation. Type II epithelial cell hyperplasia and centriacinar fibrosis were present by 7 days after dosing. Lesions persisted through 28 days after instillation. No lesions attributable to alloy exposure were present in liver or kidney. Be metal instillation caused no deaths and minimal pulmonary changes over the time studied, indicating that the pulmonary lesions were due to Cu rather than Be. Cu cleared the lung with a half-time of 0. 5-2 days. Be cleared with a half-time of several weeks or longer. Results of this study suggest that exposure to BeCu alloy is more acutely toxic to lung than Be metal. The results of tissue analyses also indicate that, while the Cu component of the alloy clears the lung rapidly, Be is retained and may accumulate upon repeated exposure.

  12. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  13. Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography

    SciTech Connect

    Silva, Flávio de Andrade; Williams, Jason J.; Müller, Bernd R.; Hentschel, Manfred P.; Portella, Pedro D.; Chawla, Nikhilesh

    2011-11-15

    Microstructural aspects of composites such as reinforcement particle size, shape, and distribution play important roles in deformation behavior. In addition, Fe-rich inclusions and porosity also influence the behavior of these composites, particularly under fatigue loading. Three-dimensional (3-D) visualization of porosity and Fe-rich inclusions in three dimensions is critical to a thorough understanding of fatigue resistance of metal matrix composites (MMCs), because cracks often initiate at these defects. In this article, we have used X-ray synchrotron tomography to visualize and quantify the morphology and size distribution of pores and Fe-rich inclusions in a SiC particle-reinforced 2080 Al alloy composite. The 3-D data sets were also used to predict and understand the influence of defects on the deformation behavior by 3-D finite element modeling.

  14. Comment on "Hydrothermal preparation of analogous matrix minerals of CM carbonaceous chondrites from metal alloy particles" by Y. Peng and Y. Jing [Earth Planet. Sci. Lett. 408 (2014) 252-262

    NASA Astrophysics Data System (ADS)

    Pignatelli, Isabella; Vacher, Lionel G.; Marrocchi, Yves

    2015-10-01

    Peng and Jing (2014) recently reported the results of hydrothermal experiments designed to produce synthetic tochilinite/cronstedtite assemblages analogous to those found in the matrix of CM chondrites (Tomeoka and Buseck, 1982, 1983a, 1983b, 1985; Mackinnon and Zolensky, 1984; Zolensky and Mackinnon, 1986; Rubin et al., 2007; Bourot-Denise et al., 2010; Hewins et al., 2014; Marrocchi et al., 2014). The assemblage was obtained from an alloyed metal particle mixture of Fe, Mg, Al, Si, Cr and Ni under basic, reducing and S2--rich conditions. The hydrothermal syntheses were conducted in Teflon-lined stainless-steel autoclaves at temperature of 106-160 °C for short-duration runs and at 153 °C for long-duration runs. The phases in the assemblage were characterized by XRD and TEM, but only the analytical results of long-duration runs were reported in the article and in the Appendix as supplementary material. The phases identified were: cronstedtite and tochilinite (both present in all run products), tochilinite-cronstedtite intergrowths, polyhedral serpentine, a chrysotile-like phase, nanotube-like structures, and lizardite-like and brucite-like phases. Based on their experimental results, the authors put forward a hypothesis to explain the formation of matrix minerals in CM chondrites proposing that the precursors may be nanometer- to micrometer-sized particles of metal alloys that were altered at low temperatures by interaction with S-rich water under reducing and dynamic pressurized conditions.

  15. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  16. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  17. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  18. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  19. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  20. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation.

    PubMed

    Yokota, Takeshi; Murayama, M; Howe, J M

    2003-12-31

    In situ heating and electron-beam irradiation in the transmission electron microscope were performed to study melting of submicron Al-11.6 at. % Si particles supported on a C thin film. It was found that electron irradiation could be used to melt the particles, even when the hot-stage sample holder was kept at a much lower temperature ( approximately 125 degrees C) than the initial melting point of the particles. Comparison between the experimentally observed melting behavior and analytical calculations indicate that melting of the submicron Al-Si particles under electron-beam irradiation is caused by a temperature rise due to electron thermal spikes in the particles and poor thermal conduction away from the particles. These results have important implications in transmission electron microscopy studies of nanoparticles supported on thin films or poorly conducting substrates.

  1. Alloy design with oxide dispersoids and precipitates

    NASA Technical Reports Server (NTRS)

    Tien, J. K.

    1977-01-01

    The mechanical behavior of particle-strengthened alloys is reviewed. On the basis of this knowledge, it is concluded that second-phase particles, coherent or incoherent, can enhance the flow strength, creep resistance, and stress-rupture life of alloys. Unfortunately, particles are usually not beneficial alloy-design elements if enhanced uniaxial ductility, plane-strain ductility, stress-rupture ductility, and toughness are called for. Such properties as fatigue-crack propagation resistance appear to require, for example, both high strength and high ductility, a situation which can come to pass only when the perennial conflict between strength and ductility is resolved in particle-strengthened systems in particular and in any other material system in general. Wherever possible, the role of coherent and incoherent particles in alloy design is distinguished.

  2. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  3. Effect of Nanosize SiO2 Particles Added into Electrolyte on the Composition and Morphology of Oxide Layers Formed in Alloy AK6M2 Under Microarc Oxidizing

    NASA Astrophysics Data System (ADS)

    Krishtal, M. M.; Ivashin, P. V.; Yasnikov, I. S.; Polunin, A. V.

    2015-11-01

    Oxide layers formed on AK6M2 aluminum-silicon alloy by microarc oxidizing (MO) are studied. The chemical and phase compositions and the morphology of the layers deposited from a base-composition electrolyte with different contents of added SiO2 powder are determined. It is shown that high-temperature phases form in the oxide layer at a specific concentration of SiO2 nanoparticles. This indicates elevation of the effective temperature in the zone of synthesis of the oxide layers in the process of MO. The addition of nanosize particles of SiO2 into the electrolyte influences positively the operating characteristics of the formed oxide layer.

  4. The Effect of Submicron Second-Phase Particles on the Rate of Grain Refinement in a Copper-Oxygen Alloy During Cold Spray

    NASA Astrophysics Data System (ADS)

    Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Shockley, J. Michael; Gauvin, Raynald; Chromik, Richard R.

    2017-07-01

    The effect of non-deformable submicron second-phase particles (d = 200-500 nm) on microstructural refinement during cold spray was examined. Using single particle impact testing, two types of splats were fabricated using two different feedstocks: a Cu-0.21wt.%O powder containing Cu2O second-phase particles and a single-phase Cu. Microstructural evolution analysis using high-resolution electron backscatter diffraction shows grain refinement occurred at a higher rate in the Cu-0.21wt.%O powder. That was due to dynamic recrystallization initiated by particle-stimulated nucleation (PSN). High-strain-rate deformation of cold spray was found to be the key to activate PSN. The present study suggests cold spray is a possible technique to fabricate ultrafine-grained materials by using feedstock containing second-phase particles.

  5. The Effect of Submicron Second-Phase Particles on the Rate of Grain Refinement in a Copper-Oxygen Alloy During Cold Spray

    NASA Astrophysics Data System (ADS)

    Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Shockley, J. Michael; Gauvin, Raynald; Chromik, Richard R.

    2017-10-01

    The effect of non-deformable submicron second-phase particles ( d = 200-500 nm) on microstructural refinement during cold spray was examined. Using single particle impact testing, two types of splats were fabricated using two different feedstocks: a Cu-0.21wt.%O powder containing Cu2O second-phase particles and a single-phase Cu. Microstructural evolution analysis using high-resolution electron backscatter diffraction shows grain refinement occurred at a higher rate in the Cu-0.21wt.%O powder. That was due to dynamic recrystallization initiated by particle-stimulated nucleation (PSN). High-strain-rate deformation of cold spray was found to be the key to activate PSN. The present study suggests cold spray is a possible technique to fabricate ultrafine-grained materials by using feedstock containing second-phase particles.

  6. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  7. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  8. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    SciTech Connect

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size and volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.

  9. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  10. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  11. Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Decker, S.; Martin, S.; Krüger, L.

    2016-01-01

    In this study, varying powder particle size fractions (<25, 25 to 45, 45 to 63 µm) of a TRIP steel powder were compacted by spark plasma sintering (SPS). Densification initiated at a slightly lower temperature with decreasing particle size due to increasing green density. With decreasing powder particle size fraction, the as-sintered materials exhibited smaller grain sizes. Compression tests revealed a slight decrease of the compressive yield strength with increasing particle size and, accordingly, larger grain size. A few large deformation bands formed in bigger grains, while many thin deformation bands were formed in smaller grains. α'-Martensite nuclei formed successively inside the deformation bands, reducing the mean free path of (partial) dislocation slip. Due to the size of the deformation bands, α'-martensite formation started at lower strains with increasing particle size. When α'-martensite formation was initiated, work hardening was influenced more by α'-martensite formation than by the grain size of the steel matrix. Hence, work hardening increased with increasing particle size.

  12. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  13. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  14. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  15. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E; Terpstra, Robert L

    2014-10-21

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.

  16. Wear Particle Atlas. Revised

    DTIC Science & Technology

    1982-06-28

    Nonferrous Metals 27 1.6.2 Copper Alloys 28 1.6.3 Lead /Tin Alloys 32 1,"( Ferrous Oxides 33 1.7.1 Red Oxides of Iron 33 1.7.2 Black...exit end of the ferrogram. Ferrous (magnetic) particles are deposited in strings which follow the field lines of the magnet assembly positioned ueiow...particularly useful in research where it is desired to photograph assemblies of particles requiring a large depth of focus. However, the SEM shows only

  17. Microstructure and Fracture Behavior of Tungsten Heavy Alloys

    SciTech Connect

    Sunwoo, A

    2003-06-01

    The 93% W-5.6% Ni-1.4% Fe and 93.1% W-4.7% Ni-2.2% Co alloys (WHA) provided by Army Research Laboratory (ARL), Aberdeen are characterized to determine the effects of matrix alloying and swaging on the microstructure and fracture behavior. The W particles are oblong with respect to the swaging direction. The microstructure of the W-Ni-Fe alloy reveals good cohesive bonding between W particles, but there is W-matrix interface separation and matrix alloy cracking. The microstructure of the W-Ni-Co alloy reveals regions of good cohesive bonding between W particles, but also regions where some wetting has not occurred by the liquid. No evidence was observed of matrix alloy cracking. The fracture characteristic of WHA is dominantly cleavage of W particles.

  18. Processing and Properties of Mechanical Alloyed Al93Fe3Cr2Ti2 Alloys

    DTIC Science & Technology

    2004-10-01

    Nanomaterials, Aluminum Alloys ABSTRACT Nanostructured A193Fe3Ti2Cr2 alloys were prepared via mechanical alloying (MA) starting from elemental powders...2Cr2 . The aluminum powder had a purity of 99.5 wt% with a mean particle size of 70 ^rn, while the corresponding values for iron, chromium and...increases. 2) All aluminum reflections exhibit broadening even after only 2-hours of milling, indicating the grain size reduction and possibly the

  19. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  20. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  1. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  2. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  3. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  4. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  5. Prediction of the consequences of a high-velocity collision between meteoric particles and elements of a titanium alloy protective structure

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. N.; Afanas'eva, S. A.; Burkin, V. V.; Dudarev, E. F.; Rogaev, K. S.; Tabachenko, A. N.; Khabibullin, M. V.

    2016-11-01

    Calculation-experimental studies of a high-velocity collision between VT1-0 titanium plates and ultrafine- and coarse-grained structures with a steel spherical impactor are illustrated. Fine-grained VT1-0 titanium plate samples have been obtained using the abc pressing method. Ballistic measurements have been performed using a 30-mm smooth-bore ballistic installation at velocities of about 2500 m/s. A high-velocity collision has been calculated in the scope of an elastoplastic model of interacting materials with regard to destruction and a different phase state at velocities reaching 15 km/s. It has been indicated that the mechanical properties of the VT1-0 alloy are improved when proceeding from a coarse-grained structure to an ultrafine- grained structure; however, in this case, the result of shock loading is hardly affected in the considered velocity range. Titanium plates can be used as screens to protect the main structure of the aircraft from a high-velocity collision.

  6. Quasicrystal-reinforced Mg alloys

    PubMed Central

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-01-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. PMID:27877660

  7. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    PubMed

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.

  8. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  9. Alloys formation upon hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.; Perrin, J. M.; Vidal, L.; Vidal, A.

    Satellite materials exposed to the space environment are indeed valuable detectors for cosmic and man-made solid particles Many investigations have been made to deduce the geometric size shape and dynamic incidence angle parameters of these projectiles from the morphology of the impact features Furthermore the chemical analysis of remnants when they are found inside craters can provide valuable information about the nature and the origin of these particles However interpretation difficulties have made necessary laboratory hypervelocity impact tests A number of impacts with well defined angles of incidence and velocities using calibrated projectiles have been performed on various targets Alloys obviously formed from projectile and targets components are found We have studied the links between the morphologies the physical and chemical properties of these alloys and those of the incident particles and the targets When projectiles and targets are made of pure materials such as in laboratory tests we have found a clear connection between the composition of the alloys and the kinetic energy of the projectiles Explanations using phase diagrams are given An extrapolation to complex materials such as those used in solar arrays is presented Further modelling of the alloys formation upon hypervelocity impacts is proposed

  10. The influence of Mg-Zr master alloy microstructure on the corrosion of Mg

    NASA Astrophysics Data System (ADS)

    Gandel, D. S.; Easton, M. A.; Gibson, M. A.; Abbott, T.; Birbilis, N.

    In this study, sixteen Mg-Zr alloys were produced to investigate the role of Zr on corrosion of Mg. Alloys were produced using two different commercial Mg-Zr master alloys commonly used for grain refining Mg, but which contain different Zr particle size distributions. It is seen that the master alloy with a smaller Zr particle size leads to an alloy containing more Zr in solid solution. The ratio of Zr in solid solution and in particle form was observed to have a marked effect on the corrosion of Mg.

  11. [Metallurgical differentiation of cobalt-chromium alloys for implants].

    PubMed

    Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A

    2005-10-01

    Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.

  12. Orthodontic silver brazing alloys.

    PubMed

    Brockhurst, P J; Pham, H L

    1989-10-01

    Orthodontic silver brazing alloys suffer from the presence of cadmium, excessive flow temperatures, and crevice corrosion on stainless steel. Seven alloys were examined. Two alloys contained cadmium. The lowest flow temperature observed was 629 degrees C for a cadmium alloy and 651 degrees C for two cadmium free alloys. Three alloys had corrosion resistance superior to the other solders. Addition of low melting temperature elements gallium and indium reduced flow temperature in some cases but produced brittleness in the brazing alloy.

  13. Treatment of multiple ceramic alloys before recasting.

    PubMed

    Lin, Honglei; Zhang, Hai; Li, Xiurong; Cheng, Hui

    2013-07-01

    Dental laboratories often reuse dental casting alloys by recasting them, but the processing methods before recasting require further research. The purpose of the study was to determine the treatment methods to remove the surface contamination of the previously melted alloys before recasting. Cobalt-chromium (Co-Cr), commercially pure titanium (CP Ti), palladium-copper-gallium (Pd-Cu-Ga), and gold-platinum (Au-Pt) ceramic alloys were investigated in the present study. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy (EDAX), and x-ray photoelectron spectroscopy (XPS) were used to evaluate the changes in the surface structures and compositions of Co-Cr, CP Ti, Pd-Cu-Ga, and Au-Pt ceramic alloys after airborne-particle abrasion and immersion in various chemical solutions for different time periods. The data obtained by EDAX and XPS were statistically analyzed by Kruskal-Wallis and Nemenyi tests (α=.05). By using appropriate mechanical and chemical treatment procedures, the contamination content of previously cast ceramic alloys was found to be below the detection limits of EDAX and XPS. The statistical results showed that, compared to the control group (new alloys after polishing), the impurity element was not detected after being treated with these methods, which was not statistically different to control group. The surface contamination of ceramic alloys was effectively removed by using certain mechanical and/or chemical treatment methods. Within the limitations of the present study, the most appropriate ways to treat ceramic alloys before recasting were as follows: (1) for Co-Cr ceramic alloys: Al2O3 airborne-particle abrasion and immersion in aqua regia for 15 min; (2) for CP Ti ceramic alloys: Al2O3 airborne-particle abrasion and immersion in 65% HNO3 and 40% HF 1:7 (V/V) for 60 min; (3) for Pd-Cu-Ga ceramic alloys: glass bead airborne-particle abrasion and immersion in 40% HF solution for 30 min; and (4) for Au-Pt ceramic alloys

  14. The role of dispersoids in maintaining the corrosion resistance of mechanically alloyed oxide dispersion strengthened alloys

    SciTech Connect

    Cama, H.; Hughes, T.A.

    1995-05-15

    Amongst the various commercial mechanically alloyed (MA) oxide dispersion strengthened (ODS) alloys available, ferritic alloys are most suitable for use at temperatures exceeding 1,100 C, since {gamma}{prime} particle dissolution results in the loss of strength of nickel based MA ODS alloys. In commercial MA ODS alloys, yttria particles are commonly added in the starting powers, and it is well known that they are not retained in the final product because they react with aluminum and oxygen present in the system during thermomechanical processing and form mixed (Y,Al) oxide particles. In this paper the role of (Y,Al) oxide particles in maintaining the overall aluminum concentration in the matrix necessary to repair the outer oxide scale is discussed. It is well known that during exposure in air, aluminum is lost from the bulk of MA ODS alloys to the growth of a surface alumina film. The extent of aluminum lost is dependent on the section thickness and can significantly affect the volume fraction of the aluminum rich dispersoids. Coarsening of the dispersoids at temperatures up to 1,200 C in the thick MA 956 bar occurs without significant aluminum loss, while their volume fraction increases continuously. However, coarsening of the dispersoids in the thinner ODM 751 tube at 1,200 and 1,300 C is accompanied by dissolution of the dispersoid particles in order to maintain the aluminum concentration in the matrix.

  15. Low energy milling method, low crystallinity alloy, and negative electrode composition

    DOEpatents

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  16. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  17. Quantitative analytical electron microscopy of multiphase alloys.

    PubMed

    Prybylowski, J; Ballinger, R; Elliott, C

    1989-02-01

    In this paper, we present a technique for analysis of composition gradients, using an analytical electron microscope, within the primary phase of a two-phase alloy for the case where the second-phase particle size is similar to the size of the irradiated volume. If the composition difference between the two phases is large, the detected compositional fluctuations associated with varying phase fractions may mask any underlying composition gradient of the primary phase. The analysis technique was used to determine grain boundary chromium concentration gradients in a nickel-base superalloy, alloy X-750. The technique may also be of use in other alloy systems.

  18. Particle size effect on microwave absorbing of La{sub 0.67}Ba{sub 0.33}Mn{sub 0.94}Ti{sub 0.06}O{sub 3} powders prepared by mechanical alloying with the assistance of ultrasonic irradiation

    SciTech Connect

    Saptari, Sitti Ahmiatri; Manaf, Azwar; Kurniawan, Budhy

    2016-03-11

    Doped manganites have attracted substantial interest due to their unique chemical and physics properties, which makes it possible to be used for microwave absorbing materials. In this paper we report synthesizes and characterization of La{sub 0.67}Ba{sub 0.33}Mn{sub 0.94}Ti{sub 0.06}O{sub 3} powders prepared by mechanical alloying with the assistance of a high power ultrasonic treatment. After solid state reaction, the presence of single phase was confirmed by X-ray Diffraction (XRD). Refinement results showed that samples are single phase with monoclinic structure. It was found that powder materials derived from mechanical alloying results in large variation in the particle size. A significant improvement was obtained upon subjecting the mechanically milled powder materials to an ultrasonication treatment for a relatively short period of time. As determined by particle size analyzer (PSA), the mean particle size gradually decreased from the original size of 5.02 µm to 0.36 µm. Magnetic properties were characterized by VSM, and hysteresis loops results showed that samples are soft magnetic. It was found that when the mean particle size decreases, saturation was increases and coersitivity was decreases. Microwave absorption properties were investigated in the frequency range of 8-12 GHz using vector network analyzer. An optimal reflection loss of 24.44 dB is reached at 11.4 GHz.

  19. Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Ebel, T.; Yan, M.; Qian, M.

    2015-08-01

    Owing to their relatively low Young's modulus, high strength, good resistance to corrosion, and excellent biocompatibility, β-titanium (Ti) alloys have shown great potential for biomedical applications. In β-Ti alloys, carbon can exist in the form of titanium carbide (TiC x ) as well as interstitial atoms. The Ti-C binary phase diagram predicts a carbon solubility value of 0.08 wt.% in β-Ti, which has been used as the carbon limit for a variety of β-Ti alloys. However, noticeable grain boundary TiC x particles have been observed in β-Ti alloys containing impurity levels of carbon well below the predicted 0.08 wt.%. This review focuses its attention on trace carbon (≤0.08 wt.%) in biomedical β-Ti alloys containing niobium (Nb) and molybdenum (Mo), and it discusses the nature and precipitation mechanism of the TiC x particles in these alloys.

  20. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect

    Silvain, J.F.; Fouassier, O.; Lescaux, S.

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  1. Optimization of Drilling Parameters for Reducing the Burr Height in Machining the Silicon Carbide Particle (SiCp) Coated with Multi Wall Carbon Nano Tubes (MWCNT) Reinforced in Aluminum Alloy (A 356) Using Meta Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Prakash, S.

    2017-05-01

    This paper explains the optimization of drilling parameters using meta modeling approach to reduce the burr height while machining Silicon Carbide Particle (SiCp) coated with Multi Wall Carbon Nano Tubes (MWCNT) and reinforced in aluminum alloy (A 356). The specimen is prepared by the combination of sonication and stir casting processes. The volume fraction of MWCNT used is 1.5% and the volume fraction of SiCp is 10%. The combination of input parameters for drilling the holes is designed using Taguchi experimental design technique. The input parameters chosen for drilling operations are spindle speed, feed rate and drill diameter. The ranges of input parameters are listed in Table 1. The tools used for drilling operation are made up of solid carbide drill bit. Meta model is a mathematical and statistical model whose second-order model can be fitted by factorial design. The optimization model can be improved significantly by the second-order model compared to the first-order model. Twenty-seven holes are drilled using vertical machining center in the prepared specimen (A 356/MWCNT coated SiCp). Desirability function shows the optimized values of input parameters to obtain minimum burr height. Meta modeling approach is used to design a model using input parameters and output response burr height. The residuals plot shows the predicted values are closer to the measured values. This plot explains that the Meta model is adequately used to predict the burr height. The optimized values of input parameters for obtaining minimum burr height are the combination of high speed, low feed and low drill diameter. The minimum value of burr height observed in this experiment is 0.002mm and it is obtained in the optimized combination of N3, f1 and d1.

  2. Influence of finishing on the electrochemical properties of dental alloys.

    PubMed

    Kaneko, T; Hattori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2000-05-01

    Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.

  3. Plastic Behavior of Al-Li-X Alloys

    DTIC Science & Technology

    1991-07-01

    to add trace alloy additions. 3 The role that the trace addition plays on the precipitation in age-hardenable aluminum alloys was examined. I I I I I...8217 must depend on the presence of the second-phase particles. This problem is less well understood. Age hardenable aluminum alloys in particular may...undergo relatively brittle intergranular fracture at strains from 2 to 10 times smaller than the strain to fracture for pure aluminum . This phenomenon can

  4. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  5. Dual-phase Cr-Ta alloys for structural applications

    DOEpatents

    Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.

    2001-01-01

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  6. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  7. The Delayed Fracture of Aluminum Alloys, End of Year Report.

    DTIC Science & Technology

    1982-03-01

    these commercial alloys is not significantly influenced by the composition of the oxide. In these 7 alloys, the insoluble constituent particles...boundary microstructure, but not to oxide film composition . Accession For 14TTS ’& DTIC T’B ju-tific i ’ Distributon/ Availability Codns *Avi! anl/or * I...Mg-free film for commercial 7 alloys. This latter work was undertaken to further elucidate the effect of film composition on SCC initiation and to

  8. Synthesis Processing of High-Lithium Al-Li Alloys

    DTIC Science & Technology

    1988-06-27

    Li-base alloys suitable for structural applications, with densities 15 to 20 percent lower than 7075 Al. The alloy compositions being investigated...States and Europe. Alloys that offer a 7 to 9 percent decrease in density compared to 7075 Al, with service properties similar to conventional high...large particles substantially influence the deformation behavior due to their non-shearable nature and are therefore desirable for the improvement of

  9. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  10. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2003-12-01

    The tensile properties and fracture behavior of cast aluminum alloys A356 and A357 strongly depend on secondary dendrite arm spacing (SDAS), Mg content, and, in particular, the size and shape of eutectic silicon particles and Fe-rich intermetallics. In the unmodified alloys, increasing the cooling rate during solidification refines both the dendrites and eutectic particles and increases ductility. Strontium modification reduces the size and aspect ratio of the eutectic silicon particles, leading to a fairly constant particle size and aspect ratio over the range of SDAS studied. In comparison with the unmodified alloys, the Sr-modified alloys show higher ductility, particularly the A356 alloy, but slightly lower yield strength. In the microstructures with large SDAS (>50 µm), the ductility of the Sr-modified alloys does not continuously decrease with SDAS as it does in the unmodified alloy. Increasing Mg content increases both the matrix strength and eutectic particle size. This decreases ductility in both the Sr-modified and unmodified alloys. The A356/357 alloys with large and elongated particles show higher strain hardening and, thus, have a higher damage accumulation rate by particle cracking. Compared to A356, the increased volume fraction and size of the Fe-rich intermetallics ( π phase) in the A357 alloy are responsible for the lower ductility, especially in the Sr-modified alloy. In alloys with large SDAS (>50 µm), final fracture occurs along the cell boundaries, and the fracture mode is transgranular. In the small SDAS (<30 µm) alloys, final fracture tends to concentrate along grain boundaries. The transition from transgranular to intergranular fracture mode is accompanied by an increase in the ductility of the alloys.

  11. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  12. Giant magnetoresistance of Co-Ni-Cu alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Zhang, Z. D.; Xiao, Q. F.; Geng, D. Y.; Zhao, X. G.; Zhang, W. S.; You, C. Y.

    2003-05-01

    The structure, magnetic properties and magnetoresistance (MR) effect of Co20NixCu80-x alloys produced by mechanical alloying and subsequent annealing have been investigated. After milling for 5 h, a supersaturated solid solution forms for all the alloys. Co20NixCu80-x alloys annealed at 973 K for 30 min segregated into two-phases of fcc-Co and fcc-Cu. The maximum value for MR ratio, at room temperature is 4.7% at a field of 1.2 T, and at 5 K is 15% at a field of 2 T for Co20Cu80 annealed at 718 K for 30 min. The MR ratio of Co-Ni-Cu alloys decreases monotonically with increasing Ni content. The MR and its dependence on particle size are discussed.

  13. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  14. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  15. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    conventional sense requires ductile powder particles which, through a cold welding and fracture process, can be dispersion strengthened by submicron-sized oxide particles. Using both the Ni-35Al-Fe alloys to contain approx. 1 v/o Y2O3. Preliminary results indicate that mechanically alloyed and extruded NiAl-Fe + Y2O3 alloys when heat treated to a grain-coarsened condition, exhibit improved creep resistance at 1000 C when compared to NiAl; oxidation resistance comparable to NiAl; and fracture toughness values a factor of three better than NiAl. As a result of the research initiated on this NASA program, a subsequent project with support from Inco Alloys International is underway.

  17. Metal dusting of nickel-containing alloys

    SciTech Connect

    Baker, B.A.; Smith, G.D.

    1998-12-31

    Metal dusting is a catastrophic form of carburization which leads to pitting and grooves as the affected metal disintegrates into a mixture of powdery carbon, metallic particles, and possibly oxides and carbides. This high temperature carburization mode is not yet well understood and while relatively infrequent, can be economically disastrous when it does occur in large and complex chemical and petrochemical process streams. References in the literature show that all classes of heat resistant alloys are prone to metal dusting, given the necessary and specific environmental conditions. These same references describe the environments that plague nickel-containing alloys and are used as the basis for postulation on the probable corrosion mechanisms responsible for metal dusting. Using alloy 800 and other nickel-containing alloys and metal dusting atmospheres, an effort is made to examine the steps in the metal dusting process and the temperature ranges over which metal dusting occurs.

  18. Isothermal Diagrams of Precipitation of Silicide and Aluminide Phases in Refractory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Popova, M. A.

    2017-03-01

    Processes of precipitation of silicides and aluminides in commercial titanium alloys under different modes of heat treatment are studied. The effect of alloying on the types of precipitating particles is considered. The temperature ranges of formation of intermetallics are determined and the possible mechanisms of transformation of particles of different types are discussed. A schematic isothermal diagram of decomposition of metastable phases in refractory titanium alloys is suggested.

  19. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  20. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  1. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  2. Atomic scale modelling of hexagonal structured metallic fission product alloys.

    PubMed

    Middleburgh, S C; King, D M; Lumpkin, G R

    2015-04-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)-making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance.

  3. Binary Colloidal Alloy Test-5: Aspheres

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Hollingsworth, Andrew D.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..

  4. Superconductivity in Metals and Alloys.

    DTIC Science & Technology

    LEAD(METAL), LIQUEFIED GASES, LOW TEMPERATURE RESEARCH, METAL FILMS, METALLIC SOAPS, NIOBIUM ALLOYS, PHASE STUDIES, RESISTANCE (ELECTRICAL), SAMARIUM...SYNTHESIS, TANTALUM ALLOYS, TIN, TIN ALLOYS, TRANSITION TEMPERATURE, VANADIUM ALLOYS

  5. Oxide Scale Adherence Mechanisms and the Effects of Yttrium, Oxide Particles and Externally Applied Loads on the Oxidation of NiCrAl and CoCrAl Alloys

    DTIC Science & Technology

    1975-06-01

    was performed at a constant strain rate of 0.042%/hr. The tensile testing was accomplished in a creep apparatus where 6-7% and 1- 2 % strains would... 2 . OXIDE SCALE ADHESION I 3. PROBLEMS TO BE STUDIED 2 I! EXPERIM-NTAL 4 I. MATERIALS 4 2 . ALLOY FABRICAllON AND CHiARACTIRIZATION 4 a. As-Cast Alloys...Stress I I e. Specimen (;eometrt’ and Preparation 12 f E-xamination of Oxidized Specimens 12 III RESULTS AND DISCUSSION 13 1. INTRODUCTION 13 2 . THE RATES

  6. Development of lead-free copper alloy graphite castings. Annual report, January--December 1995

    SciTech Connect

    Rohatgi, P.K.

    1996-10-01

    The distribution of graphite particles in graphite containing copper alloy was further improved very significantly using several procedures and technological modifications. The developed techniques attacked the graphite distribution problem in two ways. Realizing that clustering of very fine (5um) graphite particles is one of the two major problems, a pretreatment process has been developed using aluminum powders to deagglomerate graphite particles. Along with this, a two-stage stirring technique was used to first incorporate and then to distribute uniformly the deagglomerated particles in the melt. During this year, based on these developments, several components were cast to evaluate the castability of Cu alloy-graphite melts. In addition, machinability tests were done to clearly established that addition of graphite particles improve the machinability of copper MMC alloys over and above that of monolithic copper alloys. The results show that the machining chip sizes and cutting forces of Cu alloys containing graphite particles are smaller than these of the corresponding monolithic Cu alloys. This clearly establishes that the presence of graphite particles in copper alloy improves the machinability in a fashion similar to lead additions to copper alloys. Centrifugal casting of shapes of different sizes appear to be a very attractive method for casting graphite containing copper alloys, since all the graphite particles (regardless of their distribution in the melt) are forced to segregate to the inner periphery of the castings where they impart a very desirable solid lubrication property for bushing and bearing use. A very large number of cylindrical elements of lead bearing copper alloys are now used for similar bearing bushing applications and the manufacturers of these type of bearings are under safety and health hazard pressure to remove lead. This year several parameters for centrifugal casting of copper graphite alloys have been established.

  7. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  8. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  9. Surface energy of metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  10. Aluminum alloys for ALS cryogenic tanks: Comparative measurements of cryogenic mechanical properties of Al-Li alloys and alloy 2219, February 1993

    SciTech Connect

    Reed, R.P.; Purtscher, P.T.; Simon, N.J.; McColskey, J.D.; Walsh, R.P.

    1993-02-01

    Tensile and fracture toughness were obtained at cryogenic temperatures to compare the Al-Li alloys 8090, 2090, and WL049, and alloy 2219 in various tempers and specimen orientations. The strongest alloy at very low temperatures is WL049-T851, which is about 10 percent stronger than 2090-T81. Both alloys are considerably stronger than 2219-T87. Alloy 2090-T81 is tougher (about 50 percent) than WL049-T851 at low temperatures; the higher toughness is attributed to the presence of fewer constituent particles and the tendency to delaminate at low temperatures. The delamination divides the moving crack, thus separating it into smaller regions where plane stress (rather than plane strain) conditions are conducive to increased toughness.

  11. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    microstructure of the Al - Zn -Mg- Cu alloys was similar to the as-cast microstructure ...Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing complex castings with...wrought 2519 alloy . Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing

  12. Formation and characterization of Al-Ti-Nb alloys by electron-beam surface alloying

    NASA Astrophysics Data System (ADS)

    Valkov, S.; Petrov, P.; Lazarova, R.; Bezdushnyi, R.; Dechev, D.

    2016-12-01

    The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V1 = 0.5 cm/s and V2 = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al3 fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al3 particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al3 lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a formation of surface alloys with very high hardness. Our results demonstrate maximal values of 775 HV [kg/cm2] and average hardness of 673 HV [kg/cm2].

  13. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  14. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-02-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  15. Nickel/metal hydride batteries using rate-earth hydrogen storage alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhang, Y. S.

    1994-07-01

    Fine particles of a hydrogen storage alloy (LaNi3.8Co0.5Mn0.4Al0.3) were microencapsulated with a thin film of nickel of about 0.6 micron thickness. The microencapsulated alloy powders were used as an anode material in a sealed nickel/metal hydride battery. The battery characteristics were compared with those of a battery with a bare (uncoated) alloy anode. The battery using the bare alloy was less stable compared to the coated alloy due to the role of the coated nickel as an oxygen barrier for protecting the alloy surface from oxidation. In addition, charge- discharge characteristics were improved greatly by the nickel coating, especially at high rates and at low temperatures due to the role of nickel as a microcurrent collector. So the microencapsulation of the alloy powders improves the performances of the alloy electrode.

  16. Superconducting property of Zr-Co and Zr-Co-Al alloys fabricated by rapid solidification

    NASA Astrophysics Data System (ADS)

    Okai, D.; Nagai, R.; Motoyama, G.; Fukami, T.; Yamasaki, T.; Yokoyama, Y.; Kimura, H. M.; Inoue, A.

    2010-11-01

    The superconducting property of Zr(1-x)Cox (x = 10-50 at.%) alloys and a Zr55Co30Al15 bulk metallic glass fabricated using techniques of rapid solidification was investigated. The Zr55Co30Al15 alloy crystallized by heat treatment in a vacuum atmosphere exhibited superconductivity of Tc,on = 2.4 K. This was attributable to the superconducting property of a crystalline Zr-Co alloy precipitated in the Zr55Co30Al15 alloy. The Tc,on of the crystalline Zr(1-x)Cox alloy was sensitive to the Co content. The increase of Co content for the Zr(1-x)Cox alloy led to the decrease of Tc,on. The Zr(1-x)Cox alloy exhibited superconductivity of a maximum Tc,on = 3.9 K for the Zr80Co20 alloy with superconducting nanocrystal particles embedded in the amorphous matrix.

  17. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  18. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  19. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  20. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  1. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  2. Hexaferrite magnetic materials prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ding, J.; Maurice, D.; Miao, W. F.; McCormick, P. G.; Street, R.

    1995-02-01

    The structure and properties of hexaferrites in the form of MFe 12O 19 with M = Ba, Sr and Pb prepared by mechanical alloying and heat treatment have been studied. Coercivities of 6-7 kOe were measured for Ba- and Sr-hexaferrite powders. The high values of coercivities have been associated with small particle sizes (˜ 0.1 μm) resulting from the mechanical alloying and subsequent heat treatment. High-coercivity anisotropic samples have been synthesized using hot-pressing, with remanences of 70-75% of the saturation magnetisation being obtained.

  3. Spin and charge dynamics of chromium alloys

    SciTech Connect

    Fishman, R.S.; Viswanath, V.S.; Liu, S.H.

    1996-07-01

    Both the spin- and charge-density waves of Cr alloys are produced by the Coulomb attraction between electrons and holes on nearly nested Fermi surfaces. Driven by quasi-particle transitions, transverse spin- wave and longitudinal phason modes are associated with rotational and translational symmetries of pure Cr and its dilute alloys. At low frequencies, both spin and charge phasons have a nearly linear dispersion with a mode velocity which approaches the spin-wave velocity as T approaches T{sub N} or as the mismatch between the Fermi surfaces increases.

  4. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Jun

    The electrochemical performance of alloy anodes has been reviewed in a previous paper [1]. In this work, the fundamental understanding of lithium-insertion/extraction mechanism in alloy anodes is discussed. The article summarizes the different types of lithium-reaction processes observed in Si, Sn, Sb, Al, Mg and their alloys, with particular emphasis on the characteristics unique to alloy anodes, including the sloping voltage profiles, lithiation amorphization, cycling hysteresis and reaction-potential depression. These unique characteristics are discussed with respect to the effect of interface and surface energies on the phase transformation and thermodynamic stability of fine alloy particles.

  5. Rhenium alloying of tungsten heavy alloys

    SciTech Connect

    German, R.M.; Bose, A.; Jerman, G.

    1989-01-01

    Alloying experiments were performed using rhenium additions to a classic 90 mass % tungsten heavy alloy. The mixed-powder system was liquid phase sintered to full density at 1500 C in 60 min The rhenium-modified alloys exhibited a smaller grain size, higher hardness, higher strength, and lower ductility than the unalloyed system. For an alloy with a composition of 84W-6Re-8Ni-2Fe, the sintered density was 17, 4 Mg/m{sup 3} with a yield strength of 815 MPa, tensile strength of 1180 MPa, and elongation to failure of 13%. This property combination results from the aggregate effects of grain size reduction and solid solution hardening due to rhenium. In the unalloyed system these properties require post-sintering swaging and aging; thus, alloying with rhenium is most attractive for applications where net shaping is desired, such as by powder injection molding.

  6. Advanced smart tungsten alloys for a future fusion power plant

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  7. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  8. Castability of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Bowles, A. L.; Han, Q.; Horton, J. A.

    There is intense research effort into the development of high pressure die cast-able creep resistant magnesium alloys. One of the difficulties encountered in magnesium alloy development for creep resistance is that many additions made to improve the creep properties have reportedly resulted in alloys that are difficult to cast. It is therefore important to have an understanding of the effect of alloying elements on the castability. This paper gives a review of the state of the knowledge of the castability of magnesium alloys.

  9. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  10. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  11. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  12. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  13. ) Composites Containing Nanoparticles and Larger Particles

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Nath, S. K.; Ray, S.

    2014-07-01

    The composites reinforced with nanoparticles result in improved strength and ductility while those containing coarser particles of micron size have limited ductility. The present study investigates the outcome of mechanical properties in a composite reinforced simultaneously with coarse and fine particles. High energy milling of manganese dioxide particles with excess of aluminum powder ensures that nanoparticles generated, either of MnO2 or alumina, are mostly separate and surrounded by aluminum particles. The milled powder when added to aluminum alloy melt, the excess aluminum particles will melt leaving behind separate oxide nanoparticles without significant agglomeration. Different amounts of milled powder mix have been stirred into molten aluminum alloy where nanoparticles of MnO2 react with melt to form alumina. The resulting slurry is cast into composites, which also contains coarser (nearly micron size) alumina particles formed by internal oxidation of the melt during processing. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The oxide particles are primarily γ-alumina in a matrix of aluminum-magnesium-manganese alloy containing some iron picked up from the stirrer. These composites fail during tensile test by ductile fracture due to debonding of coarser particles. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably, presumably due to delay in debonding of coarser particles to higher stress because of reduced mismatch in extension caused by increased strain hardening in presence of nanoparticles in the matrix. The composites containing only coarser oxide particles show limited strength and ductility attributed to early debonding of particles at a relatively lower stress due to larger mismatch in extension between matrix and larger particles. Higher addition of powder mix beyond a limit, however

  14. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  15. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  16. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  17. An Experimental Investigation of Effects of Fluxes (Na3AlF6 and K2TiF6), Element Alloys (Mg), and Composite Powders ((Al + TiC)CP and (Al + B4C)CP) on Distribution of Particles and Phases in Al-B4C and Al-TiC Composites

    NASA Astrophysics Data System (ADS)

    Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi

    2017-01-01

    The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.

  18. An Experimental Investigation of Effects of Fluxes (Na3AlF6 and K2TiF6), Element Alloys (Mg), and Composite Powders ((Al + TiC)CP and (Al + B4C)CP) on Distribution of Particles and Phases in Al-B4C and Al-TiC Composites

    NASA Astrophysics Data System (ADS)

    Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi

    2017-04-01

    The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.

  19. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  20. Tungsten-nickel-cobalt alloy and method of producing same

    DOEpatents

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  1. The role of metal nanoparticles and nanonetworks in alloy degradation.

    PubMed

    Zeng, Z; Natesan, K; Cai, Z; Darling, S B

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  2. Ethylene binding to Au/Cu alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Gammage, Michael D.; Stauffer, Shannon; Henkelman, Graeme; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2016-11-01

    Weak chemisorption of ethylene has been shown to be an important characteristic in the use of metals for the separation of ethylene from ethane. Previously, density functional theory (DFT) has been used to predict the binding energies of various metals and alloys, with Ag having the lowest chemisorption energy amongst the metals and alloys studied. Here Au/Cu alloys are investigated by a combination of DFT calculations and experimental measurements. It is inferred from experiments that the binding energy between a Au/Cu alloy and ethylene is lower than to either of the pure metals, and DFT calculations confirm that this is the case when Au segregates to the particle surface. Implications of this work suggest that it may be possible to further tune the binding energy with ethylene by compositional and morphological control of films produced from Au-surface segregated alloys.

  3. Potential of an Al-Ti-MgAl2O4 Master Alloy and Ultrasonic Cavitation in the Grain Refinement of a Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sreekumar, V. M.; Babu, N. H.; Eskin, D. G.

    2017-02-01

    A new grain refining master alloy containing MgAl2O4 and Ti was synthesized by in situ reaction of TiO2 particles in an Al-Mg melt. MgAl2O4 particles formed were distributed in the melt by ultrasonic cavitation processing. The obtained master alloy showed considerable (50 pct) grain refining ability in a commercial A357-type Al-Si alloy. Ultrasonication contributed further to 25 pct in the grain refinement. In comparison with a commercial Al-5 pct Ti-1 pct B master alloy, the efficiency of the new master alloy is less at a lower addition rate. Nevertheless, both master alloys performed similarly at higher additions. The strength and ductility of the inoculated and ultrasonicated alloy showed at least a 10 pct and a 50 pct increase, respectively, as compared with non-grain-refined alloy and a similar mechanical performance in comparison with the alloy inoculated with Al-5 pct Ti-1 pct B master alloy.

  4. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  5. Fretting behavior of titanium alloys

    SciTech Connect

    Fayeulle, S.; Blanchard, P.; Vincent, L. )

    1993-04-01

    Fretting wear tests were performed on three titanium alloys, alpha + beta-Ti-6Al-4V, alpha-Ti-15V-3Al-3Cr-3Sn, and beta-Ti-15V-3Al-3Cr-3Sn, in air. Friction conditions were chosen in order to get gross slip at the interface. The tangential load was recorded during each cycle of the test. Optical and scanning electron microscopy, grazing incidence X-ray diffraction, energy dispersive X-ray analysis and TEM were used to characterize the superficial surface layers of the specimens after the fretting test. Particle detachment was observed in every case and the friction coefficient was always very high. A hard tribologically transformed structure (TTS) was detected in some areas of the superficial layers. TEM revealed that TTS was formed of ultra fine non-oriented grains of alpha-titanium. No beta phase was detected. The wear debris particles were produced from the transformed areas of the contact zone and were then quickly oxidized in the interface. The formation of the TTS is interpreted in terms of deformation-induced transformation. Role of the TTS on friction and wear behavior of titanium alloys is discussed. 45 refs.

  6. Ordered Carbon - Metal Alloys for Extraterrestrial Power Systems.

    DTIC Science & Technology

    1986-12-08

    Gamma Phase Particle Distribution for All Compression Specimens C. Room Temperature Compressive Properties D. Elevated Temperature Compressive Properties...Globular Phase is Gamma Phase. Volume Fraction of Gamma Phase is 30%. .... ................. . 73 41. Transverse Photomicrograph of Ti-4w/o C Alloy. Volume...Fraction of Gamma Phase is 31% .... .......... 73 42. Transverse Photomicrograph of Ti-5w/o C Alloy. Volume Fraction of Gamma Phase is 46

  7. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  8. Mo-Si-B Alloy Development

    SciTech Connect

    Schneibel, J.H.; Kruzie, J.J.; Ritchie, R.O.

    2003-04-24

    Mo-Si-B silicides consisting of the phases {alpha}-Mo (Mo solid solution), Mo{sub 3}Si, and Mo{sub 5}SiB{sub 2} have melting points on the order of 2000 C and have potential as ultra-high temperature structural materials. Mo-Si-B alloys can be processed such that the {alpha}-Mo is present in the form of isolated particles in a silicide matrix, or as a continuous matrix ''cementing'' individual silicide particles together. The latter microstructure is similar to that of WC-Co hard metals. This paper focuses on the relationship between the topology as well as scale of the microstructure of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} alloys, and their creep strength and fracture toughness. For example, the creep strength of Mo-Si-B alloys is improved by reducing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase discontinuous. The fracture toughness is improved by increasing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase continuous. Room temperature stress intensity factors as high as 21 MPa m{sup 1/2} were obtained. The room temperature fracture toughness of Mo-Si-B alloys can also be improved by microalloying with Zr. The room temperature ductility of Mo itself can be improved by adding MgAl{sub 2}O{sub 4} spinel particles suggesting yet another way to improve the ductile phase toughening of Mo-Si-B alloys.

  9. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  10. Alloy and method of producing the same

    DOEpatents

    Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo

    2005-07-19

    In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.

  11. Survey of Radiation Effects in Titanium Alloys

    SciTech Connect

    Mansur, Louis K

    2008-08-01

    Information on radiation effects in titanium alloys has been reviewed. Only sparse experimental data from fission reactor and charged particle irradiations is available, none of which is directly applicable to the SNS. Within this limited data it is found that although mechanical properties are substantially degraded, several Ti alloys may retain acceptable properties to low or moderate doses. Therefore, it is recommended that titanium alloys be examined further for application to the SNS target. Since information directly relevant to the SNS mercury target environment and irradiation conditions is not available, it is recommended that ORNL generate the necessary experimental data using a graded approach. The first testing would be for cavitation erosion resistance using two different test devices. If the material performs acceptably the next tests should be for long term mercury compatibility testing of the most promising alloys. Irradiation tests to anticipated SNS displacement doses followed by mechanical property measurements would be the last stage in determining whether the alloys should be considered for service in the SNS target module.

  12. Mechanical alloying of ODS tungsten heavy alloys and microstructure development of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Huang, Chun-Lin

    2013-09-01

    Oxide dispersion strengthened tungsten heavy alloys have been used in a wide variety of industrial and military applications due to their high density, strength and stiffness. These alloys have been produced by mechanical alloying, which can provide uniform distribution of nano-oxide particles and an extremely fine grain structure, resulting in the reduction of the sintering temperature. However, the high-energy ball-milling process could introduce iron contamination from the vial and milling media during the procedure. In this study, the W-Ni-Y2O3 alloy was investigated as a function of milling time. The results show that the increase of the Fe/Ni ratio has a significant influence on the microstructural development and material properties. The XRD data reveal considerable solid solubility extension in these powders. The tungsten carbide and iron rich intermetallic compounds were formed after long milling times, which can change the relative density and hardness of the alloy. It is essential that we understand the role of intermetallic phases in the ODS tungsten heavy alloy which determine the material properties and the control of microstructural development.

  13. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  14. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  15. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  16. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  17. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  18. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  19. Neutron irradiation effects on the microstructure of low-activation ferritic alloys*1

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Matsui, H.

    1994-09-01

    Microstructures of low-activation ferritic alloys, such as 2.25% Cr-2% W, 7% Cr-2% W, 9% Cr-2% W and 12% Cr-2% W alloys, were observed after FFTF irradiation at 698 K to a dose of 36 dpa. Martensite in 7% Cr-2% W, 9% Cr-2% W and 12% Cr-2% W alloys and bainite in 2.25% Cr-2% W alloy were fairly stable after the irradiation. Microvoids were observed in the martensite in each alloy but not in bainite and δ-ferrite in 12% Cr-2% W alloys. An addition of 0.02% Ti to 9% Cr-2% W alloy considerably reduced the void density. Spherical (Ta, W) and Ti-rich precipitates were observed in the Ti-added 9% Cr-2% W alloy. Precipitates observed in 9% Cr-2% W and 7% Cr-2% W alloys are mainly Cr-rich M 23C 6 (Ta, W) and Ta(W)-rich M 6C and Fe-rich Laves phase. In 2.25% Cr-2% W alloy, high density of fine (Ta, W)-rich M 2C type precipitates as well as M 6C were observed. Spherical small α' Cr-rich particles were observed in both martensite and α-ferrite in 12% Cr-2% W alloys. Correlation between postirradiation microstructure and irradiation hardening is shown and discussed for these alloys.

  20. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  1. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  2. Fully alloyed metal nanorods with highly tunable properties.

    PubMed

    Albrecht, Wiebke; van der Hoeven, Jessi E S; Deng, Tian-Song; de Jongh, Petra E; van Blaaderen, Alfons

    2017-02-23

    Alloyed metal nanorods offer a unique combination of enhanced plasmonic and photothermal properties with a wide variety in optical and catalytic properties as a function of the alloy composition. Here, we show that fully alloyed anisotropic nanoparticles can be obtained with complete retention of the particle shape via thermal treatment at surprisingly low temperatures. By coating Au-Ag, Au-Pd and Au-Pt core-shell nanorods with a protective mesoporous silica shell the transformation of the rods to a more stable spherical shape was successfully prevented during alloying. For the Au-Ag core-shell NRs the chemical stability was drastically increased after alloying, and from Mie-Gans and finite-difference time-domain (FDTD) calculations it followed that alloyed AuAg rods also exhibit much better plasmonic properties than their spherical counterparts. Finally, the generality of our method is demonstrated by alloying Au-Pd and Au-Pt core-shell NRs, whereby the AuPd and AuPt alloyed NRs showed a surprisingly high increase in thermal stability of several hundred degrees compared with monometallic silica coated Au NRs.

  3. Corrosion of metastable iron alloys in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wolf, Gerhard K.; Ferber, H.

    1983-05-01

    There exist some examples showing that metastable surface alloys can modify the corrision properties of a substrate in the same way as stable alloys do. In the present paper the corrosion behaviour of metastable surface alloys obtained by implanting gold, lead and mercury in iron was studied in aqueous solution of pH = 5.6. Potentiodynamic current density-potential curves were recorded of the implanted samples without further treatment and after isothermal annealing to temperatures up to 800°C. The results were compared with structural information on the alloys obtained by Turos et al. with α-backscattering and channeling experiments. Gold implantation turned out to enhance the active corrosion rate of iron, while lead and mercury had an impeding effect. The annealing experiments showed that the surface alloying facilitated the passivation of iron as long as the substitutional solid solution was "(meta)stable". After the breakdown at higher annealing temperatures leading to surface migration and clustering of the implanted elements a significant increase of the critical current density for passivation took place. This indicates passivation difficulties caused by the heterogeneous distribution of the "alloying" particles. In general the results suggest that substitutional metastable iron alloys cause in a systematic way corrosion inhibition or enhancement. However, their corrosion properties may change completely for non-substitutional distribution of the alloying elements as originating from annealing at higher temperatures.

  4. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  5. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  6. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  7. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  8. Oxidation behaviors of the aluminide coated TZM alloy via pack cementation

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, J. M.; Lee, S.; Park, J. S.

    2014-12-01

    TZM is a traditional alloy for high temperature applications, in which (Ti, Zr)C particles are dispersed in a Mo matrix. However, due to easy formation of an oxide layer on the TZM alloy under ambient atmosphere, an oxidation protective coating is needed for any high temperature structural applications of TZM. In this study, aluminium pack cementation coatings have been carried out on TZM alloys, resulting in the formation of Al8Mo3 layer on the surface of TZM alloys. In order to examine the oxidation stability, the TZM alloy was exposed in an aerobic atmosphere. For the aluminide coated TZM alloys, an alumina layer was produced at the outer surface layer. The alminide coated TZM alloys showed excellent oxidation resistance. The coating layer kinetics and the corresponding oxidation stability are also discussed in terms of microstructural observations.

  9. Alloy development for the enhanced stability of Omega precipitates in aluminum-copper-magnesium-(silver) alloys

    NASA Astrophysics Data System (ADS)

    Gable, Brian M.

    This research involved a combined analytical and experimental approach to the design of an age-hardenable Al-Cu-Mg-Ag alloy for moderate temperature application. The applied methodology involved the complimentary techniques of thermal analysis, calculated phase diagrams, analytical microscopy and quantitative microstructural characterization. The objective of this research was to exploit several avenues for enhancing the coarsening resistance and thermal stability of the O phase through careful control of the alloy chemistry and processing. Differential thermal analysis (DTA) coupled with conventional and analytical transmission electron microscopy (TEM) techniques were implemented to refine the calculation of the Al-rich corner of the quaternary Al-Cu-Mg-Ag phase diagram for subsequent alloy development. Quantitative energy dispersive spectroscopy (EDS) demonstrated that Ag preferentially partitioned to S-phase for all conditions investigated, which ultimately led to a concomitant loss of O precipitates. The elimination of S-phase precipitation and limiting the alloy Si content proved to enhance the nucleation and thermal stability of the O phase. Several O-dominated microstructures were manipulated through various thermo-mechanical processing techniques in order to evaluate the O nucleation density, particle size and thermal stability as a function of alloy composition and processing conditions. The long-term stability of O plates was found to coincide with high levels of Ag and moderate Mg additions, with the latter limiting the competition with S-phase precipitation. Several alloys were found to be dominated by O precipitation, which remained stable through long-term isothermal and double-aging heat treatments. This enhanced thermal stability of O plates is a significant improvement over the previous generation of Al-Cu-Mg-Ag alloys in which O plates dissolved sacrificially at long aging times for moderate aging temperatures. The competitive microstructural

  10. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  11. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  12. Functionally Graded Al Alloy Matrix In-Situ Composites

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.

    2010-01-01

    In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.

  13. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2009-03-01

    cells to the tumorigenic phenotype by heavy metal -tungsten alloy particles: induction of genotoxic effects . Carcinogenesis 22: 115-125 (2001). 2...month mice have been implanted and are being followed to assess health effects of the implanted metals . • Mice in the 24-month high-dose Ni group...their experimental endpoints, and have been euthanized. The mice showed no adverse effects of metal implantation, although some perturbations in organ

  14. Effects of Be and Fe content on plane strain fracture toughness in A357 alloys

    SciTech Connect

    Tan, Y.H.; Lee, S.L.; Lin, Y.L.

    1995-11-01

    The effect of Be and Fe content on the plane strain fracture toughness K{sub IC} of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicron-strengthening particles. The effect of Be on increasing K{sub IC} is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

  15. Effects of be and fe content on plane strain fracture toughness in A357 alloys

    NASA Astrophysics Data System (ADS)

    Tan, Yen-Hung; Lee, Sheng-Long; Lin, Yu-Lom

    1995-11-01

    The effect of Be and Fe content on the plane strain fracture toughness K IC of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicronstrengthening particles. The effect of Be on increasing K IC is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

  16. Finite Element Analysis of Stress Evolution in Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Joseph, Sudha; Kumar, S.

    2015-01-01

    A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0° and 90° to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.

  17. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Yong, Jiang; Ding, Chen; Qiong, Jiang

    2012-03-01

    The effect of cryogenic thermocycling treatment on the microstructure, mechanical and cryogenic properties of alloy Mg - 9% Al - 0.9% Zn (AZ91) is studied. Thermocycling in the cryogenic range causes a change in the content and distribution of particles of segregations, which is responsible for improvement of the mechanical properties and corrosion resistance of the alloy.

  18. Performance Comparison of Al-Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum.

    PubMed

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-05-07

    Three types of Al-5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al-5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al-5Ti master alloy with blocky TiAl₃ particles clearly has better refining efficiency than the master alloy with mixed TiAl₃ particles and the master alloy with needle-like TiAl₃ particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl₃ crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle-like TiAl₃ crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle-like and blocky TiAl₃ particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time.

  19. Performance Comparison of Al–Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum

    PubMed Central

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-01-01

    Three types of Al–5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al–5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al–5Ti master alloy with blocky TiAl3 particles clearly has better refining efficiency than the master alloy with mixed TiAl3 particles and the master alloy with needle-like TiAl3 particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl3 crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle–like TiAl3 crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle–like and blocky TiAl3 particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time. PMID:28788642

  20. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-10-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni- xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  1. One new route to optimize the oxidation resistance of TiC/hastelloy (Ni-based alloy) composites applied for intermediate temperature solid oxide fuel cell interconnect by increasing graphite particle size

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Liu, Yan; Wang, Lujie; Zhang, Hui; Huang, Jian; Huang, Zhengren

    2017-09-01

    TiC/hastelloy composites with suitable thermal expansion and excellent electrical conductivity are promising candidates for IT-SOFC interconnect. In this paper, the TiC/hastelloy composites are fabricated by in-situ reactive infiltration, and the oxidation resistance of composites is optimized by increasing graphite particle size. Results show that the increase of graphite particles size from 1 μm to 40 μm reduces TiC particle size from 2.68 μm to 2.22 μm by affecting the formation process of TiC. Moreover, the decrease of TiC particles size accelerates the fast formation of dense and continuous TiO2/Cr2O3 oxide layer, which bring down the mass gain (800 °C/100 h) from 2.03 mg cm-2 to 1.18 mg cm-2. Meanwhile, the coefficient of thermal expansion decreases from 11.15 × 10-6 °C-1 to 10.80 × 10-6 °C-1, and electrical conductivity maintains about 5800 S cm-1 at 800 °C. Therefore, the decrease of graphite particle size is one simple and effective route to optimize the oxidation resistance of composites, and meantime keeps suitable thermal expansion and good electrical conductivity.

  2. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  3. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  4. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.

    PubMed

    Smetana, Alexander B; Klabunde, Kenneth J; Sorensen, Christopher M; Ponce, Audaldo A; Mwale, Benny

    2006-02-09

    We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.

  5. Modern Sparingly Alloyed Titanium Alloys: Application and Prospects

    NASA Astrophysics Data System (ADS)

    Nochovnaya, N. A.; Panin, P. V.; Alekseev, E. B.; Bokov, K. A.

    2017-01-01

    Comparative analysis of the properties of domestic and foreign sparingly alloyed titanium alloys is preformed, and the main tendencies and prospects of their development are considered. Recent works of FGUP "VIAM" in the field of creation and approbation of various-purpose low-alloy titanium alloys are reviewed.

  6. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  7. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  8. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  9. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  10. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  11. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  12. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  13. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  14. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  15. The Effect of Alloy Content on the Grain Refinement of Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Easton, M. A.; StJohn, D. H.

    A recent model that predicts the effect of solute content on grain size was shown to predict the effect of titanium additions on the grain size of pure aluminium and an AlSi7Mg0.3 alloy. The model assumes that nucleation on substrates is facilitated by constitutional undercooling in front of a growing grain. To determine how generally applicable the model is to a broad range of aluminium alloys, titanium additions were made to five wrought alloys containing the same level of TiB2. It was found that the grain size obtained is a function of the reciprocal of mc0(k-1), the growth restriction factor, and that there is a lower limit to the grain size that can be achieved for the casting conditions used in the experiments. It was also found that at least stoichiometric levels of titanium are required for TiB2 particles to be effective nucleants.

  16. Recent advances in the synthesis of alloy phases by mechanical alloying/milling

    NASA Astrophysics Data System (ADS)

    Suryanarayana, C.

    1996-08-01

    Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened nickel- and iron-base superalloys, MA has now been shown to be capable of synthesizing a number of alloy phases—equilibrium and supersaturated solid solutions, stable and metastable crystalline and quasicrystalline intermediate phases, and amorphous alloys. Recent advances in these areas and also on disordering of ordered intermetallics and displacement reactions have been critically reviewed. Wherever possible, comparisons have been made on the product phases obtained by MA and by rapid solidification processing, another non-equilibrium processing technique.

  17. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  18. An in vitro comparison of tensile bond strengths of noble and base metal alloys to enamel.

    PubMed

    Parsa, Roya Zand; Goldstein, Gary R; Barrack, Gerald M; LeGeros, Racquel Z

    2003-08-01

    Many different surface treatments have been used to increase the bond strength of noble and base metal alloys to enamel, but only a few have been studied. The purpose of this in vitro study was to compare the tensile bond strength of a tin-plated noble alloy, an Alloy Primer-treated noble alloy, and an airborne particle-abraded base metal alloy, all bonded to enamel with a phosphate-methacrylate resin luting agent. Seventy noncarious molar teeth were extracted, cleaned, and embedded in autopolymerizing acrylic resin with the buccal surface of the teeth exposed. Seventy wax patterns (4-mm diameter x 2-mm thickness) were waxed, invested, and cast-50 with a noble alloy (Argedent 52) and 20 with a base metal alloy (Argeloy N.P.). Twenty of the noble alloy specimens were tin-plated (TP), 20 noble alloy specimens were treated with Alloy Primer (AP), and 20 base metal alloy specimens were airborne particle abraded (AA). All specimens were luted with a phosphate-methacrylate resin luting agent (Panavia F) and stored in 100% humidity at 37 degrees C, half for 24 hours and half for 7 days. Ten noble alloy specimens were tin-plated and stored in water for 48 hours (aged) before cementation and then stored in water for 24 hours after cementation. These specimens were used to test whether there is an advantage to aging the tin-plated surface in water before cementation. All specimens were thermocycled (5 degrees to 55 degrees C) for 500 cycles and then tested for tensile bond strength (TBS), measured in MPa, with a universal testing machine at a crosshead speed of 0.5mm/min. Various castings (n=6 per test group) were randomly selected from each group and inspected under a scanning electronic microscope to determine mode of failure. The mean values and standard deviations of all specimens were calculated for each group. A 2-way analysis of variance (ANOVA) was performed, and multiple pairwise comparisons were then completed with post hoc Tukey test (alpha=.05). The TBS of the

  19. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  20. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment.

    PubMed

    Madl, Amy K; Kovochich, Michael; Liong, Monty; Finley, Brent L; Paustenbach, Dennis J; Oberdörster, Günter

    2015-07-01

    The objective of the Part II analysis was to evaluate animal and in vitro toxicology studies of CoCr particles with respect to their physicochemistry and dose relevance to metal-on-metal (MoM) implant patients as derived from Part I. In the various toxicology studies, physicochemical characteristics were infrequently considered and administered doses were orders of magnitude higher than what occurs in patients. Co was consistently shown to rapidly release from CoCr particles for distribution and elimination from the body. CoCr micron sized particles appear more biopersistent in vivo resulting in inflammatory responses that are not seen with similar mass concentrations of nanoparticles. We conclude, that in an attempt to obtain data for a complete risk assessment, future studies need to focus on physicochemical characteristics of nano and micron sized particles and on doses and dose metrics relevant to those generated in patients or in properly conducted hip simulator studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Diffusion of boron in alloys

    SciTech Connect

    Wang, W.; Zhang, S; He, X.

    1995-04-01

    By means of particle tracking autoradiography (PTA), the diffusion coefficients of boron between 900 and 1,200 C were measured in 04MnNbB steel, 25MnTiB steel, Ni-B, Fe-30%Ni-B and Fe-3%Si-B alloys, and the frequency factor D{sub 0} and activation energy Q were obtained respectively. The experiment results indicated that there was an obvious difference between the present result and the result obtained by Busby (in 1953). It was found that the boron diffusivity in {gamma}-Fe increased as Ni was added. The diffusivity of boron in Fe-3%Si-B alloy with b.c.c. structure was much slower than one obtained by Busby in {alpha}-Fe (1954), which, however, was much faster than the results obtained in {gamma}-Fe (with f.c.c. structure). Based on the present data of boron diffusion coefficients, the mechanism of segregation of boron to grain boundaries is discussed.

  2. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  3. Evaluation of bonding behavior of silver-tin-zinc-indium alloy to adhesive luting cements.

    PubMed

    Shimizu, H; Kawaguchi, T; Takahashi, K; Takahashi, Y

    2010-12-01

    The bond strengths of a silver-tin-zinc-indium alloy used with adhesive luting cements were investigated. The metal surfaces were primed with two metal conditioners designed for noble metal alloys or base metal alloys, or prepared using a Rocatec tribochemical coating unit. Two adhesive luting cements (Super-Bond C&B and Panavia F 2.0) were applied. It can be concluded that airborne-particle abrasion with alumina was effective, but the effects on the bond durability of both the metal conditioners and the tribochemical silica coating method were not clear Such bonding behavior seems to be particular to this kind of silver-rich dental casting alloy.

  4. Microstructural design of magnesium alloys for elevated temperature performance

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary Lee

    Magnesium alloys are promising for automotive and aerospace applications requiring lightweight structural metals due to their high specific strength. Weight reductions through material substitution significantly improve fuel efficiency and reduce greenhouse gas emissions. Challenges to widespread integration of Mg alloys primarily result from their limited ductility and elevated temperature strength. This research presents a microstructurally-driven systems design approach to Mg alloy development for elevated temperature applications. The alloy properties that were targeted included creep resistance, elevated temperature strength, room temperature ductility, and material cost. To enable microstructural predictions during the design process, computational thermodynamics was utilized with a newly developed atomic mobility database for HCP-Mg. The mobilities for Mg self-diffusion, as well as Al, Ag, Sn, and Zn solute diffusion in HCP-Mg were optimized from available diffusion literature using DICTRA. The optimized mobility database was then validated using experimental diffusion couples. To limit dislocation creep mechanisms in the first design iteration, a microstructure consisting of Al solutes in solid solution and a fine dispersion of Mg2Sn precipitates was targeted. The development of strength and diffusion models informed by thermodynamic predictions of phase equilibria led to the selection of an optimum Mg-1.9at%Sn-1.5at%Al (TA) alloy for elevated temperature performance. This alloy was cast, solution treated based upon DICTRA homogenization simulations, and then aged. While the tensile and creep properties were competitive with conventional Mg alloys, the TA mechanical performance was ultimately limited because of abnormal grain growth that occurred during solution treatment and the basal Mg2Sn particle morphology. For the second design iteration, insoluble Mg2Si intermetallic particles were added to the TA alloy to provide enhanced grain boundary pinning

  5. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  6. Properties of splat-quenched 7075 aluminum type alloys

    NASA Technical Reports Server (NTRS)

    Durand, J. P. H. A.; Pelloux, R. M.; Grant, N. J.

    1976-01-01

    The 7075 alloy belonging to the Al-Zn-Mg-Cu system, prepared by powder metallurgy techniques, was used in a study of alloys prepared from splat-quenched foils consolidated into bar material by hot extrusion. Ni and Fe were included in one alloy specimen, producing a fine dispersion of FeAl3 type particles which added to the strength of the aged alloy but did not coarsen upon heat treatment. Fine oxide films showing up on air-splatted foils induce finely dispersed oxide stringers (if the foils are not hot-worked subsequently) which in turn promote axial cracking (but longitudinal tensile strength is not seriously impaired). Splatting in a protective atmosphere, or thermomechanical processing, is recommended to compensate for this.

  7. An oxide dispersion strengthened alloy for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1979-01-01

    The strength of the newly developed alloy MA-6000E is derived from a nickel alloy base, an elongated grain structure, naturally occurring precipitates of gamma prime, and an artificial distribution of extremely fine, stable oxide particles. Its composition is Ni-15Cr-2Mo-2Ta-4W-4.5Al-2.5Ti-0.15Zr 0.05C-0.01B-1.1Y2O3. It exhibits the strength of a conventional nickel-base alloy at 1400 F but is quite superior at 2000 F. Its shear strength is relatively low, necessitating consideration of special joining procedures. Its high cycle, low cycle, and thermal fatigue properties are excellent. The relationship between alloy microstructure and properties is discussed.

  8. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  9. Effect of displacement damage on the stability of oxide nanoparticles in model ODS alloys: TEM studies

    SciTech Connect

    Santra, Sumita; Balaji, S.; Panigrahi, B. K.; Serruys, Yves; Robertson, C.; Ana, Alamo; Sundar, C. S.

    2012-06-05

    Model ODS alloy containing Fe-0.3% yttria was prepared by ball milling and hipping at high temperature and the effect of irradiation on stability of yttria nanoclusters in model ODS alloy is studied by dual beam ion irradiation using 5 MeV Fe{sup +} and 1.5 MeV He{sup +} ions. TEM studies on irradiated sample show that these particles are stable at 25 dpa and 40 appm He concentration. However, at 80 dpa and 360 appm He concentration Yttria particles were found to be unstable as evidenced from increase in average particle size and particle size distribution.

  10. Effect of displacement damage on the stability of oxide nanoparticles in model ODS alloys: TEM studies

    NASA Astrophysics Data System (ADS)

    Santra, Sumita; Balaji, S.; Panigrahi, B. K.; Serruys, Yves; Robertson, C.; Ana, Alamo; Sundar, C. S.

    2012-06-01

    Model ODS alloy containing Fe-0.3% yttria was prepared by ball milling and hipping at high temperature and the effect of irradiation on stability of yttria nanoclusters in model ODS alloy is studied by dual beam ion irradiation using 5 MeV Fe+ and 1.5 MeV He+ ions. TEM studies on irradiated sample show that these particles are stable at 25 dpa and 40 appm He concentration. However, at 80 dpa and 360 appm He concentration Yttria particles were found to be unstable as evidenced from increase in average particle size and particle size distribution.

  11. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  12. Fuel powder production from ductile uranium alloys.

    SciTech Connect

    Clark, C. R.

    1998-10-23

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. Grinding was found to be inefficient and introduced impurities into the fuel. Cryogenic milling of machine chips in a steel vial was found to have similar shortcomings. The hydride-dehydride process has historically been used to produce very fine powder that may not be suitable for fuel fabrication. Uranium is made to form its hydride by heating in a hydrogen atmosphere. Subsequent heating under vacuum drives off hydrogen gas and returns the hydride to a metallic state. The volume change on hydride formation results in a fine powder upon dehydriding. The effects of alloying elements, partial hydriding, and subsequent milling treatments on particle size distribution are being explored. Inert gas atomization is used on an industrial scale to produce metal powder. Current designs are not suitable for use with uranium. A system was specifically designed for uranium atomization. A prototype was built and tested using gold as a surrogate for uranium. The system operates efficiently and can produce powder in a variety of size ranges by changing the atomization nozzle.

  13. Strengthening in Thermomechanically Processed Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Mansoor, B.; Decker, R. F.; LeBeau, S. E.

    Commercial Mg alloys, compared to other engineering materials such as steels or aluminum materials have inferior strengths (Y.S. = 120 MPa), limited ductility and poor formability. Furthermore, due to high costs their use in structural applications for transportation industry is still rather limited. Therefore, there is significant interest in developing microstructure modification routes to produce novel Mg base alloys with an attractive combination of strength and ductility at room temperature as-well as warm temperature formability. In order to promote use of such microstructurally engineered Mg materials, better understanding of the relationship between microstructure, texture etc. with mechanical properties must be developed for a range of different alloys. In this work, microstructure evolution and mechanical response of two thermomechanically processed Mg alloys AZ61L and AZ70-TH were investigated. Initial findings of this work are presented here. The processed materials exhibited a good combination of strength and tensile ductility at room temperature that was further enhanced (Y.S. > 250 MPa, El. % > 10%) by low temperature (180°C) annealing treatment for 1 hr. The ductility and in-plane anisotropy in mechanical property was found to be related to basal texture formation in the sheet plane. In addition to the Hall-Petch strengthening due to near ultrafine grain size, β-particles from as-molded microstructure, complement strengthening by sub-dividing and possibly solutionizing/re-precipitating into nano-sized, well-dispersed, obstacles to dislocation motion and grain growth.

  14. Precipitation of Al3(Sc,Zr) Particles in a Direct Chill Cast Al-Zn-Mg-Cu-Sc-Zr Alloy During Conventional Solution Heat Treatment and its Effect on Tensile Properties

    DTIC Science & Technology

    2007-12-01

    Fokker - Planck equation [26,27]: ( ) 2 2 * r D rt ∂ Φ∂ =Φ ∂ ∂ + ∂ Φ∂ ω (7) In Equations (6) and (7) r is the particle radius, ω = dr/dt is... Fokker - Planck equation . Under certain boundary conditions this equation describes well the experimental PSDs, indicating stochastic nature of the...A. Baldan, J. Mater. Science 37 (2002) 2171-2202. 26 H. Risken, The Fokker -Plank equation . Methods of Solution and Applications, Springer-

  15. Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Yang, Z. N.; Xia, Y.; Enomoto, M.; Zhang, C.; Yang, Z. G.

    2016-03-01

    The growth of austenite from pearlite in high-carbon low alloy steel occurs with and without alloy element redistribution depending on the amount of superheating above the eutectoid temperature. The transition temperature of austenite growth (denoted PNTT) is calculated as a function of pearlite transformation temperature and subsequent holding time, which affect the degree of partitioning in pearlite, using experimental partition coefficients k θ/ α of Mn, Cr, Co, Si, and Ni reported in the literature. PNTT is the highest in Cr-containing alloys which have the largest k θ/ α in pearlite. Post-transformation aging, usually accompanied by cementite spheroidization, leads to a marked increase of PNTT in Mn and Cr alloys. PNTT of Ni alloy does not depend on pearlite transformation temperature because practically the formation of partitioned pearlite is severely limited in this alloy for kinetic reasons. Above PNTT, austenite growth occurs fast initially, but slows down in the order of ten seconds when the ferrite disappears, and the remaining small carbide particles dissolve very slowly under the control of alloy element diffusion.

  16. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  17. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  18. Effect of friction stir processing on tribological properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Aktarer, S. M.; Sekban, D. M.; Yanar, H.; Purçek, G.

    2017-02-01

    As-cast Al-12Si alloy was processed by single-pass friction stir processing (FSP), and its effect on mainly friction and wear properties of processed alloy was studied in detail. The needle-shaped eutectic silicon particles were fragmented by intense plastic deformation and dynamic recrystallization during FSP. The fragmented and homogenously distributed Si particles throughout the improve the mechanical properties and wear behavior of Al-12Si alloy. The wear mechanisms for this improvement were examined and the possible reasons were discussed.

  19. Surface modification of hypereutectic Al-Si alloy via friction stir process

    NASA Astrophysics Data System (ADS)

    Abdulmalik, S. S.; Ahmad, R.; Asmael, M. B. A.

    2017-04-01

    The surfaces of cast hypereutectic Al-Si-Cu-Ni-La alloy plate was subjected to single pass Friction Stir Processing (FSP) with the aim of decreasing the Si and intermetallic particles size, porosity, and enhancing tensile properties. After FSP, the FS-processed sample shows an improvement in tensile strength value of about 27.5% compared to the as cast base alloy. Optical and scanning electron micrographs indicated that FSP significantly decreases the size of Si, intermetallic particles, and reduced porosity in the alloy, which contributed to the enhancement in tensile properties.

  20. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  1. Synthesis of biodegradable Mg-Zn alloy using mechanical alloying: Effect of ball to powder weight ratio

    NASA Astrophysics Data System (ADS)

    Zuhailawati, Hussain; Salleh, Emee Marina; Ramakrishnan, Sivakumar

    2016-07-01

    The aim of this work was to study the effect of ball to powder weight ratio (BPR) on biodegradable binary magnesium-zinc (Mg-Zn) alloy synthesized using mechanical alloying. A powder mixture of Mg-5wt%Zn was milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Milling process was carried out at 200 rpm for 5 hours using various BPR (i.e. 5:1, 10:1, 15:1, 20:1). Then, as milled powder was compacted under 400 MPa and sintered in a tube furnace at 300 °C in argon flow for an hour. The sintered density and microhardness of the alloy increased as BPR increased up to 15:1. However a further increasing showed a reduction in both density and microhardness which due to enlargement of crystallite and particle which resulted from the excessive internal energy during mechanical alloying.

  2. Analysis of niobium alloys.

    PubMed

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  3. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  4. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  5. Studies into the impact of mechanical activation on optimal sintering temperature of UFG heavy tungsten alloys

    NASA Astrophysics Data System (ADS)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Sakharov, N. V.; Baranov, G. V.; Popov, A. A.; Lantcev, E. A.; Belov, V. Yu; Smirnova, E. S.

    2017-07-01

    The paper dwells on the research conducted into sintering mechanisms, the structure and mechanical properties of ultrafine-grained heavy tungsten W-Ni-Fe alloys. The dependence of alloy density on temperature of sintering (Tsint) is found to be nonmonotonic with a maximum equivalent to the optimal sintering temperature. Studies also encompassed the impact that the size of tungsten particles may have on the optimal Tsint. An increase in time of mechanical activation (MA) and acceleration of grinding bodies accompanied by a decrease in alloy particle size and formation of non-equilibrium solid solutions is shown to reduce the optimal Tsint of alloys. High-energy MA and Spark Plasma Sintering methods were applied to obtain samples of tungsten alloys with high mechanical properties: macroelasticity limit of up to 2,250 MPa, yield strength of up to 2,500 MPa.

  6. Melt Conditioned DC (MC-DC) Casting of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zuo, Y. B.; Jiang, B.; Zhang, Y.; Fan, Z.

    A new melt conditioned direct chill (MC-DC) casting process has been developed for producing high quality magnesium alloy billets and slabs. In the MC-DC casting process, intensive melt shearing provided by a high shear device is applied directly to the alloy melt in the sump during DC casting. The high shear device provides intensive melt shearing to disperse potential nucleating particles, creates a macroscopic melt flow to distribute uniformly the dispersed particles, and maintains a uniform temperature and chemical composition throughout the melt in the sump. Experimental results have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure and reduced cast defects. In this paper, we introduce the new MC-DC casting process, report the grain refining effect of intensive melt shearing during the MC-DC casting process and discuss the grain refining mechanism.

  7. Aluminum Alloys for ALS Cryogenic Tanks: Oxygen Compatibility. Volume 2

    DTIC Science & Technology

    1990-09-01

    Absorbed energy, calculated from specimen deformation characteristics, vs. absorbed energy, calculated from rebound heights. 79. 11.7.2. Tensile...combustion tests. Therefore, within the ability of the current tests to discern relative compatibility and flamability with LOX and COX, the Al-Li alloys and...each second phase particle measured and assuming a circular shape to calculate a diameter; (4) separating second phase particles into 10 bins based on

  8. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    DTIC Science & Technology

    1981-04-01

    alloys --* Aluminum Alloys --*Copper alloys --*Gold alloys --*Nickel Alloys --*Silver alloys --*Iron alloys --*Palladium alloys ... aluminum -magnesium, and copper-zinc) are given for 27 compositions: 0 (pure element).* For aluminum -copper, aluninu.-eagnes tur, end copper-zinc alloy ...available data and infor- mation. The ten binary alloy systems selected are the systems of aluminum - copper, aluminum -magnesium, copper-gold,

  9. Microstructural and Hardness Evaluations of a Centrifuged Sn-22Pb Casting Alloy Compared with a Lead-Free SnAg Alloy

    NASA Astrophysics Data System (ADS)

    Satizabal, Luz Myrian; Costa, Diego; Hainick, Guilherme Ottamr; Moura, Diego Rodrigo; Bortolozo, Ausdinir Danilo; Osório, Wislei Riuper

    2017-04-01

    A great preoccupation with replacing the traditional Sn-Pb alloy with a Pb-free alloy ("green alloy") is recognized. There are industrial sectors that demand metallurgical improvements to attain certain unsoundness and adequate properties as a function of imposed operational parameters. In this experimental investigation, two distinctive centrifuged casting alloys ( i.e., Sn-2 wt pct Ag and Sn-22 wt pct Pb) are compared. It is found that centrifuged castings have similar microstructure constituents, although distinctive cooling rates and solute contents are considered. It is also found that Ag3Sn intermetallic particles are responsible for attaining similar tensile strength, since more dislocations between Ag3Sn particles and the Sn-rich phase are provided. In order to replace the Sn-Pb alloys with a successor alloy containing sustainability and environmental aspects associated with castability and to guarantee the desired properties, it seems that a green alloy (Pb free) with intermetallic particles finely and homogeneously distributed provides an interesting benefit to various industrial applications.

  10. Microstructural and Hardness Evaluations of a Centrifuged Sn-22Pb Casting Alloy Compared with a Lead-Free SnAg Alloy

    NASA Astrophysics Data System (ADS)

    Satizabal, Luz Myrian; Costa, Diego; Hainick, Guilherme Ottamr; Moura, Diego Rodrigo; Bortolozo, Ausdinir Danilo; Osório, Wislei Riuper

    2017-01-01

    A great preoccupation with replacing the traditional Sn-Pb alloy with a Pb-free alloy ("green alloy") is recognized. There are industrial sectors that demand metallurgical improvements to attain certain unsoundness and adequate properties as a function of imposed operational parameters. In this experimental investigation, two distinctive centrifuged casting alloys (i.e., Sn-2 wt pct Ag and Sn-22 wt pct Pb) are compared. It is found that centrifuged castings have similar microstructure constituents, although distinctive cooling rates and solute contents are considered. It is also found that Ag3Sn intermetallic particles are responsible for attaining similar tensile strength, since more dislocations between Ag3Sn particles and the Sn-rich phase are provided. In order to replace the Sn-Pb alloys with a successor alloy containing sustainability and environmental aspects associated with castability and to guarantee the desired properties, it seems that a green alloy (Pb free) with intermetallic particles finely and homogeneously distributed provides an interesting benefit to various industrial applications.

  11. Synthesis, characterization, and microwave absorption properties of Fe-40 wt%Ni alloy prepared by mechanical alloying and annealing

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Feng, Yongbao; Qiu, Tai

    2011-12-01

    Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.

  12. Different failure modes for V-containing and V-free AB2 metal hydride alloys

    NASA Astrophysics Data System (ADS)

    Young, K.; Wong, D. F.; Yasuoka, S.; Ishida, J.; Nei, J.; Koch, J.

    2014-04-01

    Failure modes of a V-containing and a V-free AB2 Laves phase-based metal hydride alloy were studied by the combination of X-ray diffractometer, scanning electron microscope, X-ray energy dispersive spectroscopy, inductively coupled plasma, Soxhlet extraction, and magnetic susceptibility measurement. Cells with the V-containing alloy exhibited less capacity degradation up until venting occurred in the cells, after which the capacity rapidly degraded. Cells with the V-free alloy remained linear in capacity degradation throughout the cycle life test. The failure mechanism for the V-containing alloy is related to the formation of an oxide layer that penetrates deeper into the alloy particles due to high V leaching and impedes gas recombination, while the failure mechanism for the V-free alloy is related to the continuous pulverization of the main AB2 phase.

  13. Effects of Al-5Ti-1B master alloy on the microstructural evaluation of a highly alloyed aluminum alloy produced by SIMA process

    SciTech Connect

    Alipour, M.; Emamy, M.; Azarbarmas, M.; Karamouz, M.

    2010-06-15

    This study was undertaken to investigate the influence of Al-5Ti-1B master alloy on the structural characteristics of Al-12Zn-3 Mg-2.5Cu aluminum alloy. The optimum amount of Ti containing master alloy for proper grain refining was selected as 6 wt.%. A modified strain-induced, melt-activated (SIMA) process for semi-solid processing of alloys was proposed. In order to examine the effectiveness of the modified SIMA process, the recrystallized microstructures of the Al alloy (Al-12Zn-3 Mg-2.5Cu) prepared by the modified SIMA processes were macroscopically. The modified SIMA process employed casting, warm multi-forging, recrystallization and partial melting instead of the conventional process. Reheating condition to obtain a fine globular microstructure was optimized. The microstructure evolution of reheated Al-12Zn-3 Mg-2.5Cu aluminum alloy was characterized by SEM (Scanning electron microscopy) and optical microscopy. In this study the relation between the induced strain with size and shape of grain size has been studied. Results indicated that with the increase of strain sphericity of particles, their size decreases and sphericity takes place in less reahiting time.

  14. Effects of Al—5Ti—1B master alloy on the microstructural evaluation of a highly alloyed aluminum alloy produced by SIMA process

    NASA Astrophysics Data System (ADS)

    Alipour, M.; Emamy, M.; Azarbarmas, M.; karamouz, M.

    2010-06-01

    This study was undertaken to investigate the influence of Al—5Ti—1B master alloy on the structural characteristics of Al—12Zn—3 Mg—2.5Cu aluminum alloy. The optimum amount of Ti containing master alloy for proper grain refining was selected as 6 wt.%. A modified strain-induced, melt-activated (SIMA) process for semi-solid processing of alloys was proposed. In order to examine the effectiveness of the modified SIMA process, the recrystallized microstructures of the Al alloy (Al—12Zn—3 Mg—2.5Cu) prepared by the modified SIMA processes were macroscopically. The modified SIMA process employed casting, warm multi-forging, recrystallization and partial melting instead of the conventional process. Reheating condition to obtain a fine globular microstructure was optimized. The microstructure evolution of reheated Al—12Zn—3 Mg—2.5Cu aluminum alloy was characterized by SEM (Scanning electron microscopy) and optical microscopy. In this study the relation between the induced strain with size and shape of grain size has been studied. Results indicated that with the increase of strain sphericity of particles, their size decreases and sphericity takes place in less reahiting time.

  15. Silver-palladium braze alloy recovered from masking materials

    NASA Technical Reports Server (NTRS)

    Cierniak, R.; Colman, G.; De Carlo, F.

    1966-01-01

    Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.

  16. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  17. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  18. On Roesler and Arzt's new model of creep in dispersion strengthened alloys

    SciTech Connect

    Orlova, A.; Cadek, J. )

    1992-08-01

    The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density. On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.

  19. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage

  20. Electrochemistry at single bimetallic nanoparticles - using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles.

    PubMed

    Saw, En Ning; Grasmik, Viktoria; Rurainsky, Christian; Epple, Matthias; Tschulik, Kristina

    2016-12-12

    The increasing interest in producing bimetallic nanoparticles and utilizing them in modern technologies sets the demand for fast and affordable characterization of these materials. To date Scanning Transmission Electron Microscopy (STEM) coupled to energy dispersive X-ray spectroscopy is usually used to determine the size and composition of alloy nanoparticles, which is time-consuming and expensive. Here electrochemical single nanoparticle analysis is presented as an alternative approach to infer the particle size and composition of alloy nanoparticles, directly in a dispersion of these particles. As a proof of concept, 14 nm sized Ag0.73Au0.27 alloy nanoparticles are analyzed using a combination of chronoamperometric single nanoparticle analysis and cyclic voltammetry ensemble studies. It is demonstrated that the size, the alloying and the composition can all be inferred using this approach. Thus, the electrochemical characterization of single bimetallic alloy nanoparticles is suggested here as a powerful and convenient complement or alternative to TEM characterization of alloy nanoparticles.

  1. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  2. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  3. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  4. Constituent Particle Clustering and Pitting Corrosion

    NASA Astrophysics Data System (ADS)

    Harlow, D. Gary

    2012-08-01

    Corrosion is a primary degradation mechanism that affects the durability and integrity of structures made of aluminum alloys, and it is a concern for commercial transport and military aircraft. In aluminum alloys, corrosion results from local galvanic coupling between constituent particles and the metal matrix. Due to variability in particle sizes, spatial location, and chemical composition, to name a few critical variables, corrosion is a complex stochastic process. Severe pitting is caused by particle clusters that are located near the material surface, which, in turn, serve as nucleation sites for subsequent corrosion fatigue crack growth. These evolution processes are highly dependent on the spatial statistics of particles. The localized corrosion growth rate is primarily dependent on the galvanic process perpetuated by particle-to-particle interactions and electrochemical potentials. Frequently, severe pits are millimeters in length, and these pits have a dominant impact on the structural prognosis. To accommodate large sizes, a model for three-dimensional (3-D) constituent particle microstructure is proposed. To describe the constituent particle microstructure in three dimensions, the model employs a fusion of classic stereological techniques, spatial point pattern analyses, and qualitative observations. The methodology can be carried out using standard optical microscopy and image analysis techniques.

  5. Particle therapy

    SciTech Connect

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  6. Particle separator

    DOEpatents

    Hendricks, Charles D.

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  7. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  8. Particle astrophysics

    NASA Astrophysics Data System (ADS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  9. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    SciTech Connect

    Posada, Olga M.; Gilmour, Denise; Tate, Rothwelle J.; Grant, M. Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  10. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  11. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1986-01-14

    ftoc*o~ow7 and Idenify’ by block nam. bor) Electron mobility , Lattice Relaxation, Bond Length, Bond Energy, Mixing Enthalpies, Band Structure, Core...including: (1) generalization of Brooks’ formula for alloy-scattering limited electron mobility to including multiple bands and indirect gaps, (2...calculation of SiGe alloys band structure, electron mobility and core-exciton binding energy and • :linewidth, (3) comprehensive calculation of bond

  12. Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Qiyi; Shen, Leinuo; Cao, Feng; Jia, Yanlin; Liao, Kaiju; Wang, Mingpu

    2015-04-01

    A Cu-0.7Fe-0.15P (wt.%) alloy was designed, and its comprehensive properties, especially electrical conductivity and temper-softening resistance of the designed alloy, were higher than those of traditional Cu-Fe-P alloys. The microstructure of this alloy was investigated with optical microscopy, scanning electron microscopy, and transmission electron microscopy. The particle of secondary phase was confirmed to be Fe2P with x-ray spectroscopy and digital diffractogram. By virtue of precipitation hardening and work hardening, the tensile strength and electrical conductivity of Cu-0.7Fe-0.15P alloy were 498 MPa and 62% IACS, respectively. The electrical conductivity of this alloy can be up to 92% IACS due to the complete precipitation of Fe2P. After repeating the cold rolling and aging process for three times, the tensile strength, elongation, and conductivity of this alloy were 467 MPa, 22%, and 78% IACS, respectively. Due to the low driving force of recrystallization and the pinning effect of fine dispersed Fe2P, the alloy with low deformation rate showed excellent softening resistance. The designed alloy can be used as a high-strength, high-electrical-conductivity lead-frame alloy.

  13. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  14. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  15. Furnace alloys update

    SciTech Connect

    Vervalin, C.H.

    1984-12-01

    The principal share of the cast heat resistant alloy market has long been held by HK-40, a 25Cr/20Ni steel with an average carbon content of 0.40 percent. HK-40 alloy has done a commendable job, especially after its limitations in the various processes were better understood, by designers and operators alike. Presently, and in the future, the materials performance demands of new reformers, ethylene pyrolysis, coal gasification, iron ore reduction and other thermally intensive processes will require alloy capabilities frequently beyond those of HK-40. This article presents an update of the capabilities and limitations of HK-40 and describes a group of higher nickel 25Cr/35Ni alloys of the HP-base, mostly modified by various additions such as columbian, tungsten, titanium, zirconium, cobalt, chromium, molybdenum, silicon and/or aluminum. A number of these alloys are proprietary. Data on the 24Cr/24Ni and 30Cr/30Ni alloys are presented as they have proven, reliable performance at an economical price.

  16. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  17. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  18. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  19. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.

    PubMed

    Kuśnierczyk, Katarzyna; Basista, Michał

    2016-07-01

    Magnesium alloys are modern biocompatible materials suitable for orthopaedic implants due to their biodegradability in biological environment. Many studies indicate that there is a high demand to design magnesium alloys with controllable in vivo corrosion rates and required mechanical properties. A solution to this challenge can be sought in the development of metal matrix composites based on magnesium alloys with addition of relevant alloying elements and bioceramic particles. In this study, the corrosion mechanisms along with corrosion protection methods in magnesium alloys are discussed. The recently developed magnesium alloys for biomedical applications are reviewed. Special attention is given to the newest research results in metal matrix composites composed of magnesium alloy matrix and calcium phosphates, especially hydroxyapatite or tricalcium phosphate, as the second phase with emphasis on the biodegradation behavior, microstructure and mechanical properties in view of potential application of these materials in bone implants.

  20. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Tang, Guangze; Luo, Dian; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2017-05-01

    In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5-8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  1. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    SciTech Connect

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  2. Solid State Joining of Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  3. Particle preconcentrator

    SciTech Connect

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr

    2000-07-11

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a previous screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  4. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  5. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  6. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  7. Particle preconcentrator

    SciTech Connect

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  8. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  10. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  11. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  12. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  13. Observation of Oxide Formation for Molten Fe-Cr-C Alloy at a High Carbon Region by Oxygen Top Blowing

    NASA Astrophysics Data System (ADS)

    Mihara, Ryosuke; Gao, Xu; Kaneko, Shigeru; Kim, Sunjoong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2016-04-01

    The oxide formation behavior during decarburization by top blowing for molten Fe-Cr-C alloy was directly observed. For 11 mass pct Cr alloy at 1673 K to 1723 K (1400 °C to 1450 °C), as well as for 14 mass pct Cr alloy at 1623 K to 1673 K (1350 °C to 1400 °C), oxide particles always formed within several minutes after decarburization started. Also, unstable oxide film followed by stable oxide film formed after C content was decreased to certain levels. For 11 mass pct Cr alloy at 1773 K (1500 °C) and 14 mass pct Cr alloy at 1723 K (1450 °C), only the oxide particle and stable oxide film were observed. For 18 mass pct Cr-5 mass pct C alloy at 1723 K (1450 °C), stable oxide film formed twice. By comparing the critical C and Cr contents of alloy when oxides started to form with the equilibrium relation, the formation of the oxide particle and unstable oxide film was found to be under a nonequilibrium condition, whereas the stable oxide film that formed was near an equilibrium condition. For 11 and 14 mass pct Cr alloy, the decarburization rate stayed constant and was not affected by the formation of the oxide particle or unstable oxide film, but it started to decrease after the formation of the stable oxide film.

  14. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  15. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  16. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  17. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  18. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  19. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  20. Electrodeposition of PdCu alloy and its application in methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Hsieh, Ming-Wei; Whang, Thou-Jen

    2013-04-01

    This study demonstrates a simple electrodeposition method to fabricate the palladium-copper alloy on an ITO coated glass (PdCu/ITO) and its application in methanol electro-oxidation. Our approaches involve the co-reduction of Pd and Cu using triethanolamine (TEA) as a complexing agent in the electroplating bath and a Pd redox replacement of Cu on the surface of the as-prepared PdCu alloy. The phase structures, alloy compositions and morphologies of catalysts are determined by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy, respectively. X-ray diffraction shows that the particle size of PdCu deposits shrink when the alloy is deposited in a TEA-contained solution. The electrocatalytic properties of PdCu alloys and Pd redox replacement modified PdCu alloys for methanol oxidation have been investigated by cyclic voltammetry. The PdCu alloy with atomic ratio of 20.5% Cu exhibits higher catalytic activity toward methanol oxidation compared with a pure Pd catalyst. PdCu alloys with smaller particle sizes associated with TEA agent and the surface confined Pd replacement are found to have enhanced catalytic performance in the electro-oxidation of methanol.

  1. Sintering and Cold Swaging of Tungsten Heavy Alloys Prepared from Various Grades of W Powder

    NASA Astrophysics Data System (ADS)

    Eroglu, S.

    2017-10-01

    In the present work, sintering and cold swaging of 92.5W-5.25Ni-2.25Fe heavy alloys prepared from various grades of W powder were investigated. The mean particle sizes of the W powder grades were 3.4 µm, 10.5 µm, and 28.0 µm. It was observed that linear shrinkage decreased with increasing W particle size. The sintering behavior of the alloys was discussed in terms of liquid capillarity and W particle size. The alloy prepared from the 28.0-µm grade W powder exhibited incomplete densification. This alloy could not be swaged because of the poor mechanical properties. The alloys of the other grades were fully densified. They exhibited better ductility and swageability. The alloy of the 10.5-µm grade W powder had good mechanical properties (e.g., tensile strength 1300 MPa, hardness 38 HRC after 10% cold swaging) that were equivalent to those of the alloy of the fine-grade W powder (3.4 µm).

  2. Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Zeng, Yong

    2016-02-01

    Tungsten-titanium alloys are considered as promising materials for the future fusion devices, in particular for the divertor and other first wall components. The microstructure and the mechanical properties of the material are dependent on the amount of Ti present in the alloy. In this study, W-Ti-Y2O3 alloys with varied Ti contents between 1 wt.% and 10 wt.% fabricated by mechanical alloying were investigated. The effect of Ti on the phase formation and mechanical properties of W-Ti-Y2O3 alloys has been examined. The results suggest that the alloys containing low Ti content exhibit homogeneous microstructure with a uniform distribution of fine titanium oxide particles and tungsten carbides, leading to a significant increase in hardness and elastic modulus of alloys. In addition, high-energy ball milling can facilitate a solid-state reaction between Y2O3 particles and the tungsten-titanium matrix and the subsequent sintering processing promotes the formation of stable nano Ti2Y2O7 oxide particles, which greatly increase the mechanical properties at elevated temperature and enhance irradiation resistance.

  3. Sintering and Cold Swaging of Tungsten Heavy Alloys Prepared from Various Grades of W Powder

    NASA Astrophysics Data System (ADS)

    Eroglu, S.

    2017-08-01

    In the present work, sintering and cold swaging of 92.5W-5.25Ni-2.25Fe heavy alloys prepared from various grades of W powder were investigated. The mean particle sizes of the W powder grades were 3.4 µm, 10.5 µm, and 28.0 µm. It was observed that linear shrinkage decreased with increasing W particle size. The sintering behavior of the alloys was discussed in terms of liquid capillarity and W particle size. The alloy prepared from the 28.0-µm grade W powder exhibited incomplete densification. This alloy could not be swaged because of the poor mechanical properties. The alloys of the other grades were fully densified. They exhibited better ductility and swageability. The alloy of the 10.5-µm grade W powder had good mechanical properties (e.g., tensile strength 1300 MPa, hardness 38 HRC after 10% cold swaging) that were equivalent to those of the alloy of the fine-grade W powder (3.4 µm).

  4. Microstructure of a commercial W-1% La2O3 alloy

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Xu, Zhiqiang; Cui, Kai; Yu, Jie

    2014-12-01

    W-1% La2O3 alloy is considered as the most promising material for plasma-facing components of fusion reactors. The microstructure of a commercial W-1% La2O3 alloy was investigated using optical and transmission electron microscopes. The microstructure of pure tungsten can be improved significantly by fabrication of W-1% La2O3 alloys. W-1% La2O3 alloys can be produced with no porosities and cracks, and with various oxide phases dispersed in alloy matrix. La2O3 with different crystal structures, La6W2O15, WO2, WO3 and W3O8 phases were identified in as-forged W-1% La2O3 alloy. Long strip-like La2O3 has a very large size, whereas spherical La6W2O15, navicular WO3, hexagonal W3O8 and short rod-like La2O3 are smaller particles. Most identified phases have a heterogeneous distribution. Forging leads to a more dispersive distribution of large-sized La2O3 particles but not of fine WO3 particles compared with rolling. The mechanical properties of the alloys are also discussed.

  5. Preparation and Properties of ZrO2/Mo Alloys

    NASA Astrophysics Data System (ADS)

    Cui, Chaopeng; Gao, Yimin; Wei, Shizhong; Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang

    2017-02-01

    The nano-sized ZrO2 reinforced Mo alloys were prepared by hydrothermal synthesis and subsequent sintering. During preparation, the nano-sized ZrO2 particles were added into the Mo powder via hydrothermal synthesis. This work investigated the differences in mechanical properties and microstructures of the Mo-ZrO2 alloys prepared by hydrothermal synthesis and the other traditional method. As the amount of ZrO2 particles increased, the grain size of the Mo powders reduced obviously. The grains were refined obviously after sintering. The ZrO2 particles added by hydrothermal synthesis can effectively restrain the growth of grains and improve mechanical properties such as strength and hardness.

  6. Aluminum Alloy 7068 Mechanical Characterization

    DTIC Science & Technology

    2009-08-01

    strength of 99 ksi (2). The commonly specified material properties for extruded 7068 aluminum are shown in table 1, along with 7050 and 7075 aluminum ...alloys for comparison (3). Table 1. Mechanical property comparison of high-strength aluminum alloys. Property Alloy 7068 7075 7050 Elastic... Aluminum Alloy 7068 Mechanical Characterization by Michael Minnicino, David Gray, and Paul Moy ARL-TR-4913 August 2009

  7. Selective dissolution in binary alloys

    NASA Astrophysics Data System (ADS)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  8. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  9. Tissue Response to Base-Metal Dental Alloys.

    DTIC Science & Technology

    RESPONSE(BIOLOGY), *CASTING ALLOYS, *BASE METAL, * DENTAL PROSTHESES, TISSUES(BIOLOGY), COMPATIBILITY, NICKEL ALLOYS, BERYLLIUM, DENTISTRY, CANCER, HISTOLOGY, DENTAL IMPLANTOLOGY , COBALT ALLOYS, CHROMIUM ALLOYS.

  10. Finding the Alloy Genome

    NASA Astrophysics Data System (ADS)

    Hart, Gus L. W.; Nelson, Lance J.; Zhou, Fei; Ozolins, Vidvuds

    2012-10-01

    First-principles codes can nowadays provide hundreds of high-fidelity enthalpies on thousands of alloy systems with a modest investment of a few tens of millions of CPU hours. But a mere database of enthalpies provides only the starting point for uncovering the ``alloy genome.'' What one needs to fundamentally change alloy discovery and design are complete searches over candidate structures (not just hundreds of known experimental phases) and models that can be used to simulate both kinetics and thermodynamics. Despite more than a decade of effort by many groups, developing robust models for these simulations is still a human-time-intensive endeavor. Compressive sensing solves this problem in dramatic fashion by automatically extracting the ``sparse model'' of an alloy in only minutes. This new paradigm to model building has enabled a new framework that will uncover, automatically and in a general way across the periodic table, the important components of such models and reveal the underlying ``genome'' of alloy physics.

  11. Photobiomolecular metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  12. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  13. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  14. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  15. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  16. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  17. Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip

    1999-01-01

    The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.

  18. oxide and FeNi alloy: product dependence on the reduction ability

    NASA Astrophysics Data System (ADS)

    Cao, Jungang; Qin, Yuyang; Li, Minglun; Zhao, Shuyuan; Li, Jianjun

    2014-12-01

    Based on the sol-gel combustion method, stoichiometric Fe3+, Mn2+, Ni2+ ions and citric acid were chosen as the initial reactants for the preparation of magnetic particles. Due to the different reduction ability of metal ions, completely different magnetic products (MnFe2O4 oxide and FeNi alloy) were obtained by heating the flakes at 600 °C under nitrogen atmosphere. MnFe2O4 particles exhibit superparamagnetic behavior at room temperature, and martensitic phase transformation is observed magnetically at 125 K for FeNi alloy particles.

  19. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  20. High Strain Rate Response of Tungsten Heavy Alloy

    NASA Astrophysics Data System (ADS)

    Chang, S. N.

    1997-07-01

    Tungsten heavy alloy (WHA) is studied to investigate the effect of thickness variation on its dynamic behaviors. Exploding Bridgwire (EBW) detonator has been used to drive the alloy plate. The particle velocity at the rear free surface was measured by means of VISAR. The experimental technique in this paper has been introduced to simply obtain the Hugoniot elastic limit and spall strength of materials of small disc plate (diamter of 7mm) with varying thickness. Peak pressure decay is analyzed as a function of the thickness of samples. The fracture behavior of WHA caused by this high strain rate is similar to that due to the conventional tensile test.

  1. The effects of composition on mechanical properties of W-4Re-Hf-C alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1974-01-01

    Studies were made of the effects of alloy composition on the mechanical behavior of as-worked W-4Re-Hf-C alloys containing up to about 0.8 mol % Hfc. Extracted second-phase particles were analyzed and related to alloy composition and creep strength. While strengthening is attributed to HfC particles, the presence of excess hafnium or carbon (above the calculated amounts for stoichiometric HfC) in swaged W-4Re-Hf-C alloys generally causes a reduction of the high-temperature (1930 C) tensile strength; maximum creep strength is, however, indicated for alloys with a slight (about 0.05 to 0.1 at. %) excess of hafnium. Particle strengthening is reduced by WC in solid solution with HfC for allow compositions with an excess of carbon. The low-temperature ductility of worked W-4Re-Hf-C alloys appears to be far more dependent on the amount of excess C or Hf present than on the HfC particle content in the range studies.

  2. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  3. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  4. Elementary particles

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald; Heusch, Karin

    Introduction -- Electrons and atomic nuclei -- Quantum properties of atoms and particles -- The knives of Democritus -- Quarks inside atomic nuclei -- Quantum electrodynamics -- Quantum chromodynamics -- Mesons, baryons, and quarks -- Electroweak interactions -- Grand unification -- Conclusion.

  5. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  6. Auroral particles

    NASA Astrophysics Data System (ADS)

    Evans, David S.

    1987-06-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  7. Auroral particles

    NASA Technical Reports Server (NTRS)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  8. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    NASA Astrophysics Data System (ADS)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  9. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application.

    PubMed

    Shuai, Cijun; Zhou, Yuanzhuo; Lin, Xin; Yang, Youwen; Gao, Chengde; Shuai, Xiong; Wu, Hong; Liu, Xinyan; Wu, Ping; Feng, Pei

    2017-01-01

    The rapid degradation rate of Magnesium (Mg) alloy limits its biomedical application even though it possesses outstanding biological performance and biomechanical compatibility. In this study, a combined method of laser rapid melting and alloying Zinc (Zn) was proposed to decrease the degradation rate of Mg-Sn alloy. The microstructure, degradation behaviors and mechanical properties of the laser-melted Mg-5Sn-xZn (x = 0, 2, 4, 6 and 8 wt.%) alloys were investigated. The results indicated that the grain size of the alloys decreased with increasing Zn content, due to the increased number of nucleation particles formed in the process of solidification. Moreover, the laser-melted Mg-Sn alloys possessed finer grains compared with traditional as-cast and as-rolled Mg-Sn alloys. The degradation rate of the alloys decreased with increasing Zn content (0-4 wt.%), which was ascribed to the grain refinement and the formation of Zn(OH)2 protective layer. However, the degradation rate increased as the Zn content further increased (4-8 wt.%), which was caused by the galvanic corrosion between the Mg matrix and the generated Mg7Zn3 phase. Besides, Zn also increased the hardness of the alloys owing to the grain refinement strengthening and solid solution strengthening.

  10. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  11. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  12. Plastic deformation behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2004-09-01

    The plastic deformation behavior of aluminum casting alloys A356 and A357 has been investigated at various solidification rates with or without Sr modification using monotonic tensile and multi-loop tensile and compression testing. The results indicate that at low plastic strains, the eutectic particle aspect ratio and matrix strength dominate the work hardening, while at large plastic strains, the hardening rate depends on secondary dendrite arm spacing (SDAS). For the alloys studied, the average internal stresses increase very rapidly at small plastic strains and gradually saturate at large plastic strains. Elongated eutectic particles, small SDAS, or high matrix strength result in a high saturation value. The difference in the internal stresses, due to different microstructural features, determines the rate of eutectic particle cracking and, in turn, the tensile instability of the alloys. The higher the internal stresses, the higher the damage rate of particle cracking and then the lower the Young’s modulus. The fracture strain of alloys A356/357 corresponds to the critical amount of damage by particle cracking locally or globally, irrespective of the fineness of the microstructure. In the coarse structure (large SDAS), this critical amount of damage is easily reached, due to the clusters of large and elongated particles, leading to alloy fracture before global necking. However, in the alloy with the small SDAS, the critical amount of damage is postponed until global necking takes place due to the small and round particles. Current models for dispersion hardening can be used to calculate the stresses induced in the particles. The calculations agree well with the results inferred from the experimental results.

  13. Aluminum alloys for ALS cryogenic tanks: Comparative measurements of cryogenic mechanical properties of Al-Li alloys and Alloy 2219. Final report, Aug 89-Mar 90

    SciTech Connect

    Reed, R.P.; Purtscher, P.T.; Simon, N.J.; McColskey, J.D.; Walsh, R.P.

    1991-10-01

    Tensile and plane-strain fracture toughness properties were obtained at cryogenic temperatures to compare the Al-Li alloys 8090, 2090, and WL049 and alloy 2219 in various tempers and specimen orientations. The strongest alloy at very low temperatures is WL049-T851, which is about 10% stronger than 2090-T81. Both alloys are considerably stronger than 2219-T87. Alloy 2090-T81 is tougher in the in-plane orientations (about 50%) than WL049-T851 at low temperatures; the higher in-plane toughness is attributed to the presence of less constituent particles and the tendency to crack out-of-plane or delaminate at low temperatures. This delamination tends to divide the moving crack, thus separating it into smaller regions where plan stress (rather than plane strain) conditions are conducive to increased toughness. Thus, a dichotomy: reduced toughness in the through-thickness or out-of-plane orientations leads to increased toughness in the in-plane orientations. In service, a leak in the tank is considered failure, and a leak will be caused by a crack in the panels of the tankage growing through the panel thickness. To measure the resistance to crack growth under these conditions, surface-flawed panel tests are recommended.

  14. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  15. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  16. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  17. Effects of Al2O3 Nanopowders on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; Öksüz, K. Emre

    2014-01-01

    TiNi shape memory alloy and its composite using δ-Al2O3 nanosize particles were prepared by the powder metallurgy method, and some mechanical properties like hardness, wear, and corrosion behavior were investigated. The experimental results exhibited that the lower wear rate was obtained for the nano-Al2O3-reinforced Ti alloy composite due to increased hardness, but the wear rate increased considerably with increasing the load over 25 N for Ti alloy. However, the best corrosion resistance was obtained for the base alloy, which is very important for implant applications.

  18. Particle Engulfment and Pushing By Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Mukherjee, Sundeep; Juretzko, Frank Robert; Catalina, A.drian V.; Sen, Subhayu; Curreri, P. A.

    2001-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since the mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites. The experimental evidence on transparent organic materials, as well as the recent in situ observations on steel demonstrates that there exist a critical velocity of the planar SLI below which particles are pushed ahead of the interface, and above which particles are engulfment. The engulfment of a SiC particle in succinonitrile is exemplified. However, in most commercial alloys dendritic interfaces must be considered. Indeed, most data available on metallic alloys are on dendritic structures. The term engulfment is used to describe incorporation of a particle by a planar or cellular interface as a result of local interface perturbation, as opposed to entrapment that implies particle incorporation at cells or dendrites boundaries. During entrapment the particles are pushed in the intercellular or interdendritic regions and then captured when local solidification occurs. The physics of these two phenomena is fundamentally different.

  19. Particle Engulfment and Pushing By Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Mukherjee, Sundeep; Juretzko, Frank Robert; Catalina, A.drian V.; Sen, Subhayu; Curreri, P. A.

    2001-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since the mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites. The experimental evidence on transparent organic materials, as well as the recent in situ observations on steel demonstrates that there exist a critical velocity of the planar SLI below which particles are pushed ahead of the interface, and above which particles are engulfment. The engulfment of a SiC particle in succinonitrile is exemplified. However, in most commercial alloys dendritic interfaces must be considered. Indeed, most data available on metallic alloys are on dendritic structures. The term engulfment is used to describe incorporation of a particle by a planar or cellular interface as a result of local interface perturbation, as opposed to entrapment that implies particle incorporation at cells or dendrites boundaries. During entrapment the particles are pushed in the intercellular or interdendritic regions and then captured when local solidification occurs. The physics of these two phenomena is fundamentally different.

  20. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    NASA Astrophysics Data System (ADS)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides