Sample records for fed normal diet

  1. Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.

    PubMed

    Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas

    2013-02-01

    This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.

  2. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    PubMed

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  3. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy.

    PubMed

    Choct, M; Hughes, R J; Trimble, R P; Angkanaporn, K; Annison, G

    1995-03-01

    The effect of a commercial glycanase product (Avizyme TX) on the performance of 4-wk-old broiler chickens fed wheats with low and normal apparent metabolizable energy values was studied. Controls were fed a corn-based diet. Supplementation with the enzyme product significantly (P < 0.01) increased the apparent metabolizable energy of the low metabolizable energy wheat from 12.02 to 14.94 MJ/kg dry matter. The apparent metabolizable energy value of the normal wheat was increased from 14.52 to 14.83 MJ/kg dry matter; this was, however, not significant. Birds fed the low metabolizable energy wheat diet had significantly (P < 0.01) higher digesta viscosity and lower small intestinal starch and protein digestibilities than birds fed the normal wheat diet. Chickens fed the low metabolizable energy wheat tended to grow less than those fed the normal wheat diet. When the low metabolizable energy wheat+enzyme diet was fed, digesta viscosity was significantly (P < 0.01) lower (20.28 vs. 10.36 mPa.s), and small intestinal digestibility coefficient of starch was significantly (P < 0.01) greater (0.584 vs. 0.861) relative to values in birds fed the low metabolizable energy wheat diet alone. Although the protein digestibility coefficient also increased from 0.689 to 0.745, the difference was not significant. Weight gain and feed efficiency of birds fed the low metabolizable energy wheat+enzyme equaled those of controls. The enzyme product significantly (P < 0.01) increased the solubilization of non-starch polysaccharides within the gastrointestinal tract of birds fed both types of wheat diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effect of limestone reactivity and percent on production by dairy cows in early lactation.

    PubMed

    Nocek, J E; Braund, D G; English, J E

    1983-12-01

    Seventy-two Holstein cows (16 first lactation) were assigned to four treatments: A) normal-grind limestone (800 to 1000 mu) added to provide .77% calcium (total ration dry basis); B) fine-grind limestone (less than 150 mu) at .77% calcium; C) normal-grind at 1.15% calcium; and D) fine-grind limestone at 1.15% calcium. Cows fed diets containing .77% calcium had higher percent milk fat and fat yield than those fed 1.15% calcium diets, and cows fed fine-grind limestone had greater percent fat and fat yield than those fed normal-grind limestone. Four percent fat-corrected milk was higher for cows fed .77% calcium diets. Trends were similar for heifers in first lactation. Dry matter intake was higher for cows fed .77% calcium diets, and nutrient efficiency for milk synthesis favored cows fed fine-grind 1.15% calcium. Fecal pH was higher during wk 4 on treatment for cows fed high calcium diets; however, 8 wk were not different. Fecal starch and calcium and phosphorus in plasma were not different between treatments: however, heifers fed fine-grind 1.15% calcium showed a decrease of fecal starch with time.

  5. Efficacy of the ketogenic diet in the 6-Hz seizure test

    PubMed Central

    Hartman, Adam L.; Lyle, Megan; Rogawski, Michael A.; Gasior, Maciej

    2008-01-01

    SUMMARY Purpose Since the ketogenic diet is effective in drug-resistant epilepsies, we sought to determine whether it is active in the 6-Hz seizure test, which identifies agents with a broader spectrum of activity than conventional antiepileptic screening tests. Methods Male (3–4 week old) NIH Swiss mice were fed a normal or ketogenic diet ad libitum for 2–21 days. The intensity of the corneal stimulation current required to elicit seizures in the 6-Hz test was measured. Blood glucose and β-hydroxybutyrate were measured on the day of seizure testing. Results CC50 (current intensity producing seizures in 50% of mice tested) was 50.6 mA and 15 mA in mice fed for 12 days with a ketogenic or normal diet, respectively (p < 0.001). CC50 was elevated in separate experiments after 16, but not 2, 5, and 21 days of ketogenic diet exposure. CC50 values of growing mice fed the normal diet does not differ, indicating CC50 does not vary with mouse weight during a rapid growth phase. β-Hydroxybutyrate was significantly higher, and glucose was significantly lower in mice fed the ketogenic diet than those fed the normal diet. Blood glucose and β-hydroxybutyrate levels did not correlate with CC50. Discussion The ketogenic diet significantly elevates the seizure threshold in the 6-Hz test in a time-specific manner. Protection from seizures in this model was not related to level of ketosis. CC50 was insensitive to body weight in mice fed the normal diet, demonstrating that the 6-Hz model can assess anticonvulsant regimens where weight is a confounding factor. PMID:18070095

  6. Low-protein diet promotes sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Iishi, H; Tatsuta, M; Baba, M; Hirasawa, R; Sakai, N; Yano, H; Uehara, H; Nakaizumi, A

    1999-07-01

    Sodium chloride (NaCl) initiates and promotes experimental carcinogenesis in rats. We recently found that a high-protein diet attenuates NaCl-enhanced gastric carcinogenesis in Wistar rats. To investigate the effect of a purified low-protein diet on NaCl-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, rats were fed a purified diet with an equalized caloric content containing 1% or 2% NaCl and 25% casein (normal-protein diet) or 10% casein (low-protein diet) after oral treatment with MNNG for 25 weeks. In week 52, neither 1% nor 2% NaCl had a significant effect on gastric carcinogenesis in rats fed a normal-protein diet. However, oral administration of 2%, but not 1%, NaCl significantly increased the incidence of gastric cancers in rats fed a low-protein diet. Oral administration of 2% NaCl also significantly increased the bromodeoxyuridine (BrdU)-labeling index and the ornithine decarboxylase (ODC) activity and decreased apoptosis of gastric cancers in rats fed a low-protein diet. However, 2% NaCl had no significant effect on these three parameters in rats fed a normal-protein diet. These findings indicate that a low-protein diet enhances the effect of NaCl in gastric carcinogenesis and that this enhancement may be mediated by increased cell proliferation and reduced apoptosis of gastric cancers.

  7. Alleviation in the rat of a GABA-induced reduction in food intake and growth.

    PubMed

    Tews, J K; Repa, J J; Harper, A E

    1984-07-01

    Cold exposure and diet dilution which stimulate food intake of normal rats lessened depressions of food intake and growth induced by dietary GABA. During a 3-day adaptation to the cold, rats fed a diet containing 4.5% GABA lost weight; thereafter, food intake and growth rate differed little from those of cold control rats and were usually greater than those of normal rats fed GABA. Hepatic GABA-aminotransferase activity of cold-exposed rats fed the GABA diet increased to about twice that of normal control rats. Rats fed a control diet diluted by half with cellulose ate 50% more of this diet than of the undiluted diet but gained only 20% less weight. Rats ate twice as much of a diluted, 9% GABA diet as of an undiluted, 4.5% GABA diet (thus doubling their GABA intake) and gained three times as much weight. A novel food (condensed milk) barely lessened the adverse responses to GABA. These results show that conditions requiring rats to increase their food intake in order to maintain body weight can also increase their acceptance of a diet high in GABA.

  8. Energy-dense diets increase FGF23, lead to phosphorus retention and promote vascular calcifications in rats

    PubMed Central

    Raya, Ana I.; Rios, Rafael; Pineda, Carmen; Rodriguez-Ortiz, Maria E.; Diez, Elisa; Almaden, Yolanda; Muñoz-Castañeda, Juan R.; Rodriguez, Mariano; Aguilera-Tejero, Escolastico; Lopez, Ignacio

    2016-01-01

    Rats with normal renal function (Experiment 1, n = 12) and uninephrectomized (1/2Nx) rats (Experiment 2, n = 12) were fed diets with normal P (NP) and either normal (NF) or high fat (HF). Rats with intact renal function (Experiment 3, n = 12) were also fed NF or HF diets with high P (HP). Additionally, uremic (5/6Nx) rats (n = 16) were fed HP diets with NF or HF. Feeding the HF diets resulted in significant elevation of plasma FGF23 vs rats fed NF diets: Experiment 1, 593 ± 126 vs 157 ± 28 pg/ml (p < 0.01); Experiment 2, 538 ± 105 vs 250 ± 18 pg/ml (p < 0.05); Experiment 3, 971 ± 118 vs 534 ± 40 pg/ml (p < 0.01). Rats fed HF diets showed P retention and decreased renal klotho (ratio klotho/actin) vs rats fed NF diets: Experiment 1, 0.75 ± 0.06 vs 0.97 ± 0.02 (p < 0.01); Experiment 2, 0.69 ± 0.07 vs 1.12 ± 0.08 (p < 0.01); Experiment 3, 0.57 ± 0.19 vs 1.16 ± 0.15 (p < 0.05). Uremic rats fed HF diet showed more severe vascular calcification (VC) than rats fed NF diet (aortic Ca = 6.3 ± 1.4 vs 1.4 ± 0.1 mg/g tissue, p < 0.001). In conclusion, energy-rich diets increased plasma levels of FGF23, a known risk factor of cardiovascular morbidity and mortality. Even though FGF23 has major phosphaturic actions, feeding HF diets resulted in P retention, likely secondary to decreased renal klotho, and aggravated uremic VC. PMID:27841294

  9. Energy-dense diets increase FGF23, lead to phosphorus retention and promote vascular calcifications in rats.

    PubMed

    Raya, Ana I; Rios, Rafael; Pineda, Carmen; Rodriguez-Ortiz, Maria E; Diez, Elisa; Almaden, Yolanda; Muñoz-Castañeda, Juan R; Rodriguez, Mariano; Aguilera-Tejero, Escolastico; Lopez, Ignacio

    2016-11-14

    Rats with normal renal function (Experiment 1, n = 12) and uninephrectomized (1/2Nx) rats (Experiment 2, n = 12) were fed diets with normal P (NP) and either normal (NF) or high fat (HF). Rats with intact renal function (Experiment 3, n = 12) were also fed NF or HF diets with high P (HP). Additionally, uremic (5/6Nx) rats (n = 16) were fed HP diets with NF or HF. Feeding the HF diets resulted in significant elevation of plasma FGF23 vs rats fed NF diets: Experiment 1, 593 ± 126 vs 157 ± 28 pg/ml (p < 0.01); Experiment 2, 538 ± 105 vs 250 ± 18 pg/ml (p < 0.05); Experiment 3, 971 ± 118 vs 534 ± 40 pg/ml (p < 0.01). Rats fed HF diets showed P retention and decreased renal klotho (ratio klotho/actin) vs rats fed NF diets: Experiment 1, 0.75 ± 0.06 vs 0.97 ± 0.02 (p < 0.01); Experiment 2, 0.69 ± 0.07 vs 1.12 ± 0.08 (p < 0.01); Experiment 3, 0.57 ± 0.19 vs 1.16 ± 0.15 (p < 0.05). Uremic rats fed HF diet showed more severe vascular calcification (VC) than rats fed NF diet (aortic Ca = 6.3 ± 1.4 vs 1.4 ± 0.1 mg/g tissue, p < 0.001). In conclusion, energy-rich diets increased plasma levels of FGF23, a known risk factor of cardiovascular morbidity and mortality. Even though FGF23 has major phosphaturic actions, feeding HF diets resulted in P retention, likely secondary to decreased renal klotho, and aggravated uremic VC.

  10. Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams against Obesity Induced by a Sucrose-Rich Diet

    PubMed Central

    Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed

    2011-01-01

    Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet. PMID:21464991

  11. Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala.

    PubMed

    Chen, Qing-Qing; Liu, Wen-Bin; Zhou, Man; Dai, Yong-Jun; Xu, Chao; Tian, Hong-Yan; Xu, Wei-Na

    2016-08-01

    This study aimed to figure out the effects of berberine on growth performance, immunity, oxidative stress and hepatocyte apoptosis of blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. 320 fish (80.00 ± 0.90 g) were divided randomly into four trial groups (each with four replicates) and fed with 4 diets (normal diet, normal diet with 50 mg/kg berberine, high-fat diet, high-fat diet with 50 mg/kg berberine), respectively. At the end of the feeding trial, ammonia stress test was carried out for 5 days. The result showed the growth performance, immune parameters including plasm acid phosphatase (ACP) activities, lysozyme (LYZ) activities and alternative complement C3 and C4 contents were suppressed in fish fed with high-fat diets but improved in berberine diets compared with control (normal diet). Hepatopancreas oxidative status, the malondialdehyde (MDA), protein carbonyl (PC) and lipid peroxide (LPO) were increased significantly (P < 0.05) when fish were fed with high-fat diets. Berberine could slow the progression of the oxidative stress induced by high-fat through increasing superoxide dismutase (SOD) activities and total sulfydryl (T-SH) levels of fish. And the hepatocyte apoptosis in the high-fat group could also be alleviated by berberine. After the ammonia stress test, the accumulative mortality was extremely (P < 0.05) low in fish fed high-fat diet with berberine compared to other groups. It was concluded berberine as a functional feed additive significantly inhibited the progression of oxidative stress, reduced the apoptosis and enhanced the immunity of fish fed with high-fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters.

    PubMed

    Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert

    2012-05-01

    Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    PubMed

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  14. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice.

    PubMed

    Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E

    2018-08-01

    Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.

  15. Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet

    PubMed Central

    Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.

    2008-01-01

    The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797

  16. Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla.

    PubMed

    DiBona, G F; Jones, S Y

    2001-04-01

    To determine the effects of physiological alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity (RSNA) and its arterial baroreflex regulation, angiotensin II type 1 receptor antagonists were microinjected into the rostral ventrolateral medulla of anesthetized rats consuming a low, normal, or high sodium diet that were instrumented for simultaneous measurement of arterial pressure and RSNA. Plasma renin activity was increased in rats fed a low sodium diet and decreased in those fed a high sodium diet. Losartan (50, 100, and 200 pmol) decreased heart rate and RSNA (but not mean arterial pressure) dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a high sodium diet. Candesartan (1, 2, and 10 pmol) decreased mean arterial pressure, heart rate, and RSNA dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a normal or high sodium diet. [D-Ala(7)]Angiotensin-(1-7) (100, 200, and 1000 pmol) did not affect mean arterial pressure, heart rate, or RSNA in rats fed either a low or a high sodium diet. In rats fed a low sodium diet, candesartan reset the arterial baroreflex control of RSNA to a lower level of arterial pressure, and in rats with congestive heart failure, candesartan increased the arterial baroreflex gain of RSNA. Physiological alterations in the endogenous activity of the renin-angiotensin system influence the bradycardic, vasodepressor, and renal sympathoinhibitory responses to rostral ventrolateral medulla injection of antagonists to angiotensin II type 1 receptors but not to angiotensin-(1-7) receptors.

  17. Meibomian Gland Dysfunction Model in Hairless Mice Fed a Special Diet With Limited Lipid Content.

    PubMed

    Miyake, Hideki; Oda, Tomoko; Katsuta, Osamu; Seno, Masaharu; Nakamura, Masatsugu

    2016-06-01

    A novel meibomian gland dysfunction (MGD) model was developed to facilitate understanding of the pathophysiology of MGD and to evaluate treatment with azithromycin ophthalmic solution (azithromycin). MGD was induced in HR-1 hairless mice by feeding them a special diet with limited lipid content (HR-AD). Male HR-1 hairless mice were fed an HR-AD diet for 16 weeks. Development of MGD was assessed by histopathology at 4-week intervals. The lid margin was observed by slit-lamp examination. After cessation of the HR-AD diet, the mice were fed a normal diet to restore normal eye conditions. Expression of cytokeratin 6 was determined by immunostaining. We evaluated the effects of topically applied azithromycin on the plugged orifice in this model. After mice were fed the HR-AD diet, histopathology analysis showed hyperkeratinization of the ductal epithelium in the meibomian gland. Ductal hyperkeratinization resulted in the loss of acini, followed by atrophy of the gland. Slit-lamp examination revealed a markedly plugged orifice, telangiectasia, and a toothpaste-like meibum compared with that of a normal eyelid. Cessation of feeding with HR-AD ameliorated both the MGD signs and the expression of cytokeratin 6, restoring the tissue to a histologically normal state. Azithromycin treatment significantly decreased the number of plugged orifices and ameliorated atrophy, as revealed by histopathologic analysis. We developed a novel model that mimics human MGD signs in HR-1 hairless mice fed an HR-AD diet. Azithromycin treatment led to therapeutic improvement in this model. This MGD model could be useful for the evaluation of drug candidates for MGD.

  18. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development and improve liver function. Our data suggest that choline can promote liver health by maintaining cholesterol homeostasis.

  19. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.

    PubMed

    Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching

    2011-03-01

    The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris).

    PubMed

    Hill, V L; Florant, G L

    2000-02-01

    The essential fatty acids (EFAs), alpha-linolenic acid (18:3,n-3) and linoleic acid (18:2,n-6) are known to be important for mammalian hibernation. In marmots (Marmota flaviventris), reducing both dietary EFAs alters hibernation patterns by causing an increase in energy expenditure, but hibernation still occurs. In this study, marmots fed a diet high in alpha-linolenic acid, with normal linoleic acid levels, had significantly (p < 0.05) more alpha-18:3 in their WAT and plasma unesterified fatty acids after 4 months than did marmots fed a control diet. During the winter, the control marmots hibernated normally while the marmots fed the alpha-18:3 diet did not hibernate, continued to eat, and lost less mass than the control group during the winter. These results suggest that alpha-18:3 may play a role in regulating normal hibernation behavior in marmots.

  1. Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon.

    PubMed

    Yang, K; Lamprecht, S A; Liu, Y; Shinozaki, H; Fan, K; Leung, D; Newmark, H; Steele, V E; Kelloff, G J; Lipkin, M

    2000-09-01

    In this study we investigated the chemopreventive effects of quercetin and rutin when added to standard AIN-76A diet and fed to normal and azoxymethane (AOM)-treated mice. Early changes in colonic mucosa were analyzed, including colonic cell proliferation, apoptotic cell death, cyclin D(1) expression and focal areas of dysplasia (FAD). The findings show that the number of colonic epithelial cells per crypt column increased (P: < 0.01) in each normal mouse group fed the flavonoids; AOM administration increased colonic crypt cell proliferation and resulted in a marked rise of bromodeoxyuridine-labeled cells in the lower proliferative zone of the crypt. Both supplementary dietary quercetin and rutin increased the apoptotic index and caused a redistribution of apoptotic cells along the crypt axis in normal mice fed a standard AIN-76A diet. The number of apoptotic cells/column and apoptotic indices markedly increased (P: < 0.01) in the AOM-treated group compared with untreated animals; apoptotic cells expanded throughout the colonic crypts after flavonoid supplementation and AOM administration. Positive cyclin D(1) expression was detected in mice on diets supplemented either with quercetin (P: < 0.01) or rutin (P: < 0.05). AOM administration resulted in the formation of FAD. Both the number of mice exhibiting FAD and the total numer of FAD observed were significantly reduced (P: < 0.01) in AOM-treated animals fed flavonoids compared with mice maintained on the standard AIN-76A diet. Surprisingly, however, quercetin alone was able to induce FAD in 22% of normal mice fed the standard AIN-76A diet.

  2. Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn.

    PubMed

    Spencer, J D; Allee, G L; Sauber, T E

    2000-06-01

    A genetically modified corn hybrid homozygous for the lpa1 allele, containing low phytate (LP), and its nearly isogenic equivalent hybrid (normal) were compared in two experiments with growing-finishing swine. In Exp. 1, 210 barrows (27 kg) were allotted to one of six dietary treatments with two corn hybrids (LP and normal) and three P feeding regimens. There were five replicate pens (seven pigs/pen) per treatment. Treatments consisted of diets that were supplemented with P throughout the growing-finishing period (.2% P and .15% supplemental P during growing and finishing phases, respectively) or only during the growing phase (.2% supplemental P) or that were not supplemented with P throughout the growing-finishing period. Performance at the end of the growing phase was based on a 2 x 2 factorial arrangement of treatments with two corn hybrids and two levels of added P (0 and .2%). This resulted in 10 replicates for the treatments supplemented with .2% P. The finishing phase (73 to 112 kg) was a 2 x 3 factorial arrangement of treatments with the two types of corn and three regimens of added P during the finishing period. Breaking load (BL) and ash of the fourth metacarpal were evaluated from one pig/pen at the end of the growing phase and from all pigs after slaughter. Pigs fed the LP corn diet without added P had greater body weight gain, feed efficiency, BL, and ash content of the fourth metacarpal than pigs fed the normal corn diet without added P. Performance was similar between pigs fed the LP diet without added P and pigs fed LP and normal corn with added P. In Exp. 2, 1,092 gilts (34 kg body weight) were allotted by weight in a commercial facility to one of three treatments: 1) normal corn/soybean meal diet containing .29% and .22% available P during the growing and finishing phases, respectively; 2) LP corn/soybean meal diet with the same available P level as Treatment 1; and 3) same as Treatment 2 for 8 wk, then no inorganic P supplementation during the finishing phase. All pigs were slaughtered at approximately 122 kg. There were no significant differences in growing-finishing performance or BL among treatments. However, pigs fed diets containing LP corn possessed carcasses with less backfat and a higher percentage of lean (P < .01). These results confirm that the P in LP corn is available to the pig and suggest that pigs fed diets containing this genetically modified corn will have more desirable carcasses.

  3. Influence of boron supplementation on performance, immunity and antioxidant status of lambs fed diets with or without adequate level of calcium

    PubMed Central

    Mondal, S.; Pattanaik, A. K.; Verma, A. K.

    2017-01-01

    Little is known about biological significance of effects of dietary Boron (B) and Calcium (Ca) interaction on health and production of farm animals. This is a preliminary investigation to evaluate the effects of B supplementation in lambs fed diets with (normal) or without adequate (low) levels of Ca. Twenty-four crossbred ram lambs were randomly distributed into four groups with six animals each in a 2x2 factorial design namely, normal-Ca diet (NCa) and low-Ca diet (LCa) fed without or with 40 ppm B (NCaB-40 and LCaB-40). The lambs were fed paddy straw and hybrid napier hay-based total mixed ration (60 roughage: 40 concentrate) during 180 days experimental period. Compared to control, the LCa diet lowered (P<0.01) average daily gain of lambs, but B-supplementation (LCaB-40) of the same nullified the effect. The lowered (P<0.05) total antioxidant activity and humoral immune response in lambs fed LCa diet were restored (P>0.05) to become at par with the control (NCa) upon supplementation of B (LCaB-40). The mRNA expression of SOD1 was lowered (P<0.05) due to LCa diet feeding which too was normalized on B-supplementation to become at par (P>0.05) with the control (NCa). Further, B-supplementation restored lowered (P<0.05) SOD1 gene expression on LCa diet, but enhanced (P<0.05) that in NCaB-40 group, when compared to the control (NCa) diet fed animals. However, these variations were not reflected in the SOD activity in the erythrocytes. The cell-mediated immune response was higher (P<0.05) in lambs fed LCa and LCaB-40 groups and there was no significant interaction between the levels of either Ca or B in diets with the period of immune response measurement. B- supplementation of LCa diet ameliorated tissue degenerative changes in liver and kidney. It was concluded that feeding LCa diet to lambs resulted in reduced growth rate, total antioxidant activity, humoral immune response along with degenerative changes in liver and kidney tissues, but B-supplementation of such diet restored most of these changes and ameliorated histopathological alterations. PMID:29141035

  4. Effect of diet on oxidation of 17 beta-estradiol in vivo.

    PubMed

    Musey, P I; Collins, D C; Bradlow, H L; Gould, K G; Preedy, J R

    1987-10-01

    The effect of a high fat, low carbohydrate, low protein diet on the in vivo oxidation of 17 beta-estradiol was studied using radiometric methods. Five male chimpanzees were fed a normal (13%) fat diet or a high (65%) fat diet for 8 weeks. After a 4-week rest period, the animals were fed the alternative diet. The mean percent oxidation of 16 alpha-[3H]estradiol-17 beta 24 h after injection was 3.8 +/- 1.3% (+/- SD) on the normal diet vs. 18.4 +/- 4.7% on the high fat diet (P less than 0.01). In contrast, the mean percent oxidation of 2-[3H]estradiol 24 h after injection was 31.6 +/- 3.8% (+/- SD) on the normal diet vs. 20.0 +/- 3.5% on the high fat diet (P less than 0.05). These results suggest that the oxidation of 17 beta-estradiol to estriols relative to that to catechol estrogens is increased by a high fat diet.

  5. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    PubMed

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid

    PubMed Central

    Gaetke, Lisa M.; McClain, Craig J.; Toleman, C. Jean; Stuart, Mary A.

    2010-01-01

    The purpose of this study was to determine the affects of adding yogurt to animal diets which were high in phytic acid (PA) and adequate in zinc (38 μg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, 6 groups (n=6) of Sprague-Dawley weanling rats were fed one of the following AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. Diets: (without PA) 1) AIN, 2) AIN with active yogurt, 3) AIN and inactive yogurt; and (with PA) 4) AIN with PA, 5) AIN with PA plus active yogurt, and 6) AIN with PA plus inactive yogurt. Body weight, weight gain, and zinc concentration in bone and plasma were measured, and feed efficiency ratio (FER) was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (p<0.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (p<0.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats, however, zinc concentration in bone and plasma was still sub-optimal. PMID:19269152

  7. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue.

    PubMed

    Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing

    2011-11-01

    This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.

  8. Dietary alterations of the mitochondrial lipid pattern

    PubMed Central

    Sheltawy, A.

    1965-01-01

    1. Changes in the lipid composition of rat-liver mitochondria from both sexes have been studied in response to normal, fat and fat–cholesterol diets. The cholesterol added to the diet was in low concentrations (0·2%). 2. In the non-phospholipid fraction, normal females had higher mitochondrial cholesterol concentrations than males, and the concentration of the free sterol was decreased in fat–cholesterol-fed females, but not in males. 3. In the phospholipid fraction, normal rats of both sexes had a predominance of mitochondrial lecithin over other phosphatides, but females had slightly higher lecithin concentrations than males. Fat–cholesterol-fed females had equal concentrations of lecithin and kephalin. 4. In the minor phosphatides, normal males had higher concentrations of phosphoinositides than females. The phosphatidic acid plus polyglycerophosphatide concentration was increased above normal in fat-fed females. Fat–cholesterol-fed females had higher concentrations of phosphoinositides than normal. 5. In general, changes in the mitochondrial lipid fractions occurred in female but not in male rats. PMID:14340108

  9. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    NASA Technical Reports Server (NTRS)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  10. Hypocholesterolemic effects of low calorie structured lipids on rats and rabbits fed on normal and atherogenic diet.

    PubMed

    Kanjilal, Sanjit; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Sugasini, Dhavamani; Rao, Yalagala Poornachandra; Prasad, Rachapudi B N; Lokesh, Belur R

    2013-01-01

    The hypocholesterolemic effects of two low calorie structured lipids (SL1 and SL2) containing essential fatty acids, prepared by lipase catalysed interesterification of ethyl behenate respectively with sunflower and soybean oils were studied in rats and rabbits. The feeding experiment conducted on rats as well as rabbits, fed on normal and atherogenic diet containing 10% of SL1 and SL2 (experimental) and sunflower oil (control) indicated no adverse effects on growth and food intake. However, the structured lipids beneficially lowered serum and liver lipids, particularly cholesterol, LDL cholesterol, triglycerides and also maintains the essential fatty acid status in serum and liver. The lipid deposition observed in the arteries of rabbits fed on atherogenic diets was significantly reduced when structured lipids were included in the diet. These observations coincided with reduced levels of serum cholesterol particularly LDL cholesterol observed in experimental groups. Therefore the structured lipids, designed to have low calorific value also beneficially lower serum lipids and lipid deposition in animals fed on atherogenic diets. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Studies on the riboflavin, pantothenic acid, nicotinic acid and choline requirements of young Embden geese

    USGS Publications Warehouse

    Serafin, J.A.

    1981-01-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined.

  12. Dimethylethanolamine does not prevent liver failure in phosphatidylethanolamine N-methyltransferase-deficient mice fed a choline-deficient diet.

    PubMed

    Waite, Kristin A; Vance, Dennis E

    2004-03-22

    Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.

  13. Antiseizure Effects of Ketogenic Diet on Seizures Induced with Pentylenetetrazole, 4-Aminopyridine and Strychnine in Wistar Rats.

    PubMed

    Sanya, E O; Soladoye, A O; Desalu, O O; Kolo, P M; Olatunji, L A; Olarinoye, J K

    2017-03-06

    The ketogenic diet (KD) is a cheap and effective alternative therapy for most epilepsy. There are paucity of experimental data in Nigeria on the usefulness of KD in epilepsy models. This is likely to be responsible for the poor clinical acceptability of the diet in the country. This study therefore aimed at providing experimental data on usefulness of KD on seizure models.  The study used 64 Wistar rats that were divided into two dietary groups [normal diet (ND) and ketogenic diet (KD)]. Animal in each group were fed for 35days. Medium chain triglyceride ketogenic diet (MCT-KD) was used and it consisted of 15% carbohydrate in normal rat chow long with 5ml sunflower oil (25% (v/w). The normal diet was the usual rat chow. Seizures were induced with one of Pentelyntetrazole (PTZ), 4-Aminopyridine (AP) and Strychnine (STR). Fasting glucose, ketosis level and serum chemistry were determined and seizure parameters recorded. Serum ketosis was significantly higher in MCT-KD-fed rats (12.7 ±2.6) than ND-fed (5.17±0.86) rats. Fasting blood glucose was higher in ND-fed rats (5.3±0.9mMol/l) than in MCT-KD fed rats (5.1±0.5mMol/l) with p=0.9. Seizure latency was significantly prolonged in ND-fed compared with MCT-KD fed rats after PTZ-induced seizures (61±9sec vs 570±34sec) and AP-induced seizures (49±11sec vs 483±41sec). The difference after Str-induced seizure (51±7 vs 62±8 sec) was not significan. The differences in seizure duration between ND-fed and MCT-KD fed rats with PTZ (4296±77sec vs 366±46sec) and with AP (5238±102sec vs 480±67sec) were significant (p<0.05), but not with STR (3841±94sec vs 3510±89sec) respectively. The mean serum Na+ was significantly higher in MCT-KD fed (141.7±2.1mMol/l) than ND-fed rats (137±2.3mMol/l). There was no significant difference in mean values of other serum electrolytes between the MCT-KD fed and ND-fed animals. MCT-KD caused increase resistance to PTZ-and AP-induced seizures, but has no effect on STR-induced seizures. This antiseizure property is probably mediated through GABAergic receptors (PTZ effect) and blockade of membrane bound KATP channels (AP effect) with some enhancement by serum ketosis.

  14. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  15. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

  16. Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation.

    PubMed

    Chwiej, J; Patulska, A; Skoczen, A; Matusiak, K; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2017-07-01

    In this paper the influence of two different ketogenic diets (KDs) on the seizure-evoked elemental anomalies of hippocampal formation was examined. To achieve this purpose normal and pilocarpine treated rats previously fed with one of the two high fat and carbohydrate restricted diets were compared with animals on standard laboratory diet. The ketogenic ratios of the examined KDs were equal to 5:1 (KD1) and 9:1 (KD2). KD1 and standard diet fed animals presented similar patterns of seizure-evoked elemental changes in hippocampal formation. Also the analysis of behavioral data recorded after pilocarpine injection did not show any significant differences in intensity and duration of seizures between KD1 and standard diet fed animals. Higher ketogenic ratio KD2 introduced in the normal hippocampal formation prolonged changes in the accumulation of P, K, Zn and Ca. Despite this, both the intensity and duration of seizures were significantly reduced in rats fed with KD2 which suggests that its saving action on the nerve tissue may protect brain from seizure propagation. Also seizure-evoked elemental anomalies in KD2 animals were different than those observed for rats both on KD1 and standard diets. The comparison of seizure experiencing and normal rats on KD2, did not show any statistically significant differences in elemental composition of CA1 and H hippocampal areas whilst in CA3 area only Zn level changed as a result of seizures. DG was the area mostly affected by seizures in KD2 fed rats but areal densities of all examined elements increased in this hippocampal region. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    PubMed

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral fat mass and weight gain. © 2012 Institute of Food Technologists®

  18. Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase.

    PubMed

    Sands, J S; Ragland, D; Baxter, C; Joern, B C; Sauber, T E; Adeola, O

    2001-08-01

    Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn. The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.

  19. Increased systolic blood pressure in rat offspring following a maternal low-protein diet is normalized by maternal dietary choline supplementation.

    PubMed

    Bai, S Y; Briggs, D I; Vickers, M H

    2012-10-01

    An adverse prenatal environment may induce long-term metabolic consequences, in particular hypertension and cardiovascular disease. A maternal low-protein (LP) diet is well known to result in increased blood pressure (BP) in offspring. Choline has been shown to have direct BP-reducing effects in humans and animals. It has been suggested that endogenous choline synthesis via phosphatidylcholine is constrained during maternal LP exposure. The present study investigates the effect of choline supplementation to mothers fed a LP diet during pregnancy on systolic BP (SBP) in offspring as measured by tail-cuff plethysmography. Wistar rats were assigned to one of three diets to be fed ad libitum throughout pregnancy: (1) control diet (CONT, 20% protein); (2) an LP diet (9% protein); and (3) LP supplemented with choline (LP + C). Dams were fed the CONT diet throughout lactation and offspring were fed the CONT diet from weaning for the remainder of the trial. At postnatal day 150, SBP and retroperitoneal fat mass was significantly increased in LP offspring compared with CONT animals and was normalized in LP + C offspring. Effects of LP + C reduction in SBP were similar in both males and females. Plasma choline and phosphatidylcholine concentrations were not different across treatment groups, but maternal choline supplementation resulted in a significant reduction in homocysteine concentrations in LP + C offspring compared with LP and CONT animals. The present trial shows for the first time that maternal supplementation with dietary choline during periods of LP exposure can normalize increased SBP and fat mass observed in offspring in later life.

  20. Direct infusion MS-based lipid profiling reveals the pharmacological effects of compound K-reinforced ginsenosides in high-fat diet induced obese mice.

    PubMed

    Shon, Jong Cheol; Shin, Hwa-Soo; Seo, Yong Ki; Yoon, Young-Ran; Shin, Heungsop; Liu, Kwang-Hyeon

    2015-03-25

    The serum lipid metabolites of lean and obese mice fed normal or high-fat diets were analyzed via direct infusion nanoelectrospray-ion trap mass spectrometry followed by multivariate analysis. In addition, lipidomic biomarkers responsible for the pharmacological effects of compound K-reinforced ginsenosides (CK), thus the CK fraction, were evaluated in mice fed high-fat diets. The obese and lean groups were clearly discriminated upon principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) score plot, and the major metabolites contributing to such discrimination were triglycerides (TGs), cholesteryl esters (CEs), phosphatidylcholines (PCs), and lysophosphatidylcholines (LPCs). TGs with high total carbon number (>50) and low total carbon number (<50) were negatively and positively associated with high-fat diet induced obesity in mice, respectively. When the CK fraction was fed to obese mice that consumed a high-fat diet, the levels of certain lipids including LPCs and CEs became similar to those of mice fed a normal diet. Such metabolic markers can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, changes in the levels of such metabolites can be employed to assess the risk of obesity and the therapeutic effects of obesity management.

  1. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  2. Effects of the Cynanchum wilfordii Ethanol Extract on the Serum Lipid Profile in Hypercholesterolemic Rats.

    PubMed

    Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho

    2013-09-01

    The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index.

  3. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.

    PubMed

    Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E

    2010-07-16

    Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.

  4. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.

    PubMed

    Sen, Sarbattama; Simmons, Rebecca A

    2010-12-01

    Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.

  5. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  6. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    PubMed

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by cardamom powder supplementation in HCHF diet fed rats. HCHF diet feeding in rats also increased the ALT, AST and ALP enzyme activities in plasma which were also normalized by cardamom powder supplementation in HCHF diet fed rats. Moreover, cardamom powder supplementation ameliorated the fibrosis in liver of HCHF diet fed rats. This study suggests that, cardamom powder supplementation can prevent dyslipidemia, oxidative stress and hepatic damage in HCHF diet fed rats.

  7. Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion.

    PubMed

    Aoyagi, Toshinori; Higa, Jason K; Aoyagi, Hiroko; Yorichika, Naaiko; Shimada, Briana K; Matsui, Takashi

    2015-06-15

    Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring. Copyright © 2015 the American Physiological Society.

  8. The role of fire in shaping avian communities in sagebrush ecosystems

    USGS Publications Warehouse

    Holmes, Aaron; Knick, Steven T.; Miller, R.F.

    2005-01-01

    Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.

  9. Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1974-01-01

    Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.

  10. Perioperative Ruminal pH Changes in Domestic Sheep (Ovis aries) Housed in a Biomedical Research Setting

    PubMed Central

    Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P

    2011-01-01

    Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet. PMID:21333159

  11. Perioperative ruminal pH changes in domestic sheep (Ovis aries) housed in a biomedical research setting.

    PubMed

    Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P

    2011-01-01

    Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet.

  12. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet.

    PubMed

    Yamamoto, Norio; Kanemoto, Yuki; Ueda, Manabu; Kawasaki, Kengo; Fukuda, Itsuko; Ashida, Hitoshi

    2011-01-01

    Artemisia princeps is commonly used as a food ingredient and in traditional Asian medicine. In this study, we examined the effects of long-term administration of an ethanol extract of A. princeps (APE) on body weight, white adipose tissue, blood glucose, insulin, plasma and hepatic lipids, and adipocytokines in C57BL/6 mice fed a high-fat diet. Daily feeding of a 1% APE diet for 14 weeks normalized elevated body weight, white adipose tissue, and plasma glucose and insulin levels, and delayed impaired glucose tolerance in mice a fed high-fat diet. These events were not observed in mice fed a control diet containing 1% APE. Liver triglyceride and cholesterol levels were similar in mice fed a 1% APE-diet and those fed a control diet. In the high-fat diet groups, APE inhibited hepatic fatty acid synthase (FAS) and suppressed the elevation of plasma leptin, but had no effect on adiponectin levels. These findings suggest that the regulation of leptin secretion by APE may inhibit FAS activity with subsequent suppression of triglyceride accumulation in the liver and adipose tissues. Inhibition of lipid accumulation can, in turn, lead to improvements in impaired glucose tolerance.

  13. The influence of low protein diet on the testicular toxicity of di(2-ethylhexyl)phthalate.

    PubMed

    Tandon, R; Paramar, D; Singh, G B; Seth, P K; Srivastava, S P

    1992-12-01

    Oral administration of di(2-ethylhexyl)phthalate (DEHP) at 1000 mg/kg body weight to adult male albino rats maintained on low protein (LP) diet for 15 d resulted in a greater decrease in absolute and relative weights of the testis and in epididymal sperm count than in those rats maintained on a normal protein (NP) diet. A marked increase in the activity of testicular beta-glucuronidase and gamma-glutamyl transpeptidase (GGT) in the LP-fed animals suggested that LP diet enhanced the vulnerability of Sertoli cells towards DEHP. A greater decrease in the activity of testicular acid phosphatase, lactate dehydrogenase isoenzyme-X (LDH-X) and sorbitol dehydrogenase (SDH) in the LP-fed animals occurred in comparison to NP-fed animals. Degeneration of mature germinal cells in the LP-fed animals on exposure to DEHP suggested that LP diets enhance the susceptibility of the testis towards DEHP.

  14. Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole-body protein turnover, carcass characteristics and meat quality of finishing pigs.

    PubMed

    Zhang, Shihai; Chu, Licui; Qiao, Shiyan; Mao, Xiangbing; Zeng, Xiangfang

    2016-07-01

    Eighteen Duroc × Landrace × Yorkshire barrows, with an average initial body weight (BW) of 75.4 ± 2.0 kg, were randomly allotted to one of three diets with six replicates per treatment for 25 days. The diets comprised a normal protein diet (NP, 14.5% crude protein), a low crude protein diet supplemented with 0.27% alanine (LP + Ala, 10.0% crude protein), or a low crude protein diet supplemented with 0.40% leucine (LP + Leu, 10.0% crude protein). The whole-body protein synthesis rate, whole-body protein breakdown rate and protein deposition rate in pigs fed the LP + Leu diet were similar to the NP diet (P > 0.05), and both were significantly higher than pigs fed the LP + Ala diet (P < 0.05). The Longissimus muscle area (LMA) of pigs fed the LP + Leu diet was larger than those fed the LP + Ala diet (P = 0.05). In addition, drip loss and intramuscular fat of pigs fed the LP + Ala diet were higher than that of the others (P < 0.05). In conclusion, supplementation of leucine in low protein diet could stimulate protein deposition and improve the meat quality of finishing pigs more than an alanine-supplemented one. © 2015 Japanese Society of Animal Science.

  15. Obesity depresses baroreflex control of renal sympathetic nerve activity and heart rate in Sprague Dawley rats: role of the renal innervation.

    PubMed

    Khan, S A; Sattar, M Z A; Abdullah, N A; Rathore, H A; Abdulla, M H; Ahmad, A; Johns, E J

    2015-07-01

    This study investigated the role of the renal innervation in arterial and cardiopulmonary baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) in rats fed a high-fat diet to induce obesity. Rats received either a normal (12% kcal) or high (45% kcal) fat diet for 60 days. On day 61, rats were anesthetized and prepared for recording left RSNA. In one group, the renal nerves remained intact, while in the other, both kidneys were denervated. Baroreflex gain curves for RSNA and HR were generated by increasing and decreasing blood pressure. Low-pressure baroreceptors were challenged by infusing a saline load. Mean blood pressure was 135 mmHg in the fat-fed and 105 mmHg (P < 0.05) in normal rats. Weight gain, adiposity index and creatinine clearance were 37, 82 and 55% higher (P < 0.05-0.001), but urine flow rate and fractional sodium excretions were 53 and 65% (both P < 0.001) lower, respectively, in the fat-fed compared to normal rats. In fat-fed rats with innervated kidneys, RSNA and HR arterial baroreflex sensitivities were reduced by 73 and 72% (both P < 0.05) but were normal in renally denervated rats. Volume expansion decreased RSNA by 66% (P < 0.001) in normal rats, but not in the intact fat-fed rats and by 51% (P < 0.01) in renally denervated fat-fed rats. Feeding a high-fat diet caused hypertension associated with dysregulation of the arterial and cardiopulmonary baroreflexes which was dependent on an intact renal innervation. This suggests that in obese states neural signals arising from the kidney contribute to a deranged autonomic control. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury

    PubMed Central

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R.; Heesom, Kate; Jackson, Christopher L.; Angelini, Gianni D.; Halestrap, Andrew P.; Suleiman, M.-Saadeh

    2014-01-01

    Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults. PMID:24950187

  17. Effects of the Cynanchum wilfordii Ethanol Extract on the Serum Lipid Profile in Hypercholesterolemic Rats

    PubMed Central

    Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho

    2013-01-01

    The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index. PMID:24471126

  18. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats.

    PubMed

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya; Sahin, Kazim

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR- α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile ( P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats ( P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR- α , ACLY, FAS, and NF- κ B p65 expressions and enhanced the PPAR- α , IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers ( P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver.

  19. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats

    PubMed Central

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats (P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver. PMID:28396714

  20. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing system and development of hepatic steatosis. PMID:25960184

  1. Effects of corn-based diet starch content and neutral detergent fiber source on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    PubMed

    Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D

    2015-01-01

    An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    PubMed

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  3. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet

    PubMed Central

    Wang, Jun

    2015-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278

  4. High-Moisture Diet for Laboratory Rats: Complete Blood Counts, Serum Biochemical Values, and Intestinal Enzyme Activity

    NASA Technical Reports Server (NTRS)

    Battles, August H.; Knapka, Joseph T.; Stevens, Bruce R.; Lewis, Laura; Lang, Marie T.; Gruendel, Douglas J.

    1991-01-01

    Rats were fed an irradiated high-moisture diet (KSC-25) with or without access to a water bottle. Physiologic values were compared between these two groups and a group of rats fed a purified diet. Hematologic and serum biochemical values, urine specific gravity, and intestinal enzyme activities were determined from samples collected from the three groups of rats. Sprague Dawley rats (n=32) fed the irradiated high-moisture diet with or without a water bottle were the test animals. Rats (n=16) fed an irradiated purified diet and water provided via a water bottle were the control group. The purified diet formulation, modified AIN-76A, is a commonly used purified diet for laboratory rodents. All rats remained alert and healthy throughout the study. A comparison of the physiologic values of rats in this study with reported normal values indicated that all of the rats in the study were in good health. Significant differences (P less than 0.05) of the physiologic values from each rat group are reported.

  5. A Low-Protein Diet Enhances Angiotensin II Production in the Lung of Pregnant Rats but Not Nonpregnant Rats

    PubMed Central

    Gao, Haijun; Tanchico, Daren Tubianosa; Yallampalli, Uma; Yallampalli, Chandrasekhar

    2016-01-01

    Pulmonary angiotensin II production is enhanced in pregnant rats fed a low-protein (LP) diet. Here we assessed if LP diet induces elevations in angiotensin II production in nonpregnant rats and whether Ace expression and ACE activity in lungs are increased. Nonpregnant rats were fed a normal (CT) or LP diet for 8, 12, or 17 days and timed pregnant rats fed for 17 days from Day 3 of pregnancy. Plasma angiotensin II, expressions of Ace and Ace2, and activities of these proteins in lungs, kidneys, and plasma were measured. These parameters were compared among nonpregnant rats or between nonpregnant and pregnant rats fed different diets. Major findings are as follows: (1) plasma angiotensin II levels were slightly higher in the LP than CT group on Days 8 and 12 in nonpregnant rats; (2) expression of Ace and Ace2 and abundance and activities of ACE and ACE2 in lungs, kidneys, and plasma of nonpregnant rats were unchanged by LP diet except for minor changes; (3) the abundance and activities of ACE in lungs of pregnant rats fed LP diet were greater than nonpregnant rats, while those of ACE2 were decreased. These results indicate that LP diet-induced increase in pulmonary angiotensin II production depends on pregnancy. PMID:27195150

  6. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice

    PubMed Central

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543

  7. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  8. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    PubMed

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  9. Chronic High Fructose Intake Reduces Serum 1,25 (OH)2D3 Levels in Calcium-Sufficient Rodents

    PubMed Central

    Douard, Veronique; Patel, Chirag; Lee, Jacklyn; Tharabenjasin, Phuntila; Williams, Edek; Fritton, J. Christopher; Sabbagh, Yves; Ferraris, Ronaldo P.

    2014-01-01

    Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D. PMID:24718641

  10. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers

    PubMed Central

    2014-01-01

    Background Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee’s diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. Results Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional analyses also suggest that the physiological and developmental processes occurring in well-fed bees are vastly different than those occurring in pollen deprived bees. Our data support the hypothesis that poor diet causes normal age-related development to go awry. Conclusion Poor nutrition has major consequences for the expression of genes underlying the physiology and age-related development of nurse worker bees. More work is certainly needed to fully understand the consequences of starvation and the complex biology of nutrition and development in this system, but the genes identified in the present study provide a starting point for understanding the consequences of poor diet and for mitigating the economic costs of colony starvation. PMID:24529032

  11. High dietary levels of biotin and zinc to improve health of foot pads in broilers exposed experimentally to litter with critical moisture content.

    PubMed

    Abd El-Wahab, A; Radko, D; Kamphues, J

    2013-07-01

    Foot pad dermatitis (FPD) is a widespread problem in poultry production and constitutes a welfare issue. The objective of this study was to test potentially prophylactic effects of higher biotin and Zn levels in the diet of broilers exposed to critical litter moisture content (35% water) on the development of FPD. Two trials were performed in each 4 groups of 1-wk-old male broilers (Ross 708) during 33 d. The pens of all groups (25 birds in each) were littered with wood shavings of critical moisture content. Two groups were fed high levels of Zn as zinc-oxide (150 mg/kg of diet), with normal levels of biotin (300 µg/kg of diet) or high biotin (2,000 µg/kg of diet). The other 2 groups were fed Zn as zinc-methionine (150 mg/kg of diet), with normal levels of biotin (300 µg/kg of diet) or high biotin (2,000 µg/kg of diet). External assessment of foot pads and measurements the moisture contents of excreta and litter were performed weekly. The signs of foot pad lesions were recorded on a 7-point scale (0 = normal skin; 7 = more than half of the foot pad is necrotic). High biotin supplementation resulted in a reduction of 30 and 18% of cases of foot pad lesions in trials 1 and 2, respectively. The combination of Zn-methionine and high biotin supplementation led to a decreased severity of FPD in a range of about 50 and 30% in trials 1 and 2, respectively. In broilers fed the diet containing zinc-oxide and normal biotin levels about 28 and 24% of the birds had the scores of 6 and 7 (= high foot pad alterations), whereas in birds fed Zn-methionine and high biotin no high alterations (score = 7) in the foot pad (0%) occurred in either trial. The presented results suggest that it is advisable to combine the maximum levels of Zn (especially of Zn-methionine) and high levels of biotin when clinically relevant alterations in the foot pad occur.

  12. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice.

    PubMed

    Maekawa, Ryuya; Seino, Yusuke; Ogata, Hidetada; Murase, Masatoshi; Iida, Atsushi; Hosokawa, Kaori; Joo, Erina; Harada, Norio; Tsunekawa, Shin; Hamada, Yoji; Oiso, Yutaka; Inagaki, Nobuya; Hayashi, Yoshitaka; Arima, Hiroshi

    2017-11-01

    Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Dietary obesity caused by a specific circadian eating pattern.

    PubMed

    Hariri, Niloofar; Thibault, Louise

    2011-04-01

    The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.

  14. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    PubMed

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P < 0.05), but it did not differ among mice fed the 3 diets. Plasma ALP and TRAP activities and bone formation and resorption in femur were similar among ovariectomized mice fed the HFD containing 0 or 1000 mg vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  15. Production response to corn silage produced from normal, brown midrib, or waxy corn hybrids.

    PubMed

    Barlow, J S; Bernard, J K; Mullis, N A

    2012-08-01

    The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    PubMed

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  17. In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms.

    PubMed

    da Silva, Marliane C S; Naozuka, Juliana; Oliveira, Pedro V; Vanetti, Maria C D; Bazzolli, Denise M S; Costa, Neuza M B; Kasuya, Maria C M

    2010-02-01

    The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chromatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein profile of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 μg L(-1) Se) compared to other diets (2-5 μg L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.

  18. Health benefits of dietary fat reduction by a novel fat replacer: Mimix.

    PubMed

    Ruthig, D J; Sider, D; Meckling-Gill, K A

    2001-01-01

    The primary goals of this study were to identify any health benefits of the replacement of dietary fat with a novel fat replacer, Mimix, and to assure that the consumption of this fat replacer did not convey any deleterious health effects. Male, weanling, Fischer 344 rats were fed one of six diets containing between 5 and 20% w/w as fat for 8 weeks. These diets included two high fat diets (safflower oil or lard), a low fat diet and three diets where 15% of the fat in the high fat diets was replaced with various amounts of Mimix. When animals were fed a diet rich in saturated fat they consumed significantly more energy than other diet groups. When 15% saturated fat (lard) was replaced with safflower oil animals adjusted their food intake so that no difference in energy intake was observed between the high safflower diet and the low fat and Mimix diets. When the various Mimix fat replacements were compared to animals fed a high fat lard diet there was incomplete compensation of energy intake. Animals fed the high fat lard diet also had higher glucose and total serum cholesterol than their low fat and fat replacement counterparts. Feeding a high fat safflower oil diet to rats resulted in a significantly lower total serum cholesterol and serum triglyceride than all other diets. Replacement of dietary fat with Mimix demonstrated no deleterious effects on the heart, liver and intestinal tract that were all of normal weight, morphology and colour compared to other diet groups. Body composition analysis demonstrated that animals fed high fat diets had higher body fat mass at the expense of lean body mass. This was most obvious for animals fed high fat lard diets who had heavier epididymal fat pads. These data demonstrate that the replacement of dietary fat with the novel fat replacer Mimix can convey a number of health benefits in the absence of any deleterious effects.

  19. Dietary choline, betaine and lecithin mitigates endosulfan-induced stress in Labeo rohita fingerlings.

    PubMed

    Kumar, Neeraj; Jadhao, S B; Chandan, N K; Kumar, Kundan; Jha, A K; Bhushan, S; Kumar, Saurav; Rana, R S

    2012-08-01

    A five-week experiment was conducted to delineate stress-mitigating effects of three different methyl donors in Labeo rohita fingerlings subjected to endosulfan toxicity. Four iso-nitrogenous and iso-caloric feed were prepared with and without supplementation of methyl donors. The feed were basal or control diet (i.e., without methyl donor supplementation), feed supplemented with choline, feed supplemented with betaine and feed supplemented with lecithin. Two hundred and twenty-five fishes were distributed randomly in five treatment groups each with three replicates. The experimental setup were normal water (without endosulfan) and fed with control diet (control group), endosulfan-treated water and fed with control diet (T₁), endosulfan-treated water and fed with choline supplemented feed (T₂), endosulfan-treated water and fed with betaine supplemented feed (T₃) and endosulfan-treated water and fed with lecithin-supplemented feed (T₄). The level of endosulfan in endosulfan treated water was maintained at the level of 1/10 of LC₅₀, that is, 0.2 ppb. During the experiment, growth performances, metabolic enzyme activity and histological examination were done to assess the effect of treatments. The growth performance (percentage weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio) and nutrient digestibility were significantly different (P<0.01) in lecithin, betaine and choline fed group when compared to endosulfan-exposed group fed with basal diet. The liver LDH and MDH activity were significantly (P<0.01) improved in the groups fed with methyl donor supplemented diet. The liver AST and ALT, brain AChE and muscle ALT did not change with supplementation in the diet, but muscle ALT and G6PDH significantly (P<0.01) changed with supplementation. The gill and liver ATPase and intestinal ALP were significantly (P<0.01) noticeably changed in supplemented group. After endosulfan exposure, histopathology alter like slight large vacuolation in hepatocyte and lipoid vacuole were observed and with supplementation normal appearance of liver were observed. The chromosome aberration (karyotype) was observed in endosulfan-exposed group. The result obtained in present study concluded that inclusion of methyl donors, particularly lecithin and betaine, in feed as nutritional supplements has a potential stress-mitigating effect in L. rohita fingerlings.

  20. Effects of dietary gelatin hydrolysates on bone mineral density in magnesium-deficient rats.

    PubMed

    Noma, Teruyuki; Takasugi, Satoshi; Shioyama, Miho; Yamaji, Taketo; Itou, Hiroyuki; Suzuki, Yoshio; Sakuraba, Keishoku; Sawaki, Keisuke

    2017-09-05

    The major types of commercially available gelatin hydrolysates are prepared from mammals or fish. Dietary gelatin hydrolysates from mammals were reported to improve bone mineral density (BMD) in some animal models. In contrast, there is limited study showing the effects of dietary gelatin hydrolysates from fish on BMD. The quantity and structure of peptides in the plasma after oral administration of gelatin hydrolysates depend on the gelatin source, which suggests that the biological activity of gelatin hydrolysates depend on the gelatin source. This study examined the effects of fish-derived gelatin hydrolysate (FGH) or porcine-derived gelatin hydrolysate (PGH) intake on BMD and intrinsic biomechanical properties in magnesium (Mg)-deficient rats as a model showing the decrease in both BMD and intrinsic biomechanical properties. Four-week-old male Wistar rats were assigned into four groups: a normal group was fed a normal diet (48 mg Mg/100 g diet), a Mg-deficient (MgD) group was fed a MgD diet (7 mg Mg/100 g diet), a FGH group was fed a MgD + FGH diet (5% FGH), and a PGH group was fed a MgD + PGH diet (5% PGH) for 8 weeks. At the end of the study, BMD and intrinsic biomechanical properties of the femur were measured. The MgD group showed significantly lower Young's modulus, an intrinsic biomechanical property, and trabecular BMD of the femur than the normal group; however, the MgD diet did not affect cortical BMD and cortical thickness. Both the FGH and the PGH groups showed significantly higher cortical thickness and ultimate displacement of the femur than the normal group, but neither type of gelatin hydrolysate affected Young's modulus. Furthermore, the FGH group, but not the PGH group, showed significantly higher trabecular BMD than the MgD group. This study indicates that FGH and PGH increase cortical thickness but only FGH prevents the decrease in trabecular BMD seen in Mg-deficient rats, while neither type of gelatin hydrolysate affect intrinsic biomechanical properties.

  1. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems

    PubMed Central

    Ardeshir, Amir; Narayan, Nicole R.; Méndez-Lagares, Gema; Lu, Ding; Rauch, Marcus; Huang, Yong; Van Rompay, Koen K. A.; Lynch, Susan V.; Hartigan-O'Connor, Dennis J.

    2015-01-01

    Diet has a strong influence on the intestinal microbiota in both humans and animal models. It is well established that microbial colonization is required for normal development of the immune system and that specific microbial constituents prompt the differentiation or expansion of certain immune cell subsets. Nonetheless, it has been unclear how profoundly diet might shape the primate immune system or how durable the influence might be. We show that breast-fed and bottle-fed infant rhesus macaques develop markedly different immune systems, which remain different 6 months after weaning when the animals begin receiving identical diets. In particular, breast-fed infants develop robust populations of memory T cells as well as T helper 17 (TH17) cells within the memory pool, whereas bottle-fed infants do not. These findings may partly explain the variation in human susceptibility to conditions with an immune basis, as well as the variable protection against certain infectious diseases. PMID:25186175

  2. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    PubMed

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  3. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats

    PubMed Central

    Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D.; Planer, David; Ben-Dov, Iddo Z.; Meir, Karen; Sosna, Jacob; Lotan, Chaim

    2008-01-01

    Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Methods and results Sprague–Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet (‘low-phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor κB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies. PMID:18390899

  5. Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats.

    PubMed

    Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D; Planer, David; Ben-Dov, Iddo Z; Meir, Karen; Sosna, Jacob; Lotan, Chaim

    2008-08-01

    Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks ('diet group'). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet ('low-phosphate group', n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor kappaB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies.

  6. Insulin resistance impairs nigrostriatal dopamine function.

    PubMed

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The influence of dietary iodine and enviromental temperature on the activity of mitochondria in liver and kidney.

    PubMed

    Chaiyabutr, N; Jakobsen, P E

    1978-08-01

    It was found that both effect of temperatures and diets influence metabolic changes in rabbits. In animals fed basal and PTU diets (propyl-thiouracil diets) at 34 degrees C for 4 weeks the metabolic response showed a marked reduction in feed intake and body weight, compared with animals fed at normal temperatures. In the animals fed the iodine diet, there was an increase in daily food consumption and weekly body weight gain at 34 degrees C. This indicates a rise in metabolic activity in this case. Studying the activity of kidney mitochondria of the three groups of animals using succinate as a substrate revealed that the P/O ratio tends to decrease in animals kept at 6 degrees C while the RCR value was not altered by changing conditions or produced by the different diets. At the temperature of 6 degrees C both the P/O ratios and the RCR values of liver mitochondria using succinate as a substrate decreased in the group of rabbits fed the basal and iodine diets, but were not significantly different in the group fed the PTU diet. In the experiment on kidney mitochondrial activity using alpha-ketoglutarate as a substrate it was found that both the P/O ratios and the RCR values from animals fed basal and PTU diets at 6 degrees C decreased slightly as compared with animals fed at 20 degrees C and 34 degrees C. In liver mitochondria, using alpha-ketoglutarate as a substrate a significant decrease in the P/O ratio and the RCR value was found for both rabbits fed the basal and the iodine diets at 6 degrees C. In the group of rabbits fed the PTU diet, the P/O ratio also decreased but the fall was not significant. These results suggested that the activity of succinate dehydrogenase in liver mitochondria increases in animals fed basal and iodine diets at 6 degrees C. The enzyme dehydrogenase involved in oxidation of alpha-ketoglutarate which is localized in the outer membrane of mitochondria seems to be affected by different temperatures and diets as compared with succinate dehydrogenase localized in the matrix. The kidney mitochondria activity is less sensitive than that of liver mitochondria. Mitochondrial respiration and phosphorylation due to the tightness of their coupling may respond differently depending on the degree of thyroid activity.

  8. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine.

    PubMed

    Veum, T L; Raboy, V

    2016-03-01

    A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in aP. Therefore, LPA barley, especially M955 with 95% aP, will reduce the use of iP in swine diets, reduce P pollution from swine manure, and support the goal of achieving global P sustainability.

  9. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    PubMed

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  10. Effects of dietary medium-chain triglycerides on plasma lipids and lipoprotein distribution and food aversion in cats.

    PubMed

    Trevizan, Luciano; de Mello Kessler, Alexandre; Bigley, Karen E; Anderson, Wendy H; Waldron, Mark K; Bauer, John E

    2010-04-01

    To determine possible diet aversion and lipid and lipoprotein alterations in cats fed diets containing medium-chain triglycerides (MCTs). 19 clinically normal adult female cats. Cats were assigned to 2 groups (low MCT diet [n = 10] and high MCT diet [9]) and fed the diets for 9 weeks according to metabolic body weight (100 kcal of metabolizable energy [ME] x kg(-0.67)/d). Daily consumption records and weekly body weight and body condition score (BCS) were used to adjust amounts fed and calculate daily ME factors for each cat to maintain ideal BCS. Blood samples were obtained after withholding food on days 0, 14, 28, and 56 for measurement of plasma triglyceride and total cholesterol concentrations and lipoprotein-cholesterol distributions. Repeated-measures ANOVA and Tukey multiple comparison tests were performed. No diet differences were found for food consumption, body weight, BCS, and ME factors. A significant increase in plasma triglyceride concentration was detected for the high MCT diet; however, values were within the reference ranges. No diet effects were observed for total cholesterol concentrations or lipoprotein-cholesterol distributions, although increases over time were observed. Inclusion of MCT in diets of cats did not result in feed refusal and had minimal effects on lipid metabolism. Such diets may be useful for both clinically normal cats and cats with metabolic disorders. The MCT oils are an example of a bioactive dietary lipid that may benefit feline metabolism and can serve as a useful functional food ingredient for cats.

  11. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    PubMed

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  13. Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats.

    PubMed

    Chen, Jinn-Yang; Jian, Deng-Yuan; Lien, Chih-Chan; Lin, Yu-Ting; Ting, Ching-Heng; Chen, Luen-Kui; Hsu, Ting-Chia; Huang, Hsuan-Min; Wu, Yu-Ting; Kuan, Tse-Ting; Chao, Yu-Wen; Wu, Liang-Yi; Huang, Seng-Wong; Juan, Chi-Chang

    2016-11-01

    Obesity is a risk factor that promotes progressive kidney disease. Studies have shown that an adipocytokine imbalance contributes to impaired renal function in humans and animals, but the underlying interplay between adipocytokines and renal injury remains to be elucidated. We aimed to investigate the mechanisms linking obesity to chronic kidney disease. We assessed renal function in high-fat (HF) diet-fed and normal diet-fed rats, and the effects of preadipocyte- and adipocyte-conditioned medium on cultured podocytes. HF diet-fed and normal diet-fed Sprague Dawley rats were used to analyze the changes in plasma BUN, creatinine, urine protein and renal histology. Additionally, podocytes were incubated with preadipocyte- or adipocyte-conditioned medium to investigate the effects on podocyte morphology and protein expression. In the HF diet group, 24 h urinary protein excretion (357.5 ± 64.2 mg/day vs 115.9 ± 12.4 mg/day, P < 0.05) and the urine protein/creatinine ratio were significantly higher (1.76 ± 0.22 vs 1.09 ± 0.15, P < 0.05), increased kidney weight (3.54 ± 0.04 g vs 3.38 ± 0.04 g, P < 0.05) and the glomerular volume and podocyte effacement increased by electron microscopy. Increased renal expression of desmin and decreased renal expression of CD2AP and nephrin were also seen in the HF diet group (P < 0.05). Furthermore, we found that adipocyte-conditioned medium-treated podocytes showed increased desmin expression and decreased CD2AP and nephrin expression compared with that in preadipocyte-conditioned medium-treated controls (P < 0.05). These findings show that adipocyte-derived factor(s) can modulate renal function. Adipocyte-derived factors play an important role in obesity-related podocytopathy. © 2016 Society for Endocrinology.

  14. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats.

    PubMed

    Seif, A A

    2015-06-01

    Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.

  15. T-2 Toxin Alters the Levels of Collagen II and Its Regulatory Enzymes MMPs/TIMP-1 in a Low-Selenium Rat Model of Kashin-Beck Disease.

    PubMed

    Zhou, Xiaorong; Yang, Haojie; Guan, Fang; Xue, Senhai; Song, Daiqin; Chen, Jinghong; Wang, Zhilun

    2016-02-01

    The objectives of this study are to assess T-2 toxin's involvement in low selenium (Se)-induced Kashin-Beck disease (KBD) in rats and unveil the mechanisms underlying this disease. Two hundred thirty rats were randomly divided into two groups after weaning and fed normal or low-Se diets (n = 115), respectively, for a month. After low-Se model confirmation, rats in each group were subdivided into five: two subgroups (n = 20) were fed their current diets (normal or low-Se diets, respectively) for 30 and 90 days, respectively; two other subgroups (n = 25) received their current diets + low T-2 toxin (100 ng/g BW/day) for 30 and 90 days, respectively; and 25 rats were fed their current diets + high T-2 toxin (200 ng/g BW/day) for 30 days. Articular cartilage samples were extracted for hematoxylin and eosin (H&E) staining and immunohistochemistry. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) were used to assess protein and mRNA levels, respectively, of collagen II, matrix metalloproteinase (MMP-1), MMP -3, MMP-13, and tissue inhibitor of metalloproteinase-1 (TIMP-1). Low Se and T-2 toxin synergistically affected animal fitness. Interestingly, low Se + T-2 toxin groups showed KBD characteristics. MMP-1, -3, and -13 mRNA and protein levels generally increased in low-Se groups, while collagen II and TIMP-1 levels showed a downward trend, compared with normal diet fed animals for the same treatment (P < 0.05). T-2 toxin's effect was dose but not time dependent. Low Se and T-2 toxin synergistically alter the expression levels of collagen II as well as its regulatory enzymes MMP-1, MMP-3, MMP-13, and TIMP-1, inducing cartilage damage. Therefore, T-2 toxin may cause KBD in low-Se conditions.

  16. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice.

    PubMed

    Lee, Gihyun; Chung, Hwan-Suck; Lee, Kyeseok; Lee, Hyeonhoon; Kim, Minhwan; Bae, Hyunsu

    2017-09-15

    Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) is a lethal autoimmune disease caused by mutations in the Foxp3 gene scurfin (scurfy). Immunosuppressive therapy for IPEX patients has been generally ineffective and has caused severe side effects, however curcumin has shown immune regulation properties for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel diseases without side effects. The aim of this study was to investigate whether curcumin would attenuate symptoms of IPEX in mouse model and would prolong its survival period. C57BL/6 mice were separated into scurfy or wild-type litter mate groups by genotyping, and each group subsequently was separated into 2 subgroups that were fed a 1% curcumin containing or normal diet from the last day of breast-feeding. After weaning, pups were fed either a 1% curcumin containing or normal diet until all scurfy mice die for survival data. To elucidate immune cell proportions in spleen and lymph nodes, cells were analyzed by flowcytometry. Cellular cytokine production was accessed to investigate the effects of curcumin in T cell differentiation in vitro. Scurfy mice fed a 1% curcumin diet survived 4.0-fold longer compared to scurfy (92.5 days) mice fed a normal diet (23 days). A curcumin diet decreased all of the Th1/Th2/Th17 cell populations and attenuated diverse symptoms such as splenomegaly in scurfy mice. In vitro experiments showed that curcumin treatment directly decreased the Th1/Th2/Th17 cytokine production of IFN-γ, IL-4, and IL-17A in CD4 + T cells. Curcumin diet attenuated the scurfy-induced immune disorder, a model of IPEX syndrome, by inhibiting Th1/Th2/Th17 responses in mice. These results have implications for improving clinical therapy for patients with IPEX and other T cell related autoimmune diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Effects of central administration of resistin on renal sympathetic nerve activity in rats fed a high-fat diet: a comparison with leptin.

    PubMed

    Habeeballah, H; Alsuhaymi, N; Stebbing, M J; Badoer, E

    2017-08-01

    Similar to leptin, resistin acts centrally to increase renal sympathetic nerve activity (RSNA). In high-fat fed animals, the sympatho-excitatory effects of leptin are retained, in contrast to the reduced actions of leptin on dietary intake. In the present study, we investigated whether the sympatho-excitatory actions of resistin were influenced by a high-fat diet. Further, because resistin and leptin combined can induce a greater sympatho-excitatory response than each alone in rats fed a normal chow diet, we investigated whether a high-fat diet (22%) could influence this centrally-mediated interaction. Mean arterial pressure (MAP), heart rate (HR) and RSNA were recorded before and for 3 hours after i.c.v. saline (control; n=5), leptin (7 μg; n=4), resistin (7 μg; n=5) and leptin and resistin combined (n=6). Leptin alone and resistin alone significantly increased RSNA (71±16%, 62±4%, respectively). When leptin and resistin were combined, there was a significantly greater increase in RSNA (195±41%) compared to either hormone alone. MAP and HR responses were not significantly different between hormones. When the responses in high-fat fed rats were compared to normal chow fed rats, there were no significant differences in the maximum RSNA responses. The findings indicate that sympatho-excitatory effects of resistin on RSNA are not altered by high-fat feeding, including the greater increase in RSNA observed when resistin and leptin are combined. Our results suggest that diets rich in fat do not induce resistance to the increase in RSNA induced by resistin alone or in combination with leptin. © 2017 British Society for Neuroendocrinology.

  18. Effects of dietary fiber and reduced crude protein on nitrogen balance and egg production in laying hens.

    PubMed

    Roberts, S A; Xin, H; Kerr, B J; Russell, J R; Bregendahl, K

    2007-08-01

    Ammonia emission is a major concern for the poultry industry and can be lowered by dietary inclusion of fibrous ingredients and by lowering the dietary CP content. The objectives of this research were to determine the effects of dietary fiber and reduced-CP diets, which may lower NH(3) emission, on egg production and N balance in laying hens. A total of 256 Hy-Line W-36 hens were fed diets with 2 contents of CP (normal and reduced) and 4 fiber treatments in a 2 x 4 factorial arrangement from 23 to 58 wk of age. The fiber treatments included a corn and soybean meal-based control diet and diets formulated with either 10.0% corn dried distillers grains with solubles (DDGS), 7.3% wheat middlings (WM), or 4.8% soybean hulls (SH) added to contribute equal amounts of neutral detergent fiber. The CP contents of the reduced-CP diets were approximately 1 percentage unit lower than that of the normal-CP diets. All diets were formulated on a digestible amino acid basis to be isoenergetic. There were no effects (P > 0.05) of including corn DDGS, WM, or SH in the diet on egg production, egg weight, egg mass, yolk color, feed consumption, feed utilization, or BW gain. Although the corn DDGS and WM diets resulted in an increase (P < 0.001) in N consumption, N excretion was not affected (P > 0.10) compared with hens fed the control diet. The reduced-CP diets did not affect egg weight, feed consumption, or BW gain (P > 0.05); however, egg production, egg mass, feed utilization, N consumption, and N excretion were lower than that from the hens fed the normal-CP diets (P < 0.05). The results of this study show that the diets containing 10% corn DDGS, 7% WM, or 5% SH did not affect egg production or N excretion. However, the 1% lower CP diets caused a lower egg production and lower N excretion.

  19. Effects of two diets on the haematology, plasma chemistry and intestinal flora of budgerigars (Melopsittacus undulatus).

    PubMed

    Fischer, I; Christen, C; Lutz, H; Gerlach, H; Hässig, M; Hatt, J-M

    2006-10-07

    Two groups of 22 budgerigars (Melopsittacus undulatus) were housed for 12 months under identical conditions. One group was fed a commercial seed mixture plus carrots and a mineral supplement, and the other group was fed a commercially formulated diet plus carrots. Samples of blood and faeces were collected initially and after three, six, nine and 12 months. There were no significant differences between the haematological values of the two groups. The group fed the seed mixture had significantly higher concentrations of glucose, albumin, triglycerides and uric acid, and higher activity of aspartate aminotransferase, but the values were within the published reference ranges for normal birds. There were no significant differences between the faecal samples from the two groups, except that the fungus Macrorhabdus ornithogaster was identified in 48.3 per cent of the samples from the group fed the commercially formulated diet but from only 3.4 per cent of the samples from the group fed the seed mixture.

  20. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet.

    PubMed

    Choi, Ra-Yeong; Ham, Ju Ri; Lee, Mi-Kyung

    2016-12-25

    This study investigated the effects and mechanism of esculetin (6,7-dihydroxycoumarin) on non-alcoholic fatty liver in diabetic mice fed high-fat diet (HFD). The diabetic mice model was induced by injection of streptozotocin, after which they were fed HFD diet with or without esculetin for 11 weeks. Non-diabetic mice were provided a normal diet. Diabetes induced hepatic hypertrophy, lipid accumulation and droplets; however, esculetin reversed these changes. Esculetin treatment in diabetic mice fed HFD significantly down-regulated expression of lipid synthesis genes (Fasn, Dgat2 and Plpp2) and inflammation genes (Tlr4, Myd88, Nfkb, Tnfα and Il6). Moreover, the activities of hepatic lipid synthesis enzymes (fatty acid synthase and phosphatidate phosphohydrolase) and gluconeogenesis enzyme (glucose-6-phosphatase) in the esculetin group were decreased compared with the diabetic group. In addition, esculetin significantly reduced blood HbA 1c , serum cytokines (TNF-α and IL-6) and chemokine (MCP-1) levels compared with the diabetic group without changing the insulin content in serum and the pancreas. Hepatic SOD activity was lower and lipid peroxidation level was higher in the diabetic group than in the normal group; however, esculetin attenuates these differences. Overall, these results demonstrated that esculetin supplementation could protect against development of non-alcoholic fatty liver in diabetes via regulation of lipids, glucose and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats

    NASA Technical Reports Server (NTRS)

    Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.

    2002-01-01

    BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no significant effect on cancellous or cortical bone measurements. CONCLUSIONS: Chronic alcohol consumption significantly reduced bone formation. Exercise had no effect on the bone and did not attenuate any of the negative effects of alcohol. The results suggest that alcohol consumption weakens the skeleton and increases the incidence of endurance-exercise-related bone injuries. Thus, individuals who are participating in endurance exercise and consuming alcohol may be at greater risk for exercise-related skeletal injuries. Further investigation of the potential for alcohol to induce detrimental effects on the hearts of individuals participating in endurance exercise is indicated.

  2. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon ( Salmo salar L.).

    PubMed

    Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne

    2008-07-01

    Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

  3. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    PubMed

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  4. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    PubMed

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  5. Effects on reproduction in female offspring from Sprague-Dawley rats fed 10% snakeweed (Gutierrezia microcephala) throughout pregnancy and concurrent treatment with safflower oil.

    PubMed

    Staley, E C; Smith, G S; Greenberg, J A

    1995-10-01

    Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.

  6. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  7. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis.

    PubMed

    Kawasaki, Takahiro; Igarashi, Kanji; Koeda, Tatsuki; Sugimoto, Keiichiro; Nakagawa, Kazuya; Hayashi, Shuichi; Yamaji, Ryoichi; Inui, Hiroshi; Fukusato, Toshio; Yamanouchi, Toshikazu

    2009-11-01

    Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease are increasing in adults and are likely to be increasing in children. Both conditions are hepatic manifestations of metabolic syndrome. Experimental animals fed fructose-enriched diets are widely recognized as good models for metabolic syndrome. However, few reports have described the hepatic pathology of these experimental animals. In this study, 5-wk-old Wistar specific pathogen-free rats, which are a normal strain, were fed experimental diets for 5 wk. We then evaluated the degree of steatohepatitis. The 5 diet groups were as follows: cornstarch (70% wt:wt) [control (C)], high-fructose (70%) (HFr), high-sucrose (70%) (HS), high-fat (15%) (HF), and high-fat (15%) high-fructose (50%) (HFHFr) diets. The macrovesicular steatosis grade, liver:body weight ratio, and hepatic triglyceride concentration were significantly higher in the HFr group than in the other 4 groups. However, the HFr group had a significantly lower ratio of epididymal white fat:body weight than the other 4 groups and had a lower final body weight than the HF and HFHFr groups. The HF group had a greater final body weight than the C, HFr, and HS groups, but no macrovesicular steatosis was observed. The HFr group had a significantly higher grade of lobular inflammation than the other 4 groups. The distribution of lobular inflammation was predominant over portal inflammation, which is consistent with human NASH. In conclusion, rats fed fructose-enriched diets are a better model for NASH than rats fed fat-enriched diets.

  8. Monosodium glutamate intake affect the function of the kidney through NMDA receptor.

    PubMed

    Mahieu, Stella; Klug, Maximiliano; Millen, Néstor; Fabro, Ana; Benmelej, Adriana; Contini, Maria Del Carmen

    2016-03-15

    We investigated whether the chronic intake of monosodium glutamate (MSG) with food affects kidney function, and renal response to glycine. We also established if the NMDA receptors are involved in the changes observed. Male Wistar rats (5weeks old) were fed a diet supplemented with MSG (3g/kg b.w./day), five days a week, and spontaneous ingestion of a 1% MSG solution during 16weeks. NaCl rats were fed a diet with NaCl (1g/kg b.w./day) and 0.35% NaCl solution at the same frequency and time. Control group was fed with normal chow and tap water. We utilized clearance techniques to examine glomerular filtration rate (GFR) and cortical renal plasma flow (CRPF) response to glycine and glycine+MK-801 (antagonist NMDA-R), and we determined NMDA-R1 in kidney by immunohistochemistry. The addition of MSG in the diet of rats increased both GFR and CRPF with an increase of absolute sodium reabsorption. However, hyperfiltration was accompanied with a normal response to glycine infusion. Immunostain of kidney demonstrate that the NMDA receptor is upregulated in rats fed with MSG diet. NMDA-R antagonist MK-801 significantly reduced both the GFR and CRPF; however the percentage of reduction was significantly higher in the group MSG. MK-801 also reduces fractional excretion of water, sodium and potassium in the three groups. Renal NMDAR may be conditioned by the addition of MSG in the diet, favoring the hyperfiltration and simultaneously Na retention in the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Severe lactose intolerance with lactosuria and vomiting.

    PubMed Central

    Hosková, A; Sabacký, J; Mrskos, A; Pospísil, R

    1980-01-01

    An infant with lactose intolerance is described. A breast-fed infant developed vomiting at 3 weeks, and became dehydrated. Lactosuria, aminoaciduria, and liver damage were preesent. A milk-free diet led to rapid recovery. At 6 months a normal diet was well tolerated. PMID:7416780

  10. Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet

    PubMed Central

    Yook, Jin-Seon; Kim, Kyung-Ah; Park, Jeong Eun; Lee, Seon-Hwa; Cha, Youn-Soo

    2015-01-01

    This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice. PMID:26770909

  11. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  12. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    PubMed

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice fed lard. In conclusion, our study identified dietary cholesterol as a candidate ingredient affecting the crosstalk between gut microbiota and host metabolism.

  13. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  14. Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic Steatosis and Methionine Metabolism in C3H Mice.

    PubMed

    Syed, Raisa; Shibata, Noreene M; Kharbanda, Kusum K; Su, Ruijun J; Olson, Kristin; Yokoyama, Amy; Rutledge, John C; Chmiel, Kenneth J; Kim, Kyoungmi; Halsted, Charles H; Medici, Valentina

    2016-05-01

    Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.

  15. Characterization of protected designation of origin Italian meat products obtained from heavy pigs fed barley-based diets.

    PubMed

    Prandini, A; Sigolo, S; Gallo, A; Faeti, V; Della Casa, G

    2015-09-01

    A study was conducted to evaluate the quality and sensory properties of protected designation of origin (PDO) Parma ham and Piacentina neck obtained from heavy pigs (Italian Duroc × Italian Large White) fed barley-based diets. Four diets were tested: 1) a corn-based diet (control), 2) the control diet with 80% of a normal-amylose hulled barley variety (Cometa), 3) the control diet with 80% of a normal-amylose hulless barley variety (Astartis), and 4) the control diet with 80% of a low-amylose hulless barley variety (Alamo). All the meat products were analyzed for physicochemical and color parameters. The dry-cured hams and necks were also evaluated for sensory properties. The data of physicochemical, color, and sensory parameters were separately analyzed by multivariate factor analysis, and interpretation of each extracted factor was based on specific original variables loading on each one. The meat products obtained from pigs fed the barley-based diets differed from those obtained from the control pigs on the PUFA factors characterized by C18:2-6 and omega-3:omega-6 ratio. In particular, the meat products obtained from pigs fed the barley-based diets had a lower content of C18:2-6 and a higher omega-3:omega-6 ratio ( < 0.05) than the control. In fresh hams, iodine number and SFA (C16:0 and C18:0) in addition to PUFA and omega-3:omega-6 ratio loaded on the PUFA/SFA factor. The fresh hams produced from pigs fed the barley-based diets had subcutaneous fat (SC) with a lower iodine number and a higher SFA level compared with those produced from the control pigs ( < 0.05). A sex effect was measured for PUFA/SFA and oleic acid factors. In particular, the barrow SC had a lower SFA content, higher PUFA and C18:1-9 levels, and a higher iodine number ( < 0.05) than the gilt SC. There were no appreciable differences in the color and sensory properties of meat products obtained from pigs fed the different diets. The hams from barrows differed from those obtained from gilts on the lean properties factor describing properties related to aspect and odor of dry-cured hams. Indeed, the hams from barrows were depreciated compared with the hams from gilts for minor intensity, brightness, and uniformity of the lean, pinkish intermuscular fat and cured odor. In conclusion, barley could be used as a replacement for corn in heavy pig diets for the production of PDO Italian products without negative effects on the physicochemical, color, or sensory characteristics of meat products.

  16. Supra dietary levels of vitamins C and E enhance antibody production and immune memory in juvenile milkfish, Chanos chanos (Forsskal) to formalin-killed Vibrio vulnificus.

    PubMed

    Azad, I S; Dayal, J Syama; Poornima, M; Ali, S A

    2007-07-01

    Juveniles of milkfish, Chanos chanos (Forsskal), were fed two independent supra dietary levels of vitamins C (500 and 1500 mg kg(-1) feed, T1 and T2) and E (50 and 150 mg kg(-1), T3 and T4). Milkfish fed diets with supra (in addition to the vitamins present in the control diet) and normal levels (T5 containing 90 and 1.2mg of vitamins C and E, respectively, kg(-1) of feed) of vitamins were immunized (ip) with formalin-killed Vibrio vulnificus (FKVV). Priming and booster antibody responses to the injected bacterin were significantly (P<0.05) better in the milkfish juveniles fed supra dietary levels. Survival response of the experimental fish fed supra dietary levels of vitamins (T1, T2 and T3) was significantly (P<0.01) better than that of the control set. Protective response against virulent bacterial challenge of the vaccinated fish fed vitamin-supplemented diets (T2 and T3) was better than the control (T5) and T1 and T4. Memory factor reflecting immunological memory was superior in the fish fed vitamin-supplemented diets. Diets supplemented with either 1500 mg of Vitamin C or 50mg of Vitamin E kg(-1) produced the best antibody responses, final survival and protective response upon challenge. No conclusive inferences could be drawn on the growth responses from the experiment.

  17. Normal distribution of body weight gain in male Sprague-Dawley rats fed a high-energy diet.

    PubMed

    Archer, Zoe A; Rayner, D Vernon; Rozman, Jan; Klingenspor, Martin; Mercer, Julian G

    2003-11-01

    To investigate the effect of a high-energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague-Dawley (SD) rats. Twenty-eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein-1 and hypothalamic energy-balance-related genes were determined by Northern blotting and in situ hybridization, respectively. HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein-1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti-related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet-induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.

  18. The comparative effects of chronic consumption of kola nut (Cola nitida) and caffeine diets on locomotor behaviour and body weights in mice.

    PubMed

    Umoren, E B; Osim, E E; Udoh, P B

    2009-06-01

    The comparative effects of chronic [28 days] consumption of kola nut and its active constituent, caffeine diets on locomotor behaviour and body weights in mice were investigated. Thirty adult Swiss white mice [15-30 g body weight], were used for the study. The open field-maze was employed for the evaluation of locomotor behaviour. Mice in the control group [n=10] were fed normal rodent chow, mice in the kola nut-fed group [n=10] were fed kola diet [25 % wt/wt of rodent chow] while those in the caffeine-fed group [n=10] were fed caffeine diet [0.66% wt/wt of rodent chow] for 4 weeks. All animals were allowed free access to clean drinking water. Daily food intake, water intake and body weight change were also measured. Daily food intake in the kola nut and caffeine-fed group of mice was significantly [P<0.001 respectively] lower than the control. There was also a significant [P<0.001] decrease in daily water intake in the caffeine-fed group compared to the control whereas, the apparent decrease of water intake in the kola nut-fed group was not significantly different from the control. Body weight change was also significantly [P<0.001 and P<0.05 respectively] lower in the kola nut and caffeine-fed groups of mice when compared to the control. The frequency of rearing in the open field was significantly [P<0.01] lower in the caffeine-fed group of mice when compared to the control. The frequency of grooming was also significantly [P<0.05] lower in the caffeine-fed group of mice when compared to the control. There was also a significant [P<0.05] decrease in the frequency of light-dark transitions in the light/dark transition box for the caffeine-fed group when compared to the control. The results showed that chronic consumption of kola nut and caffeine diets caused decrease in food intake and body weight. Consumption of caffeine-diet also significantly decreased water intake and locomotor activity. The effect of kola nut-diets on water intake and locomotor activity was not significant. Hence, the effect of kola nut on locomotor behaviour and water intake may not be due to caffeine only.

  19. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    EPA Science Inventory

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  20. Prenatal low protein and postnatal high fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring

    USDA-ARS?s Scientific Manuscript database

    Maternal low protein diets during prenatal development contribute to the development of obesity and insulin resistance in offspring. In this study, obese-prone Sprague -Dawley rats were fed diets having either 8% (low protein, LP) or 20% (normal protein, NP) protein for 3-wk prior to conception and...

  1. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs.

    PubMed

    He, Liuqin; Wu, Li; Xu, Zhiqi; Li, Tiejun; Yao, Kang; Cui, Zhijie; Yin, Yulong; Wu, Guoyao

    2016-01-01

    The objective of this study was to evaluate effects of dietary crude protein (CP) intake on ileal amino acid digestibilities and expression of genes for digestive enzymes in growing and finishing pigs. In Experiment 1, 18 growing pigs (average initial BW = 36.5 kg) were assigned randomly into one of three treatments (n = 6/treatment group) representing normal (18 % CP), low (15 % CP), and very low (12 % CP) protein intake. In Experiment 2, 18 finishing pigs (average initial BW = 62.3 kg) were allotted randomly into one of three treatments (n = 6/treatment group), representing normal (16 % CP), low (13 % CP) and very low (10 % CP) protein intake. In both experiments, diets with low and very low CP were supplemented with crystalline amino acids to achieve equal content of standardized ileal digestible Lys, Met, Thr, and Trp, and were provided to pigs ad libitum. Daily feed intake, BW, and feed/gain ratios were determined. At the end of each experiment, all pigs were slaughtered to collect pancreas, small-intestine samples, and terminal ileal chymes. Samples were used for determining expression of genes for digestive enzymes and ileal amino acid digestibilities. Growing pigs fed the 12 % CP and 15 % CP diets had lower final body weight (P < 0.01) and ADG (P < 0.0001) when compared with pigs fed the 18 % dietary CP diet. Growing pigs fed with the 12 % CP diet showed higher digestibilities for CP (P < 0.05), DM (P < 0.05), Lys (P < 0.0001), Met (P < 0.01), Cys (P < 0.01), Thr (P < 0.01), Trp (P < 0.05), Val (P < 0.05), Phe (P < 0.05), Ala (P < 0.05), Cys (P < 0.01), and Gly (P < 0.05) than those fed the 18 % CP diet. Finishing pigs fed the 16 % CP diet had a higher (P < 0.01) final body weight than those fed the 10 % CP diet. mRNA levels for digestive enzymes (trypsinogen, chymotrypsin B, and dipeptidases-II and III) differed among the three groups of pigs (P < 0.05), and no difference was noted in the genes expression between control group and lower CP group. These results indicated that a reduction of dietary CP by a six-percentage value limited the growth performance of growing-finishing pigs and that a low-protein diet supplemented with deficient amino acids could reduce the excretion of nitrogen into the environment without affecting weight gain.

  2. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring.

    PubMed

    Zhang, Yu-Ping; Huo, Yan-Li; Fang, Zhi-Qin; Wang, Xue-Fang; Li, Jian-Dong; Wang, Hai-Ping; Peng, Wei; Johnson, Alan Kim; Xue, Baojian

    2018-05-01

    Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is associated with hyperreactivity of central cardiovascular nuclei that, in all likelihood, involves elevated expression of the renin-angiotensin system, NADPH oxidase, and proinflammatory cytokines. The present study demonstrates, for the first time, the central mechanism underlying maternal high-fat diet sensitization of the hypertensive response in adult offspring.

  3. Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice.

    PubMed

    Muthulakshmi, Shanmugam; Saravanan, Ramalingam

    2013-05-01

    Excess fat intake induces hyperinsulinaemia, increases nutrient uptake and lipid accumulation, amplifies ROS generation, establishes oxidative stress and morphological changes leading to tissue injury in the liver, kidney and heart of high-fat diet (HFD)-fed mice. The effect of azelaic acid (AzA), a C9 α,ω-dicarboxylic acid, against HFD-induced oxidative stress was investigated by assaying the activities and levels of antioxidants and oxidative stress markers in the liver, kidney and heart of C57BL/6J mice. Mice were segregated into two groups, one fed standard diet (NC) and the other fed high-fat diet (HFD) for 15 weeks. HFD-fed mice were subjected to intragastric administration of AzA (80 mg/kg BW)/RSG (10 mg/kg BW) during 11-15 weeks. Glucose, insulin, triglycerides, hepatic and nephritic markers were analysed in the plasma and the activity of enzymatic, non-enzymatic antioxidants and lipid peroxidation markers were examined in the plasma/erythrocytes, liver, kidney and heart of normal and experimental mice. We inferred significant decrease in enzymatic and non-enzymatic antioxidants along with significant increase in glucose, insulin, hepatic and nephritic markers, triglycerides and lipid peroxidation markers in HFD-fed mice. Administration of AzA could positively restore the levels of plasma glucose, insulin, triglycerides, hepatic and nephritic markers to near normal. AzA increased the levels of enzymatic and nonenzymatic antioxidants with significant reduction in the levels of lipid peroxidation markers. Histopathological examination of liver, kidney and heart substantiated these results. Hence, we put forward that AzA could counteract the potential injurious effects of HFD-induced oxidative stress in C57BL/6J mice.

  4. Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice.

    PubMed

    Cho, Youngjin; Gutierrez, Linda; Bordonaro, Michael; Russo, Daniel; Anzelmi, Frank; Hooven, Jayde T; Cerra, Carmine; Lazarova, Darina L

    2016-09-01

    Obesity is associated with colorectal cancer (CRC). This effect might be attributed to adipokine-supported signaling. We have established that propolis suppresses survival signaling in CRC cells in vitro; therefore, we ascertained the ability of a propolis supplement to modulate intestinal neoplastic development in C57BL/6J-ApcMin/+/J mice in the lean and obese state. To induce obesity, mice were fed with a Western diet containing 40% fat. Since the propolis supplement includes gamma-cyclodextrin, the interventions included diets supplemented with or without gamma-cyclodextrin. The animals were administered the following diets: (1) control diet, (2) control diet/gamma-cyclodextrin, (3) control diet/propolis, (4) Western diet, (5) Western diet/gamma-cyclodextrin, and (6) Western diet/propolis. Western diet, resulting in obesity, accelerated neoplastic progression, as evidenced by the larger size and higher grade dysplasia of the neoplasms. In the context of normal weight, gamma-cyclodextrin and propolis affected neoplastic progression, as determined by the size of the lesions and their grade of dysplasia. A statistically significant decrease in the number of adenomas was detected in mice fed a control diet with the propolis supplement (61.8 ± 10.6 vs. 35.3 ± 7.6, P = 0.008). Although there was no significant difference in the polyp numbers between the six groups, the mice with the lowest number and size of adenomas were those fed a Western diet with gamma-cyclodextrin. This unexpected outcome might be explained by the increased levels of apoptosis detected in the intestinal tissues of these obese mice. We posit that butyrate derived from the metabolism of gamma-cyclodextrin may contribute to the decreased neoplastic burden in the context of obesity; however, future studies are required to address this possibility. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Isoenergetic Feeding of Low Carbohydrate-High Fat Diets Does Not Increase Brown Adipose Tissue Thermogenic Capacity in Rats

    PubMed Central

    Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H.; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Methods Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates (“high fat”, 19.4/61.9/18.7). Results Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. Conclusion All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT. PMID:22720011

  6. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats.

    PubMed

    Han, Fei; Wang, Yong; Han, Yangyang; Zhao, Jianxin; Han, Fenli; Song, Ge; Jiang, Ping; Miao, Haijiang

    2018-05-29

    Diets rich in whole grain (WG) cereals bring lower disease risks compared with refined grain-based diets. We investigated the effects of polished rice (PR), refined wheat (RW), unpolished rice (UPR), and whole wheat (WW) on short-chain fatty acids (SCFAs) and gut microbiota in ileal, cecal, and colonic digesta of normal rats. Animals fed with UPR and WW diets exhibited higher total SCFA in cecal and colonic digesta compared with those fed with PR and RW diets. Wheat diets contributed higher total SCFA than rice diets. In cecal and colonic digesta, animals fed with UPR and WW diets demonstrated higher acetate and butyrate contents than those given PR and RW. Firmicutes were the dominant eumycota in rat ileum digesta (>92% abundance). Cecal and colonic digesta were dominated by Firmicutes, Verrucomicrobia, and Bacteroidetes. UPR and WW affected gut microbiota, decreasing the proportion of Firmicutes to Bacteroidetes. SMB53, Lactobacillus, and Faecalibacterium were the main bacterial genera in ileal digesta. Akkermansia was highest in cecal and colonic digesta. In the colonic digesta of rats, the relative abundance of Akkermansia in rats on wheat diets was higher than that in rats on rice diets ( P < 0.05). Thus, UPR and WW could modulate gut microbiota composition and increase the SCFA concentration. Wheat diet was superior to rice diet in terms of intestinal microbiota adjustment.

  7. A comparison of long-chain triglycerides and medium-chain triglycerides on weight loss and tumour size in a cachexia model.

    PubMed Central

    Tisdale, M. J.; Brennan, R. A.

    1988-01-01

    A comparison has been made between the ability of long-chain triglycerides (LCT) and medium-chain triglycerides (MCT) to prevent weight loss induced by the cachexia-inducing colon adenocarcinoma (MAC16) and to reduce tumour size. There was no difference in calorie consumption or nitrogen intake between the various groups. When compared with a normal control high carbohydrate, low fat diet, animals fed MCT showed a reduced weight loss and a marked reduction in tumour size. In contrast neither weight loss nor tumour size differed significantly from the controls in animals fed the LCT diet. An elevated plasma level of 3-hydroxybuturate was found only in the animals fed the MCT diets. Administration of LCT caused an increase in the plasma level of FFA, which was not observed in the MCT group. These results suggest that diets containing MCT would provide the best ketogenic regime to reverse the weight loss in cancer cachexia with a concomitant reduction in tumour size. PMID:3219268

  8. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism.

    PubMed

    Deminice, Rafael; de Castro, Gabriela Salim Ferreira; Francisco, Lucas Vieira; da Silva, Lilian Eslaine Costa Mendes; Cardoso, João Felipe Rito; Frajacomo, Fernando Tadeu Trevisan; Teodoro, Bruno Gonzaga; Dos Reis Silveira, Leonardo; Jordao, Alceu Afonso

    2015-04-01

    To examine the effects of creatine (Cr) supplementation on liver fat accumulation in rats fed a choline-deficient diet. Twenty-four rats were divided into 3 groups of 8 based on 4 weeks of feeding an AIN-93 control diet (C), a choline-deficient diet (CDD) or a CDD supplemented with 2% Cr. The CDD diet was AIN-93 without choline. The CDD significantly increased plasma homocysteine and TNFα concentration, as well as ALT activity. In liver, the CDD enhanced concentrations of total fat (55%), cholesterol (25%), triglycerides (87%), MDA (30%), TNFα (241%) and decreased SAM concentrations (25%) and the SAM/SAH ratio (33%). Cr supplementation prevented all these metabolic changes, except for hepatic SAM and the SAM/SAH ratio. However, no changes in PEMT gene expression or liver phosphatidylcholine levels were observed among the three experimental groups, and there were no changes in hepatic triglyceride transfer protein (MTP) mRNA level. On the contrary, Cr supplementation normalized expression of the transcription factors PPARα and PPARγ that were altered by the CDD. Further, the downstream targets and fatty acids metabolism genes, UCP2, LCAD and CPT1a, were also normalized in the Cr group as compared to CDD-fed rats. Cr supplementation prevented fat liver accumulation and hepatic injures in rats fed with a CDD for 4 weeks. Our results demonstrated that one-carbon metabolism may have a small role in mitigating hepatic fat accumulation by Cr supplementation. The modulation of key genes related to fatty acid oxidation pathway suggests a new mechanism by which Cr prevents liver fat accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    PubMed

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  10. Temporal and dietary fat content-dependent islet adaptation to high-fat feeding-induced glucose intolerance in mice.

    PubMed

    Winzell, Maria Sörhede; Magnusson, Caroline; Ahrén, Bo

    2007-01-01

    The high fat-fed mouse is an experimental model for studies of islet dysfunction as a mechanism for glucose intolerance and for evaluation of therapeutic targets. This model is, however, dynamic with a temporal and dietary fat content-dependent impact on islet function and glucose tolerance, the details of which are unknown. This study therefore examined the time course of changes in the insulin response to intravenous glucose (1 g/kg) in relation to glucose tolerance in female mice after 1, 3, 8, or 16 weeks of feeding with diets containing 11% fat (normal diet [ND]), 30% fat (medium-fat diet [MFD]), or 58% fat (high-fat diet [HFD]; by energy). High-fat diet increased body weight and body fat content, whereas MFD did not. The insulin response (postglucose suprabasal mean 1- and 5-minute insulin) was impaired after 1 week on MFD (481+/- 33 pmol/L) or HFD (223 +/- 31 pmol/L) compared with ND (713 +/- 46 pmol/L, both P < .001). This was accompanied by impaired glucose elimination compared with ND (both P < .001). Over the 16-week study period, the insulin response adaptively increased in the groups fed with HFD and MFD, to be not significantly different from ND after 16 weeks. This compensation normalized glucose tolerance in MFD, whereas the glucose tolerance was still below normal in HFD. Insulin clearance, as judged by elimination of intravenous human insulin, was not altered in HFD, suggesting that the observed changes in insulin responses to glucose are due to changes in insulin secretion rather than to changes in insulin clearance. We conclude that time- and dietary fat-dependent dynamic adaptive islet compensation evolves after introducing HFD in mice and that MFD-fed mice is a novel nonobese model of glucose intolerance.

  11. Hypolipidemic and Antioxidant Effects of Dandelion (Taraxacum officinale) Root and Leaf on Cholesterol-Fed Rabbits

    PubMed Central

    Choi, Ung-Kyu; Lee, Ok-Hwan; Yim, Joo Hyuk; Cho, Chang-Won; Rhee, Young Kyung; Lim, Seong-Il; Kim, Young-Chan

    2010-01-01

    Dandelion (Taraxacum officinale), an oriental herbal medicine, has been shown to favorably affect choleretic, antirheumatic and diuretin properties. Recent reports have indicated that excessive oxidative stress contributes to the development of atherosclerosis-linked metabolic syndrome. The objective of this current study was to investigate the possible hypolipidemic and antioxidative effects of dandelion root and leaf in rabbits fed with a high-cholesterol diet. A group of twenty eight male rabbits was divided into four subgroups; a normal diet group, a high-cholesterol diet group, a high-cholesterol diet with 1% (w/w) dandelion leaf group, and a high-cholesterol diet with 1% (w/w) dandelion root group. After the treatment period, the plasma antioxidant enzymes and lipid profiles were determined. Our results show that treatment with dandelion root and leaf positively changed plasma antioxidant enzyme activities and lipid profiles in cholesterol-fed rabbits, and thus may have potential hypolipidemic and antioxidant effects. Dandelion root and leaf could protect against oxidative stress linked atherosclerosis and decrease the atherogenic index. PMID:20162002

  12. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes.

    PubMed

    Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin

    2017-09-01

    A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.

  13. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.

    1999-04-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and the Clinch River (a large river-reservoir system), fish from Poplar Creek, the Clinch River, and Atlantic Ocean were fed to ranch mink to evaluate reproductive success. Five diets, each composed of 75% fish and 25% normal ranch mink chow, were prepared. Two diets served as reference diets and contained 75% Atlantic Ocean fish or 75% Clinch River fish collected above the ORR. The fish portion of the remaining three diets contained 25, 50, and 75% fish collected from Poplar Creek andmore » 50, 25, and 0% ocean fish, respectively. Five mink groups (eight females and two males each) were each fed one of the prepared diets for 196 days. Polychlorinated biphenyl concentrations were determined in diets and various mink tissues, ethoxyresorufin-O-deethylase (EROD) activity was determined in liver tissue, and reproductive success was evaluated. Concentrations of PCB were greatest in the diet composed of 75% Poplar Creek fish and in tissues from mink fed this diet and their offspring. There was a trend toward decreased adult female and kit weights and reduced mean litter size in mink fed diets containing 75% Poplar Creek fish; however, at 6 weeks of age, kit survival was similar among diet groups. Liver EROD activity significantly increased in adult female mink fed 50 and 75% Poplar Creek fish diets. Estimated dietary concentrations of PCBs were similar to or slightly lower than concentrations associated with adverse effects in experimentally dosed mink. Mercury (Hg) concentrations previously reported in these same mink were below that associated with adverse effects, and there was no indication of additive or synergistic effects from exposure to PCBs plus Hg. It is unlikely that population-level reproductive effects would be observed in mink consuming fish from Poplar Creek on the ORR.« less

  14. THE EFFECT OF DINITROPHENOL AND THYROXIN ON THE SUSCEPTIBILITY OF MICE TO STAPHYLOCOCCAL INFECTIONS

    PubMed Central

    Smiths, J. Maclean; Dubos, René J.

    1956-01-01

    Mice were given daily per os amounts of dinitrophenol or of thyroid extract sufficient to prevent or retard the normal weight gain of uninfected animals, but not large enough to cause their death. When mice maintained on these regimens for 1 or 2 weeks were infected with staphylococci, most of them died within 12 days—much more rapidly than did mice fed a normal diet. Deaths occurred even when the organism injected was a non-virulent staphylococcus, unable to cause fatal disease in mice fed a normal diet. There was some suggestion that thyroid treatment interfered with the bactericidal mechanism in the liver, spleen, and kidneys of mice during the initial phase of infection. In contrast there was no clear evidence at any time thereafter that either thyroid extract or dinitrophenol caused the staphylococci to multiply more rapidly in the various organs. PMID:13278459

  15. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    PubMed Central

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  16. Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic Steatosis and Methionine Metabolism in C3H Mice

    PubMed Central

    Syed, Raisa; Shibata, Noreene M.; Kharbanda, Kusum K.; Su, Ruijun J.; Olson, Kristin; Yokoyama, Amy; Rutledge, John C.; Chmiel, Kenneth J.; Kim, Kyoungmi; Halsted, Charles H.

    2016-01-01

    Abstract Background: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. Methods: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Results: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Conclusions: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals. PMID:26881897

  17. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    PubMed

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  <   .05) reversed the levels of fasting blood glucose, with significant ( p  <   .05) increase in insulin and glycogen concentrations. The diet also increased the activity of hexokinase with significant reduction ( p  <   .05) in glucose-6-phosphatase and fructose-1-6-diphosphatase activities. M. paradisiaca -based diet demonstrated significant reduction ( p  <   .05) in cholesterol, triacylglycerol (TG), very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and significant increase ( p  <   .05) in high-density lipoprotein (HDL) compared with those of diabetic control group. Also, M. paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  18. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit

    PubMed Central

    Alissa, Eman M; Bahijri, Suhad M; Lamb, David J; Ferns, Gordon A A

    2004-01-01

    It has previously been shown that dietary copper can modulate the extent of atherosclerosis in the thoracic aorta of cholesterol-fed rabbits. The metabolism of copper and zinc are closely related, and it has been hypothesized that the balance of dietary copper to zinc may be important in determining coronary risk. Hence, we have investigated the interaction between dietary copper and zinc in atherogenesis in the New Zealand White rabbit. Juvenile male rabbits were randomly allocated to eight groups. Four groups were fed a normal chow diet with zinc (0.5%, w/w), copper (0.2%, w/w), copper plus zinc or neither in their drinking water for 12 weeks. Four other groups were fed a diet containing 0.25–1% (w/w) cholesterol plus zinc, copper, both or neither. Serum cholesterol of individual animals was maintained at approximately 20 mmol/l. Integrated plasma cholesterol levels were similar for all groups receiving cholesterol and significantly higher than those in the chow-fed groups (P < 0.001). Aortic copper concentrations were higher in the animals receiving cholesterol diets with copper compared to rabbits receiving normal chow and copper (P < 0.001). Aortic zinc content was significantly higher in cholesterol-fed rabbits supplemented with zinc alone or with copper than in those fed cholesterol alone (P < 0.001). Plasma ceruloplasmin concentrations were significantly higher in groups receiving cholesterol, irrespective of their trace element supplementation (P < 0.001). However, trace element supplementation increased the level significantly (P < 0.05). Trace element supplements did not appear to affect erythrocyte superoxide dismutase in the cholesterol-fed animals; however, zinc supplementation was associated with a significant increase in the enzyme in chow-fed animals (P < 0.05). The activity of the enzyme per mg of protein in aortic tissue was higher in animals receiving copper in the presence of cholesterol (P < 0.05) but not significantly so in its absence. Dietary trace element supplementation in cholesterol-fed animals was associated with a significant reduction in aortic lesion area. Plasma thiobarbituric acid-reactive substances and FOX concentrations were both significantly higher in the cholesterol-fed rabbits compared with the animals that fed on a chow diet (P < 0.001), and these were reduced significantly by dietary copper or zinc supplementation (P < 0.001). Hence, dietary supplements of copper or zinc at the doses used both inhibited aortic atherogenesis in the cholesterol-fed rabbits, although there was no significant additional effect when given in combination. PMID:15379959

  19. Characteristics of lambs fed concentrates or grazed on ryegrass to traditional or heavy slaughter weights. II. Wholesale cuts and tissue accretion.

    PubMed

    Borton, R J; Loerch, S C; McClure, K E; Wulf, D M

    2005-06-01

    Targhee x Hampshire lambs (average BW 24 +/- 1 kg) were used to determine the effect of finishing on concentrate or by grazing ryegrass forage on slaughter weights of 52 kg (N) or 77 kg (H) on tissue accretion and lamb wholesale cutout. When fed to similar slaughter weights, the wholesale cuts of concentrate-fed lambs were heavier (P < 0.05) than the same cuts from forage-fed lambs; however, when expressed as a percentage of side weight, carcasses of forage-fed lambs had a higher (P < 0.001) percentage of leg than concentrate-fed lambs. Increasing slaughter weight from 52 to 77 kg resulted in a 1-kg increase in loin weight for lambs finished on concentrate and a 0.60-kg increase for lambs finished on forage (diet x slaughter weight, P < 0.03); however, the increased loin weight for lambs finished on concentrate was due largely to increased fat deposition. For lambs slaughtered at 77 kg, those finished on forage had more lean mass in the leg, loin, rack, and shoulder than those finished on concentrate, but lean mass in these cuts did not differ between diets for lambs slaughtered at 52 kg (diet x slaughter weight, P < 0.01). At the normal slaughter weight (52 kg), concentrate-fed lambs had 50% more dissectible fat than forage-fed lambs, whereas at the heavy slaughter weight, a 79% greater amount of dissectible fat was observed for concentrate- vs. forage-fed lambs (diet x slaughter weight, P < 0.001). Lean and fat accretion rates were higher (P < 0.001) for concentrate-fed lambs than for forage-fed lambs. The lean-to-fat ratio of forage-fed lambs was higher (P < 0.001) than that of concentrate-fed lambs; however, forage finishing decreased accretion rates of all tissues compared with concentrate feeding, and these differences between forage and concentrate feeding were magnified at heavier slaughter weights.

  20. Shrimp oil extracted from the shrimp processing waste reduces the development of insulin resistance and metabolic phenotypes in diet-induced obese rats.

    PubMed

    Nair, Sandhya; Gagnon, Jacques; Pelletier, Claude; Tchoukanova, Nadia; Zhang, Junzeng; Ewart, H Stephen; Ewart, K Vanya; Jiao, Guangling; Wang, Yanwen

    2017-08-01

    Diet-induced obesity, insulin resistance, impaired glucose tolerance, chronic inflammation, and oxidative stress represent the main features of type 2 diabetes mellitus. The present study was conducted to examine the efficacy and mechanisms of shrimp oil on glucose homeostasis in obese rats. Male CD rats fed a high-fat diet (52 kcal% fat) and 20% fructose drinking water were divided into 4 groups and treated with the dietary replacement of 0%, 10%, 15%, or 20% of lard with shrimp oil for 10 weeks. Age-matched rats fed a low-fat diet (10 kcal% fat) were used as the normal control. Rats on the high-fat diet showed impaired (p < 0.05) glucose tolerance and insulin resistance compared with rats fed the low-fat diet. Shrimp oil improved (p < 0.05) oral glucose tolerance, insulin response, and homeostatic model assessment-estimated insulin resistance index; decreased serum insulin, leptin, hemoglobin A1c, and free fatty acids; and increased adiponectin. Shrimp oil also increased (p < 0.05) antioxidant capacity and reduced oxidative stress and chronic inflammation. The results demonstrated that shrimp oil dose-dependently improved glycemic control in obese rats through multiple mechanisms.

  1. Piper species protect cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters.

    PubMed

    Agbor, Gabriel A; Akinfiresoye, Luli; Sortino, Julianne; Johnson, Robert; Vinson, Joe A

    2012-10-01

    Pre-clinical and clinical studies points to the use of antioxidants as an effective measure to reduce the progression of oxidative stress related disorders. The present study evaluate the effect of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) for the protection of cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters. Hamsters were classified into eight groups: a normal control, atherogenic control and six other experimental groups (fed atherogenic diet supplemented with different doses of P. nigrum, P. guineense and P. umbellatum (1 and 0.25 g/kg) for 12 weeks. At the end of the feeding period the heart, liver and kidney from each group were analyzed for lipid profile and antioxidant enzymes activities. Atherogenic diet induced a significant (P<0.001) increase in the lipid profile across the board and equally significantly altered the antioxidant enzyme activities. Supplementation with Piper species significantly inhibited the alteration effect of atherogenic diet on the lipid profile and antioxidant enzymes activities. The Piper extracts may possess an antioxidant protective role against atherogenic diet induced oxidative stress in cardiac, hepatic and renal tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. MECHANISM OF THE HEMORRHAGIC PHENOMENON PRODUCED IN MALE RATS BY FEEDING OF IRRADIATED BEEF. Progress Report No. 5, March 15, 1960 to September 15, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellette, S.J.

    Studies of the difference between male and female animals in susceptibility to hypoprothrombinemia and hemorrhage were continued with animals fed irradiated beef diets and extended to include other diets and also the administration of anticoagulant drugs. Sex differences similar to those of animals fed beef diets are demonstrated in rats receiving a commercial stock diet. A considerable difference was found between two commercial diets in terms of the maintenance of normal coagulation factors. Male animals in several age ranges were found to be more sensitive to the effect of large single doses of the anticoagulant warfarin sodium (coumadin) than aremore » females. Pre-treatment with estradiol benzoate improved the prothrombin levels and the survival of male rats receiving the anticoagulant. A greater mortality after coumadin occurred in females pre-treated with androgens. A/sub c/G levels decreased during continued administration of testosterone to females fed stock as well as beef diets. Strain differences in prothrombin were also noted, and estrogenic activity was demonstrated for both menadione and K/sub i/. (P.C.H.)« less

  3. Metabolizable energy, nitrogen balance, and ileal digestibility of amino acids in quality protein maize for pigs

    PubMed Central

    2014-01-01

    Background To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts. Results The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P < 0.05) than in the pigs fed white or yellow maize. Energy digestibility (P < 0.001) and metabolizability (P < 0.01) were higher in the pigs fed the white and yellow maize diets than in those fed the QPM diets. The AID of lysine was higher (P < 0.01) in the QPM diets than in the white and yellow maize. The AIDs of leucine, isoleucine, valine, phenylalanine, and methionine were lower in the QPM diets than those of maize (white and yellow) (all P < 0.05). Maize (white and yellow) had greater SIDs of leucine, isoleucine, valine, phenylalanine, glutamic acid, serine, alanine, tyrosine, and proline (P < 0.05). Conclusions Based on these results, it was concluded that QPM had a lower metabolizable energy content and a higher amount of digestible lysine than normal maize. PMID:25045520

  4. Liver lipid composition and antioxidant enzyme activities of spontaneously hypertensive rats after ingestion of dietary fats (fish, olive and high-oleic sunflower oils).

    PubMed

    Ruiz-Gutiérrez, V; Vázquez, C M; Santa-Maria, C

    2001-06-01

    Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n - 3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n - 3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.

  5. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart.

    PubMed

    Ravindran, Sriram; Murali, Jeyashri; Amirthalingam, Sunil Kumar; Gopalakrishnan, Senthilkumar; Kurian, Gino A

    2017-02-01

    The present study was aimed to determine the efficacy of nicorandil in treating cardiac reperfusion injury with an underlying co-morbidity of vascular calcification (VC). Adenine diet was used to induce VC in Wistar rat and the heart was isolated to induce global ischemia reperfusion (IR) by Langendorff method, with and without the nicorandil (7.5mg/kg) pre-treatment and compared with those fed on normal diet. The adenine-treated rats displayed abnormal ECG changes and altered mitochondrial integrity compared to a normal rat heart. These hearts, when subjected to IR increased the infarct size, cardiac injury (measured by lactate dehydrogenase and creatine kinase activity in the coronary perfusate) and significantly altered the hemodynamics compared to the normal perfused heart. Nicorandil pretreatment in rat fed on normal diet enhanced the hemodynamics significantly (P<0.05) along with a substantial reduction in the mitochondrial dysfunction (measured by high ADP to oxygen consumption ratio, respiratory control ratio, enzyme activities and less swelling behavior) when subjected to IR. However, this cardio-protective effect of nicorandil was absent in rat heart with underlying calcification. Our results suggest that, the protective effect of nicorandil, a known mitochondrial ATP linked K + channel opener, against myocardial reperfusion injury was confined to normal rat heart. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans

    PubMed Central

    Tornberg-Belanger, Stephanie N.; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2015-01-01

    ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Podcast: A podcast concerning this article is available. PMID:27303684

  7. Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice

    PubMed Central

    Chung, Soo Im; Kim, Tae Hyeong; Rico, Catherine W.; Kang, Mi Young

    2014-01-01

    The comparative effects of instant cooked rice made from giant embryo mutant or ordinary normal rice on body weight and lipid profile in high fat-fed mice were investigated. The animals were given experimental diets for seven weeks: normal control (NC), high fat (HF), and HF supplemented with instant normal white (HF-NW), normal brown (HF-NB), giant embryonic white (HF-GW), or giant embryonic brown (HF-GB) rice. The HF group showed markedly higher body weight, body fat, plasma and hepatic triglyceride and cholesterol concentrations, and atherogenic index relative to NC group. However, instant rice supplementation counteracted this high fat-induced hyperlipidemia through regulation of lipogenesis and adipokine production. The GB rice exhibited greater hypolipidemic and body fat-lowering effects than the GW or NB rice. These findings illustrate that the giant embryo mutant may be useful as functional biomaterial for the development of instant rice with strong preventive action against high fat diet-induced hyperlipidemia and obesity. PMID:24932656

  8. Transfer of 45Ca and 36Cl at the blood-nerve barrier of the sciatic nerve in rats fed low or high calcium diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadhwani, K.C.; Murphy, V.A.; Rapoport, S.I.

    1991-04-01

    Unidirectional fluxes of 45Ca, 36Cl, and of (3H)mannitol from blood into the sciatic nerve and cerebral cortex were determined from 5- and 15-min uptakes of these tracers after an intravenous (i.v.) bolus injection in awake rats. Rats were fed diets for 8 wk, that had either a low (0.01% wt/wt), normal (0.67%), or high (3%) Ca content. Plasma (Ca) was 32% less and 11% more in rats fed low (LOCA) and high Ca diets (HICA), respectively, than in rats fed a normal Ca diet (CONT). The mean permeability-surface area product (PA) of 45Ca at the blood-nerve barrier was about eightfoldmore » higher than at the blood-brain barrier in the same animals and did not differ significantly between groups (greater than 0.05). Mean PA ratios of 45Ca/36Cl for the blood-nerve and blood-brain barriers in CONT rats, 0.52 {plus minus} 0.04 and 0.40 {plus minus} 0.02, respectively, were not significantly different from corresponding ratios in LOCA and HICA groups, and corresponded to the aqueous limiting diffusion ratio (0.45). The authors results show no evidence for concentration-dependent transport of Ca over a plasma (Ca) range of 0.8-1.4 mmol/liter at the blood-nerve barrier of the rat peripheral nerve, and suggest that Ca and Cl exchange slowly between nerve and blood via paracellular pathways.« less

  9. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink.

    PubMed

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-16

    Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.

  10. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Olsson, Nils U.; Salem, Norman

    2008-01-01

    Background/Aims We reported that reduced dietary intake of polyunsaturated fatty acids (PUFA) such as arachidonic (AA,20:4n6, omega-6) and docosahexaenoic (DHA,22:6n3, omega-3) acids led to alcohol-induced fatty liver and fibrosis. This study was aimed at studying the mechanisms by which a DHA/AA-supplemented diet prevents alcohol-induced fatty liver. Methods Male Long-Evans rats were fed an ethanol or control liquid-diet with or without DHA/AA for 9 weeks. Plasma transaminase levels, liver histology, oxidative/nitrosative stress markers, and activities of oxidatively-modified mitochondrial proteins were evaluated. Results Chronic alcohol administration increased the degree of fatty liver but fatty liver decreased significantly in rats fed the alcohol-DHA/AA-supplemented diet. Alcohol exposure increased oxidative/nitrosative stress with elevated levels of ethanol-inducible CYP2E1, nitric oxide synthase, nitrite and mitochondrial hydrogen peroxide. However, these increments were normalized in rats fed the alcohol-DHA/AA-supplemented diet. The number of oxidatively-modified mitochondrial proteins was markedly increased following alcohol exposure but significantly reduced in rats fed the alcohol-DHA/AA-supplemented diet. The suppressed activities of mitochondrial aldehyde dehydrogenase, ATP synthase, and 3-ketoacyl-CoA thiolase in ethanol-exposed rats were also recovered in animals fed the ethanol-DHA/AA-supplemented diet. Conclusions Addition of DHA/AA prevents alcohol-induced fatty liver and mitochondrial dysfunction in an animal model by protecting various mitochondrial enzymes most likely through reducing oxidative/nitrosative stress. PMID:18571270

  11. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol.

    PubMed

    Rahman, Khalidur; Desai, Chirayu; Iyer, Smita S; Thorn, Natalie E; Kumar, Pradeep; Liu, Yunshan; Smith, Tekla; Neish, Andrew S; Li, Hongliang; Tan, Shiyun; Wu, Pengbo; Liu, Xiaoxiong; Yu, Yuanjie; Farris, Alton B; Nusrat, Asma; Parkos, Charles A; Anania, Frank A

    2016-10-01

    There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Expression and localization of taste receptor genes in the vallate papillae of rats: effect of zinc deficiency.

    PubMed

    Ikeda, Atsuo; Sekine, Hiroki; Takao, Kyoichi; Ikeda, Minoru

    2013-09-01

    We found a difference in expression sites between TAS2Rs and ENaC (epithelial sodium channels). The number of TAS2R-positive cells and ENaC-positive cells were decreased in zinc-deficient diet rats. These findings suggest that decreased expression of taste receptor genes may play an important role in the onset of zinc deficiency-associated taste disorder. The present study was aimed at histologically investigating the expression and localization of TAS2Rs and ENaC in the vallate taste buds of rats. Changes in expression of the taste receptor genes in zinc-deficient rats were also investigated. The vallate papillae of five rats fed a normal diet and five rats fed a zinc-deficient diet were used. In situ hybridization was performed to investigate the expression and localization of TAS2Rs and ENaC. TAS2R-positive cells per taste bud were counted, and differences in number between the normal and zinc-deficient diet rats were investigated. In the normal rats, expression of TAS2Rs was observed specifically in the taste bud cells. In contrast, ENaC-positive cells were observed in a part of the taste bud cells and a large number of epithelial cells. Fewer cells were positive for TAS2Rs and ENaC in the zinc-deficient diet rats.

  13. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    PubMed Central

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  14. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats.

    PubMed

    Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-09-01

    The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.

  15. CD4+RORγt++ and Tregs in a Mouse Model of Diet-Induced Nonalcoholic Steatohepatitis

    PubMed Central

    Vonghia, Luisa; Ruyssers, Nathalie; Schrijvers, Dorien; Pelckmans, Paul; Michielsen, Peter; De Clerck, Luc; Ramon, Albert; Jirillo, Emilio; Ebo, Didier; De Winter, Benedicte; Bridts, Chris; Francque, Sven

    2015-01-01

    Background and Aims. Inflammatory mediators that cross-talk in different metabolically active organs are thought to play a crucial role in the pathogenesis of Nonalcoholic Steatohepatitis (NASH). This study was aimed at investigating the CD4+RORγt+ T-helper cells and their counterpart, the CD4+CD25+FOXP3+ regulatory T cells in the liver, subcutaneous adipose tissue (SAT), and abdominal adipose tissue (AAT) in a high fat diet (HFD) mouse model. Methods. C57BL6 mice were fed a HFD or a normal diet (ND). Liver enzymes, metabolic parameters, and liver histology were assessed. The expression of CD4+RORγt+ cells and regulatory T cells in different organs (blood, liver, AAT, and SAT) were analyzed by flow cytometry. Cytokine and adipokine tissue expression were studied by RT-PCR. Results. Mice fed a HFD developed NASH and metabolic alterations compared to normal diet. CD4+RORγt++ cells were significantly increased in the liver and the AAT while an increase of regulatory T cells was observed in the SAT of mice fed HFD compared to ND. Inflammatory cytokines were also upregulated. Conclusions. CD4+RORγt++ cells and regulatory T cells are altered in NASH with a site-specific pattern and correlate with the severity of the disease. These site-specific differences are associated with increased cytokine expression. PMID:26229237

  16. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin.

    PubMed

    Bozic, Milica; Panizo, Sara; Sevilla, Maria A; Riera, Marta; Soler, Maria J; Pascual, Julio; Lopez, Ignacio; Freixenet, Montserrat; Fernandez, Elvira; Valdivielso, Jose M

    2014-09-01

    There is growing evidence suggesting that phosphate intake is associated with blood pressure levels. However, data from epidemiological studies show inconsistent results. The present study was designed to evaluate the effect of high circulating phosphorus on arterial blood pressure of healthy rats and to elucidate the potential mechanism that stands behind this effect. Animals fed a high phosphate diet for 4 weeks showed an increase in blood pressure, which returned to normal values after the addition of a phosphate binder (lanthanum carbonate) to the diet. The expression of renin in the kidney was higher, alongside an increase in plasma renin activity, angiotensin II (Ang II) levels and left ventricular hypertrophy. The addition of the phosphate binder blunted the increase in renin and Ang II levels. The levels of parathyroid hormone (PTH) were also higher in animals fed a high phosphate diet, and decreased when the phosphate binder was present in the diet. However, blood P levels remained elevated. A second group of rats underwent parathyroidectomy and received a continuous infusion of physiological levels of PTH through an implanted mini-osmotic pump. Animals fed a high phosphate diet with continuous infusion of PTH did not show an increase in blood pressure, although blood P levels were elevated. Finally, unlike with verapamil, the addition of losartan to the drinking water reverted the increase in blood pressure in rats fed a high phosphate diet. The results of this study suggest that a high phosphate diet increases arterial blood pressure through an increase in renin mediated by PTH.

  17. Comparative morphophysiological evaluation of the testis of adult Wistar rats fed low protein-energy diet and dosed with aqueous extracts of Cuscuta australis.

    PubMed

    Ozegbe, P C; Omirinde, J O

    2012-12-18

    Cuscuta australis (C. australis) seed and stem are historically used by the local population as dietary supplement for the management of infertility. This study, therefore, evaluated the effect of orally administered aqueous extracts of C. australis seed and stem, 300 mg/kg body weight/day for seven days, on the testis of the adult Wistar rat fed either low or normal protein-energy diets. The control group received water. The relative weight of the testis was non-significantly increased (p>0.05) in the Low Protein-energy diet-Water-treated (LPWA), Low Protein-energy diet-Seed-treated (LPSE) and Normal Protein-energy diet-Seed-treated (NPSE) groups relative to the Normal Protein-energy diet-Water-treated (NPWA). The weight of the testis was also non-significantly increased (p˃0.05) in the Low Protein-energy diet-Stem-treated (LPST), but decreased in the Normal Protein-energy diet-Stem-treated (NPST), relative to LPWA and NPWA. Heights of germinal epithelium were significantly decreased (p<0.05) in the LPWA, LPSE and LPST relative to the NPWA, NPSE and NPST. Diet significantly influenced (p<0.001) the effect of stem extract on the height of germinal epithelium. The NPSE, LPSE, NPST, LPST and LPWA showed significantly decreased (p<0.001) plasma levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) relative to NPWA. The LPWA, LPSE and NPST also showed significantly decreased (p<0.001) levels of testosterone relative to NPWA and LPST. Diet significantly influenced (p<0.001) the effect of seed on the level of LH. Seed-diet interactions significantly affected the levels of FSH (p<0.001) and LH (p<0.05), but not testosterone. Diet significantly influenced (p<0.001) the effects of stem extract on the levels of FSH, LH and testosterone. Stem-diet interactions significantly affected (p<0.001) the levels of FSH, LH and testosterone. Our data suggest that the aqueous extract of C. australis stem is more potent than the seed extract and that dietary protein-energy intake may influence the efficacy of orally administered aqueous extracts of C. australis.

  18. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels.

    PubMed

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2016-12-01

    This study investigated the effects of early antibiotic administration (EAA) on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Eighteen litters (total 180) of piglets on day (d) 7 were fed either a commercial creep feed or commercial creep feed + antibiotic (Olaquindox, Oxytetracycline Calcium and Kitasamycin) until d 42. On d 42, pigs within each group were further randomly fed a normal crude protein (CP) diet (20% and 18% CP from d 42 to d 77 and d 77 to d 120, respectively) or a low-CP diet (16% and 14% CP from d 42 to d 77 and d 77 to d 120, respectively), generating 4 groups, control-low CP (Con-LP), control-normal CP (Con-NP), antibiotic-low CP (Ant-LP) and antibiotic-normal CP (Ant-NP), respectively. On d 77 and d 120, 5 pigs per group were slaughtered and cecal materials were collected for bacterial analysis. With cecal bacteria, principle component analysis (PCA) of the denaturing gradient gel electrophoresis (DGGE) profile showed two distinct groups of samples from low-CP diet and samples from normal-CP diet. Real-time PCR showed that EAA did not have significant effect on major bacterial groups, only showed significant interactions (P < 0.05) with CP level for Lactobacillus counts on d 77 and Clostridium cluster XIVa counts on d 120 with higher values in the Con-NP group compared to the Ant-NP groups. Low-CP diet increased (P < 0.05) short-chain fatty acids (SCFA) producing bacteria counts (Bacteroidetes on d 77 and d 120; Clostridium cluster IV and Clostridium cluster XIVa on d 77), but decreased (P < 0.05) Escherichia coli counts on d 77 and d 120. For metabolites, EAA increased (P < 0.05) protein fermentation products (p-cresol, indole and skatole on d 77; ammonia, putrescine and spermidine on d 120), and showed significant interactions (P < 0.05) with CP level for p-cresol and skatole concentrations on d 77 and putrescine and spermidine concentrations on d 120 with higher values in the Ant-LP group compared to the Con-LP groups. Low-CP diet increased (P < 0.05) SCFA concentration (propionate and butyrate) on d 77, but reduced (P < 0.05) the protein fermentation products (ammonia, phenol and indole on d 77; branched chain fatty acid (BCFA), ammonia, tyramine, cadaverine and indole on d 120). These results indicate that EAA had less effect on bacterial communities, but increased bacterial fermentation of protein in the cecum under low-CP diet. Low-CP diet altered bacterial communities with an increase in the counts of SCFA-producing bacteria and a decrease in the counts of Escherichia coli, and markedly reduced the protein fermentation products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The interactive effects of high-fat, high-fiber diets and ractopamine HCl on finishing pig growth performance, carcass characteristics, and carcass fat quality.

    PubMed

    Graham, A B; Goodband, R D; Tokach, M D; Dritz, S S; DeRouchey, J M; Nitikanchana, S

    2014-10-01

    A total of 576 mixed-sex pigs (PIC 327 × 1,050; initial BW = 55.8 ± 5.5 kg) were used to determine the effects of corn dried distillers grains with solubles (DDGS) and wheat middlings (midds) withdrawal 24 d before harvest in diets without or with ractopamine HCl (RAC) on growth performance, carcass characteristics, and carcass fat quality. From d 0 to 49, pigs were fed a corn-soybean meal-based diet (CS) or a diet high in unsaturated fat and crude fiber provided by 30% DDGS and 19% wheat midds (HFF) and not balanced for energy. On d 49, pens of pigs previously fed CS diets remained on the CS diet. Half of the HFF-fed pigs were switched to the CS-based diets, which served as the withdrawal regimen. Finally, half of the HFF-fed pigs remained on the same HFF diet. All 3 regimens were fed without or with 10 mg/kg RAC. There were 12 pens per treatment with 8 pigs per pen. No significant diet regimen × RAC interactions were observed. From d 0 to 49, pigs fed the CS diet had increased (P < 0.001) ADG and G:F compared with pigs fed the HFF diet. Overall (d 0 to 73), pigs fed the CS diets throughout had greater (P < 0.001) ADG and G:F than those fed the HFF diets throughout. Pigs fed the withdrawal diets had greater (P = 0.014) ADG, but similar G:F to those fed the HFF diets throughout. Pigs fed the CS diets throughout had greater (P = 0.025) carcass yield compared with pigs fed the HFF diets throughout, with those fed the withdrawal diets intermediate. Pigs fed RAC had greater (P < 0.001) ADG, G:F, and carcass yield (P = 0.061 than pigs not fed RAC. Jowl, backfat, belly, and leaf fat iodine value (IV) were lowest (P < 0.001) for pigs fed the CS diets, highest (P < 0.015) for those fed HFF diets throughout, and intermediate for pigs fed the withdrawal diet. There were no differences in either full or rinsed intestine or organ weights between pigs that were fed CS diets throughout and pigs fed the withdrawal diet; however, pigs fed the HFF diets throughout the study had increased (P = 0.002) rinsed cecum and full large intestine weights (P = 0.003) compared with the pigs fed the withdrawal diets. Withdrawing the HFF diet and switching to a CS diet for the last 24 d before harvest partially mitigated negative effects on carcass yield and IV often associated with high-fat, high-fiber ingredients such as DDGS and wheat midds. Feeding RAC for the last 24 d before market, regardless of dietary regimen, improved growth performance and carcass yield.

  20. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet.

    PubMed

    Qin, B; Nagasaki, M; Ren, M; Bajotto, G; Oshida, Y; Sato, Y

    2004-02-01

    The aim of this study was to determine whether cinnamon extract (CE) would improve the glucose utilization in normal male Wistar rats fed a high-fructose diet (HFD) for three weeks with or without CE added to the drinking water (300 mg/kg/day). In vivo glucose utilization was measured by the euglycemic clamp technique. Further analyses on the possible changes in insulin signaling occurring in skeletal muscle were performed afterwards by Western blotting. At 3 mU/kg/min insulin infusions, the decreased glucose infusion rate (GIR) in HFD-fed rats (60 % of controls, p < 0.01) was improved by CE administration to the same level of controls (normal chow diet) and the improving effect of CE on the GIR of HFD-fed rats was blocked by approximately 50 % by N-monometyl-L-arginine. The same tendency was found during the 30 mU/kg/min insulin infusions. There were no differences in skeletal muscle insulin receptor (IR)-beta, IR substrate (IRS)-1, or phosphatidylinositol (PI) 3-kinase protein content in any groups. However, the muscular insulin-stimulated IR-beta and IRS-1 tyrosine phosphorylation levels and IRS-1 associated with PI 3-kinase in HFD-fed rats were only 70 +/- 9 %, 76 +/- 5 %, and 72 +/- 6 % of controls (p < 0.05), respectively, and these decreases were significantly improved by CE treatment. These results suggest that early CE administration to HFD-fed rats would prevent the development of insulin resistance at least in part by enhancing insulin signaling and possibly via the NO pathway in skeletal muscle.

  2. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets.

    PubMed

    Kheravii, S K; Swick, R A; Choct, M; Wu, Shu-Biao

    2017-09-01

    An experiment was conducted to evaluate the effects of sugarcane bagasse (SB) and particle size on broiler performance, gizzard development, ileal microflora, litter quality, and bird welfare under a wet litter challenge model. A total of 672 one-day-old Ross 308 male broilers was allocated to 48 pens using a 2 × 2 × 2 factorial arrangement of treatments with corn particle size-coarse 3,576 μm (CC) or fine 1,113 μm (FC) geometric mean diameter, SB - 0 or 2% and sodium (Na) - 0.16 or 0.40% with increased Na level to induce wet litter. A 3-way particle size × Na × SB interaction (P < 0.05) was observed for weight gain at d 10. Birds fed FC showed a higher weight gain compared to birds fed CC when 0.40% Na without SB diet or 0.16% Na with 2% SB diet was offered. A significant particle size × SB interaction was observed at d 24 on feed conversion ratio (FCR; P < 0.001) and weight gain (P < 0.05). FCR was reduced by 2% SB supplementation in birds fed CC but increased in birds fed FC. Further, weight gain of birds fed 2% SB was higher in birds fed CC but not in those fed FC. On d 35, birds fed 2% SB had a higher weight gain (P < 0.001) compared to those without SB, and a SB × particle size interaction on relative gizzard weight (P < 0.05) and pH (P < 0.05) was present. SB reduced gizzard pH and increased the relative gizzard weight in birds fed the FC diet but not the CC diet (P < 0.05). Counts of ileal Bacillus spp. were increased in birds fed SB (P < 0.05) on d 24. No effects of SB and particle size on litter quality and bird welfare were observed, but higher Na increased litter moisture and footpad dermatitis (FPD) scores (P < 0.001). These findings suggest that SB independently or in combination with CC improves performance in older birds regardless of Na level in diets, possibly through improved gizzard development and gut microflora of birds. © 2017 Poultry Science Association Inc.

  3. Analysis of energy expenditure in diet-induced obese rats

    PubMed Central

    Assaad, Houssein; Yao, Kang; Tekwe, Carmen D.; Feng, Shuo; Bazer, Fuller W.; Zhou, Lan; Carroll, Raymond J.; Meininger, Cynthia J.; Wu, Guoyao

    2014-01-01

    Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats. PMID:24896330

  4. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats.

    PubMed

    Panchal, Sunil K; Poudyal, Hemant; Arumugam, Thiruma V; Brown, Lindsay

    2011-06-01

    Metabolic syndrome (obesity, diabetes, and hypertension) increases hepatic and cardiovascular damage. This study investigated preventive or reversal responses to rutin in high-carbohydrate, high-fat diet-fed rats as a model of metabolic syndrome. Rats were divided into 6 groups: 2 groups were fed a corn starch-rich diet for 8 or 16 wk, 2 groups were fed a high-carbohydrate, high-fat diet for 8 or 16 wk, and 2 groups received rutin (1.6 g/kg diet) in either diet for the last 8 wk only of the 16-wk protocol. Metabolic changes and hepatic and cardiovascular structure and function were then evaluated in these rats. The corn starch-rich diet contained 68% carbohydrate (mainly cornstarch) and 0.7% fat, whereas the high-carbohydrate, high-fat diet contained 50% carbohydrate (mainly fructose) and 24% fat (mainly beef tallow) along with 25% fructose in drinking water (total 68% carbohydrate using mean food and water intakes). The high-carbohydrate, high-fat diet produced obesity, dyslipidemia, hypertension, impaired glucose tolerance, hepatic steatosis, infiltration of inflammatory cells in the liver and the heart, higher cardiac stiffness, endothelial dysfunction, and higher plasma markers of oxidative stress with lower expression of markers for oxidative stress and apoptosis in the liver. Rutin reversed or prevented metabolic changes such as abdominal fat pads and glucose tolerance, reversed or prevented changes in hepatic and cardiovascular structure and function, reversed oxidative stress and inflammation in the liver and heart, and normalized expression of liver markers. These results suggest a non-nutritive role for rutin to attenuate chronic changes in metabolic syndrome.

  5. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  6. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet

    PubMed Central

    2012-01-01

    Background Rats fed a high-fat and high-sucrose (HF) diet develop hepatic steatosis and hyperlipidemia. There are several reports that a change in nutritional status affects hepatic levels of drug-metabolizing enzymes. Synthetic inulin is a dietary component that completely evades glucide digestion. Supplementing a HF diet with inulin ameliorates hypertriglycemia and hepatic steatosis, but not hypercholesterolemia. This study aimed at distinguishing the effects of synthetic inulin and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin), which inhibit cholesterol biosynthesis. Methods We examined effects of co-treatment with synthetic inulin (5%) and fluvastatin (0, 4, and 8 mg/kg, per os) on body weight, epidydimal white adipose tissue weight, serum and hepatic lipid profiles, and hepatic cytochrome P450 (CYP) mRNA and protein profiles in rats fed a standard diet or a HF diet for 3 weeks. Results Treatment with the synthetic inulin (5%) or fluvastatin at 4 mg/kg (lethal dose in rats fed the HF diet, 8 mg/kg) ameliorated the elevation in hepatic triacylglycerol and total cholesterol levels in rats fed the HF diet. Whereas co-treatment with the inulin (5%) and fluvastatin (4 mg/kg) had a tendency to more strongly suppress the elevation in serum levels of very low density lipoprotein triacylglycerol than either treatment alone, no additive or synergistic effect was found in decrease in hepatic lipid levels. Hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein and methoxyresorufin O-demethylase and ethoxyresorufin O-deethylase activities were reduced in rats fed the HF diet. The synthetic inulin alleviated the reduction in hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein more strongly than fluvastatin, and no synergistic effects were observed on co-treatment. Furthermore, hepatic levels of aryl hydrocarbon receptor mRNA were decreased in rats fed the HF diet and recovered to near normal values with the intake of dietary inulin, which correlated with change in CYP1A1/2. Conclusions Dietary inulin alone was effective to prevent the development of hepatic steatosis, ameliorate nutritional effects, and alleviate the hepatic change in the expression of CYP1A1/2 and CYP2E1, while co-treatment with statin did not have additive or synergistic effects and statin may cause adverse effects in rats fed the HF diet. PMID:22452877

  7. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection Against Oxidative Stress and Hyperlipidaemia

    PubMed Central

    Landeka, Irena; Jurčević; Dora, Mirna; Guberović, Iva; Petras, Marija; Rimac, Suzana; Brnčić

    2017-01-01

    Summary The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2%. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD), i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC) by 2.3-fold, triacylglycerol (TAG) by 1.5-fold, low-density lipoprotein (LDL) by 3.5-fold and liver malondialdehyde (MDA) by 50%, and reduced liver superoxide dismutase (SOD) by 50%, catalase (CAT) by 30% and glutathione (GSH) by 17.5% compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA) and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol. PMID:28559739

  8. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  9. Diet composition modifies embryotoxic effects induced by experimental diabetes in rats.

    PubMed

    Giavini, E; Broccia, M L; Prati, M; Domenico Roversi, G

    1991-01-01

    Despite improvements in prenatal care, the incidence of congenital malformations in diabetic pregnancies is still 3-4 times higher than in normal pregnancies. These defects could be attributed to alterations of intrauterine environment due to disorder of the maternal metabolism. If this were true, the quality of food could play a role in diabetes-induced embryotoxicity. To check this hypothesis, female CD rats were made diabetic by injecting intravenously 50 mg/kg of streptozotocin 2 weeks before mating. From the first day of pregnancy they were divided into three groups and maintained on the following diets: (1) standard diet (Italiana Mangimi); (2) purified high protein diet (protein 55%, carbohydrates 25.5%, fat 7.5%, fiber 4.5%, ash 7.5%); (3) purified normoprotein diet (protein 19%, carbohydrates 62.5%, fat 7.5%, fiber 4%, ash 7%). Nondiabetic pregnant females fed with standard diet served as negative control. No significant differences were observed in blood glucose levels among the groups (range 410-500 mg/dl). The group fed on normoprotein diet showed at term of pregnancy: (1) higher rate of resorptions; (2) lower fetal weight; (3) higher frequency of major malformations than the groups fed standard and hyperproteic diets. Although we are not able at this time to discriminate between a protective effect of a diet with a high protein content and a disruptive effect of a diet containing high quantity of carbohydrates, the results of this trial support the hypothesis of a fuel-mediated teratogenesis in diabetic pregnancy.

  10. Circulating levels of cholecystokinin and gastrin-releasing peptide in rainbow trout fed different diets.

    PubMed

    Jönsson, Elisabeth; Forsman, Antti; Einarsdottir, Ingibjörg E; Egnér, Barbro; Ruohonen, Kari; Björnsson, Björn Thrandur

    2006-09-01

    Cholecystokinin (CCK) and gastrin-releasing peptide (GRP) are gastrointestinal peptides thought to be important regulators of intake and digestion of food in vertebrates. In this study, pre- and postprandial plasma levels of CCK and GRP were measured in rainbow trout (Oncorhynchus mykiss) by the establishment of homologous radioimmunoassays, and the hormonal levels assessed in relation to dietary lipid:protein ratio and food intake. Fish were acclimated to either a high protein/low lipid diet (HP/LL diet; 14.1% lipids) or a normal protein/high lipid diet (NP/HL diet; 31.4% lipids). On three consecutive sampling days, radio-dense lead-glass beads were included in the diets for assessment of feed intake. Fish were terminally sampled for blood and stomach contents prior to feeding at time 0, and at 0.3, 1, 2, 4, 6, and 24 h after feeding. There was a postprandial elevation of plasma CCK levels, which was most evident after 4 and 6 h. Fish fed the NP/HL diet had higher plasma CCK levels compared with those fed the HP/LL diet. Plasma CCK levels were not affected by the amount of food ingested. GRP levels in plasma were not influenced by sampling time, diet, or feed intake. The results indicate that the endocrine release of gastrointestinal CCK is increased during feeding and may be further influenced by the dietary lipid:protein ratio in rainbow trout. Plasma GRP levels, on the other hand, appear not to be influenced by feeding or diet composition.

  11. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  12. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet

    PubMed Central

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-01-01

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/choleserol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibtied lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles. PMID:26510459

  13. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    PubMed Central

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hypertrophied myocardium. Rats with either normal myocardium or cardiac hypertrophy induced by 8 weeks of abdominal aortic banding were fed one of four diets: control diet without DHA or EPA or diets enriched with either DHA, EPA, or DHA + EPA (1:1 ratio) at 2.5% of energy intake for 17 weeks. Aortic banding caused a 27% increase in left ventricular mass and 25% depletion in DHA in mitochondrial phosopholipids in rats fed the control diet. DHA supplementation raised DHA in phospholipids ∼2-fold in both normal and hypertrophied hearts and increased EPA. DHA + EPA supplementation also increased DHA, but to a lesser extent than DHA alone. EPA supplementation increased EPA, but did not affect DHA compared with the control diet. Ca2+-induced MPTP opening was delayed by DHA and DHA + EPA supplementation in both normal and hypertrophied hearts, but EPA had no effect on MPTP opening. These results show that supplementation with DHA alone effectively increases both DHA and EPA in cardiac mitochondrial phospholipids and delays MPTP and suggest that treatment with DHA + EPA offers no advantage over DHA alone. PMID:20624993

  14. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    PubMed Central

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  15. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    PubMed

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  16. Lowering Effects of Onion Intake on Oxidative Stress Biomarkers in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Azuma, Keiko; Minami, Yuko; Ippoushi, Katsunari; Terao, Junji

    2007-01-01

    The protective effect of onion against oxidative stress in streptozotosin-induced diabetic rats was investigated in comparison with that of quercetin aglycone. We measured oxidative stress biomarkers involving the susceptibility of the plasma against copper ion-induced lipid peroxidation, which was estimated by the amounts of thiobarbituric acid-reactive substances (TBARS) and cholesteryl ester hydroperoxides, and urine TBARS and 8-hydroxydeoxyguanosine contents. After the 12-week feeding period, plasma glucose levels and these biomarkers increased in diabetic rats compared to normal rats. In diabetic rats fed a 6.0% onion diet (quercetin equivalent: 0.023%), quercetin metabolites accumulated in the plasma at concentrations of approximately 35 µM. Onion intake decreased plasma glucose levels and lowered the oxidative stress biomarkers. On the other hand, quercetin metabolites in the plasma of rats fed a diet with 0.023% quercetin aglycone were found at lower concentrations (14.2 µM) than the rats fed the onion diet. Furthermore, oxidative stress biomarkers were higher in the quercetin diet group compared to the onion diet group. These results strongly suggest that onion intake suppresses diabetes-induced oxidative stress more effectively than the intake of the same amount of quercetin aglycone alone. PMID:18188415

  17. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats.

    PubMed

    Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie

    2016-11-17

    To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (P<0.05). BBR also increased the ratio of HMW to total adiponectin in high fat-fed rats compared with rats in the HF+Veh group. High- and low-dose BBR increased adipoR1 expression in skeletal muscle by over 6- and 2-fold (P<0.05), respectively, and high-dose BBR also increased adipoR2 expression in liver tissue by over 2-fold (P<0.05). BBR significantly increased AMPK phosphorylation in HF diet rats compared with normal diet rats (P<0.05). The ratio of HMW to total adiponectin was inversely correlated with HOMA-IR (r=-0.52, P=0.001). Meantime, no liver and kidney toxicity was found in high fat-fed rats that treated by BBR. Berberine may improve insulin resistance by increasing the expression of adiponectin receptors and the ratio of HMW to total adiponectin.

  18. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats.

    PubMed

    Samout, Noura; Ettaya, Amani; Bouzenna, Hafsia; Ncib, Sana; Elfeki, Abdelfattah; Hfaiedh, Najla

    2016-12-01

    Obesity is a one of the main global public health problems associated with chronic diseases such as coronary heart disease, diabetes and cancer. As a solution to obesity, we suggest Plantago albicans, which is a medicinal plant with several biological effects. This study assesses the possible anti-obesity protective properties of Plantago albicans in high fat diet-fed rats. 28 male Wistar rats were divided into 4 groups; a group which received normal diet (C), the second group was fed HDF diet (HDF), the third group was given normal diet supplemented with Plantago albicans (P.AL), and the fourth group received HDF supplemented with Plantago albicans (HDF+P.AL) (30mg/kg/day) for 7 weeks. Our results showed an increase in body weight of HDF rats by ∼16% as compared to the control group with an increase in the levels of total cholesterol (TC) as well as LDL-cholesterol, triglycerides (TG) in serum. Also, the concentration of TBARS increased in the liver and heart of HDF-fed rats as compared to the control group. The oral gavage of Plantago albicans extract to obese rats induced a reduction in their body weight, lipid accumulation in liver and heart tissue, compared to the high-fat diet control rats. The obtained results proved that the antioxidant potency of Plantago albicans extracts was correlated with their phenolic and flavonoid contents. The antioxidant capacity of the extract was evaluated by DPPH test (as EC50=250±2.12μg/mL) and FRAP tests (as EC50=27.77±0.14μg/mL). These results confirm the phytochemical and antioxidant impact of Plantago albicans extracts. Plantago albicans content was determined using validated HPLC methodology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins.

    PubMed

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-12-22

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB₁ (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB₁ and AFM₁ compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks ( p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  20. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    PubMed

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    PubMed Central

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  2. Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats.

    PubMed

    Shao, Shan-shan; Zhao, Yuan-fei; Song, Yong-feng; Xu, Chao; Yang, Jian-mei; Xuan, Shi-meng; Yan, Hui-li; Yu, Chun-xiao; Zhao, Meng; Xu, Jin; Zhao, Jia-jun

    2014-11-01

    Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification.

  3. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity.

    PubMed

    Kopp, Ulla C; Jones, Susan Y; DiBona, Gerald F

    2008-12-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, -60 +/- 4 vs. -77 +/- 6%. Maximum gain, -4.22 +/- 0.45 vs. -6.04 +/- 0.90% DeltaERSNA/mmHg, and the maximum value of instantaneous gain, -4.19 +/- 0.45 vs. -6.04 +/- 0.81% DeltaERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 +/- 0.2 vs. 6.1 +/- 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 +/- 4,900 vs. 20,900 +/- 3,410%.s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet.

  4. Long-term exposure to a butter-rich diet induces mild-to-moderate steatosis in Chang liver cells and Swiss albino mice models.

    PubMed

    Nalloor, Thomas John Philip; Kumar, Nitesh; Narayanan, Kasinathan; Palanimuthu, Vasanth Raj

    2017-05-01

    Butter is one of the widely used fats present in the diet. However, there is no satisfactory study available that evaluates the effect of a high-fat diet containing butter as the principal fat on the development of non-alcoholic fatty liver disease (NAFLD). In the present study, butter was used for the development of steatosis in Chang liver cells in an in vitro study and Swiss albino mice in an in vivo study. In vitro steatosis was established, and butter was compared with oleic acid in Chang liver cells using an oil red O (ORO)-based colorimetric assay. In the in vivo study, a butter-rich special diet was fed for 15 weeks to mice, who showed no significant change in body weight. The expression pattern of phosphatase and tensin homolog (PTEN) and miR-21 was compared by reverse transcriptase-PCR. Special diet-fed animals showed downregulated PTEN compared to normal diet-fed animals, while levels of miR-21 remained the same. Elevations in biochemical parameters, viz., triglycerides and liver function tests showed symptoms of onset of NAFLD. Histophathological study of livers of test animals confirmed mild-to-moderate degree of NAFLD.

  5. Effect of Argemone mexicana active principles on inhibiting viral multiplication and stimulating immune system in Pacific white leg shrimp Litopenaeus vannamei against white spot syndrome virus.

    PubMed

    Palanikumar, Pandi; Daffni Benitta, Dani Joel; Lelin, Chinnadurai; Thirumalaikumar, Eswaramoorthy; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2018-04-01

    Argemone mexicana called as Mexican prickly poppy is a species of poppy found in Mexico and now widely naturalized in many parts of the world with broad range of bioactivities including anthelmintic, cures lepsory, skin-diseases, inflammations and bilious fevers. Plant parts of A. mexicana were serially extracted with hexane, ethyl acetate, methanol and performed antiviral and immunostimulant screening against WSSV and Vibrio harveyi respectively. The control groups succumbed to death 100% within three days, whereas the mortality was significantly (P < 0.5) reduced to 17.43 and 7.11 in the ethyl acetate extracts of stem and root treated shrimp group respectively. The same trend was reflected in the immunostimulant screening also. Different diets were prepared by the concentrations of 100 (AD-1), 200 (AD-2), 300 (AD-3) and 400 (AD-4) mg kg -1 using A. mexicana stem and root ethyl acetate extracts and fed to Pacific white leg shrimp Litopenaeus vannamei weighed about 9.0 ± 0.5 g for 30 days. The control groups fed with the normal diets devoid of A. mexicana extracts. The antiviral screening results revealed that, the ethyl acetate extract of the stem and root were effectively suppressed the WSSV and it reflected in the lowest cumulative mortality of treated shrimps. After termination of feeding trials, group of shrimps from control and each experimental group were challenged with virulent WSSV by intramuscular (IM) injection and studied cumulative mortality, molecular diagnosis by quantitative real time PCR (qRT-PCR), biochemical, haematological and immunological parameters. Control group succumbed to 100% death within four days, whereas the survival was significantly (P < 0.001) increased to 30, 45, 75 and 79% in AD1, AD-2, AD-4 and AD-5 diets fed shrimp groups respectively. qRT PCR results with positive correlation analysis revealed that, the WSSV copies were gradually decreased when increasing the A. mexicana extracts in the diets. The highest concentrations (300 and 400 mg g -1 ) of A. mexicana extracts in the diets helped to reduce the protein level significantly (P < 0.05) after WSSV challenge. The diets AD-3 and AD-4 also helped to decrease the coagulation time of maximum 64-67% from control groups and maintained the normal level of total haemocyte, oxyhaemocyanin level after WSSV challenge. The proPO level was significantly increased (Column: F = 35.93; P ≤ 0.001 and Row: F = 37.14; P ≤ 0.001) in the AD1-AD-4 diet fed groups from the control diet fed groups. The lowest intra-agar lysozyme activity of 1.63 mm found in control diet fed group and the activity were significantly (P < 0.05) increased to 4.86, 7.89, 9.12 and 10.45 mm of zone of inhibition respectively in AD1 to AD4 diet fed groups. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves.

    PubMed

    Khan, M A; Lee, H J; Lee, W S; Kim, H S; Kim, S B; Ki, K S; Park, S J; Ha, J K; Choi, Y J

    2007-11-01

    Holstein calves were fed pelleted iso-starch (25% of starter dry matter) diets containing barley (n = 16), corn (n = 16), oat (n = 16), and wheat (n = 16) starch for 12 wk of age. Feed consumption, nutrient intake, body weight (BW) gain, skeletal growth, and selected blood metabolites in calves during preweaning (d 1 to 49) and postweaning (d 50 to 84) periods were measured. Average daily starter consumption during pre-weaning and postweaning periods was the greatest in calves fed corn died followed by those fed a wheat diet and then in those fed barley and oat diets. During the preweaning period, the calves provided corn and wheat diets consumed greater amount of mixed grass hay than those fed barley and oat diets. During the postweaning period, mixed grass hay intake was the greatest in calves provided corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Nutrients (dry matter, crude protein, starch, and neutral detergent fiber) intake followed the solid feed consumption pattern in calves. Body weight and body measurements (body length, body barrel, heart girth, wither height, and hip height) at birth and at weaning (d 49) in calves fed different starch sources were similar. Body weight and body measurements at postweaning (d 84) were the greatest in calves fed a corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Overall average BW gain and total dry matter intake were the greatest in calves fed a corn diet than in those fed wheat, barley, and oat diets. Feed efficiency was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Blood glucose, blood urea N, triglycerides, cholesterol, and creatinine were reduced with the advancing age of calves. Lesser blood glucose and greater blood urea N concentrations at wk 8, 10, and 12 of age were noticed in calves fed corn diet than in those fed barley, oat, and wheat diets. Occurrence of diarrhea was more frequent in calves fed oat diet than in those provided barley, corn, and wheat diets. Starch sources did not influence respiratory score, rectal temperature, and general appearance score. In conclusion, the calves on corn diet consumed more solid feed and gained greater BW than those fed barley, oat, and wheat diets.

  7. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    PubMed

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (p<0.05) than in the control rats. These results suggest that dietary L-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  8. Maternal overnutrition programs changes in the expression of skeletal muscle genes that are associated with insulin resistance and defects of oxidative phosphorylation in adult male rat offspring.

    PubMed

    Latouche, Celine; Heywood, Sarah E; Henry, Sarah L; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Armitage, James A; Kingwell, Bronwyn A

    2014-03-01

    Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes.

  9. Hypolipidaemic Effect of Hericium erinaceum Grown in Artemisia capillaris on Obese Rats

    PubMed Central

    Choi, Won-Sik; Kim, Young-Sun; Park, Byeoung-Soo; Kim, Jang-Eok

    2013-01-01

    In this study, ethanolic extracts from Hericium erinaceum cultivated with Artemisia capillaris (HEAC) were assessed for their ability to lower the cholesterol levels of male Sprague-Dawley rats fed a high-fat diet. Rats were randomly subdivided into seven test groups. Each group contained eight rats fed a high-fat diet during a growth period lasting 4 wk. Supplementation with the extracts was performed once a day for 2 wk after the high-fat diet. The control group (rats fed a high-fat diet) showed a high efficiency ratio (feed efficiency ratio) value compared to the normal group. Biochemical parameters, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and triglyceride (TG) levels dramatically increased in the control group compared to the normal group. High-density lipoprotein-cholesterol (HDL-c) content in the control group was also significantly lower relative to the normal group. Two positive control groups, treated with simvastatin and atorvastatin, had lowered TC, LDL-c, and TG levels, and increased HDL-c content compared to the control group. Treatment with the tested extracts, including HEAC, ethanolic extracts from Hericium erinaceum, and ethanolic extracts from Artemisia capillaris reduced TC, LDL-c, and TG levels and elevated HDL-c content in the hyperlipidemia rats. The atherogenic index and cardiac risk factor values for the HEAC-treated group were 0.95 and 1.95, respectively. Simvastatin- and atorvastatin-treated groups showed atherogenic index values of 1.56 and 1.69, respectively, and cardiac risk factor values of 2.56 and 2.69, respectively. These results show HEAC possesses an ability to cure hyperlipidemia in rats and may serve as an effective natural medicine for treating hyperlipidemia in humans. PMID:23874132

  10. Hypolipidaemic Effect of Hericium erinaceum Grown in Artemisia capillaris on Obese Rats.

    PubMed

    Choi, Won-Sik; Kim, Young-Sun; Park, Byeoung-Soo; Kim, Jang-Eok; Lee, Sung-Eun

    2013-06-01

    In this study, ethanolic extracts from Hericium erinaceum cultivated with Artemisia capillaris (HEAC) were assessed for their ability to lower the cholesterol levels of male Sprague-Dawley rats fed a high-fat diet. Rats were randomly subdivided into seven test groups. Each group contained eight rats fed a high-fat diet during a growth period lasting 4 wk. Supplementation with the extracts was performed once a day for 2 wk after the high-fat diet. The control group (rats fed a high-fat diet) showed a high efficiency ratio (feed efficiency ratio) value compared to the normal group. Biochemical parameters, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and triglyceride (TG) levels dramatically increased in the control group compared to the normal group. High-density lipoprotein-cholesterol (HDL-c) content in the control group was also significantly lower relative to the normal group. Two positive control groups, treated with simvastatin and atorvastatin, had lowered TC, LDL-c, and TG levels, and increased HDL-c content compared to the control group. Treatment with the tested extracts, including HEAC, ethanolic extracts from Hericium erinaceum, and ethanolic extracts from Artemisia capillaris reduced TC, LDL-c, and TG levels and elevated HDL-c content in the hyperlipidemia rats. The atherogenic index and cardiac risk factor values for the HEAC-treated group were 0.95 and 1.95, respectively. Simvastatin- and atorvastatin-treated groups showed atherogenic index values of 1.56 and 1.69, respectively, and cardiac risk factor values of 2.56 and 2.69, respectively. These results show HEAC possesses an ability to cure hyperlipidemia in rats and may serve as an effective natural medicine for treating hyperlipidemia in humans.

  11. Beneficial Effects of Phyllanthus amarus Against High Fructose Diet Induced Insulin Resistance and Hepatic Oxidative Stress in Male Wistar Rats.

    PubMed

    Putakala, Mallaiah; Gujjala, Sudhakara; Nukala, Srinivasulu; Desireddy, Saralakumari

    2017-11-01

    Insulin resistance (IR) is a characteristic feature of obesity, type 2 diabetes mellitus, and cardiovascular diseases. Emerging evidence suggests that the high-fructose consumption is a potential and important factor responsible for the rising incidence of IR. The present study investigates the beneficial effects of aqueous extract of Phyllanthus amarus (PAAE) on IR and oxidative stress in high-fructose (HF) fed male Wistar rats. HF diet (66% of fructose) and PAAE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 60 days. Fructose-fed rats showed weight gain, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin sensitivity, dyslipidemia, hyperleptinemia, and hypoadiponectinemia (P < 0.05) after 60 days. Co-administration of PAAE along with HF diet significantly ameliorated all these alterations. Regarding hepatic antioxidant status, higher lipid peroxidation and protein oxidation, lower reduced glutathione levels and lower activities of enzymatic antioxidants, and the histopathological changes like mild to severe distortion of the normal architecture as well as the prominence and widening of the liver sinusoids observed in the HF diet-fed rats were significantly prevented by PAAE treatment. These findings indicate that PAAE is beneficial in improving insulin sensitivity and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.

  12. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets.

    PubMed

    Manobhavan, M; Elangovan, A V; Sridhar, M; Shet, D; Ajith, S; Pal, D T; Gowda, N K S

    2016-02-01

    A feeding trial was designed to assess the effect of super dosing of phytase in corn-soya-based diets of broiler chicken. One hundred and sixty-eight day-old broilers were selected and randomly allocated to four dietary treatment groups, with 6 replicates having 7 chicks per treatment group. Two-phased diets were used. The starter and finisher diet was fed from 0 to 3 weeks and 4 to 5 weeks of age respectively. The dietary treatments were consisted of normal phosphorus (NP) group without any phytase enzyme (4.5 g/kg available/non-phytin phosphorus (P) during starter and 4.0 g/kg during finisher phase), three low-phosphorus (LP) groups (3.2 g/kg available/non-phytin P during starter and 2.8 g/kg during finisher phase) supplemented with phytase at 500, 2500, 5000 FTU/kg diet, respectively, to full fill their phosphorus requirements. The results showed that super doses of phytase (at 2500 FTU and 5000 FTU/kg) on low-phosphorus diet improved feed intake, body weight gain, ileal digestibility (serine, aspartic acid, calcium, phosphorus), blood P levels and bone minerals such as calcium (Ca), P, magnesium (Mg) and zinc (Zn) content. It could be concluded that super doses of phytase in low-phosphorus diet were beneficial than the normal standard dose (at 500 FTU/kg) of phytase in diet of broiler chicken. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  13. Mink reproductive and physiological response to diets supplemented with PCB and mercury contaminated fish collected on the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbrook, R.; Aulerich, R.; Bursian, S.

    1995-12-31

    Plant operations and waste disposal at the Department of Energy Oak Ridge Reservation (ORR) have resulted in increased concentrations of PCBs and mercury (Hg) in fish inhabiting streams located on the reservation. As a component of environmental restoration investigation, fish were collected from streams on the reservation, analyzed for tissue concentrations of PCBs and Hg, and fed to ranch mink 3 months prior to and during the breeding season. As reference, fish also were collected from the Clinch River (CR) above the ORR and from the ocean (O), and fed to mink following similar procedures. Five prepared diets containing eithermore » 75% O, 75% CR, 25% ORR + 50% O, 50% ORR + 25% O, or 75% ORR fish and 25% standard mink diet were fed to 8 female and 2 male mink, each, following normal mink farm practices. PCB (Aroclor 1260 and CB congeners) and Hg concentrations were greatest in fish collected from the ORR and diets containing ORR fish exhibited a progressive increase in PCBs and Hg concentration with increased percentage of ORR fish. Female mink fed diets containing 75% ORR fish had decreased litter size and decreased mean whole body weights, Mean weight of male offspring of females fed 75% ORR fish also were decreased. Do to the contaminated environment, other aquatic prey of mink probably have elevated contaminant burdens that would contribute to effects in mink. Adverse reproductive and health effects in mink living on the ORR are speculative at this time.« less

  14. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    PubMed

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  15. Differential effects of habitual chow-based and semi-purified diets on lipid metabolism in lactating rats and their offspring.

    PubMed

    Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna

    2015-03-14

    Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.

  16. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas plasma urea-N concentration tended to be lower in cows fed coextruded compared with those fed nonextruded diets. Plasma glucose concentration was greater in cows fed diets containing WDDGS-CM compared with those fed diets containing WDDGS-peas, but the difference in plasma glucose concentration between WDDGS-CM and WDDGS-peas was greater in cows fed coextruded diets compared with those fed nonextruded diets. In summary, feeding coextruded compared with nonextruded supplements or WDDGS-peas compared WDDGS-CM increased yields of milk, fat, and protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    PubMed

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  18. Butter naturally enriched in cis-9, trans-11 CLA prevents hyperinsulinemia and increases both serum HDL cholesterol and triacylglycerol levels in rats.

    PubMed

    de Almeida, Mariana Macedo; Luquetti, Sheila Cristina Potente Dutra; Sabarense, Céphora Maria; do Amaral Corrêa, José Otávio; dos Reis, Larissa Gomes; Santos da Conceição, Ellen Paula; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; Gameiro, Jacy; da Gama, Marco Antônio Sundfeld; Lopes, Fernando César Ferraz; Garcia, Raúl Marcel González

    2014-12-22

    Evidence from in vitro and animal studies indicates that conjugated linoleic acid (CLA) possesses anti-diabetic properties, which appear to be attributed to cis-9, trans-11 CLA, the major CLA isomer in ruminant fat. However, there is a shortage of studies addressing CLA from natural source. The present study aimed to evaluate the effects of butter naturally enriched in cis-9, trans-11 CLA on parameters related to glucose tolerance, insulin sensitivity and dyslipidemia in rats. Forty male Wistar rats were randomly assigned to the following dietary treatments (n=10/group), for 60 days: 1) Normal fat-Soybean oil (NF-So): diet containing 4.0% soybean oil (SO); 2) High Fat-Control Butter (HF-Cb): diet containing 21.7% control butter and 2.3% SO; 3) High Fat-CLA enriched Butter (HF-CLAb): diet containing 21.7% cis-9, trans-11 CLA-enriched butter and 2.3% SO; and 4) High fat-Soybean oil (HF-So): diet containing 24.0% SO. HF-Cb and HF-CLAb diets contained 0.075% and 0.235% of cis-9, trans-11 CLA, respectively. HF-CLAb-fed rats had lower serum insulin levels at fasting than those fed with the HF-Cb diet, while the PPARγ protein levels in adipose tissue was increased in HF-CLAb-fed rats compared to HF-Cb-fed rats. Furthermore, R-QUICK was lower in HF-Cb than in NF-So group, while no differences in R-QUICK were observed among NF-So, HF-CLAb and HF-So groups. Serum HDL cholesterol levels were higher in HF-CLAb-fed rats than in those fed NF-So, HF-Cb and HF-So diets, as well as higher in NF-So-fed rats than in HF-Cb and HF-So-fed rats. HF-CLAb, HF-Cb and HF-So diets reduced serum LDL cholesterol levels when compared to NF-So, whereas serum triacylglycerol levels were increased in HF-CLAb. Feeding rats on a high-fat diet containing butter naturally enriched in cis-9, trans-11 CLA prevented hyperinsulinemia and increased HDL cholesterol, which could be associated with higher levels of cis-9, trans-11 CLA, vaccenic acid, oleic acid and lower levels of short and medium-chain saturated fatty acids from butter naturally modified compared to control butter. On the other hand CLA-enriched butter also increased serum triacylglycerol levels, which could be associated with concomitant increases in the content of trans-9 and trans-10 C18:1 isomers in the CLA-enriched butter.

  19. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    PubMed

    Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A

    2014-02-01

    Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (P<0.05) but had 64% greater fat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (P<0.001), in m-HFD compared with maternal normal fat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; P<0.001) and paraventricular (-37%; P<0.05) nuclei of the hypothalamus in m-HFD offspring compared with maternal normal fat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.

  20. Cafeteria feeding induces interleukin-1beta mRNA expression in rat liver and brain.

    PubMed

    Hansen, M K; Taishi, P; Chen, Z; Krueger, J M

    1998-06-01

    intake affects gut-immune function and can provide a strong intestinal antigen challenge resulting in activation of host defense mechanisms in the digestive system. Previously, we showed that feeding rats a cafeteria diet increases non-rapid eye movement sleep by a subdiaphragmatic mechanism. Food intake and sleep regulation and the immune system share the regulatory molecule interleukin-1beta (IL-1beta). Thus this study examined the effects of a cafeteria diet on IL-1beta mRNA and IL-1 receptor accessory protein (IL-1RAP) mRNA expression in rat liver and brain. Rats were fed normal rat chow or a palatable diet consisting of bread, chocolate, and shortbread cookies (cafeteria diet). After 3 days, midway between the light period of the light-dark cycle, rats were killed by decapitation. Feeding rats a cafeteria diet resulted in increased IL-1beta mRNA expression in the liver and hypothalamus compared with rats fed only the normal rat chow. In addition, cafeteria feeding decreased IL-1RAP mRNA levels in the liver and brain stem. These results indicate that feeding has direct effects on cytokine production and together with other data suggest that the increased sleep that accompanies increased feeding may be the result of increased brain IL-1beta. These results further suggest that cytokine-to-brain communication may be important in normal physiological conditions, such as feeding, as well as being important during inflammatory responses.

  1. Biomechanical properties of the mandible, as assessed by bending test, in rats fed a low-quality protein.

    PubMed

    Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa

    2013-04-01

    The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in the quality of the bone mineralised material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of an indigenous herbal compound preparation 'Trikatu' on the lipid profiles of atherogenic diet and standard diet fed Rattus norvegicus.

    PubMed

    Sivakumar, Valsala; Sivakumar, S

    2004-12-01

    Combating heart disease is one of the challenging problems of biomedical science today. Towards this goal an indigenous preparation 'Trikatu' (a herbal combination containing Piper longum (fruit), Piper nigrum (fruit) and Zingiber officinale (rhizome) dry powder) was fed to normal and cholesterol fed male Rattus norvegicus to ascertain its efficacy as a hypolipidaemic agent. Its effects on body weight, blood and tissue (aortic, cardiac and hepatic) lipids--total, free and esterified cholesterol, low density lipoprotein(LDL) and high density lipoprotein(HDL) cholesterol, triglycerides and phospholipids--and the atherogenic index were measured. It was found that 'Trikatu' by virtue of its ability to reduce triglycerides and LDL cholesterol and to increase HDL cholesterol can reduce the risk of hyperlipidaemia and atherosclerosis. Hence 'Trikatu' can be used as a potent hypolipidaemic agent and it can reduce the atherosclerosis associated with a high fat diet. 2004 John Wiley & Sons, Ltd.

  3. Behavior and Brain Gene Expression Changes in Mice Exposed to Preimplantation and Prenatal Stress

    PubMed Central

    Strata, Fabrizio; Giritharan, Gnanaratnam; Sebastiano, Francesca Di; Piane, Luisa Delle; Kao, Chia-Ning; Donjacour, Annemarie

    2015-01-01

    Preimplantation culture of mouse embryos has been suggested to result in reduced anxiety-like behavior in adulthood. Here, we investigated the effects of in vitro fertilization (IVF), embryo culture, and different diets on anxiety-like behavior using the elevated plus maze (EPM). We hypothesized that exposure to suboptimal conditions during the preimplantation stage would interact with the suboptimal diet to alter behavior. The expression of genes related to anxiety was then assessed by quantitative real-time polymerase chain reaction in various brain regions. When fed a normal diet during gestation and a moderately high-fat Western diet (WD) postnatally, naturally conceived (NC) and IVF mice showed similar anxiety-like behavior on the EPM. However, when fed a low-protein diet prenatally and a high-fat diet postnatally (LP/HF), NC mice showed a modest increase in anxiety-like behavior, whereas IVF mice showed the opposite: a strongly reduced anxiety-like behavior on the EPM. The robust reduction in anxiety-like behavior in IVF males fed the LP/HF diets was, intriguingly, associated with reduced expression of MAO-A, CRFR2, and GABA markers in the hypothalamus and cortex. These findings are discussed in relation to the developmental origin of health and disease hypothesis and the 2-hit model, which suggests that 2 events, occurring at different times in development, can act synergistically with long-term consequences observed during adulthood. PMID:25398605

  4. Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet.

    PubMed

    Sandberg, Monica B; Maunsbach, Arvid B; McDonough, Alicia A

    2006-08-01

    The distal convoluted tubule (DCT) apical Na(+)-Cl(-) cotransporter (NCC) is responsible for the reabsorption of 5-10% of filtered NaCl and is the target for thiazide diuretics. NCC abundance is increased during dietary NaCl restriction and by aldosterone and decreased during a high-salt (HS) diet and mineralocorticoid blockade. This study tested the hypothesis that subcellular distribution of NCC is also regulated in response to changes in dietary salt. Six-week-old Sprague-Dawley rats were fed a normal-salt diet (NS; 0.4% NaCl) for 3 wk, then switched to a HS diet (4% NaCl) for 3 wk or a low-salt diet (LS; 0.07% NaCl) for 1 wk. Under anesthesia, kidneys were excised, renal cortex was dissected, and NCC was analyzed with specific antibodies after either 1) density gradient centrifugation followed by immunoblotting or 2) fixation followed by immunoelectron microscopy. The HS diet decreased NCC abundance to 0.50 +/- 0.10 of levels in LS diet (1.00 +/- 0.23). The HS diet also caused a redistribution of NCC from low to higher density membranes. Immunoelectron microscopy revealed that NCC resides predominantly in the apical membrane in rats fed the LS diet and increases in subapical vesicles in rats fed the HS diet. In conclusion, a HS diet provokes a rapid and persistent redistribution of NCC from apical to subapical membranes, a mechanism that would facilitate a homeostatic decrease in NaCl reabsorption in the DCT to compensate for increased dietary salt.

  5. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease

    PubMed Central

    Zumbrun, Steven D.; Melton-Celsa, Angela R.; Smith, Mark A.; Gilbreath, Jeremy J.; Merrell, D. Scott; O’Brien, Alison D.

    2013-01-01

    The likelihood that a single individual infected with the Shiga toxin (Stx)-producing, food-borne pathogen Escherichia coli O157:H7 will develop a life-threatening sequela called the hemolytic uremic syndrome is unpredictable. We reasoned that conditions that enhance Stx binding and uptake within the gut after E. coli O157:H7 infection should result in greater disease severity. Because the receptor for Stx, globotriaosylceramide, is up-regulated in the presence of butyrate in vitro, we asked whether a high fiber diet (HFD) that reportedly enhances butyrate production by normal gut flora can influence the outcome of an E. coli O157 infection in mice. To address that question, groups of BALB/c mice were fed high (10%) or low (2%) fiber diets and infected with E. coli O157:H7 strain 86-24 (Stx2+). Mice fed an HFD exhibited a 10- to 100-fold increase in colonization, lost 15% more body weight, exhibited signs of morbidity, and had 25% greater mortality relative to the low fiber diet (LFD)-fed group. Additionally, sections of intestinal tissue from HFD-fed mice bound more Stx1 and expressed more globotriaosylceramide than did such sections from LFD-fed mice. Furthermore, the gut microbiota of HFD-fed mice compared with LFD-fed mice contained reduced levels of native Escherichia species, organisms that might protect the gut from colonization by incoming E. coli O157:H7. Taken together, these results suggest that susceptibility to infection and subsequent disease after ingestion of E. coli O157:H7 may depend, at least in part, on individual diet and/or the capacity of the commensal flora to produce butyrate. PMID:23690602

  6. Dietary Pyridoxine Protects against Stress and Maintains Immunohaematological Status in Chanos chanos Exposed to Endosulfan.

    PubMed

    Kumar, Neeraj; Ambasankar, Kondusamy; Krishnani, Kishore Kumar; Bhushan, Shashi; Minhas, Paramjit Singh

    2016-09-01

    The amelioration effect of water-soluble vitamin pyridoxine against stress was evaluated in milkfish, Chanos chanos exposed to endosulfan. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets with graded levels of pyridoxine feed were as follows: normal water and fed with control diet (En0/PY0); endosulfan-treated water and fed with control diet (En/PY0); and endosulfan-treated water and fed with 50 (En/PY 50 mg/kg), 75 (En/PY 75 mg/kg) and 100 mg/kg (En/PY 100 mg/kg) pyridoxine-supplemented feed. The endosulfan in treated water was maintained at a level of 1/40th of LC50 (0.52 ppb). The effect of dietary pyridoxine supplementation was studied in terms of antioxidative enzymes (catalase, superoxide dismutase, glutathione-S-transferase), stress markers [heat-shock protein 70, caspase-3, cortisol, acetylcholine esterase (AChE), blood glucose], immunohaematological parameters (total protein, albumin, globulin and A/G ratio, nitroblue tetrazolium, RBC, WBC, Hb), gill histopathology and a subsequent challenge study with Vibrio parahaemolyticus. The antioxidative enzymes, stress markers, albumin and A/G ratio were significantly (p < 0.01) elevated, brain AChE and immunohaematological parameters were significantly (p < 0.01) decreased, and chromosome aberration and gill histopathology were also altered due to endosulfan exposure. The relative survival % was reduced due to the combined effect of endosulfan stress and bacterial challenge. Fish fed the diet supplemented with pyridoxine at 75 and 100 mg/kg was found to restore the studied parameter towards normal compared with control and indicated protection against endosulfan-induced stress significantly (p < 0.01). Results obtained in the present study indicate that the supplementation of 75 and 100 mg/kg of pyridoxine in the diet has a definitive role in the mitigation of the endosulfan-induced stress in milkfish, C. chanos fingerlings. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background

    PubMed Central

    Tsao, Amy C.; Gillilland, Merritt G.; Merchant, Juanita L.

    2016-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. PMID:27810953

  8. Protection of rats against dental caries by passive immunization with hen-egg-yolk antibody (IgY).

    PubMed

    Otake, S; Nishihara, Y; Makimura, M; Hatta, H; Kim, M; Yamamoto, T; Hirasawa, M

    1991-03-01

    Hen-egg-yolk antibody (IgY) was prepared against Streptococcus mutans MT8148 serotype c that was cultivated in medium containing sucrose, and it was used in passive caries-immunity studies. Specific pathogen-free rats infected with S. mutans MT8148 (c) and fed with a cariogenic diet containing more than 2% immune yolk powder developed significantly lower caries scores than did the ones infected with the same strain and fed with a diet containing only control yolk powder obtained from non-immunized hens. Similar results were obtained in an experiment with rats infected with S. mutans JC-2 (c) strain. Rats provided a diet supplemented with 0.5% immune water-soluble protein fraction containing S. mutans-specific IgY and challenged with S. mutans MT8148 exhibited significantly fewer caries lesions, compared with control rats on the normal diet.

  9. THE RELATIVE EFFECTS OF PROTEIN, CHOLINE, AND METHIONINE IN THE TREATMENT OF EXPERIMENTAL DIETARY CIRRHOSIS IN THE RAT

    PubMed Central

    Plough, Irvin C.; Patek, Arthur J.; Bevans, Margaret

    1952-01-01

    Cirrhosis of the liver was produced in rats by feeding a diet low in protein (4 per cent casein) and deficient in lipotropic factors. The degree of liver cirrhosis was determined from specimens obtained at biopsy. Comparable groups of animals then were treated with diets containing 4 per cent casein and 30 per cent casein. The 4 per cent casein diets were supplemented with choline and methionine; the 30 per cent casein diets were fed with and without added choline. On supplementing the low protein diet with choline and methionine the animals remained feeble, their growth remained stunted, and their livers showed signs of progressive cirrhosis. In contrast, animals fed the higher protein diet (with or without added choline) grew normally, and their livers showed signs indicating arrest and regression of the disease process. These studies suggest that the feeding of high protein (30 per cent casein) diets to rats with nutritional cirrhosis produces reparative effects greater than those attributable to the supplements choline and methionine. PMID:14955576

  10. Selection of Fecal Enterococci Exhibiting tcrB-Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper † ▿

    PubMed Central

    Amachawadi, R. G.; Shelton, N. W.; Shi, X.; Vinasco, J.; Dritz, S. S.; Tokach, M. D.; Nelssen, J. L.; Scott, H. M.; Nagaraja, T. G.

    2011-01-01

    Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance. PMID:21705534

  11. Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding.

    PubMed

    Gotthardt, Juliet D; Bello, Nicholas T

    2017-05-15

    Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    PubMed Central

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling. PMID:28092346

  14. Parathyroid hormone gene expression in hypophosphatemic rats.

    PubMed Central

    Kilav, R; Silver, J; Naveh-Many, T

    1995-01-01

    Phosphate is central to bone metabolism and we have therefore studied whether parathyroid hormone (PTH) is regulated by dietary phosphate in vivo. Weanling rats were fed diets with different phosphate contents for 3 wk: low phosphate (0.02%), normal calcium (0.6%), normal phosphate (0.3%), and calcium (0.6%); high phosphate (1.2%), high calcium (1.2%). The low phosphate diet led to hypophosphatemia, hypercalcemia, and increased serum 1,25(OH)2D3 together with decreased PTH mRNA levels (25 +/- 8% of controls, P < 0.01) and serum immunoreactive PTH (4.7 +/- 0.8: 22.1 +/- 3.7 pg/ml; low phosphate: control, P < 0.05). A high phosphate diet led to increased PTH mRNA levels. In situ hybridization showed that hypophosphatemia decreased PTH mRNA in all the parathyroid cells. To separate the effect of low phosphate from changes in calcium and vitamin D rats were fed diets to maintain them as vitamin D-deficient and normocalcemic despite the hypophosphatemia. Hypophosphatemic, normocalemic rats with normal serum 1,25(OH)2D3 levels still had decreased PTH mRNAs. Nuclear transcript run-ons showed that the effect of low phosphate was posttranscriptional. Calcium and 1,25(OH)2D3 regulate the parathyroid and we now show that dietary phosphate also regulates the parathyroid by a mechanism which remains to be defined. Images PMID:7615802

  15. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

    PubMed

    Fu, Qin; Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan; Xiang, Yang K

    2017-03-15

    Patients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β 2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β 2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β 2 -adrenergic receptor (β 2 AR) at both the protein kinase A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β 2 AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD-fed mice. Together, these data indicate that HFD promotes phosphorylation of the β 2 AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin-adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. High‐fat diet induces protein kinase A and G‐protein receptor kinase phosphorylation of β2‐adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts

    PubMed Central

    Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan

    2017-01-01

    Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. PMID:27983752

  17. Feed intake and production parameters of lactating crossbred cows fed maize-based diets of stover, silage or quality protein silage.

    PubMed

    Gebrehawariat, Efrem; Tamir, Berhan; Tegegne, Azage

    2010-12-01

    Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the NM stover-based diet was higher (P<0.05) than for the cows fed the NM silage and QPM silage-based diets. However, the daily intake of DOM (9.3 kg) and ME (140.8 MJ) for cows on QPM silage-based diet was higher (P<0.05) than for cows on NM stover-based diet (8.4 kg and 124.2 MJ) and NM silage-based diet (7.9 kg and 119.1 MJ). Body weight of cows was affected (P<0.05) by the diet, but diet had no effect (P>0.05) on body condition score, milk yield and milk composition. The digestible organic matter in the NM stover-based diet (724 g/kg DM) was lower (P<0.05) than that in the NM (770 g/kg DM) and QPM silage-based diet (762 g/kg DM). It was concluded that the performances of the cows on the NM silage and QPM silage diets were similar and were not superior to that of the NM stover-based diet.

  18. Feed intake and production parameters of lactating crossbred cows fed maize-based diets of stover, silage or quality protein silage

    PubMed Central

    Gebrehawariat, Efrem; Tegegne, Azage

    2010-01-01

    Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the NM stover-based diet was higher (P < 0.05) than for the cows fed the NM silage and QPM silage-based diets. However, the daily intake of DOM (9.3 kg) and ME (140.8 MJ) for cows on QPM silage-based diet was higher (P < 0.05) than for cows on NM stover-based diet (8.4 kg and 124.2 MJ) and NM silage-based diet (7.9 kg and 119.1 MJ). Body weight of cows was affected (P < 0.05) by the diet, but diet had no effect (P > 0.05) on body condition score, milk yield and milk composition. The digestible organic matter in the NM stover-based diet (724 g/kg DM) was lower (P < 0.05) than that in the NM (770 g/kg DM) and QPM silage-based diet (762 g/kg DM). It was concluded that the performances of the cows on the NM silage and QPM silage diets were similar and were not superior to that of the NM stover-based diet. PMID:20577806

  19. Effect of the Capsicoside G-rich Fraction from Pepper (Capsicum annuum L.) Seeds on High-fat Diet-induced Obesity in Mice.

    PubMed

    Sung, Jeehye; Jeong, Heon Sang; Lee, Junsoo

    2016-11-01

    Obesity is one of the most common metabolic syndromes and is a major threat to human health worldwide. Given the size of this problem, there is growing interest in natural agents that may decrease obesity. In this study, we investigated the anti-obesity effect of a capsicoside G-rich fraction (CRF; 13.35% capsicoside G) isolated from pepper seeds in diet-induced obese mice. C57BL/6J mice were fed either a normal diet or a high-fat diet (HFD), with or without CRF (HFD + CRF; 10 and 100 mg/kg body weight). The body weight and food efficiency ratio of mice fed HFD + CRF were lower in comparison to that of mice fed only an HFD. Epididymal adipose tissue weight and adipocyte hypertrophy were significantly lower in HFD + CRF mice than in HFD mice. The fat deposition in the liver of mice fed HFD + CRF was lower compared to that of mice fed only an HFD. CRF significantly reversed the HFD-induced elevation of the expression of key adipocyte differentiation regulators, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, sterol regulatory element binding protein 1c, and their target genes. These results suggest that CRF could be used as dietary therapy for the prevention of obesity and obesity-related metabolic diseases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Celecoxib Ameliorates Non-Alcoholic Steatohepatitis in Type 2 Diabetic Rats via Suppression of the Non-Canonical Wnt Signaling Pathway Expression

    PubMed Central

    Tian, Feng; Zhang, Ya Jie; Li, Yu; Xie, Ying

    2014-01-01

    Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt5a/JNK1 signaling pathway expression. PMID:24404139

  1. Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.

    PubMed

    de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique

    2010-04-01

    Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines.

  2. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    PubMed

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  3. Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber.

    PubMed

    Prescha, Anna; Krzysik, Monika; Zabłocka-Słowińska, Katarzyna; Grajeta, Halina

    2014-06-01

    This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5% cellulose (CEL), 5% pectin (PEC), or 2.5% cellulose and 2.5% pectin (CEL+PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL+PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL+PEC+Cr diet compared to the rats fed FF+Cr diet. The rats consuming the PEC+Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.

  4. A 90-day subchronic feeding study of genetically modified rice expressing Cry1Ab protein in Sprague-Dawley rats.

    PubMed

    Song, Huan; He, Xiaoyun; Zou, Shiying; Zhang, Teng; Luo, Yunbo; Huang, Kunlun; Zhu, Zhen; Xu, Wentao

    2015-04-01

    Bacillus thuringiensis (Bt) transgenic rice line (mfb-MH86) expressing a synthetic cry1Ab gene can be protected against feeding damage from Lepidopteran insects, including Sesamia inferens, Chilo suppressalis, Tryporyza incertulas and Cnaphalocrocis medinalis. Rice flour from mfb-MH86 and its near-isogenic control MH86 was separately formulated into rodent diets at concentrations of 17.5, 35 and 70 % (w/w) for a 90-day feeding test with rats, and all of the diets were nutritionally balanced. In this study, the responses of rats fed diets containing mfb-MH86 were compared to those of rats fed flour from MH86. Overall health, body weight and food consumption were comparable between groups fed diets containing mfb-MH86 and MH86. Blood samples were collected prior to sacrifice and a few significant differences (p < 0.05) were observed in haematological and biochemical parameters between rats fed genetically modified (GM) and non-GM diets. However, the values of these parameters were within the normal ranges of values for rats of this age and sex, thus not considered treatment related. In addition, upon sacrifice a large number of organs were weighed, macroscopic and histopathological examinations were performed with only minor changes to report. In conclusion, these results demonstrated that no toxic effect was observed in the conditions of the experiment, based on the different parameters assessed. GM rice mfb-MH86 is as safe and nutritious as non-GM rice.

  5. Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice

    PubMed Central

    Park, Mi-Young; Jang, Hwan-Hee; Kim, Jung Bong; Yoon, Hyun Nye; Lee, Jin-Young; Lee, Young-Min; Kim, Jae-Hyun

    2011-01-01

    Dietary intake of whole grains reduces the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In an earlier study, we showed that Panicum miliaceum L. extract (PME) exhibited the highest anti-lipogenic activity in 3T3-L1 cells among extracts of nine different cereal grains tested. In this study, we hypothesized that PME in the diet would lead to weight loss and augmentation of hyperlipidemia by regulating fatty acid metabolism. PME was fed to ob/ob mice at 0%, 0.5%, or 1% (w/w) for 4 weeks. After the experimental period, body weight changes, blood serum and lipid profiles, hepatic fatty acid metabolism-related gene expression, and white adipose tissue (WAT) fatty acid composition were determined. We found that the 1% PME diet, but not the 0.5%, effectively decreased body weight, liver weight, and blood triglyceride and total cholesterol levels (P < 0.05) compared to obese ob/ob mice on a normal diet. Hepatic lipogenic-related gene (PPARα, L-FABP, FAS, and SCD1) expression decreased, whereas lipolysis-related gene (CPT1) expression increased in animals fed the 1% PME diet (P < 0.05). Long chain fatty acid content and the ratio of C18:1/C18:0 fatty acids decreased significantly in adipose tissue of animals fed the 1% PME diet (P < 0.05). Serum inflammatory mediators also decreased significantly in animals fed the 1% PME diet compared to those of the ob/ob control group (P < 0.05). These results suggest that PME is useful in the chemoprevention or treatment of obesity and obesity-related disorders. PMID:22259675

  6. GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function.

    PubMed

    Horvath, Tamas L; Erion, Derek M; Elsworth, John D; Roth, Robert H; Shulman, Gerald I; Andrews, Zane B

    2011-07-01

    Guanidinopropionic acid (GPA) increases AMPK activity, mitochondrial function and biogenesis in muscle and improves physiological function, for example during aging. Mitochondrial dysfunction is a major contributor to the pathogenesis of Parkinson's disease. Here we tested whether GPA prevents neurodegeneration of the nigrostriatal dopamine system in MPTP-treated mice. Mice were fed a diet of 1% GPA or normal chow for 4 weeks and then treated with either MPTP or saline. Indices of nigrostriatal function were examined by HPLC, immunohistochemistry, stereology, electron microscopy and mitochondrial respiration. MPTP intoxication decreased TH neurons in the SNpc of normal chow-fed mice; however GPA-fed mice remarkably exhibited no loss of TH neurons in the SNpc. MPTP caused a decrease in striatal dopamine of both normal chow- and GPA-fed mice, although this effect was significantly attenuated in GPA-fed mice. GPA-fed mice showed increased AMPK activity, mitochondrial respiration and mitochondrial number in nigrostriatal TH neurons, suggesting that the neuroprotective effects of GPA involved AMPK-dependent increases in mitochondrial function and biogenesis. MPTP treatment produced a decrease in mitochondrial number and volume in normal chow-fed mice but not GPA-fed mice. Our results show the neuroprotective properties of GPA in a mouse model of Parkinson's disease are partially mediated by AMPK and mitochondrial function. Mitochondrial dysfunction is a common problem in neurodegeneration and thus GPA may slow disease progression in other models of neurodegeneration. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats

    PubMed Central

    Hussain, Mona A.; Abogresha, Noha M.; Tamany, Dalia A.; Lotfy, Mariam

    2016-01-01

    Introduction Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. Material and methods Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. Results The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). Conclusions Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake. PMID:27478474

  8. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins

    PubMed Central

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-01-01

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB1 (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB1 and AFM1 compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks (p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive. PMID:28025501

  9. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression levels of liver enzymes related to cholesterol metabolism, including the down regulation of acyl-CoA:cholesterol acyltransferase (ACAT) and the upregulation of cholesterol 7α-hydroxylase (CYP7A1). Conclusion This study suggested that the two NS lactobacillus strains may affect lipid metabolism and have cholesterol-lowering effects in rats fed a high cholesterol diet. PMID:23656797

  10. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    PubMed

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  11. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    PubMed Central

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  12. Effects of ursodeoxycholic acid and/or low-calorie diet on steatohepatitis in rats with obesity and hyperlipidemia

    PubMed Central

    Fan, Jian-Gao; Zhong, Lan; Tia, Li-Yan; Xu, Zheng-Jie; Li, Min-Sheng; Wang, Guo-Liang

    2005-01-01

    AIM: To evaluate the effects of ursodeoxycholic acid (UDCA) and/or low-calorie diet (LCD) on a rat model of nonalcoholic steatohepatitis (NASH). METHODS: Fifty-five Sprague-Dawley rats were divided into five groups. The control group (n = 9) was fed with standard rat diet for 12 wk, NASH group (n = 10) was fed with high-fat diet consisted of normal diet, 10% lard oil and 2% cholesterol for 12 wk, UDCA group (n = 10) was fed with high-fat diet supplemented with UDCA at a dose of 25 mg/(kg·d) in drinking water for 12 wk, LCD group (n = 10) was fed with high-fat diet for 10 wk and then LCD for 2 wk, and UDCA+LCD group (n = 15) was fed with high-fat diet for 10 wk, followed by LCD+UDCA for 2 wk. At the end of the experiment, body weight, serum biochemical index, and hepatopathologic changes were examined. RESULTS: Compared with the control group, rats in the NASH group had significantly increased body weight, liver weight, and serum lipid and aminotransferase levels. All rats in the NASH group developed steatohepatitis, as determined by their liver histology. Compared with the NASH group, there were no significant changes in body weight, liver weight, blood biochemical index, the degree of hepatic steatosis, and histological activity index (HAI) score in the UDCA group; however, body and liver weights were significantly decreased, and the degree of steatosis was markedly improved in rats of both the LCD group and the UDCA+LCD group, but significant improvement with regard to serum lipid variables and hepatic inflammatory changes were seen only in rats of the UDCA+LCD group, and not in the LCD group. CONCLUSION: LCD might play a role in the treatment of obesity and hepatic steatosis in rats, but it exerts no significant effect on both serum lipid disorders and hepatic inflammatory changes. UDCA may enhance the therapeutic effects of LCD on steatohepatitis accompanied by obesity and hyperl-ipidemia. However, UDCA alone is not effective in the prevention of steatohepatitis induced by high-fat diet. PMID:15818751

  13. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    PubMed

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.

  14. Genetic Decreases in Atrial Natriuretic Peptide and Salt-Sensitive Hypertension

    NASA Astrophysics Data System (ADS)

    John, Simon W. M.; Krege, John H.; Oliver, Paula M.; Hagaman, John R.; Hodgin, Jeffrey B.; Pang, Stephen C.; Flynn, T. Geoffrey; Smithies, Oliver

    1995-02-01

    To determine if defects in the atrial natriuretic peptide (ANP) system can cause hypertension, mice were generated with a disruption of the proANP gene. Homozygous mutants had no circulating or atrial ANP, and their blood pressures were elevated by 8 to 23 millimeters of mercury when they were fed standard (0.5 percent sodium chloride) and intermediate (2 percent sodium chloride) salt diets. On standard salt diets, heterozygotes had normal amounts of circulating ANP and normal blood pressures. However, on high (8 percent sodium chloride) salt diets they were hypertensive, with blood pressures elevated by 27 millimeters of mercury. These results demonstrate that genetically reduced production of ANP can lead to salt-sensitive hypertension.

  15. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet.

    PubMed

    Nguyen, Son G; Kim, Jungman; Guevarra, Robin B; Lee, Ji-Hoon; Kim, Eungpil; Kim, Su-Il; Unno, Tatsuya

    2016-10-12

    We investigated the anti-obesity effects of the potential prebiotic, laminarin, on mice fed a high-fat diet. A metagenomics approach was applied to characterize the ecological and functional differences of gut microbiota among mice fed a normal diet (CTL), a high-fat diet (HFD), and a laminarin-supplemented high-fat diet (HFL). The HFL mice showed a slower weight gain than the HFD mice during the laminarin-feeding period, but the rate of weight gain increased after the termination of laminarin supplementation. Gut microbial community analysis showed clear differences between the CTL and HFD mice, whereas the HFL mice were between the two. A higher abundance of carbohydrate active enzymes was observed in the HFL mice compared to the HFD mice, with especially notable increases in glycoside hydrolase and polysaccharide lyases. A significant decrease in Firmicutes and an increase in the Bacteroidetes phylum, especially the genus Bacteroides, were observed during laminarin ingestion. Laminarin ingestion altered the gut microbiota at the species level, which was re-shifted after termination of laminarin ingestion. Therefore, supplementing laminarin could reduce the adverse effects of a high-fat diet by shifting the gut microbiota towards a higher energy metabolism. Thus, laminarin could be used to develop anti-obesity functional foods. Our results also suggest that laminarin would need to be consumed regularly in order to prevent or manage obesity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hefferan, T.E.; Sherman, S.S.; Sinha, R.

    Eighty female Sprague-Dawley 8 week old rats were pair-fed for 2 months a semi-purified egg white diet containing 0.2% Ca and Zn at 4.5, 10, 100 or 200ppm. The vitamin D source was D/sub 3/ or 1,25(OH)/sub 2/D. Serum 1,25(OH)/sub 2/D, Ca and femur densities were determined. Femur densities were shown to regress significantly (p<0.01) with increasing dietary Zn when D/sub 3/ was in the diet. In addition, feeding D/sub 3/ resulted in a significant negative correlation of serum Ca with increased dietary Zn (p<0.05). There was a trend for 1,25(OH)/sub 2/D to increase with increasing Zn intake. However, serummore » values in rats consuming 1,25(OH)/sub 2/D were lower compared to rats consuming D/sub 3/ (25.9+/-3.6 vs 53.0+/-5.9 pg/ml). A second study was conducted to determine if non-fasted rats had elevated 1,25(OH)/sub 2/D serum levels. The rats were fed a similar semi-purified diet containing 0.2% Ca, 10ppm Zn and D/sub 3/ or 1,25(OH)/sub 2/D. No significant difference in 1,25(OH)/sub 2/D values was found between D/sub 3/ and 1,25(OH)/sub 2/D fed groups in the full fed state (80.8+/-11.4 vs 81.0+/-14.3 pg/ml). These results indicate high Zn intakes antagonize normal calcification and may interfere with normal function of the vitamin D endocrine system.« less

  17. Regulation of renal adenosine A(1) receptors: effect of dietary sodium chloride.

    PubMed

    Smith, J A; Whitaker, E M; Yaktubay, N; Morton, M J; Bowmer, C J; Yates, M S

    1999-11-12

    The influence of dietary NaCl on the regulation of renal adenosine A(1) receptors was investigated in the rat. Renal membranes from rats fed on a diet low (0.04%) in NaCl showed a 46% increase in B(max) for the binding of [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX), a selective adenosine A(1) receptor antagonist, compared to membranes from rats fed on a normal diet (0.4% NaCl). Conversely, a high NaCl diet (4.0%) resulted in a 37% decrease in B(max). Levels of renal adenosine A(1) receptor mRNA were 65% lower in rats on a high salt diet. Autoradiographic studies showed that, for the inner medullary collecting ducts, a low NaCl diet resulted in a 30% increase in [3H]DPCPX binding with a 39% decrease noted in rats maintained on a high salt diet. The results indicate that changes in adenosine A(1) receptor density may represent a novel mechanism whereby the kidneys adapt to changes in salt load.

  18. Effects of a 3 strain -based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs.

    PubMed

    Jaworski, N W; Owusu-Asiedu, A; Walsh, M C; McCann, J C; Loor, J J; Stein, H H

    2017-01-01

    Effects of a -based direct-fed microbial (DFM) on growth performance, plasma tumor necrosis factor ɑ (TNFɑ), relative gene expression, and intestinal VFA concentrations in weanling pigs fed low- or high-fiber diets were evaluated. Two hundred pigs (initial BW: 6.31 ± 0.73 kg) were allotted to 1 of 4 dietary treatments (5 pigs per pen and 10 pens per treatment). Treatments were arranged in a 2 × 2 factorial design with 2 diet types [low-fiber (LF) or high-fiber (HF)] and 2 concentrations of DFM (0 or 60 g DFM/t of feed). The DFM contained 1.5 × 10 cfu/g and was obtained from Danisco Animal Nutrition-DuPont Industrial Biosciences, Marlborough, UK. Phase 1 diets were fed for 2 wk post-weaning and phase 2 diets were fed over the following 29 d. Low fiber diets contained corn and soybean meal as main ingredients and HF diets contained corn, soybean meal, corn distillers dried grains with solubles (7.5 and 15.0% in phase 1 and 2, respectively), and wheat middlings (10.0%). Pigs and feed were weighed at the start and at the end of each phase, and ADG, ADFI, and G:F were calculated. At the conclusion of phase 2, blood was collected from 1 pig per pen and 1 pig per pen was sacrificed. Cecum and rectum contents were analyzed for VFA, and tissue samples were collected from the ileum, cecum, rectum, and liver to determine expression of genes related to absorption and metabolism of VFA using quantitative reverse transcription-PCR. Results indicated that feeding HF diets reduced ( ≤ 0.05) ADFI and ADG of pigs compared with feeding LF diets. Pigs fed DFM diets had improved ( ≤ 0.05) G:F compared with pigs fed non-DFM diets. Pigs fed LF diets had greater ( ≤ 0.05) BW at the end of phase 2 compared with pigs fed HF diets. The concentration of VFA in rectum contents was greater ( ≤ 0.05) in pigs fed LF diets than in pigs fed HF diets. The expression of in the rectum of pigs fed HF diets was greater ( ≤ 0.05) than for pigs fed LF diets, and pigs fed DFM-containing diets had an increased ( ≤ 0.05) expression of in the liver. Pigs fed HF diets had greater ( ≤ 0.05) concentrations of urea N in plasma compared with pigs fed LF diets, but dietary fiber and DFM had no effect on plasma concentration of TNF-ɑ. In conclusion, the -based DFM improved overall G:F of weanling pigs, but pigs fed LF diets had greater final BW than pigs fed HF diets.

  19. Glyceroneogenesis in the hepatopancreas of the crab Neohelice granulata: Diet, starvation and season effects.

    PubMed

    Sarapio, E; Santos, J T; Model, J F A; De Fraga, L S; Vinagre, A S; Martins, T L; Da Silva, R S M; Trapp, M

    2017-09-01

    We determined the activity of glyceroneogenesis from [2- 14 C]-pyruvate, the phosphoenolpyruvate carboxykinase activity, [2- 14 C]-pyruvate oxidation and total lipid levels in the hepatopancreas of the crab Neohelice granulata fed with a carbohydrate-rich (HC) diet or a high-protein (HP) diet and then subjected to 5weeks of starvation, in summer and winter, to determine whether the seasonal adjustments of lipid metabolism to food scarcity are modulated by the composition of the diet previously given to the crabs. The results demonstrated that glyceroneogenesis is an active pathway in N. granulata hepatopancreas, and is regulated by seasonal variations, diet composition and starvation. This study showed that in summer the increase in the hepatopancreas glyceroneogenesis activity is among the strategies used by N. granulata fed an HP diet, to maintain the triglyceride/fatty acid cycle during starvation, a normal condition in the biological cycle of this crab. However, the administration of an HC diet reduced the glyceroneogenesis capacity in response to starvation in summer. In winter, the decrease in the glyceroneogenesis capacity in both fed (HP and HC diets) and starved crabs seems to be a strategy to reduce energy consumption and/or requirement. In contrast to the summer results, the incorporation of [2- 14 C]-pyruvate into 14 CO 2 was markedly higher in both diet (HC and HP) groups and in starved crabs during the winter. Four decades after the first study describing the glyceroneogenesis pathway in rat white adipose tissue, this pathway is evidenced for the first time in a crustacean. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice.

    PubMed

    Sawada, Hisashi; Naito, Yoshiro; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-05-01

    Excess iron is associated with the pathogenesis of several renal diseases. Aldosterone is reported to have deleterious effects on the kidney, but there have been no reports of the role of iron in aldosterone/salt-induced renal injury. Therefore, we investigated the effects of dietary iron restriction on the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice. Ten-week-old male C57BL/6J mice were uninephrectomized and infused with aldosterone for four weeks. These were divided into two groups: one fed a high-salt diet (Aldo) and the other fed a high-salt with iron-restricted diet (Aldo-IR). Vehicle-infused mice without a uninephrectomy were also divided into two groups: one fed a normal diet (control) and the other fed an iron-restricted diet (IR) for 4 weeks. As compared with control and IR mice, Aldo mice showed an increase in both systolic blood pressure and urinary albumin/creatinine ratio, but these increases were reduced in the Aldo-IR group. In addition, renal histology revealed that Aldo mice exhibited glomerulosclerosis and tubulointerstitial fibrosis, whereas these changes were attenuated in Aldo-IR mice. Expression of intracellular iron transport protein transferrin receptor 1 was increased in the renal tubules of Aldo mice compared with control mice. Dietary iron restriction attenuated the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice.

  1. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis.

    PubMed

    Lee, Su Jin; Kang, Jeong Han; Iqbal, Waqas; Kwon, Oh-Shin

    2015-01-01

    The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

  2. Growth and development of British vegan children.

    PubMed

    Sanders, T A

    1988-09-01

    The growth and development of children born of vegan mothers and reared on a vegan diet has been studied longitudinally: All of the children were breast-fed for the first 6 mo of life and in most cases well into the second year of life. The majority of children grew and developed normally but they did tend to be smaller in stature and lighter in weight than standards for the general population. Energy, calcium, and vitamin D intakes were usually below the recommended amounts. Their diets, however, were generally adequate but a few children had low intakes of riboflavin and vitamin B-12. Most parents were aware of the need to supplement the diet with vitamin B-12. It is concluded that provided sufficient care is taken, a vegan diet can support normal growth and development.

  3. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet.

    PubMed

    Xu, Ping; Ying, Le; Hong, Gaojie; Wang, Yuefei

    2016-01-01

    Matcha is a kind of powdered green tea produced by grinding with a stone mill. In the present study, the preventive effects of the aqueous extract (water-soluble) and residue (water-insoluble) of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet were investigated. Mice were fed seven different experimental diets for 4 weeks: a normal diet control (NC), a high-fat diet (HF), a high-fat diet with 0.025% Matcha (MLD), a high-fat diet with 0.05% Matcha (MMD), a high-fat diet with 0.075% Matcha (MHD), a high-fat diet with 0.05% Matcha aqueous extracts (ME), and a high-fat diet with 0.05% Matcha residues (MR). It was found that serum total cholesterol (TC) and triglyceride (TG) levels of the MHD group were significantly decreased compared to those of the HF group. Furthermore, in the MHD group, the level of high-density lipoprotein-cholesterol (HDL-C) was elevated, on the contrary the level of low-density lipoprotein-cholesterol (LDL-C) was suppressed. Moreover, Matcha could significantly lower the blood glucose levels, and improve the superoxide dismutase (SOD) activity and malondialdehyde (MAD) contents both in serum and liver; besides, the serum GSH-Px activity indicated that the oxidative stress caused by HF could be reversed by administration of Matcha. These findings suggest that Matcha has beneficial effects through the suppression of the blood glucose (BG) accumulation and promotion of the lipid metabolism and antioxidant activities. Moreover, the water-insoluble part of Matcha is suggested to play an important role in the suppression of diet-induced high levels of lipid and glucose.

  4. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  5. Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204.

    PubMed

    Chen, Jie; Wu, Yan; Yang, Chunmei; Xu, Xuejiao; Meng, Yuecheng

    2017-12-13

    Previous studies have shown that fermentations can enhance the bioactivity and absorption rate of soybean products. Fermented soybean products can alleviate hyperlipidemia and decrease risks of atherosclerosis and cardiovascular diseases. This study aimed to investigate the effects and mechanisms of soymilk fermented by Lactococcus acidophilus on blood lipids and antioxidant enzyme activities of rats fed with a high fat diet. Sixty rats were randomly assigned to six groups: normal control group (NC), high-fat control group (HFC), positive control group (cholestyramine, PC), Lactococcus acidophilus group (LA), soymilk group (SM), and fermented soymilk group (FSM), respectively. The NC group was fed with a basic diet, while the other groups were fed with a high-fat diet. After the experimental period (6 W), rats were sacrificed by decapitation. Blood and liver were collected to measure the concentrations of lipids and antioxidant enzyme activities. Results demonstrated that fermented soymilk could regulate lipid levels, restore HDL-c and TG to normal levels, and lower the concentrations of LDL-c than hypolipidemic drugs in hyperlipidemia rats. More importantly, fermented soymilk caused significant reduction in arteriosclerosis index and coronary risk index. Fermented soymilk also improved antioxidant capacities of hyperlipidemia rats. The increase of aglycone isoflavones in fermented soymilk could explain the above phenomena. In conclusion, soymilk fermented by Lactococcus acidophilus reduced risks of arteriosclerosis and coronary heart disease by regulating lipid levels and improving the antioxidant capacities of hyperlipidemia rats.

  6. Effect of feeding Jerusalem artichoke (Helianthus tuberosus) root as prebiotic on nutrient utilization, fecal characteristics and serum metabolite profile of captive Indian leopard (Panthera pardus fusca) fed a meat-on-bone diet.

    PubMed

    Pradhan, S K; Das, A; Kullu, S S; Saini, M; Pattanaik, A K; Dutta, N; Sharma, A K

    2015-01-01

    An experiment was conducted to determine the effect of incorporating Jerusalem artichoke (JA) as a prebiotic in the diet of Indian leopards (n = 11 adults) fed a meat-on-bone diet. The trial consisted of three periods (A1 , B, and A2 ). Each period comprised 17 days of adaptation and four days of collection. During the control periods (A1 and A2 ), the leopards were fed their normal zoo diets of 2.5-3 kg of buffalo meat-on-bone six days a week without any supplement. During trial B, meat-on-bone diets of the leopards were supplemented with JA at 2% of dietary dry matter (DM). Meat consumption was similar among the treatments. Supplementation of JA decreased the digestibility of crude protein (P < 0.01). Digestibilities of organic matter and ether extract were similar among the treatments. Serum concentrations of urea and triglycerides were lower (P < 0.05) when JA was added to the diet. Incorporation of JA to the basal diet increased fecal concentrations of acetate (P < 0.01), butyrate (P < 0.01), lactate (P < 0.01), Lactobacillus spp., and Bifidobacterium spp. (P < 0.01) with a simultaneous decrease in the concentration of ammonia (P < 0.01), Clostridia spp. (P < 0.01), and fecal pH (P < 0.01). Fecal microbial profiles and hind gut fermentation were improved, without any adverse effects on feed consumption, nutrient utilization, and serum metabolite profiles. Results of this experiment showed that feeding JA at 2% DM in the whole diet could be potentially beneficial for captive Indian leopards fed meat-on-bone diets. © 2015 Wiley Periodicals, Inc.

  7. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    PubMed Central

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  8. Importance of milk replacer intake and composition in rearing orphan foals

    PubMed Central

    Cymbaluk, Nadia F.; Smart, Marion E.; Bristol, Frank M.; Pouteaux, Victor A.

    1993-01-01

    Effects of milk replacer composition and intake on the growth of orphan foals were evaluated. Twenty foals were assigned to four treatments: 1) mare-nursed, 2) commercial foal milk replacer at recommended intakes (standard), 3) commercial foal milk replacer at high intakes (high), and 4) acidified replacer at recommended intakes (acidified). Foals fed milk replacer diets were weaned at 12-24 hours postpartum and fed milk replacer for 50 days. Mare-nursed foals were weaned between 52 and 56 days of age. Foals fed replacer diets gained 12% to 28% less weight than mare-nursed foals up to two weeks of age. However, by four months of age, weights of replacer-fed foals were similar to those of mare-nursed foals and 32 other mare-nursed foals at the farm weaned between three and four months postparium. Foals drank 10 to 12 L/100 kg body weight (BW) in fluid replacer daily over the trial period. During the first week, high intake foals consumed 26% more replacer (p<0.05) than foals fed acidified or standard diets. This higher intake resulted in diarrhea earlier (6-11 days vs 11-22 days) and for a longer time (6.3 days vs 2.5-3.6 days) than in foals fed recommended amounts. Mare-nursed foals developed “foal heat scours” in the second week postpartum. After the first week, foals fed high replacer diet voluntarily consumed the same volume of fluid replacer as foals fed the standard intake. Foals ate less than 1 kg grain mix/100 kg BW daily to one month of age, then increased intake to 1.5-2 kg/ 100 kg BW to weaning. Water intake was 20-40% of daily fluid intake and was correlated (r = 0.85) to dry matter intake. Foals in the high intake group ate less (p<0.05) solid feed and drank less water than foals fed the standard and acidified diets. The foal's stomach capacity appears to limit meal size and thus replacer intake. If recommended feeding intervals are used, replacer intakes by foals are less than 15% BW daily. High volume intakes appeared to prolong diarrhea. Normal growth rates occur when replacer and good-quality feeds are fed concurrently. PMID:17424268

  9. Effect of dietary vitamin E and selenium on growth, survival and the prevalence of Renibacterium salmoninarum infection in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Thorarinsson, Ragnar; Landolt, Marsha L.; Elliott, Diane G.; Pascho, Ronald J.; Hardy, Ronald W.

    1994-01-01

    Groups of juvenile spring chinook salmon naturally infected with Renibacterium salmoninarum, the causative agent of bacterial kidney disease, were fed diets containing different levels of vitamin E and selenium for 214 days in fresh water and 110 days in seawater. The fish were fed vitamin E at concentrations of either 53±3 mg (designated e) or 299±9 mg (designated E) α-tocopheryl acetate equivalence/kg dry diet in combination with sodium selenite to give selenium concentrations of either 0.038±0.008 mg (designated s) or 2.49±0.15 mg (designated S)/kg dry diet. No mortality occurred in the group fed the diet, whereas mortality was 3% in the groups fed the and diets, and 31% in the group fed the diet. At the end of the experiment, weight gain and hematocrit values were significantly greater in those fish fed the E diets compared with those fed the e diets, whereas the hepato-somatic index was significantly higher in fish fed the e diets. Glutathione peroxidase activity in blood plasma was significantly higher in fish fed the S diets compared with those fed the s diets. No definite effect of dietary vitamin E and selenium on the prevalence and severity of natural R. salmoninarum infections was demonstrated.

  10. Effects of long term feeding of Quillaja saponins on sex ratio, muscle and serum cholesterol and LH levels in Nile tilapia (Oreochromis niloticus (L)).

    PubMed

    Francis, George; Levavi-Sivan, Berta; Avitan, Ayelet; Becker, Klaus

    2002-12-01

    Seventeen-day-old Nile tilapia fry were fed a standard diet (C) or diets containing 50-700 mg kg(-1) Quillaja saponin (QS) extract (groups S50, S150, S300, S500 and S700). After the first 8 weeks, 30 randomly selected tilapia from each of the treatments were placed in separate aquaria and fed the standard diet without saponins from then on (these were designated S50/C, S150/C, S300/C, S500/C and S700/C). The fish grew from an initial average weight of approximately 30 mg to a final average weight of 79 g during the 6-month feeding period. The difference between the average weight of C-fed tilapia and the treatment with the highest average weight after 6 months was 53.5%. The sex ratio of tilapia in the saponin-fed groups deviated from the normal 50:50 male:female ratio, with the S700 group showing a significantly higher number of males. Quillaja saponin stimulated LH release from dispersed tilapia pituitary cells in vitro. This effect was abolished in the presence of dilute calf serum. Serum LH values did not show any diet-dependent trend in either male or female tilapia in vivo. In both continuously saponin-fed and only-initially saponin-fed groups, the average serum (but not muscle) cholesterol levels in males showed an increasing trend (R(2) values of 0.62 and 0.69) with increasing dietary saponin level. It was concluded that dietary QS has the potential to change the sex-ratio in favour of males. More investigations are required to determine the mechanism of action and the optimum dietary level of QS for maximum effects.

  11. Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs.

    PubMed

    Lan, R X; Lee, S I; Kim, I H

    2016-12-01

    This experiment was conducted to investigate the efficacy of multistrain probiotics in weaning pigs. A total of 125 28-day-old weaning pigs [(Landrace × Yorkshire) × Duroc] with an initial average body weight (BW) of 7.26 ± 0.76 kg were randomly allotted into 5 treatments, 5 replicate pens/treatment with 5 pigs/pen for 42-day experiment. Dietary treatments were as follows: CON, basal diet; PC1, CON + 0.01% multistrain probiotics; PC2, CON + 0.03% multistrain probiotics; PC3, CON + 0.06% multistrain probiotics; PC4, CON + 0.1% multistrain probiotics. On day 14, pigs fed the PC4 diet had higher BW gain than pigs fed the CON diet. On day 42, pigs fed multistrain probiotics supplementation diets had higher BW gain than pigs fed the CON diet. From days 1 to 14, pigs fed the PC2, PC3 and PC4 diets had higher (p < 0.05) ADG than pigs fed the CON diet. From day 15 to 42, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) average daily gain (ADG) and gain: feed ratio (G:F) than pigs fed the CON diet. In the overall period, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) ADG and pigs fed the PC2 and PC4 diets had higher (p < 0.05) G:F than pigs fed the CON diet. On day 42, pigs fed the PC4 diet had higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and gross energy (GE), faecal Lactobacillus counts and lower (p < 0.05) E. coli counts and NH 3 emission than pigs fed the CON diet. Pigs fed the multistrain probiotics supplementation diets had lower (p < 0.05) H 2 S and total mercaptans emissions than pigs fed the CON diet. Conclusions, dietary supplementation with 0.1% probiotics improved growth performance, nutrition digestibility and intestinal microflora balance and decreased faecal noxious gas emissions in weaning pigs. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. 135-Day Interventions of Yam Dioscorin and the Dipeptide Asn-Trp (NW) To Reduce Weight Gains and Improve Impaired Glucose Tolerances in High-Fat Diet-Induced C57BL/6 Mice.

    PubMed

    Wu, Guang-Cheng; Lin, Shyr-Yi; Liang, Hong-Jen; Hou, Wen-Chi

    2018-01-24

    The C57BL/6J mice were fed a 135-day normal diet or a high-fat diet (HFD) without, or concurrent with, a single yam dioscorin (80 mg/kg) or dipeptide NW (40 mg/kg) intervention every day. The final body weights (g) of mice were 26.1 ± 1.4, 34.97 ± 2.1, 31.75 ± 2.6, and 31.66 ± 3.1, respectively, for normal diet-fed, HFD-fed, dioscorin-intervened, and NW-intervened group. The mice in both intervened groups showed similar less weight gains and had significant differences (P < 0.05) compared to those in the HFD group under the same cumulative HFD intakes. The blood biochemical index of mice with dioscorin interventions showed significantly lower contents in total cholesterol and low-density lipoprotein, and NW interventions showed significantly lower total triglyceride contents compared to those of the HFD group (P < 0.05). Both intervened mice exhibited similar reductions in total visceral lipid contents and have significant differences compared to those of the HFD group (P < 0.05). The dioscorin intervention was better than NW interventions in lowering blood glucose levels by oral glucose tolerance tests and both showed significant differences (P < 0.05) compared to those in the HFD group. Yam dioscorin or dipeptide NW will potentially be used for preventive functional foods of less body weight gains and impaired glucose tolerance controls, which require further clinical trial investigations.

  13. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    PubMed Central

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  14. Vitamin E prevents steroid-induced osteonecrosis in rabbits

    PubMed Central

    Kuribayashi, Masaaki; Takahashi, Kenji A; Arai, Yuji; Ishida, Masashi; Goto, Tsuyoshi; Kubo, Toshikazu

    2010-01-01

    Background and purpose Prevention of osteonecrosis after corticosteroid administration would be important. We examined the potential of vitamin E (α-tocopherol) to reduce the incidence of corticosteroid-induced osteonecrosis in an animal model. Methods Japanese white rabbits were divided into 2 groups; the control group was fed a normal diet and the experimental group was fed α-tocopherol-supplemented diet in which α-tocopherol (600 mg/kg diet) was added to the normal diet. To induce osteonecrosis, high-dose methylprednisolone acetate (MPSL) (20 mg/kg body weight) was injected once into the right gluteus medius muscle of all rabbits. 4 weeks after the injection of MPSL, the presence or absence of osteonecrosis of bilateral femurs was examined histopathologically. The tocopherol/cholesterol ratios were calculated. The plasma levels of thiobarbituric acid-reactive substances (TBARS) were measured. Results Alpha-tocopherol-supplemented diet reduced the incidence of osteonecrosis, which developed in 14 of 20 rabbits in the control group and 5 of 21 rabbits in the experimental group (p = 0.004). The tocopherol/cholesterol ratio was higher in the experimental group than in the control group after the α-tocopherol administration. The plasma TBARS level was lower in the experimental group than in the control group at 4 weeks after the MPSL administration. Interpretation Our findings may offer a new approach for the prevention of corticosteroid-induced osteonecrosis. PMID:20146637

  15. Dietary Supplementation with Virgin Coconut Oil Improves Lipid Profile and Hepatic Antioxidant Status and Has Potential Benefits on Cardiovascular Risk Indices in Normal Rats.

    PubMed

    Famurewa, Ademola C; Ekeleme-Egedigwe, Chima A; Nwali, Sophia C; Agbo, Ngozi N; Obi, Joy N; Ezechukwu, Goodness C

    2018-05-04

    Research findings that suggest beneficial health effects of dietary supplementation with virgin coconut oil (VCO) are limited in the published literature. This study investigated the in vivo effects of a 5-week VCO-supplemented diet on lipid profile, hepatic antioxidant status, hepatorenal function, and cardiovascular risk indices in normal rats. Rats were randomly divided into 3 groups: 1 control and 2 treatment groups (10% and 15% VCO-supplemented diets) for 5 weeks. Serum and homogenate samples were used to analyze lipid profile, hepatorenal function markers, hepatic activities of antioxidant enzymes, and malondialdehyde level. Lipid profile of animals fed VCO diets showed significant reduction in total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels; high-density lipoprotein (HDL) level increased significantly (p < .05) compared to control; and there were beneficial effects on cardiovascular risk indices. The level of malondialdehyde (MDA), a lipid peroxidation marker, remarkably reduced and activities of hepatic antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were markedly increased in VCO diet-fed rats. The VCO diet significantly modulated creatinine, sodium (Na + ), potassium (K + ), chloride (Cl - ), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) compared to control. The findings suggest a beneficial effect of VCO on lipid profile, renal status, hepatic antioxidant defense system, and cardiovascular risk indices in rats.

  16. Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers.

    PubMed

    Jung, B; Batal, A B

    2012-01-01

    1. Two experiments were conducted to determine the effects of dietary nucleotide supplementation on broiler performance, and physical and morphological development of the gastrointestinal tract. 2. Experiment 1: A total of 180 one-d-old male chicks were placed in battery brooders in 3 × 6 replicate pens containing 10 chicks each. Chicks were randomly assigned to one of the three dietary treatments; a maize-soyabean meal based diet supplemented with 0, 0·25, and 0·50% Torula yeast RNA (as a source of nucleotides) from 0 to 16 d of age. 3. Experiment 2: A total of 1344 one-d-old male chicks were placed in floor pens and reared on recycled wood shavings (two flocks) under a high stocking density (0·068 m(2)/bird). Chicks were randomly assigned to one of the 4 dietary treatments (0, 0·25% Torula yeast RNA, 2% and 6% Nupro®) for the starter period (0 to 14 d of age) with 6 replicate pens containing 56 chicks each. All the birds were fed on the same common grower diet with no supplementation of nucleotides from 15 to 32 d of age. 4. Experiment 1: Supplementing the diets with up to 0·50% Torula yeast RNA did not affect broiler performance, or relative intestinal tract weight and length of broilers at any periods measured. 5. Experiment 2: From 0 to 14 d of age, broilers fed on the diets supplemented with 0·25% Torula yeast RNA and 2 and 6% Nupro® were significantly heavier and had improved feed conversion (feed:gain) ratios as compared with the birds fed on the control diet. Supplementing the starter diet only with 2% Nupro® supplementation significantly improved body weight (BW) gain as compared with the control diet over the entire experiment (0 to 32 d of age). Broilers fed on the diets supplemented with 2 and 6% Nupro® from 0 to 14 d of age had better feed conversion (feed:gain) ratios over the entire experiment (0 to 32 d of age) as compared with the birds fed on the control diet, even though the birds were only fed on the diets supplemented with Nupro® from 0 to 14 d of age. The broilers fed on the diets supplemented with 0·25% Torula yeast RNA and 2% Nupro® had higher villus height and an improved villus height-to-crypt depth ratio as compared with birds fed on the control or 6% Nupro® diet at 14 d of age. 6. It is generally assumed that nucleotides are not an essential nutrient; thus there is no need to supplement the diets of broilers reared under normal conditions. However, dietary nucleotide supplementation may be important to maintain maximum growth performance when birds are exposed to stress conditions, such as high stocking density combined with dirty litter.

  17. Replacement of berseem hay by Salix tetrasperma on physiological performance of New Zealand White rabbits under subtropical conditions of Egypt.

    PubMed

    AbuHafsa, Salma H; Hassan, Ayman A; Camacho, Luis M; Salem, Abdelfattah Z M

    2014-10-01

    Forty-eight growing New Zealand White male rabbits aged 6 weeks (874 ± 1.3 g initial body weight (BW)) were used to study effects of partial replacement of berseem hay (BH) with Salix tetrasperma hay (ST) on growth and physiological responses. Rabbits were allotted to one of four diets of 12 rabbits each for 75 days in a completely randomized design. The treatments were as follows: control (30 % BH), ST25 (7.5 % ST + 22.5 % BH), ST50 (15 % ST + 15 % BH), ST75 (22.5 % ST + 7.5 % BH). Nutrient digestibility coefficients, nutritive value and N utilization of rabbits fed with the ST50 rations were higher (P < 0.05) than the other groups. Final live BW, average daily gain, feed intake and feed efficiency of rabbits fed ST25 and ST50 were higher (P < 0.05) than those fed ST75 and the control. Serum biochemical metabolites of urea, creatinine, aspartate amino transferase and alanine amino transferase concentrations varied among diets, with the rank order (P < 0.05) ST75 > ST25 and ST50 > control. Glucose level was higher (P < 0.05) for the control than the other diets. Rabbits fed with the mixed diets of ST had lower (P < 0.05) total lipids, cholesterol and triglycerides levels than those fed with control. Haematological indices of packed cell volume, haemoglobin, red blood cells, white blood cells and lymphocyte counts were lower (P < 0.05), but monocyte was higher, in rabbits fed with the ST75 than the other groups. However, other haematological parameters were similar among diets. Since all the performance and blood parameters were within normal ranges for healthy rabbits, and there were no signs of toxicity, we conclude that partial replacement of BH by ST improves rabbit growth performance, and did not impact rabbit health.

  18. Influence of betaine and salinomycin on intestinal absorption of methionine and glucose and on the ultrastructure of intestinal cells and parasite developmental stages in chicks infected with Eimeria acervulina.

    PubMed

    Augustine, P C; Danforth, H D

    1999-01-01

    The effect of betaine and salinomycin on absorption of methionine and glucose in tissue from the duodenal loops of Eimeria acervulina-infected chicks was determined. Differences in the ultrastructure of the intestinal cells and parasite developmental stages were also examined. With a drug-resistant isolate of E. acervulina, methionine absorption was significantly higher in chicks fed a basal diet supplemented with 0.15% betaine as compared with absorption in chicks fed the unsupplemented basal diet. Addition of 66 ppm salinomycin to the diet containing betaine did not further enhance absorption. Conversely, with a drug-sensitive isolate, methionine absorption was significantly higher in chicks fed a diet supplemented with both betaine and salinomycin than in chicks fed the unsupplemented basal diet. Tissue from chicks fed any of the supplemented diets was usually significantly heavier than that from chicks fed the unsupplemented diet, even when weight gains of the birds were similar. Glucose absorption was similar in all diet groups. Epithelial cells in coccidia-infected and uninfected chicks fed diets supplemented with betaine or betaine plus salinomycin were less electron dense than cells from chicks fed diets that were not supplemented with betaine. Merozoites of E. acervulina in chicks fed diets supplemented with salinomycin had extensive membrane disruption and vacuolization, but the damage was prevented when betaine was added to the diet. Numerous merozoites and intact schizonts were seen in the intestinal lumen of chicks fed the diet containing betaine plus salinomycin.

  19. High-Protein Exposure during Gestation or Lactation or after Weaning Has a Period-Specific Signature on Rat Pup Weight, Adiposity, Food Intake, and Glucose Homeostasis up to 6 Weeks of Age.

    PubMed

    Desclée de Maredsous, Caroline; Oozeer, Raish; Barbillon, Pierre; Mary-Huard, Tristan; Delteil, Corine; Blachier, François; Tomé, Daniel; van der Beek, Eline M; Davila, Anne-Marie

    2016-01-01

    Early-life nutrition has a programming effect on later metabolic health; however, the impact of exposure to a high-protein (HP) diet is still being investigated. This study evaluated the consequences on pup phenotype of an HP diet during gestation and lactation and after weaning. Wistar rat dams were separated into 2 groups fed an HP (55% protein) or normal protein (NP) (control; 20% protein) isocaloric diet during gestation, and each group subsequently was separated into 2 subgroups that were fed an HP or NP diet during lactation. After weaning, male and female pups from each mother subgroup were separated into 2 groups that were fed either an NP or HP diet until they were 6 wk old. Measurements included weight, food intake, body composition, blood glucose, insulin, glucagon, leptin, insulin-like growth factor I, and lipids. Feeding mothers the HP diet during gestation or lactation induced lower postweaning pup weight (gestation diet × time, P < 0.0001; lactation diet × time, P < 0.0001). Regardless of dams' diets, pups receiving HP compared with NP diet after weaning had 7% lower weight (NP, 135.0 ± 2.6 g; HP, 124.4 ± 2.5 g; P < 0.0001), 16% lower total energy intake (NP, 777 ± 14 kcal; HP, 649 ± 13 kcal; P < 0.0001) and 31% lower adiposity (P < 0.0001). Pups receiving HP compared with NP diet after weaning had increased blood glucose, insulin, and glucagon when food deprived (P < 0.0001 for all). The HP compared with the NP diet during gestation induced higher blood glucose in food-deprived rats (NP, 83.2 ± 2.1 mg/dL; HP, 91.2 ± 2.1 mg/dL; P = 0.046) and increased plasma insulin in fed pups receiving the postweaning NP diet (gestation diet × postweaning diet, P = 0.02). Increasing the protein concentration of the rat dams' diet during gestation, and to a lesser extent during lactation, and of the pups' diet after weaning influenced pup phenotype, including body weight, fat accumulation, food intake, and glucose tolerance at 6 wk of age. © 2016 American Society for Nutrition.

  20. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    PubMed

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  1. A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice.

    PubMed

    Cao, Jay J; Gregoire, Brian R

    2016-04-01

    Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.

  2. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    PubMed

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was also observed during the glucose tolerance test. The insulin resistance exhibited by the HF diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the important role of parasympathetic activity, contributes to the condition of obesity, and that non-vagal pathways may be involved along with the imbalanced autonomic nervous system. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  3. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    PubMed

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats.

    PubMed

    Fang, Bing; Li, Jin Wang; Zhang, Ming; Ren, Fa Zheng; Pang, Guo Fang

    2018-01-01

    Chlorpyrifos is a commonly-used pesticide which was reported to interfere with hormone signaling and metabolism, however, little is known about its effect on gut microbiota. In this study, adult male rats fed a normal (NF) or high fat (HF) diet were exposed to 0.3 or 3.0 mg chlorpyrifos/kg bodyweight/day or vehicle alone for 9 weeks. Effects on bodyweight, serum levels of glucose, lipid, cytokines, and gut microbiome community structure were measured. The effects of chlorpyrifos on metabolism were dose- and diet-dependent, with NF-fed rats administered the low dose showing the largest metabolic changes. NF-fed rats exposed to chlorpyrifos exhibited a pro-obesity phenotype compared with their controls, whereas there was no difference in pro-obesity phenotype between HF-fed groups. Chlorpyrifos exposure significantly reduced serum insulin, C-peptide, and amylin concentrations in NF- and HF-fed rats, leaving serum glucose and lipid profiles unaffected. Chlorpyrifos exposure also significantly altered gut microbiota composition, including the abundance of opportunistic pathogens, short chain fatty acid-producing bacteria and other bacteria previously associated with obese and diabetic phenotypes. The abundance of bacteria associated with neurotoxicity and islet injury was also significantly increased by chlorpyrifos. Our results suggest risk assessments for chlorpyrifos exposure should consider other effects in addition to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of dietary vitamin E and selenium on growth, survival and the prevalence of Renibacterium salmoninarum infection in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Thorarinsson, Ragnar; Landolt, Marsha L.; Elliott, Diane G.; Pascho, Ronald J.; Hardy, Ronald W.

    1994-01-01

    Groups of juvenile spring chinook salmon naturally infected with Renibacterium salmoninarum, the causative agent of bacterial kidney disease, were fed diets containing different levels of vitamin E and selenium for 214 days in fresh water and 110 days in seawater. The fish were fed vitamin E at concentrations of either 53±3 mg (designated e) or 299±9 mg (designated E) α-tocopheryl acetate equivalence/kg dry diet in combination with sodium selenite to give selenium concentrations of either 0.038±0.008 mg (designated s) or 2.49±0.15 mg (designated S)/kg dry diet. No mortality occurred in the group fed the SE diet, whereas mortality was 3% in the groups fed the sE and Se diets, and 31% in the group fed the se diet. At the end of the experiment, weight gain and hematocrit values were significantly greater in those fish fed the E diets compared with those fed the e diets, whereas the hepato-somatic index was significantly higher in fish fed the e diets. Glutathione peroxidase activity in blood plasma was significantly higher in fish fed the S diets compared with those fed the sdiets. No definite effect of dietary vitamin E and selenium on the prevalence and severity of natural R. salmoninarum infections was demonstrated.

  6. Oral metformin treatment prevents enhanced insulin demand and placental dysfunction in the pregnant rat fed a fructose-rich diet.

    PubMed

    Alzamendi, Ana; Del Zotto, Hector; Castrogiovanni, Daniel; Romero, Jose; Giovambattista, Andres; Spinedi, Eduardo

    2012-01-01

    The intake of a fructose-rich diet (FRD) in the normal female rat induces features similar to those observed in the human metabolic syndrome phenotype. We studied the impact of FRD administration to mothers on pregnancy outcome. On gestational day (Gd) zero rats were assigned to either group: ad libitum drinking tap water alone (normal diet, ND) or containing fructose (10% w/vol; FRD) through pregnancy; all rats were fed a Purina chow diet ad libitum ND and FRD rats were daily cotreated or not with metformin (60 mg/Kg/day oral; ND + MF and FRD + MF) and submitted to a high glucose load test on Gd 14. Additionally, placentas from different groups were studied on Gd 20. Data indicated that: (1) although FRD rats well tolerated glucose overload, their circulating levels of insulin were significantly higher than in ND rats; (2) the mesometrial triangle blood vessel area was significantly lower in placentas from FRD than ND dams; (3) the detrimental effects of FRD administration to mothers were ameliorated by metformin cotreatment. Our study suggests that excessive intake of fructose during pregnancy enhanced the risk for developing gestational diabetes and subsequent preeclampsia, and that metformin prevented the poor pregnancy outcome induced by FRD.

  7. Oral Metformin Treatment Prevents Enhanced Insulin Demand and Placental Dysfunction in the Pregnant Rat Fed a Fructose-Rich Diet

    PubMed Central

    Alzamendi, Ana; Del Zotto, Hector; Castrogiovanni, Daniel; Romero, Jose; Giovambattista, Andres; Spinedi, Eduardo

    2012-01-01

    The intake of a fructose-rich diet (FRD) in the normal female rat induces features similar to those observed in the human metabolic syndrome phenotype. We studied the impact of FRD administration to mothers on pregnancy outcome. On gestational day (Gd) zero rats were assigned to either group: ad libitum drinking tap water alone (normal diet, ND) or containing fructose (10% w/vol; FRD) through pregnancy; all rats were fed a Purina chow diet ad libitum ND and FRD rats were daily cotreated or not with metformin (60 mg/Kg/day oral; ND + MF and FRD + MF) and submitted to a high glucose load test on Gd 14. Additionally, placentas from different groups were studied on Gd 20. Data indicated that: (1) although FRD rats well tolerated glucose overload, their circulating levels of insulin were significantly higher than in ND rats; (2) the mesometrial triangle blood vessel area was significantly lower in placentas from FRD than ND dams; (3) the detrimental effects of FRD administration to mothers were ameliorated by metformin cotreatment. Our study suggests that excessive intake of fructose during pregnancy enhanced the risk for developing gestational diabetes and subsequent preeclampsia, and that metformin prevented the poor pregnancy outcome induced by FRD. PMID:22957268

  8. Effects of withdrawing high-fiber ingredients before marketing on finishing pig growth performance, carcass characteristics, and intestinal weights.

    PubMed

    Coble, Kyle F; DeRouchey, Joel M; Tokach, Mike D; Dritz, Steve S; Goodband, Robert D; Woodworth, Jason C

    2018-02-15

    Two experiments were conducted to determine the duration of high-fiber ingredient removal from finishing pig diets before marketing to restore carcass yield and carcass fat iodine value (IV), similar to pigs continuously fed a corn-soybean meal diet. In experiment 1, 288 pigs (initially 38.4 ± 0.3 kg body weight [BW]) were used in an 88-d study and fed either a low-fiber corn-soybean meal diet from day 0 to 88 or a high-fiber diet containing 30% corn distillers dried grains with solubles and 19% wheat middlings until day 20, 15, 10, 5, or 0 before slaughter and switched to the low-fiber corn-soybean meal diet thereafter. Diets were not balanced for net energy. From day 0 to 88, pigs continuously fed the high-fiber diet tended to have increased average daily feed intake (P = 0.072) and decreased G:F and carcass yield (P = 0.001) compared with pigs fed the low-fiber corn-soybean meal diet. Pigs continuously fed the high-fiber diet had greater (P < 0.010) IV of jowl, backfat, belly, and ham collar fat than those fed the low-fiber corn-soybean meal diet throughout. As days of withdrawal increased, pigs previously fed the high-fiber diet had increased carcass yield (quadratic; P = 0.039). Pigs continuously fed the high-fiber diet had heavier (percentage of hot carcass weight [HCW]) full large intestines (P = 0.003) than pigs fed the corn-soybean meal diet. Full large intestine weight decreased (linear; P = 0.018) as withdrawal time increased. Belly fat IV tended (linear; P = 0.080) to improve as withdrawal time increased. In experiment 2, a total of 1,089 pigs (initially 44.5 ± 0.1 kg BW) were used in a 96-d study with the same dietary treatments as in experiment 1, except pigs were fed the high-fiber diet until day 24, 19, 14, 9, or 0 before slaughter and then switched to the corn-soybean meal diet. Pigs fed the high-fiber diet throughout had decreased average daily gain and G:F (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet. For pigs initially fed the high-fiber diet and then switched to the low-fiber corn-soybean meal diet, G:F tended to improve (linear; P = 0.070) as withdrawal period increased. Pigs fed the high-fiber diet throughout had decreased HCW (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet and HCW marginally increased (quadratic; P = 0.077) as withdrawal period increased. In summary, switching pigs from a high-fiber diet to a corn-soybean meal diet for up to 24 d before market increased carcass yield (experiment 1) or HCW (experiment 2) with the improvement most prominent during the first 5 to 9 d after withdrawal.

  9. Dietary deficiency of vitamin E aggravates retinal ganglion cell death in experimental glaucoma of rats.

    PubMed

    Ko, Mei-Lan; Peng, Pai-Huei; Hsu, Shens-Yao; Chen, Chau-Fong

    2010-09-01

    Investigate the effect of dietary vitamin E (Vit E) on the retinas of a rat model of induced glaucoma, in which surgically induced elevation of intraocular pressure (IOP) is associated with an increase in reactive oxygen species. Rats were fed a standard chow, Vit E-supplemented diet, or Vit E-deficient diet and subjected to surgically induced IOP elevation (or sham surgery) for five weeks. The retinal ganglion cells (RGCs) were subjected to retrograde fluorescent tracer labeling. The mean number of RGCs of rats on the standard chow, Vit E-supplemented diet, and Vit E-deficient diet were 79.6%, 78.6%, and 71.3% of controls, respectively. Lipid peroxidation of the retinas of rats given a Vit E-deficient diet were significantly higher after IOP elevation for three days (14.42 +/- 0.25 microM, P = 0.016) and five weeks (10.46 +/- 0.11 microM, p = 0.042), compared to rats given standard chow (11.37 +/- 0.31 microM; 8.95 +/- 0.16 microM). Compared with rats given standard chow, rats given a Vit E-deficient diet had significantly elevated concentrations of glutathione (p = 0.032), but no significant differences in the levels of total superoxide dismutase (SOD), Cu/Zn SOD, or catalase activities three days after IOP elevation. Rats fed a Vit E-deficient diet with surgically induced IOP elevation experience significantly more RGC death than rats fed a normal diet. This phenomenon may be related to the increased level of lipid peroxidation in Vit E-deficient rats.

  10. Diet Change After Sleeve Gastrectomy Is More Effective for Weight Loss Than Surgery Only.

    PubMed

    Rossell, Joana; González, Marta; Mestres, Núria; Pardina, Eva; Ricart-Jané, David; Peinado-Onsurbe, Julia; Baena-Fustegueras, Juan Antonio

    2017-10-01

    Bariatric surgery with or without diet change has become one of the most effective treatments for obesity. The objective of this study was to observe the effects of vertical sleeve gastrectomy (VSG) and diet change in Sprague-Dawley rats on both body and tissue weights. Eighteen rats were fed with a standard chow diet (SCD) (C group), and 36 rats were fed with a high-fat diet (HFD) (diet-induced obesity (DIO) group). After 8 weeks, the animals underwent VSG, sham surgery or no surgery (NS). After surgery, a third of the rats fed with the HFD changed to the SCD (DIO + C group). Body weight, food and energy intake were recorded daily during the experiment (12 weeks). Food efficiency (%) (FE) was determined from weekly weight gain and weekly kilocalorie consumed measurements. The DIO group had higher and significant weight gain than the C group at the time of surgery (p < 0.001). The major weight loss (WL) was observed in the DIO + C-VSG group, during the 4 weeks after surgery. Adipose tissues in the DIO + C-VSG group were drastically reduced and had a weight similar to those in the C-VSG group. VSG and the diet change combination led to a greater WL, which was maintained during the 4 weeks post-surgery, leading to a normalization of body weight. VSG and diet change also affected most of the tissues, not only adipose, showing a global change in whole body composition.

  11. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity

    PubMed Central

    Kopp, Ulla C.; Jones, Susan Y.; DiBona, Gerald F.

    2008-01-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, −60 ± 4 vs. −77 ± 6%. Maximum gain, −4.22 ± 0.45 vs. −6.04 ± 0.90% ΔERSNA/mmHg, and the maximum value of instantaneous gain, −4.19 ± 0.45 vs. −6.04 ± 0.81% ΔERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 ± 0.2 vs. 6.1 ± 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 ± 4,900 vs. 20,900 ± 3,410%·s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet. PMID:18945951

  12. Phenotypic stability of B16-BL6 melanoma exposed to low levels of tyrosine and phenylalanine.

    PubMed

    Elstad, C A; Meadows, G G

    1990-01-01

    We previously demonstrated that tyrosine (Tyr) and phenylalanine (Phe) restriction suppresses metastatic heterogeneity of B16-BL6 (BL6) melanoma and selects for tumor variants with decreased metastatic potential. In this study, we investigate stability of this Tyr- and Phe-modulated tumor phenotype by sequentially transplanting BL6 in vivo into mice fed Low Tyr and Phe Diet. Metastatic potential of BL6 is suppressed after one subcutaneous passage. Suppression is unlikely to result from inhibition of tumor growth, since growth in vitro is significantly increased. The metastatic potential of the Tyr- and Phe-modulated tumor is unstable after in vivo passage, and lung colonizing ability is regenerated after ten in vivo passages. Conversely, the antimetastatic effect of Tyr and Phe restriction is stable after prolonged in vitro passage. The metastatic potential of tumors from mice fed Normal Diet is unstable after long-term in vitro culture. Sensitivity to adriamycin of BL6 from mice fed Low Tyr and Phe Diet is increased and is not altered by change in metastatic potential.

  13. The effect of purified compared with nonpurified diet on bone changes induced by hindlimb suspension of female rats

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Arnaud, Sara B.; Grindeland, Richard; Wade, Charles

    2005-01-01

    The purpose of this study was to compare the bone changes induced by unloading in rats fed different diets, because space flight studies use a semipurified diet, whereas space flight simulation studies typically use nonpurified diets. Female Sprague-Dawley rats were fed a purified American Institute of Nutrition (AIN) 93G diet or a standard nonpurified diet and kept ambulatory or subjected to unloading by hindlimb suspension (HLS) for 38 days. Bone mineral content (BMC), mechanical strength, and factors related to the diet that affect bone (i.e., urinary calcium excretion, estradiol, and corticosterone) were measured. Average food intakes (grams per day) differed for diets, but caloric intake (kilocalories per day) and the final body masses of treatment groups were similar. The HLS-induced decrease in femoral BMC was not statistically different for rats fed a nonpurified diet (-8.6%) compared with a purified AIN-93G diet (-11.4%). The HLS-induced decrease in femoral mechanical strength was not statistically different for rats fed a nonpurified diet (-24%) compared with a purified AIN-93G diet (-31%). However, bone lengths were decreased (P < 0.05) in rats fed a nonpurified diet compared with a purified diet. Plasma estradiol levels were lower (P < 0.05) in the HLS/AIN-93G group but similar in the HLS and ambulatory rats fed a nonpurified diet. Plasma estradiol was related to femoral BMC (r = 0.85, P < 0.01). Urinary calcium excretion was higher (P < 0.05) in rats fed a nonpurified diet than those fed a purified AIN-93G diet, which is consistent with the higher level of calcium in the nonpurified diet. Urinary corticosterone levels were higher (P < 0.05) in rats fed a nonpurified diet than rats fed the AIN-93G diet. Although the osteopenia induced by unloading was similar in both diet groups, there were differences in longitudinal bone growth, calcium excretion, plasma estradiol levels, and urinary corticosterone levels. Results indicate that the type of standard diet used is an important factor to consider when measuring bone end points.

  14. Polyunsaturated fatty acids reduce insulin and very low density lipoprotein levels in broiler chickens.

    PubMed

    Crespo, N; Esteve-Garcia, E

    2003-07-01

    An experiment was conducted to study the effect of different dietary fatty acid profiles on plasma levels of insulin, very low density lipoproteins (VLDL), cholesterol, and glucose. Diets with four types of fat (tallow, olive, sunflower, and linseed oils) at an inclusion level of 10% and a basal diet without additional fat were administered to female broiler chickens. Serum insulin, cholesterol, and plasma VLDL were affected by the different treatments; however, glucose concentrations were similar among treatments. In the fasted state, broilers fed diets with sunflower or linseed oil presented lower levels of insulin and cholesterol with respect to those fed tallow or olive oil (P < 0.05). VLDL in the fasted state was reduced in broilers fed sunflower and linseed oils (P < 0.05) with respect to those fed tallow, olive oil, or the basal diet. Plasma levels of VLDL were only significantly correlated with abdominal fat in birds fed the basal diet, in the fed and in the fasted state, and in those fed linseed oil in the fed state (P < 0.05). Results of this experiment suggest that higher insulin levels in broilers fed diets rich in saturated fatty acids could be related to higher fat deposition. Fat deposition in birds fed high fat diets was not correlated with circulating VLDL, which suggested direct dietary fat deposition, except for birds fed linseed oil diets. Although birds fed linseed oil diets presented lower levels of VLDL than those fed tallow, olive oil, or the basal diet, the higher correlation with abdominal fat suggests that in these birds, fat deposition is more dependent on hepatic VLDL secretion, despite the high dietary fat level.

  15. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major.

    PubMed

    Khosravi, Sanaz; Rahimnejad, Samad; Herault, Mikaël; Fournier, Vincent; Lee, Cho-Rong; Dio Bui, Hien Thi; Jeong, Jun-Bum; Lee, Kyeong-Jun

    2015-08-01

    This study was conducted to evaluate the supplemental effects of three different types of protein hydrolysates in a low fish meal (FM) diet on growth performance, feed utilization, intestinal morphology, innate immunity and disease resistance of juvenile red sea bream. A FM-based diet was used as a high fish meal diet (HFM) and a low fish meal (LFM) diet was prepared by replacing 50% of FM by soy protein concentrate. Three other diets were prepared by supplementing shrimp, tilapia or krill hydrolysate to the LFM diet (designated as SH, TH and KH, respectively). Triplicate groups of fish (4.9 ± 0.1 g) were fed one of the test diets to apparent satiation twice daily for 13 weeks and then challenged by Edwardsiella tarda. At the end of the feeding trial, significantly (P < 0.05) higher growth performance was obtained in fish fed HFM and hydrolysate treated groups compared to those fed the LFM diet. Significant improvements in feed conversion and protein efficiency ratios were obtained in fish fed the hydrolysates compared to those fed the LFM diet. Significant enhancement in digestibility of protein was found in fish fed SH and KH diets and dry matter digestibility was increased in the group fed SH diet in comparison to LFM group. Fish fed the LFM diet showed significantly higher glucose level than all the other treatments. Whole-body and dorsal muscle compositions were not significantly influenced by dietary treatments. Histological analysis revealed significant reductions in goblet cell numbers and enterocyte length in the proximal intestine of fish fed the LFM diet. Superoxide dismutase activity and total immunoglobulin level were significantly increased in fish fed the diets containing protein hydrolysates compared to the LFM group. Also, significantly higher lysozyme and antiprotease activities were found in fish fed the hydrolysates and HFM diets compared to those offered LFM diet. Fish fed the LFM diet exhibited the lowest disease resistance against E. tarda and dietary inclusion of the hydrolysates resulted in significant enhancement of survival rate. The results of the current study indicated that the inclusion of the tested protein hydrolysates, particularly SH, in a LFM diet can improve growth performance, feed utilization, digestibility, innate immunity and disease resistance of juvenile red sea bream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice.

    PubMed

    Itagaki, Hiroko; Shimizu, Kazuhiko; Morikawa, Shunichi; Ogawa, Kenji; Ezaki, Taichi

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. Its histopathology and the effects of nutrition on liver function have not been fully determined. To elucidate the cellular mechanisms of NAFLD induced by a methionine-choline-deficient (MCD) diet in mice. Particular focus was placed on the role of phagocytic cells. Male C57BL/6 mice were fed an MCD diet for 30 weeks. A recovery model was also established wherein a normal control diet was provided for 2 weeks after a period of 8, 16, or 30 weeks. Mice fed the MCD diet for ≥ 2 weeks exhibited severe steatohepatitis with elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Steatohepatitis was accompanied by the infiltration of CD68-positive macrophages (Kupffer cells). The severity of steatohepatitis increased in the first 16 weeks but was seen to lessen by week 30. Fibrosis began to develop at 10 weeks and continued thereafter. Steatohepatitis and elevated serum hepatic enzyme concentrations returned to normal levels after switching the diet back to the control within the first 16 weeks, but fibrosis and CD68-positive macrophages remained. The histopathological changes and irreversible fibrosis seen in this model were caused by prolonged feeding of an MCD diet. These results were accompanied by changes in the activity of CD68-positive cells with temporary elevation of CCL-2, MMP-13, and MMP-9 levels, all of which may trigger early steatohepatitis and late fibrosis through phagocytosis-associated MMP induction.

  17. Altered autophagy and sympathetic innervation in salivary glands from high-fat diet mice.

    PubMed

    de Carvalho, Polliane Morais; Gavião, Maria Beatriz Duarte; Carpenter, Guy Howard

    2017-03-01

    to investigate the effects of a high fat diet (HFD) on salivary glands in vivo, in a mouse model. In particular, whether it will induce the appearance of fat cells in salivary glands, alterations related to autophagy, mTOR pathway and sympathetic innervation. 27 adult female ICR mice were separated in six groups. Three groups fed with (HFD) containing 55% fat, for one, two and three month and another three groups fed with normal diet (2.7% of fat), for the same time periods. The submandibular glands and liver were dissected and part homogenized for protein analyses and part fixed in formalin for histological analyses. After three months the HFD fed mice total body weight fold change increased compared to controls. The Oil Red O staining showed no fat cells deposit in salivary gland however a large increase was observed in liver after three months of HFD. Adiponectin levels were significantly decreased in the HFD group after three months. The group fed with HFD for three months showed increased conversion of the LC3 autophagy marker in salivary gland. mTOR showed no activation regarding the time point studied. Tyrosine hydroxylase significantly decreased after two and three month of HFD. HFD caused several changes after three months however the earliest change was noticed after two months regarding sympathetic innervation. This suggests neural alteration may drive other diet induced changes in salivary glands. These early changes may be the starting point for longer term alterations of salivary glands with alterations in diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis.

    PubMed

    Marcolin, Eder; Forgiarini, Luiz Felipe; Tieppo, Juliana; Dias, Alexandre Simões; Freitas, Luiz Antonio Rodrigues de; Marroni, Norma Possa

    2011-01-01

    Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. Thirty male C57BL6 mice divided in two groups (n = 15) were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in inducing steatosis and steatohepatitis in animal model, alterations that are similar to those observed in human livers.

  19. Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits.

    PubMed

    Wasan, Kishor M; Risovic, Verica; Sivak, Olena; Lee, Stephen D; Mason, Douglas X; Chiklis, Gregory R; McShane, Jim; Lynn, Melvyn; Wong, Nancy; Rossignol, Daniel P

    2008-01-01

    Eritoran (E5564) is a glycophospholipid that acts as a toll-like receptor 4 (TLR4) antagonist that is being tested as a treatment for severe sepsis and septic shock. In the blood, eritoran binds to plasma lipoproteins altering its pharmacokinetic and pharmacodynamic (PD) effects in vivo. The purpose of this study was to determine the influence of changes in plasma cholesterol and triglyceride concentrations on the plasma pharmacokinetics and ex vivo activity of eritoran following single intravenous bolus dosing of eritoran to healthy female rabbits fed either a regular chow diet or a cholesterol-enriched diet. This was done with eritoran administered as stable micelle formulations of mean hydrodynamic diameters of 8 or 27 nm). Female New Zealand White rabbits were fed a standard diet for 7 days and then randomly assigned either a regular chow diet [regular-diet (n = 9)] or a cholesterol-enriched diet [cholesterol-diet (n = 12)] for an additional 7 days. Following feeding of these diets a single intravenous bolus dose of eritoran (0.5 mg/kg) formulated into either "small micelles" (8 nm in diameter) or "large micelles" (27 nm in diameter) was administered to regular-fed and cholesterol-fed rabbits. Serial blood samples were obtained prior to eritoran administration and at the following times post injection: 0.083 (5 min), 1, 2, 4, 8, 10, 24, 48 and 72 h. Plasma was analyzed for eritoran concentrations using LC/MS/MS. Total plasma cholesterol (TC) and triglyceride (TG) levels were quantified using enzymatic kits. Plasma eritoran pharmacokinetic (PK) parameters were estimated by non-compartmental analysis using the WinNonlin nonlinear estimation program. To analyze PD activity, whole blood obtained at 0.083 (5 min), 2, 24, 48 and 72 h following eritoran administration was assessed for ex vivo activity by measuring the ability of 1 and 10 ng/ml LPS to elicit TNF-alpha release. Total plasma cholesterol and triglyceride levels were significantly higher in cholesterol-fed rabbits compared to the rabbits fed a regular chow diet. Diet had no effect on the estimated plasma PK parameters. However, PD activity of both small and large micelle eritoran as measured by an ex vivo challenge dose of 1 ng/ml LPS was reduced in blood of cholesterol-fed rabbits compared to normal-fed rabbits. Comparison of PK parameters for small and large micelles indicated that small micelles had increased AUC(0-72 h), decreased plasma clearance and increased initial concentration (measured at 5 min post administration) compared to the large micelle formulation. Consistent with this observation, eritoran formulated into small micelles had significantly greater ex vivo activity than large micelles and was independent of TC and TG concentrations. These findings suggest that plasma pharmacokinetics and activity of eritoran maybe influenced by eritoran micelle size and plasma TC and TG concentrations.

  20. High post-natal mortality associated with defects in lung maturation and reduced adiposity in mice with gestational exposure to high fat and N-acetylcysteine.

    PubMed

    Williams, Lyda; Charron, Maureen J; Sellers, Rani S

    2017-10-01

    Studies have demonstrated that maternal consumption of a high fat diet (HFD) increases offspring susceptibility to metabolic disease. This study was initiated to identify the mechanistic contribution of oxidative stress on this phenomenon. Two weeks prior to mating, dams were fed either HFD or Control diet with or without supplementation with the anti-oxidant N-acetylcysteine (NAC). Pups born to HFD dams had reduced crown rump length (CRL) at birth and higher neonatal mortality compared to pups from Control dams. Supplementation with NAC normalized CRL in pups from HFD dams, but notably increased mortality. Histological examination of the lungs postnatally and prenatally, revealed normal branching morphogenesis but delayed alveolarization in pups from dams fed HFD+NAC. Discontinuation of NAC at ED17.5 with re-introduction at PD3 improved offspring survival and lung maturation. Additionally, interscapular brown adipose tissue (BAT) was reduced in ED18.5 embryos from HFD dams. These findings suggest that increased mortality in offspring from dams fed HFD+NAC during pregnancy may in part be the result of delayed pulmonary alveolarization and decreased BAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2016-01-01

    This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for those fed the GS diet. Total-tract-digestibility of DM (average = 66.1 ± 3.3%), NDF (average = 55.1 ± 2.4%), CP (average = 63.6 ± 4.2%), and gross energy (average = 64.5 ± 2.6%) were not influenced by experimental diets. We concluded that cows fed GS and EM diets had comparable performance, whereas milk yield was significantly reduced with the MM diet, likely because reduced intakes of DM and net energy for lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A

    2016-08-01

    The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to be greater in cows fed the high-CP diet compared with those fed the low-CP diet, and it was greater in cows fed the high-RDP diet as compared with those fed the low-RDP diet. Nitrogen intake and both total N and urea-N excretion in urine were greater for cows fed the high-CP diet compared with those fed the low-CP diet. However, N balance and urinary excretion of purine derivatives were unaffected by dietary treatment. Urea-N entry rate (UER) was greater in cows fed the high-CP diet compared with those fed the low-CP diet; however, UER was unaffected by dietary RDP concentration. The proportion of urea-N recycled to the gastrointestinal tract (as a percentage of UER) was greater in cows fed the low-CP diet compared with those fed the high-CP diet. In summary, reducing dietary CP concentration decreased urinary N excretion but had no effect on milk yield, thus resulting in an overall improvement in milk N efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Investigation of bacterial diversity in the feces of cattle fed different diets

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to investigate individual animal variation of bovine fecal microbiota including as affected by diets. Fecal samples were collected from 426 cattle fed 1 of 3 diets typically fed to feedlot cattle: 1) 143 steers fed finishing diet (83% dryrolled corn, 13% corn silage, a...

  4. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    PubMed

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  5. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    PubMed

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    PubMed

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Dietary Administration of Bacillus subtilis Enhances Growth Performance, Immune Response and Disease Resistance in Cherry Valley Ducks

    PubMed Central

    Guo, Mengjiao; Hao, Guangen; Wang, Baohua; Li, Ning; Li, Rong; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Given the promising results of applying Bacillus subtilis (B.subtilis) as a probiotic in both humans and animals, the aim of this study was to systematically investigate the effects of B. subtilis on growth performance, immune response and disease resistance in Cherry Valley ducks. At 28 d post-hatch (dph), ducks fed a diet with B. subtilis weighed significantly more, had higher relative immune organ weights (e.g., bursa of Fabricius, thymus, and spleen), and exhibited greater villus heights, villus height to crypt depth ratios (duodenum and jejunum), and shallower crypt depths in the duodenum than controls fed a normal diet (p < 0.05). Moreover, the major pro-inflammatory factors and antiviral proteins, as measured in the thymus and the spleen, were higher at 28 dph in ducks fed probiotics than those of 14 dph. After 28 d of feeding, the ducks were challenged with Escherichia coli (E. coli) and novel duck reovirus (NDRV), and ducks fed B. subtilis achieved survival rates of 43.3 and 100%, respectively, which were significantly greater than the control group's 20 and 83.3%. Altogether, diets with B. subtilis can improve Cherry Valley ducks' growth performance, innate immune response, and resistance against E. coli and NDRV. PMID:28008328

  8. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione andmore » exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gst{alpha}1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.« less

  9. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet.

    PubMed

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L; Tanaka, Yuji; Klaassen, Curtis D

    2010-06-15

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstalpha1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities. Copyright 2010. Published by Elsevier Inc.

  10. A Polyphenol-Rich Fraction Obtained from Table Grapes Decreases Adiposity, Insulin Resistance, and Markers of Inflammation and Impacts Gut Microbiota in High-Fat Fed Mice

    PubMed Central

    Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael

    2016-01-01

    The objective of this study was to determine if consuming an extractable or non-extractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or a HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a non-extractable, polyphenol-poor (HF-NEP) fraction, or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16 weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming a HF diet. PMID:27133434

  11. [Intervention of coarse cereals on lipid metabolism in rats].

    PubMed

    Guo, Yanbo; Zhai, Chengkai; Wang, Yanli; Zhang, Qun; Ding, Zhoubo; Jin, Xin

    2010-03-01

    To observe the effect of coarse cereals on improving the disorder of lipid metabolism and the expression of PPARgamma mRNA in white adipose tissue in rats to investigate the mechanism of coarse cereals on lipid metabolism disorder. Forty four SPF rats were randomly divided into 4 groups: the negative control group was fed with normal diet and 3 experimental groups were fed with high-fat modeling diet for 6 weeks for model building. The 3 experimental groups, the coarse cereals group,rice-flour group and the hyperlipemia model group, were then fed with coarse cereals high-fat diet,rice-flour high-diet and high-fat modeling diet respectively for another 15 weeks. Compared with the hyperlipemia modeling group, serum TG, TC, IL-6 and TNF-alpha in the coarse cereals group were declined significantly (P < 0.05), serum HDL-C in coarse cereals group was higher than that in rice-flour group and hyperlipemia model group (P < 0.05), LPL, HL and TNF-alpha in coarse cereal group were close to the negative control group. Moreover, the expression of PPAR-gamma mRNA in white adipose tissue of the coarse cereals group was higher than other groups. The coarse cereals could activate PPARgamma and enhance the activity of key enzymes in lipids metabolism, so as to reduce the level of TG relieve inflammation and improve lipid dysmetabolism eventually.

  12. Effects of Lactobacillus acidophilus dietary supplementation on the performance, intestinal barrier function, rectal microflora and serum immune function in weaned piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Qiao, Jiayun; Li, Haihua; Wang, Zhixiang; Wang, Wenjie

    2015-04-01

    This study was conducted with a lipopolysaccharide (LPS)-challenged piglet model to determine the effects of diets containing Lactobacillus acidophilus on the performance, intestinal barrier function, rectal microflora and serum immune function. A total of 150 piglets (initial body weight (BW) 7.53 ± 0.21 kg) were allotted to one of the following diets, including a basal diet, a basal diet supplemented with 250 mg/kg Flavomycin, or basal diet plus 0.05, 0.1 or 0.2 % L. acidophilus. On day 28 of the trial, the pigs were given an intraperitoneal injection of LPS (200 μg/kg body weight) followed by blood collection 3 h later. Diets with either antibiotics, 0.1 or 0.2 % Lactobacillus increased (P < 0.05) the final BW and decreased (P < 0.05) feed gain ratio (F/G) compared with the control group. Pigs fed diets containing antibiotic or Lactobacillus had greater average daily gain (ADG) (P < 0.05) than pigs fed the control diet. The rectal content Lactobacillus counts for pigs fed diet containing Lactobacillus were significant higher (P < 0.01) than those fed antibiotic or control diet. Feeding the Lactobacillus diets decreased the Escherichia coli counts of rectal content (P < 0.01). Pigs fed diets containing 0.1 or 0.2 % Lactobacillus decreased serum DAO activity (P < 0.05) compared with pigs fed the control diet. Serum IL-10 concentration was enhanced in pigs fed the diet with Lactobacillus compared to pigs fed the control diet and antibiotic diet. Feeding a diet with Lactobacillus reduced (P < 0.05) IFN-γ concentration compared to the control diet. Inclusion of Lactobacillus in diets fed to pigs reduced TNF-α concentration compared with pigs fed no Lactobacillus (P < 0.05). These results indicate that feeding with L. acidophilus improved growth performance and protected against LPS-induced inflammatory status.

  13. Performance of broilers fed on diets containing different amounts of chaya (Cnidoscolus aconitifolius) leaf meal.

    PubMed

    Sarmiento-Franco, L; McNab, J M; Pearson, R A; Belmar-Casso, R

    2002-05-01

    The performance and gut measurements of broilers fed on diets containing different amounts of chaya (Cnidoscolus aconitifolius) leaf meal (CLM) were examined in two experiments. In the first experiment, 60 Hubbard chickens (30 males and 30 females; 2 weeks old) were fed on five maize diets; these were formulated using 0, 150 (CLM150), 250 (CLM250) or 350 (CLM350) g CLM/kg, and the fifth diet contained soyabean. In the second experiment, 148 Ross male chicks, 1 day old, were fed on three isonitrogenous and isoenergetic maize-soyabean-based diets, which included 0 (control), 150 (C150) or 250 (C250) g CLM/kg. The diets were offered ad libitum for 2 or 3 weeks in the first and second experiments, respectively. Food intake, weight gain and the food:weight gain ratio were recorded. The weight of the gizzard and intestine and the weight and length of the caeca were also determined in the second experiment. In experiment 1, the birds fed on the maize-soyabean diet had a higher (p < 0.05) weight gain and final weight than birds fed on maize only or on the CLM150 diets. There were no differences for any of the variables studied between the birds fed on the maize-soyabean diet and those fed on the CLM250, nor between males and females. In the second experiment, weight gain, food intake and the food:weight gain ratio for birds fed on C250 were lower (p < 0.05) than those in birds fed on either the control or C150 diets. The weights of the gizzard and intestine were the lowest and the highest, respectively, in birds fed on C250 (p < 0.05). The length and weight of the caecum from birds fed on the control diet were lower (p < 0.05) than those of birds fed on either the C150 or C250 diets. The results from this study suggest that CLM may be included up to 150 g/kg in commercial diets without having an adverse effect on poultry performance, and may also be mixed with maize up to 250 g/kg to improve the performance of chickens fed on low-protein diets.

  14. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Guillemin, Claire; Neeman-azulay, Meytal

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSDmore » or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper supplementation. • Global DNA hypomethylation was resolved both by Tempol and by copper supplementation. • Placental oxidative stress parameters coincides previous findings in the fetal liver.« less

  15. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model.

    PubMed

    Hong, Seul-Ki; Choo, Eun-Ho; Ihm, Sang-Hyun; Chang, Kiyuk; Seung, Ki-Bae

    2017-11-01

    Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neuronal Suppressor of Cytokine Signaling 3: Role in Modulating Chronic Metabolic and Cardiovascular Effects of Leptin.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Freeman, John Nathan; Wang, Zhen; Moak, Sydney P; Hankins, Michael W; Drummond, Heather A; Hall, John E

    2018-06-01

    We determined whether deficiency of neuronal SOCS3 (suppressor of cytokine signaling 3)-a potential negative regulator of leptin signaling-amplifies the chronic effects of leptin on food intake, energy expenditure, glucose, and blood pressure (BP) and protects against adverse cardiometabolic effects of obesity. BP and heart rate were recorded by telemetry, and oxygen consumption (VO 2 ) was monitored in 22-week-old mice with nervous system SOCS3 deficiency (SOCS3-Nestin-Cre) and control mice (SOCS3 flox/flox ) fed normal or high-fat-high-fructose diet from 6 to 22 weeks of age. Compared with controls, SOCS3-Nestin-Cre mice had lower plasma glucose (124±7 versus 146±10 mg/dL), consumed less food (3.0±0.4 versus 3.6±0.2 g/d), and had similar VO 2 (77±6 versus 73±3 mL/kg per minute) and BP (103±3 versus 107±3 mm Hg) but higher heart rate (666±15 versus 602±17 bpm). In mice fed the normal diet, leptin infusion for 7 days caused similar reductions in food intake (2.3±0.1 versus 2.4±0.2 g) but greater increases in BP (15±3 versus 7±2 mm Hg) in SOCS3-Nestin-Cre compared with controls. Leptin reduced blood glucose concentrations in both groups. Male or female SOCS3-Nestin-Cre fed high-fat-high-fructose diet exhibited less weight gain, body fat, and liver steatosis and greater energy expenditure and heart rate compared with controls. Female SOCS3-Nestin-Cre mice fed high-fat-high-fructose diet had higher BP compared with controls. Thus, neuronal SOCS3 seems to play an important role in cardiometabolic regulation because neuronal SOCS3 deficiency reduced body weight and food intake while amplifying leptin's effects on appetite and BP and attenuating the adverse metabolic effects of high-fat-high-fructose diet. © 2018 American Heart Association, Inc.

  17. GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance.

    PubMed

    Wang, Jinghong; Pan, Zheng; Baribault, Helene; Chui, Danny; Gundel, Caroline; Véniant, Murielle

    2016-01-01

    Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been modified. To assess this hypothesis a new Gpr21 KO mouse line using TALENS technology was generated. Gpr21 gene deletion was confirmed by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a normal or high fat diet chow did not maintain their improved metabolic phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels may have contributed to the phenotype of the originally designed Gpr21 KO mice.

  18. Copper status in weanling rats fed low levels of inorganic tin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, J.I.; Hight, S.C.

    1991-03-15

    The metabolism of Cu and Fe is adversely affected by ingestion of tin (Sn). In the present study, weanling male rats were fed 33 ug Sn/g in purified Cu-adequate or Cu-deficient diets for 14 or 28 days. Diets were based upon diet AIN-76A and contained 55% glucose and 15% starch. Ceruloplasmin was undetectable in serum of rats fed diets 2, 3 and 4 for 14 or 28 days. Superoxide dismutase (SOD) and Cu in liver decreased when 33 ug Sn/g was included in +Cu diets. Wt. gain, relative heart wt., SOD, and Cu and Fe in liver were sensitive indicesmore » of copper depletion in rats fed {minus}Cu diets. Cu status in rats fed {minus}Cu diets for 14 or 28 days was adversely affected by inclusion of Sn as indicated by changes in hemoglobin (HGB) and relative heart wt. Ingestion of low levels of inorganic tin causes Cu depletion in rats fed +Cu diets and accelerated the appearance of signs of copper deficiency in those fed {minus}Cu diets.« less

  19. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats.

    PubMed

    Márquez-Ibarra, Adriana; Huerta, Miguel; Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I; Cruzblanca, Humberto; Mancilla, Evelyn; Trujillo, Xóchitl

    2016-01-01

    Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.

  20. Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Tuśnio, Anna; Pastuszewska, Barbara

    2015-01-01

    The effects of indigestible carbohydrates, protein type, and protein level on large intestine health were examined in rats. For 21 days, 12 groups of six 12-week-old male Wistar rats were fed diets with casein (CAS), or potato protein concentrate (PPC), providing 14% (lower protein level; LP), or 20% (higher protein level; HP) protein, and containing cellulose, resistant potato starch, or pectin. Fermentation end-products, pH, and β-glucuronidase levels in cecal digesta, and ammonia levels in colonic digesta were determined. Cecal digesta, tissue weights, cecal and colon morphology, and colonocyte DNA damage were also analyzed. Digesta pH was lower, whereas relative mass of cecal tissue and digesta were higher in rats fed pectin diets than in those fed cellulose. Cecal parameters were greater in rats fed PPC and HP diets than in those fed CAS and LP diets, respectively. Short-chain fatty acid (SCFA) concentrations were unaffected by protein or carbohydrate type. Total SCFA, acetic acid, and propionic acid concentrations were greater in rats fed LP diets than in those fed HP. Cecal pool of isobutyric and isovaleric acids was greater in rats fed PPC than in those fed CAS diets. PPC diets decreased phenol concentration and increased ammonia concentration in cecal and colonic digesta, respectively. Cecal crypt depth was greater in rats fed PPC and HP diets, and was unaffected by carbohydrates; whereas colonic crypt depth was greater in rats fed cellulose. Myenteron thickness in the cecum was unaffected by nutrition, but was greater in the colon of rats fed cellulose. Colonocyte DNA damage was greater in rats fed LP diets than in those fed HP diets, and was unaffected by carbohydrate or protein type. It was found that nutritional factors decreasing cecal digesta weight contribute to greater phenol production, increased DNA damage, and reduced ammonia concentration in the colon. PMID:26536028

  1. Pepsin egg white hydrolysate ameliorates metabolic syndrome in high-fat/high-dextrose fed rats.

    PubMed

    Moreno-Fernández, S; Garcés-Rimón, M; González, C; Uranga, J A; López-Miranda, V; Vera, G; Miguel, M

    2018-01-24

    The aim of this study was to examine the effect of a pepsin egg white hydrolysate (EWH) on metabolic complications using a high-fat/high-dextrose diet-induced Metabolic Syndrome (MetS) experimental model. Male Wistar rats were divided into 4 groups which received: standard diet and water (C), standard diet and a solution with 1 g kg -1 day -1 of EWH (CH), high-fat/high-dextrose diet and water (MS), and high-fat/high-dextrose diet and a solution with 1 g kg -1 day -1 of EWH (MSH). EWH consumption normalized body weight gain; abdominal obesity and peripheral neuropathy developed in MetS animals, and adipose tissue and liver weight, as well as plasma glucose were reduced. Oxidative stress and inflammation biomarkers were normalized in MSH animals. In conclusion, the oral administration of EWH could be used as a functional food ingredient to improve some complications associated with MetS induced by unhealthy diets.

  2. Effects of pelleting conditioner retention time on nursery pig growth performance.

    PubMed

    Lewis, L L; Stark, C R; Fahrenholz, A C; Goncalves, M A D; DeRouchey, J M; Jones, C K

    2015-03-01

    A total of 180 nursery pigs (PIC 327 × 1050; initially 12.6 kg) were used in an 18-d study to determine the effects of pellet mill conditioning parameters and feed form on pig performance. All diets were similar, and different feed processing parameters were used to create experimental treatments. Factors considered were conditioning time (15, 30, or 60 s) and feed form (mash or pelleted). To remove the confounding factor of feed form, pelleted samples were reground to a similar particle size as the mash diet. Treatments included: 1) mash diet without thermal processing (negative control), 2) pelleted diet conditioned for 30 s (positive control), 3) pelleted diet conditioned for 15 s and reground, 4) pelleted diet conditioned for 30 s and reground, and 5) pelleted diet conditioned for 60 s and reground. Pigs were weaned and fed a common acclimation diet for 21 d before the start of the experiment. Growth and feed disappearance were then measured for 18 d. All diets had similar levels of percentage total starch, but thermally processed diets had a 1.67 to 1.87-fold increase in percentage gelatinized starch compared to the mash diet. Average daily gain and G:F did not differ between treatments overall, but pigs fed the positive control pelleted diet had decreased ADFI ( < 0.05) compared to pigs fed all other diets. Preplanned contrasts revealed that pigs fed mash diets tended to have greater ADG ( < 0.10) compared to those fed pelleted and reground diets. This suggests that processing may have had a negative influence on feed utilization, which is further supported by the finding that pigs fed mash diets tended to have greater ADG ( < 0.10) compared to those fed diets that were thermally processed, regardless of regrinding. Considering these results, it was not surprising that pigs fed mash diets had greater ADG and ADFI ( < 0.05) than those fed pelleted diets. When directly comparing diets conditioned at 60 rpm, fed either as whole pellets or reground to mash consistency, pigs fed pelleted diets had improved G:F ( < 0.05) due to lower ADFI ( < 0.05) but similar ADG. The expected improvement in G:F from pelleting (6.8%) was observed but lost when diets were reground to near original mash particle size. This may indicate that diet form from the actual pelleting process impacts G:F more than conditioner retention time.

  3. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    PubMed

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  4. Short-term menhaden oil rich diet changes renal lipid profile in acute kidney injury.

    PubMed

    Ossani, Georgina P; Denninghoff, Valeria C; Uceda, Ana M; Díaz, Maria L; Uicich, Raúl; Monserrat, Alberto J

    2015-01-01

    Weanling male Wistar rats fed a choline-deficient diet develop acute kidney injury. Menhaden oil, which is a very important source of omega-3 fatty acids, has a notorious protective effect. The mechanism of this protection is unknown; one possibility could be that menhaden oil changes renal lipid profile, with an impact on the functions of biological membranes. The aim of this work was to study the renal lipid profile in rats fed a choline-deficient diet with menhaden oil or vegetable oil as lipids. Rats were divided into 4 groups and fed four different diets for 7 days: choline-deficient or choline-supplemented diets with corn and hydrogenated oils or menhaden oil. Serum homocysteine, vitamin B12, and folic acid were analyzed. Renal lipid profile, as well as the fatty acid composition of the three oils, was measured. Choline-deficient rats fed vegetable oils showed renal cortical necrosis. Renal omega-6 fatty acids were higher in rats fed a cholinedeficient diet and a choline-supplemented diet with vegetable oils, while renal omega-3 fatty acids were higher in rats fed a choline-deficient diet and a choline-supplemented diet with menhaden oil. Rats fed menhaden oil diets had higher levels of renal eicosapentaenoic and docosahexaenoic acids. Renal myristic acid was increased in rats fed menhaden oil. The lipid renal profile varied quickly according to the type of oil present in the diet.

  5. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet

    PubMed Central

    Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia

    2017-01-01

    Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809

  6. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet.

    PubMed

    Hwang, Jin-Taek; Kim, Sung Hee; Hur, Haeng Jeon; Kim, Hyun Jin; Park, Jae Ho; Sung, Mi Jeong; Yang, Hye Jeong; Ryu, Shi Yong; Kim, Young Sup; Cha, Mi Ran; Kim, Myung Sunny; Kwon, Dae Young

    2012-05-01

    Decursin (De), an active component of Angelica gigas, is known to exert anticancer and neuroprotective effects. However, its antiobesity and antidiabetic potential has not yet been investigated. This study evaluated the antiobesity effect of decursin, particularly focusing on its ability to inhibit adipocyte differentiation in 3T3-L1 cells. Decursin treatment resulted in the inhibition of adipocyte differentiation and the expression of fatty acid synthase. The study further investigated these antiobesity effects using mice fed a normal diet (ND), a high-fat diet (HFD) and a HFD plus decursin 200 mg/kg diet (HFD + De) for 7 weeks. Mice administered HFD plus decursin showed a drastic decrease in weight gain, triglyceride content, total cholesterol content and fat size compared with those that received the HFD alone; this was observed despite similar quantities of total food intake. Furthermore, decursin improved glucose tolerance in mice fed a HFD. Finally, administration of decursin along with the HFD significantly reduced the secretion of HFD-induced adipocytokines such as leptin, resistin, IL-6 and MCP-1. These results suggest that decursin might be useful for the treatment of obesity and diabetes. Copyright © 2011 John Wiley & Sons, Ltd.

  7. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.

    PubMed

    Glastras, Sarah J; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia

    2017-01-01

    Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.

  8. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    PubMed

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    PubMed

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  10. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    PubMed Central

    You, Li; Sheng, Zheng-yan; Tang, Chuan-ling; Chen, Lin; Pan, Ling; Chen, Jin-yu

    2011-01-01

    Aim: To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats. Methods: Female Sprague-Dawley rats were randomly separated into 3 groups: (1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food, 3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet. Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry. Serum levels of oestradiol (E2), osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA. Gene expression profile was determined with microarray. Mouse osteoblast cells (MC3T3-E1) were used for in vitro study. Proliferation, differentiation and oxidative stress of the osteoblasts were investigated using MTT, qRT-PCR and biochemical methods. Results: In high cholesterol fed rats, the femur BMD and serum BGP level were significantly reduced, while the CTX level was significantly increased. DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats. Of these genes, 1626 were also down-regulated and 1466 were up-regulated in OVX rats. In total, 370 genes were up-regulated in both groups, and 976 genes were down-regulated. Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways. The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions. Treatment of MC3T3-E1 cells with cholesterol (12.5-50 μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner. The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1, and increased the oxidative injury in MC3T3-E1 cells. Conclusion: The results suggest a close correlation between hypercholesterolaemia and osteoporosis. High cholesterol diet increases the risk of osteoporosis, possible via inhibiting the differentiation and proliferation of osteoblasts. PMID:22036861

  11. Nutrient digestibility and mass balance in laying hens fed a commercial or acidifying diet.

    PubMed

    Wu-Haan, W; Powers, W J; Angel, C R; Hale, C E; Applegate, T J

    2007-04-01

    The objectives of the current study were to evaluate the effect of an acidifying diet (gypsum) combined with zeolite and slightly reduced crude protein (R) vs. a control diet (C) on nutrient retention in laying hens and compare 3 approaches to estimating nutrient excretion from hens: 1) mass balance calculation (feed nutrients - egg nutrient), 2) use of an indigestible marker with analyzed feed and excreta nutrient content, and 3) an environmental chamber that allowed for capturing all excreted and volatilized nutrients. Hens (n = 640) were allocated randomly to 8 environmental chambers for 3-wk periods. Excreta samples were collected at the end of each trial to estimate apparent retention of N, S, P, and Ca. No diet effects on apparent retention of N were observed (53.44%, P > 0.05). Apparent retention of S, P, and Ca decreased in hens fed R diet (18.7, - 11.4, and 22.6%, respectively) compared with hens fed the C diet (40.7, 0.3, and 28.6%, respectively; P < 0.05). Total N excretion from hens fed the C and R diet was not different (1.16 g/hen/d); however, mass of chamber N remaining in excreta following the 3-wk period was less from hens fed the C diet (1.27 kg) than from hens fed the R diet (1.43 kg). Gaseous emissions of NH(3) over the 3-wk period from hens fed the C diet (0.74 kg per chamber) were greater than emissions from hens fed the R diet (0.45 kg). The 3-wk S excretion mass (estimated using the calculation, indigestible marker, and environmental chamber methods, respectively) was greater from hens fed the R diet (1.85, 1.54, and 1.27 kg, respectively) compared with hens fed the C diet (0.24, 0.20, and 0.14 kg, respectively). The 3-wk P excretion was similar between diets (0.68 kg). Results demonstrate that feeding the acidified diet resulted in decreased N emissions, but because of the acidulant fed, greatly increased S excretion and emissions.

  12. Effects of copper sulfate supplement on growth, tissue concentration, and ruminal solubilities of molybdenum and copper in sheep fed low and high molybdenum diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan, M.; Veira, D.M.

    1985-01-01

    Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma.more » Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.« less

  13. Distribution of magnesium in central nervous system tissue, trabecular and cortical bone in rats fed with unbalanced diets of minerals.

    PubMed

    Yasui, M; Yano, I; Yase, Y; Ota, K

    1990-11-01

    Recent epidemiological changes in patterns of foci of amyotrophic lateral sclerosis (ALS) in the Western Pacific suggest that environmental factors play a contributory role in the pathogenic process of this disorder. In this experimental study on rats, a similar situation of dietary mineral imbalance was created as is found in the soil and drinking water of these ALS foci with a low content of calcium (Ca) and magnesium (Mg) and a high content of aluminum (Al). In groups of rats fed a low Ca diet, low Ca-Mg diet, and low Ca-Mg plus high Al diet, serum Ca levels were found to be lower than those in a group fed a standard diet. Also, serum Mg levels were lower in the groups fed a low Ca-Mg diet and a low Ca-Mg plus high Al diet than in the groups fed a standard diet and only a low Ca diet. There was no significant difference in Mg content of central nervous system (CNS) tissues of groups fed unbalanced and standard diets, except for a significant decrease in Mg content of the spinal cord of rats fed a low Ca-Mg plus high Al diet. Mg content of the lumbar spine and cortical bone decreased in the unbalanced diet groups compared with that of a group fed a standard diet. These findings suggest that under the disturbed bone mineralization induced by unbalanced mineral diets, Mg may be mobilized from bone to maintain the level necessary for vital activity in soft tissues including CNS tissue.

  14. A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: effect of sibutramine, fluoxetine, topiramate, and midazolam.

    PubMed

    Cifani, Carlo; Polidori, Carlo; Melotto, Sergio; Ciccocioppo, Roberto; Massi, Maurizio

    2009-05-01

    Preclinical models are needed to investigate the neurobiology and psychobiology of binge eating and to identify innovative pharmacotherapeutic strategies. A modification of the model based on the combination of cyclic caloric restrictions and acute stress was developed to further increase its face validity and reliability and, for the first time, to assess its predictive value. Four groups of female rats were employed: group 1 was normally fed and not stressed on the test day (25th); group 2 was fed normally but was exposed to an acute stress on day 25; group 3 was exposed to three cycles (4 days 66% of chow intake + 4 days food ad libitum) of yo-yo dieting but not stressed; and group 4 was exposed to cyclic yo-yo dieting and then stressed. All groups were fed highly palatable food (HPF) for 2 h on days 5-6 and 13-14. Acute stress was elicited by exposing rats to HPF, but preventing them from access to it for 15 min. The combination of cyclic food restriction and stressful exposure to food markedly increased HPF intake. Sibutramine and fluoxetine inhibited food intake in all conditions. Topiramate selectively inhibited compulsive HPF intake in rats submitted to caloric restriction and stress. Midazolam increased HPF intake. Pharmacological results suggest that this model, in addition to face validity as an isomorphic model of human binge eating, is endowed with good predictive validity.

  15. The Deterioration Seen in Myelin Related Morphophysiology in Vanadium Exposed Rats is Partially Protected by Concurrent Iron Deficiency.

    PubMed

    Usende, Ifukibot Levi; Leitner, Dominque F; Neely, Elizabeth; Connor, James R; Olopade, James O

    2016-08-30

    Oligodendrocyte development and myelination occurs vigorously during the early post natal period which coincides with the period of peak mobilization of iron. Oligodendrocyte progenitor cells (OPCs) are easily disturbed by any agent that affects iron homeostasis and its assimilation into these cells. Environmental exposure to vanadium, a transition metal can disrupt this iron homeostasis. We investigated the interaction of iron deficiency and vanadium exposure on the myelination infrastructure and its related neurobehavioural phenotypes, and neurocellular profiles in developing rat brains. Control group (C) dams were fed normal diet while Group 2 (V) dams were fed normal diet and pups were injected with 3mg/kg body weight of sodium metavanadate daily from postnatal day (PND) 1-21. Group 3 (I+V) dams were fed iron deficient diet after delivery and pups injected with 3mg/kg body weight sodium metavanadate from PND1-21. Body and brain weights deteriorated in I+V relative to C and V while neurobehavioral deficit occurred more in V. Whereas immunohistochemical staining shows more astrogliosis and microgliosis indicative of neuroinflammation in I+V, more intense OPCs depletion and hypomyelination were seen in the V, and this was partially protected in I+V. In in vitro studies, vanadium induced glial cells toxicity was partially protected only at the LD 50 dose with the iron chelator, desferroxamine. The data indicate that vanadium promotes myelin damage and iron deficiency in combination with vanadium partially protects this neurotoxicological effects of vanadium.

  16. Performance, carcass characteristics, and ruminal pH of Nellore and Angus young bulls fed a whole shelled corn diet.

    PubMed

    Carvalho, J R R; Chizzotti, M L; Schoonmaker, J P; Teixeira, P D; Lopes, R C; Oliveira, C V R; Ladeira, M M

    2016-06-01

    The objectives of this study were to test the interaction of breed (Nellore or Angus) and diet (whole shelled corn [WSC] or ground corn [GC] with silage) on growth performance, carcass characteristics, and ruminal pH of young bulls. Thirty-six bulls (18 Nellore and 18 Angus) with the range in age of 18 to 22 mo and BW of 381 ± 12 kg were used in a completely randomized design experiment with a 2 × 2 factorial arrangement of treatments (2 breeds and 2 diets). Experimental diets (DM basis) included 1) a GC diet containing 30% corn silage and 70% GC- and soybean meal-based concentrate and 2) a WSC diet containing 85% WSC and 15% of a soybean meal- and mineral-based pelleted supplement. An additional 8 bulls were slaughtered at the beginning of the experimental period for determination of initial carcass weight. The treatments were Nellore fed the GC diet, Nellore fed the WSC diet, Angus fed the GC diet, and Angus fed the WSC diet. Greater DMI ( < 0.01), ADG ( < 0.01), and G:F ( < 0.01) were observed in Angus bulls compared with Nellore bulls, regardless of diet. Lower average ruminal pH ( = 0.04), maximum ruminal pH (P = 0.02), and DMI ( < 0.01) were observed in bulls fed the WSC diet than in those fed the GC diet. In addition, bulls fed the WSC diet had greater G:F ( < 0.01). The WSC diet led to greater variation in DMI compared with the GC diet ( < 0.01). Omasum and large intestine percentage was affected by diets only in the Angus breed ( < 0.02) and were greater when bulls were fed the GC diet. The WSC diet without forage may be useful for feedlots because this diet promoted greater G:F than the GC diet, regardless of breed. However, special care must be exercised in feed management during adaptation and throughout the feeding of Nellore animals to avoid digestive disorders and fluctuations in DMI.

  17. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens.

    PubMed

    Baurhoo, B; Phillip, L; Ruiz-Feria, C A

    2007-06-01

    A study was conducted to evaluate lignin and mannan oligosaccharides as potential alternatives to antibiotic growth promoters in broilers. Dietary treatments included an antibiotic-free diet (CTL-), a positive control (CTL+, 11 mg/kg of virginiamycin), and an antibiotic-free diet containing BioMos (MOS, 0.2% to 21 d and 0.1% thereafter) or Alcell lignin at 1.25% (LL) or 2.5% (HL) of the diet. Each treatment was randomly assigned to 4 floor pen replicates (40 birds each). Body weight and feed conversion were recorded weekly throughout 42 d. Jejunum histology was analyzed at d 14, 28, and 42. At d 28 and 42, cecal contents were assayed for Escherichia coli, Salmonella, lactobacilli, and bifidobacteria, and the litter was analyzed for E. coli and Salmonella. Birds fed the CTL- diet were heavier (P<0.05) than those fed the other dietary treatments, but feed conversion was not affected by dietary treatments. Birds fed MOS and LL had increased jejunum villi height and a higher number of goblet cells per villus (P<0.05) when compared with those fed the CTL+ diet. At d 42, birds fed MOS, LL, or HL had greater lactobacilli numbers than those fed the CTL+ diet. Compared with the CTL+ diet, the MOS diet increased the populations of bifidobacteria (P<0.05) in the ceca. Litter E. coli load was lower in birds fed MOS (P<0.05) than in birds fed the CTL+ diet but comparable to that of birds fed the LL or HL diet. Broiler performance was similar in birds fed antibiotics or antibiotic-free diets containing either MOS or lignin. However, birds fed MOS and LL had a comparative advantage over birds fed antibiotics as evidenced by an increased population of beneficial bacteria in the ceca, increased villi height and number of goblet cells in the jejunum, and lower population of E. coli in the litter.

  18. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  19. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides.

    PubMed

    Guerreiro, Inês; Couto, Ana; Pérez-Jiménez, Amalia; Oliva-Teles, Aires; Enes, Paula

    2015-12-28

    The effects of short-chain fructo-oligosaccharides (scFOS) and xylo-oligosaccharides (XOS) on gut morphology and hepatic oxidative status were studied in European sea bass juveniles weighing 60 g. Fish were fed diets including fishmeal (FM diets) or plant feedstuffs (PF diets; 30 FM:70 PF) as main protein sources (control diets). Four other diets were formulated similar to the control diets but including 1 % scFOS or 1 % XOS. At the end of the trial, fish fed PF-based diets presented histomorphological alterations in the distal intestine, whereas only transient alterations were observed in the pyloric caeca. Comparatively to fish fed FM-based diets, fish fed PF diets had higher liver lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) activities, and lower glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase activities. In fish fed the PF diets, prebiotic supplementation decreased SOD activity and XOS supplementation further decreased CAT activity. In fish fed the FM diets, XOS supplementation promoted a reduction of all antioxidant enzyme activities. Overall, dietary XOS and scFOS supplementation had only minor effects on gut morphology or LPO levels. However, dietary XOS reduced antioxidant enzymatic activity in both PF and FM diets, which indicate a positive effect on reduction of hepatic reactive oxygen species production.

  20. Effects of mannan oligosaccharide dietary supplementation on performances of the tropical spiny lobsters juvenile (Panulirus ornatus, Fabricius 1798).

    PubMed

    Sang, Huynh Minh; Fotedar, Ravi

    2010-03-01

    The effects of dietary mannan oligosaccharide (MOS) (Bio-Mos, Alltech, USA) on the growth, survival, physiology, bacteria and morphology of the gut and immune response to bacterial infection of tropical rock lobsters (Panulirus ornatus) juvenile were investigated. Dietary inclusion level of MOS at 0.4% was tested against the control diet (trash fish) without MOS inclusion. At the end of 56 days of rearing period, a challenged test was also conducted to evaluate the bacterial infection resistant ability of the lobsters fed the two diets. Lobster juvenile fed MOS diet attained 2.86 +/- 0.07 g of total weigh and 66.67 +/- 4.76% survival rate which were higher (P < 0.05) than the lobsters fed control diet (2.35 +/- 0.14 g total weight and 54.76 +/- 2.38% survival rate, respectively) thus providing the higher (P < 0.05) specific growth rate (SGR) and average weekly gain (AWG) of lobsters fed MOS diet. Physiological condition indicators such as wet tail muscle index (Tw/B), wet hepatosomatic index (Hiw) and dry tail muscle index (Td/B) of the lobsters fed MOS supplemented diet were higher (P < 0.05) than that of the lobsters fed the control diet. Bacteria in the gut (both total aerobic and Vibrio spp.) and gut's absorption surface indicated by the internal perimeter/external perimeter ratio were also higher (P < 0.05) when the lobsters were fed MOS diet. Lobsters fed MOS diet were in better immune condition showed by higher THC and GC, and lower bacteraemia. Survival, THC, GC were not different among the lobsters fed either MOS or control diet after 3 days of bacterial infection while bacteraemia was lower in the lobsters fed MOS diet. After 7 days of bacterial infection the lobsters fed MOS diet showed higher survival, THC, GC and lower bacteraemia than the lobsters fed the control diet. The experimental trial demonstrated the ability of MOS to improve the growth performance, survival, physiological condition, gut health and immune responses of tropical spiny lobsters juveniles. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented soybean meal and organic selenium.

    PubMed

    Ilham, I; Fotedar, Ravi

    2017-06-01

    Solvent-extracted soybean meal (SBM) was fermented using baker's yeast Saccharomyces cerevisae at 30 °C for 5 days. Four isonitrogenous and isocaloric diets containing 75% SBM protein, either fermented or non-fermented (SBM and FSBM), and supplemented or not with organic Se (OS) (SBM OS and FSBM OS ), were fed to triplicate groups of juvenile barramundi (Lates calcarifer) (initial weight of 5 g) for 75 days. A fishmeal (FM)-based diet formulated for juvenile barramundi was used as a reference diet. The growth of fish was significantly affected by either the interaction of SBM type or by the OS level. In fish fed diets supplemented with OS (SBM OS and FSBM OS ), final weight (FW), specific growth rate (SGR) and weight gain (WG) were higher in fish fed the fermented SBM (FSBM OS ) than in those fed the non-fermented SBM (SBM OS ). The apparent digestibility coefficient (ADC) of protein was higher in the fish fed the fermented SBM, either supplemented or unsupplemented with OS. However, there were no significant differences in the ADC of dry matter (DM) and lipids among the tested diets and in comparison to the reference diet. The haematocrit and leucocrit of fish fed the FSBM OS diet were lower than those of fish fed the FM diet. Furthermore, glutathione peroxidase (GPx) activity was significantly influenced by OS supplementation in the experimental diets; GPx activity was greater in the fish fed diets supplemented with OS. Creatinine kinase (CK) of all groups of fish was higher than the CK of those fed the reference diet. These results suggest that with a proper nutritional level, OS supplementation may act as an important factor in enzymatic GPx activity and in the haematology and blood biochemistry status of juvenile barramundi fed fermented SBM-based diets, encouraging improvement of the overall growth performance.

  2. Effects of using ground redberry juniper and dried distillers grains with solubles in lamb feedlot diets: growth, blood serum, fecal, and wool characteristics.

    PubMed

    Whitney, T R; Lupton, C J; Muir, J P; Adams, R P; Stewart, W C

    2014-03-01

    Effects of using ground redberry juniper and dried distillers grains with solubles (DDGS) in Rambouillet lamb (n = 45) feedlot diets on growth, blood serum, fecal, and wool characteristics were evaluated. In a randomized design study with 2 feeding periods (Period 1 = 64% concentrate diet, 35 d; Period 2 = 85% concentrate diet, 56 d), lambs were individually fed 5 isonitrogenous diets: a control diet (CNTL) that contained oat hay but not DDGS or juniper or DDGS-based diets in which 0 (0JUN), 33 (33JUN), 66 (66JUN), or 100% (100JUN) of the oat hay was replaced by juniper. During Period 1, lambs fed CNTL had greater (P < 0.05) DMI and ADG and tended to have greater (P < 0.10) G:F than lambs fed 0JUN or lambs fed DDGS-based diets. Lamb DMI, ADG, and G:F quadratically increased (P < 0.008) as juniper increased in the DDGS-based diets. During Period 2, lambs fed CNTL had greater (P < 0.05) DMI than lambs fed 0JUN or lambs fed DDGS-based diets, but ADG was similar (P > 0.41). Compared to 0JUN, lambs fed CNTL had similar (P = 0.12) G:F and tended to have less G:F (P = 0.07) than lambs fed DDGS-based diets. Among lambs fed DDGS-based diets, DMI was similar (P > 0.19), ADG increased linearly (P = 0.03), and G:F tended to decrease quadratically (P = 0.06) as juniper increased in the diet. Serum IGF-1, serum urea N (SUN), and fecal N were greater (P < 0.05) and serum Ca and P and fecal P were similar (P > 0.13) for lambs fed CNTL vs. lambs fed DDGS-based diets (CNTL). Within lambs fed DDGS-based diets, SUN increased quadratically (P = 0.01) and fecal N increased linearly (P = 0.004), which can partially be attributed to increased dietary urea and condensed tannin intake. Most wool characteristics were not affected, but wool growth per kilogram of BW decreased quadratically (P = 0.04) as percentage of juniper increased in the DDGS-based diets. When evaluating the entire 91-d feeding trial, results indicated that replacing all of the ground oat hay with ground juniper leaves and stems in lamb growing and finishing diets is not detrimental to animal performance and that DDGS-based diets can reduce total feedlot costs, as compared to sorghum grain and cottonseed meal-based diets. However, compared to using juniper or oat hay as the sole roughage source, using both during the growing period (Period 1) enhanced growth performance and further reduced total feedlot costs.

  3. A Comparison of Growth and Survival of Aquacultured Juvenile Florida Pompano fed Fishmeal and Plant-Based Diets

    NASA Astrophysics Data System (ADS)

    Budden, D.

    2016-02-01

    We investigated the growth and survival of aquacultured juvenile Florida Pompano (Trachinotus carolinus) fed two different diets. Pompano (initial weight 7.7 g /fish) were randomly assigned to one of two dietary treatments: Zeigler pellets (fishmeal; 35% protein, 5% lipid) and a plant-based Repashy Soilent Green algae gel (plant-based; 35% protein, 6% lipid). Fish were fed rations of 5% body weight twice daily for eight weeks. Despite nearly equivalent proximate compositions for the two feeds, survival rates were significantly affected by diet. All fish fed the Zeigler diet survived; however, mortality was observed in 92% of the fish fed the Repashy diet. At the end of the trial, mean weight gain of surviving pompano was highest in fish fed Zeigler pellets. Mean specific growth rate (SGR) for fish fed the Zeigler diet (0.24% per day) was higher than for fish fed Repashy (-2.44%).While plant-based feeds have been successfully used with the species, these results suggest that the plant-based Repashy diet is not suitable for survival or growth of aquacultured Florida pompano.

  4. Raspberry Ketone Protects Rats Fed High-Fat Diets Against Nonalcoholic Steatohepatitis

    PubMed Central

    Wang, Lili; Zhang, Fengqing

    2012-01-01

    Abstract The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague–Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin–eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was significantly improved (P<.05, P<.01). Thus raspberry ketone was an effective intervention for NASH in rats. It was believed that raspberry ketone had a dual effect of liver protection and fat reduction, and the mechanism was probably mediated by alleviation of fatty degeneration of liver cells, decreased liver inflammation, correction of dyslipidemia, reversal of LEP and INS resistance, and improved antioxidant capacity. PMID:22551412

  5. Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis.

    PubMed

    Wang, Lili; Meng, Xianjun; Zhang, Fengqing

    2012-05-01

    The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague-Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin-eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was significantly improved (P<.05, P<.01). Thus raspberry ketone was an effective intervention for NASH in rats. It was believed that raspberry ketone had a dual effect of liver protection and fat reduction, and the mechanism was probably mediated by alleviation of fatty degeneration of liver cells, decreased liver inflammation, correction of dyslipidemia, reversal of LEP and INS resistance, and improved antioxidant capacity.

  6. The interactive effect of dietary protein and vitamin levels on the depression of gonadal development in growing male rats kept under disturbed daily rhythm.

    PubMed

    Hanai, Miho; Esashi, Takatoshi

    2007-04-01

    The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. The present study examined protein and vitamins, and their interactions. This study was based on three-way ANOVA; the three factors were lighting conditions, dietary protein and dietary vitamins, respectively. The levels of dietary protein were low or normal: 9% casein or 20% casein. The levels of dietary vitamins were low, normal or high: 1/3.3 of normal (AIN-93G diet) content, normal content, or three times the normal content, respectively. Other compositions were the same as those of the AIN-93G diet, and six kinds of experimental diet were prepared. Four-week-old rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. After 4 wk, the gonadal weights and serum testosterone content were evaluated. In the constant darkness groups (D-groups), the low-protein diet induced reduction of gonadal organ weights and serum testosterone concentrations. This reduction of gonadal organ weights was exacerbated by progressively higher levels of dietary vitamins. In the case of a normal-protein diet, the depression of gonadal development was not accelerated by high-vitamin intake. In the normal lighting groups (N-groups), the low-protein and high-vitamin diet slightly depressed gonadal development. These results suggest that the metabolism of protein and vitamins is different in rats being kept under constant darkness, and that excess dietary vitamins have an adverse effect on gonadal development in rats fed a low-protein diet.

  7. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    PubMed

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  8. Effects of Dietary Zinc Manipulation on Growth Performance, Zinc Status and Immune Response during Giardia lamblia Infection: A Study in CD-1 Mice

    PubMed Central

    Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto

    2013-01-01

    Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196

  9. The Potential Effect of Chinese Herbal Formula Hongqijiangzhi Fang in Improving NAFLD: Focusing on NLRP3 Inflammasome and Gut Microbiota

    PubMed Central

    Liang, Shu; Zhang, Yupei; Deng, Yuanjun; He, Yifang; Liang, Yinji; Liang, Zien; Chen, Yanning; Tang, Kairui; Chen, Runsen

    2018-01-01

    The present study investigates the potential therapeutic mechanism underlying the effects of the Chinese herbal formula Hongqijiangzhi Fang (HJF) on nonalcoholic fatty liver disease (NAFLD) in rats. Male Sprague Dawley (SD) rats were randomly divided into 4 groups (n = 8): control group was fed a normal diet, three other groups were fed high-fat diets (HFD), and the two treatment groups were intragastrically given a compound probiotic or HJF during the molding time. After 16 w, related indices were detected. The results showed that HJF significantly reduced abdominal aorta serum cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), IL-1β, and IL-18, portal venous serum lipopolysaccharide (LPS), and liver TC and TG levels in HFD-fed rats. HJF ameliorated hepatic steatosis in the liver and improved the intestinal barrier in HFD-fed rats. Activation of the NLRP3 inflammasome was reduced by HJF in HFD-fed rats. Additionally, the abundances of A. muciniphila (Verrucomicrobiaceae), F. rappini (Helicobacteraceae), and Enterobacteriaceae bacteria significantly decreased in HJF-treated HFD-fed rats. In conclusion, these result suggested that the Chinese herbal formula HJF reduced hepatic steatosis maybe through decreasing certain gut bacteria (such as Enterobacteriaceae bacteria and F. rappini), alleviating intestinal endotoxemia and reducing NLRP3 inflammasome activation. PMID:29675053

  10. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    PubMed

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  11. Lipidemic effects of common edible oils and risk of atherosclerosis in diabetic Wistar rats

    PubMed Central

    Oladapo, Olulola Olutoyin; Ojora, Kehinde Adeyemi; Quadri, Oluwafemi Majeed; Ajani, Rotimi Sunday

    2017-01-01

    BACKGROUND Diabetic state potentiates atherosclerosis and the type of edible oil consumed by the individual may affect this further. This study aimed to determine if the common edible oils in Nigeria have any effects on the lipid profiles and arteries of alloxan-induced diabetic male Wistar rats. METHODS Thirty male Wistar rats were randomly divided into five groups of normal control, diabetic control, animals on diet enriched with refined, bleached deodorized palm oil (RBD-PO), animals on diet enriched with soya oil, and animals on diet enriched with olive oil. At the end of 8 weeks, the lipid profiles of the animals were determined before sacrificing them. Their aortas were subsequently harvested for histological examination. RESULTS The olive oil fed group had the highest level of total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), lowest HDL-C, and highest artherogenic index (AI). Diabetic animals fed on RBD-PO had a lower non-HDL-C, higher HDL-C, and lower AI than diabetic animals fed on olive oil or soya oil. However, the diabetic animals fed on RBD-PO had the highest triglyceride level. When the aortas were examined histologically, there were no atherosclerotic lesions in all the control and experimental groups except those fed on 10% soya oil enriched diet that had type II atherosclerotic lesions according to American Heart Association (AHA). CONCLUSION The result of our study showed that RBD-PO appears to offer a better lipid profile in the diabetic animals compared with olive oil and soya oil. Soya oil appears to cause the development of atherosclerosis in diabetic state. PMID:28761450

  12. Comparison of dynamic change of egg selenium deposition after feeding sodium selenite or selenium-enriched yeast.

    PubMed

    Lu, J; Qu, L; Shen, M M; Hu, Y P; Guo, J; Dou, T C; Wang, K H

    2018-05-19

    The aim of this study was to compare the dynamic change of egg selenium (Se) deposition after sodium selenite (SS) or selenium-enriched yeast (SY) supplementation for 1, 3, 5, 7, 14, 21, 28, 56, and 84 d. A total of 576 32-wk-old Hy-Line Brown laying hens were randomly assigned to 3 groups (192 laying hens per group) with 6 replicates, and fed a basal diet (without Se supplementation) or basal diets with 0.3 mg/kg of Se from SS or 0.3 mg/kg of Se from SY, respectively. The results showed that the Se concentrations in the eggs from hens fed a SY-supplemented diet were significantly higher (P < 0.001) than those from hens fed a SS-supplemented diet or a basal diet after 3 d. And the Se concentrations in the eggs from hens fed a SS-supplemented diet were significantly higher (P < 0.001) than those from hens fed a basal diet after 14 d. There was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed a SY-supplemented diet (r2 = 0.782, P < 0.001; r2 = 0.837, P < 0.001) or SS-supplemented diet (r2 = 0.355, P < 0.001; r2 = 0.413, P < 0.001) and number of feeding days. The Se concentrations in the breasts from hens fed a SY-supplemented diet were 126.98% higher (P < 0.001) than those from hens fed a SS-supplemented diet, and were 299.44% higher (P < 0.001) than those from hens fed a basal diet after the 84-d feeding period. In conclusion, the dietary Se was gradually transferred into eggs with the extension of the experimental duration. The deposition rate of Se in the eggs from hens fed a SY-supplemented diet was much more rapid than that from hens fed a SS-supplemented diet, and the organic Se from SY had higher bioavailability as compared to inorganic Se from SS.

  13. Decreasing the roughage:concentrate ratio of a diet to determine the critical roughage part for beef cattle.

    PubMed

    De Campeneere, S; Fiems, L O; De Boever, J L; Vanacker, J M; De Brabander, D L

    2002-02-01

    The critical roughage part (CRP) of 2 diet types was determined in a cross-over design with 6 double-muscled and 6 normally conformed Belgian Blue bulls fitted with rumen cannulae. The roughage:concentrate ratio was lowered weekly until signs of a lack of physical structure were observed. For diet 1, consisting of maize silage and concentrates, the initial proportion of maize silage was 25% of DM but it decreased weekly with 5% units of DM. For the second diet, consisting of wheat straw and concentrate, 12% straw (DM basis) was provided during the first week and thereafter the proportion of straw decreased weekly with 3% units of DM. Several directly observable parameters (rumen pH, feed intake, bloat, faecal consistency) were evaluated weekly for each bull. Apart from these direct indicators of acidosis, also other parameters, whose results were only available after the end of the trial, were determined (volatile fatty acid profile, lactic acid concentration, chewing time). The roughage part between the part fed when signs of a lack of physical structure was first observed and the part that was fed the week before, was considered as the CRP. Most animals showed no acute signs of clinical acidosis (directly observable parameters) and finished the trial on a 100% concentrate diet. However, in sacco rumen DM-degradabilities of maize silage, grass silage and wheat grain was depressed considerably when low roughage diets were fed. Based on all observed parameters, the mean CRP was calculated to be 14.7% for diet 1 and 8.1% for diet 2. The beef type (double-muscled or not) had no influence on the CRP.

  14. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota

    PubMed Central

    Abhari, Kh; Shekarforoush, S. S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 109/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect. PMID:27175187

  15. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    PubMed

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  16. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota.

    PubMed

    Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.

  17. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency

    PubMed Central

    Rajendran, Jayasimman; Tomašić, Nikica; Kotarsky, Heike; Hansson, Eva; Velagapudi, Vidya; Kallijärvi, Jukka; Fellman, Vineta

    2016-01-01

    Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders. PMID:27809283

  19. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension.

    PubMed

    Durgan, David J; Ganesh, Bhanu P; Cope, Julia L; Ajami, Nadim J; Phillips, Sharon C; Petrosino, Joseph F; Hollister, Emily B; Bryan, Robert M

    2016-02-01

    Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10-s inflations, 60 per hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high-fat diet, blood pressure increased 24 and 29 mm Hg after 7 and 14 days of OSA, respectively (P<0.05 each). Bacterial community characterization was performed on fecal pellets isolated before and after 14 days of OSA in chow and high-fat fed rats. High-fat diet and OSA led to significant alterations of the gut microbiota, including decreases in bacterial taxa known to produce the short chain fatty acid butyrate (P<0.05). Finally, transplant of dysbiotic cecal contents from hypertensive OSA rats on high-fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32 mm Hg after 7 and 14 days of OSA, respectively; P<0.05). These studies demonstrate a causal relationship between gut dysbiosis and hypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension. © 2015 American Heart Association, Inc.

  20. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles.

    PubMed

    Marthandam Asokan, Shibu; Hung, Tsu-Han; Chiang, Wen-Dee; Lin, Wan-Teng

    2018-03-01

    Obesity is generally associated with low-grade chronic inflammation that involves the recruitment of macrophages and other inflammation factors to the adipocytes of obese individuals. Tumor necrosis factor-alpha (TNF-α), a cytokine associated with systemic inflammation, is elevated in conditions of obesity. TNF-α is an important factor that plays an important role in skeletal muscle wasting. Apoptosis of myonuclei contributes to the loss of muscle mass and therefore plays an important role in skeletal muscle atrophy. In mouse models that were fed a high fat diet (HFD), a lipolysis-stimulating peptide-VHVV (purified from hydrolysate resulting from flavourzyme treatment of soy protein) was found to reduce HFD-related apoptotic effects in mice skeletal muscle and potentially control atrophy. HFD fed mice had heavier body weight than those fed with normal chow, and VHVV administration restricted lipid accumulation in muscle tissues of mice fed with HFD but increased nutrient uptake. Moreover, specific concentrations of VHVV regulated TNF-α expression that was elevated by HFD, suppressed apoptosis-related proteins and regulated the proteins of lipid metabolism.

  1. Effect of feed supplementation with Satureja khuzistanica essential oil on performance and physiological parameters of broilers fed on wheat- or maize-based diets.

    PubMed

    Masouri, L; Salari, S; Sari, M; Tabatabaei, S; Masouri, B

    2017-08-01

    1. The aim of this study was to evaluate various levels of Satureja khuzistanica essential oil (SKEO) on performance and physiological parameters of broilers fed on wheat- or maize-based diets. 2. Treatments consisted of two cereals (maize- or wheat-based diets) and three levels of SKEO)0, 250 and 500 mg/kg). 3. Feed intake (FI) and body weight gain (BWG) decreased in broilers fed on the wheat-based diets compared to the control diet. Dietary supplementation of 500 mg/kg SKEO increased FI and BWG. Dietary SKEO supplementation was effective in improving FI and BWG only in wheat-based diets and was effective in improving feed conversion ratio (FCR) in both diets. 4. Dietary supplementation of 500 mg/kg SKEO caused a significant decrease in plasma cholesterol and triglycerides. Also, plasma low-density lipoprotein concentration was decreased in broilers fed on 250 and 500 mg/kg of SKEO. Plasma cholesterol levels in birds fed on the wheat-based diets were lower than in those fed on maize-based diets. 5. Dietary supplementation of 500 mg/kg SKEO increased caecal population of Lactobacillus and reduced total bacterial and Escherichia coli count. Caecal population of Lactobacillus decreased in broilers fed on the wheat-based diets. 6. Digesta viscosity was increased in broilers fed on the wheat-based diets and decreased in broilers fed on 500 mg/kg SKEO compared to the control diet. Dietary SKEO supplementation was effective in reducing digesta viscosity values only in wheat-based diets. 7. Villus height of the duodenum and jejunum decreased in broilers fed on the wheat-based diets. Dietary supplementation of 500 mg/kg SKEO increased villus height and villus height-to-crypt depth ratios and decreased crypt depth of the duodenum compared to the control diet. 8. It can be concluded that dietary SKEO supplementation was effective in improving FI, BWG and FCR values in wheat-based diets.

  2. Copper hydroxychloride improves growth performance and reduces diarrhea frequency of weanling pigs fed a corn-soybean meal diet but does not change apparent total tract digestibility of energy and acid hydrolyzed ether extract.

    PubMed

    Espinosa, C D; Fry, R S; Usry, J L; Stein, H H

    2017-12-01

    Three experiments were conducted to determine effects of Cu hydroxychloride on DE and ME, apparent total tract digestibility (ATTD) of energy and acid hydrolyzed ether extract (AEE), and growth performance of pigs fed a diet based on corn and soybean meal (SBM). In Exp. 1, 80 weanling pigs (6.80 ± 1.69 kg) were allotted to 2 treatments with 4 pigs per pen and 10 pen replicates per diet. Pigs were fed a corn-SBM control diet that had Cu added to meet the requirement. A second diet was formulated by adding 150 mg Cu/kg from Cu hydroxychloride to the control diet. Both diets were fed for 4 wk. Results indicated that ADG, G:F, and final BW were greater ( ≤ 0.05) and fecal scores were reduced ( ≤ 0.05) for pigs fed the diet containing150 mg Cu/kg as hydroxychloride compared with pigs fed the control diet. In Exp. 2, 36 barrows (9.89 ± 1.21 kg) were randomly allotted to 3 dietary treatments and placed in metabolism crates. The control diet was based on corn and SBM and contained 20 mg Cu/kg. Two additional diets were formulated by adding 100 or 200 mg Cu/kg from Cu hydroxychloride to the control diet. Diets were fed for 28 d, with feces and urine being collected from d 9 to 14, d 16 to 21, and d 23 to 28. The DE and ME of diets and the ATTD of GE and AEE were not affected by dietary Cu concentrations, but increased ( < 0.01) by collection period. In Exp. 3, 150 pigs (10.22 ± 1.25 kg) were fed the same 3 diets as used in Exp. 2. Diets were provided on an ad libitum basis for 4 wk. Fecal scores were recorded, and on the last day of the experiment, blood samples were collected and tumor necrosis factor-α (TNF-α), IgA, blood urea N, total protein, and albumin were measured. Phase 1 ADG and G:F and final BW on d 28 were greater ( ≤ 0.05) for pigs fed diets containing 100 or 200 mg Cu/kg supplemented by Cu hydroxychloride compared with pigs fed the control diet. Pigs fed the diets supplemented with Cu hydroxychloride also had reduced ( ≤ 0.05) overall fecal scores and diarrhea frequency compared with pigs fed the control diet. However, no differences among treatments were observed for concentrations of TNF-α, IgA, blood urea N, total protein, or albumin. In conclusion, supplementation of Cu as Cu hydroxychloride to diets fed to weanling pigs improved growth performance and reduced diarrhea frequency, but this did not appear to be a result of increased digestibility of energy or AEE.

  3. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd providedmore » a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.« less

  4. Effect of diet processing method and ingredient substitution on feed characteristics and survival of larval walleye, Sander vitreus

    USGS Publications Warehouse

    Barrows, F.T.; Lellis, W.A.

    2006-01-01

    Two methods were developed for the production of larval fish diets. The first method, microextrusion marumerization (MEM), has been tested in laboratory feeding trials for many years and produces particles that are palatable and water stable. The second method, particle-assisted rotational agglomeration (PARA), produced diets that have lower density than diets produced by MEM. Each method was used to produce diets in the 250- to 400- and 400- to 700-??m range and compared with a reference diet (Fry Feed Kyowa* [FFK]) for feeding larval walleye in two experiments. The effect of substituting 4% of the fish meal with freeze-dried artemia fines was also investigated. In the first experiment, 30-d survival was greater (P < 0.05) for fish fed a diet produced by PARA without Artemia (49.1.0%) than for fish fed the same diet produced by MEM (27.6%). The addition of Artemia to a diet produced by MEM did not increase survival of larval walleye. Fish fed the reference diet had 24.4% survival. In the second experiment, there was an effect of both processing method and Artemia supplementation, and an interaction of these effects, on survival. Fish fed a diet produced by PARA without Artemia supplementation had 48.4% survival, and fish fed the same diet produced by MEM had only 19.6% survival. Inclusion of 4% freeze-dried Artemia improved (P < 0.04) survival of fish fed MEM particles but not those fed PARA particles. Fish fed FFK had greater weight gain than fish fed other diets in both experiments. Data indicate that the PARA method of diet processing produces smaller, lower density particles than the MEM process and that diets produced by the PARA process support higher survival of larval walleye with low capital and operating costs. ?? Copyright by the World Aquaculture Society 2006.

  5. Effects of irradiation of feed ingredients added to meal or pelleted diets on growth performance of weanling pigs.

    PubMed

    Groesbeck, C N; Derouchey, J M; Tokach, M D; Goodband, R D; Dritz, S S; Nelssen, J L

    2009-12-01

    Two experiments were conducted to evaluate the effects of irradiated ingredients in meal and pelleted diets on nursery pig performance. In Exp. 1, a total of 192 pigs (initial BW, 6.0 kg) were used in a 25-d experiment. Pigs were blocked by BW and randomly allotted in a 2 x 2 factorial arrangement of treatments with main effects of diet form (meal or pellet) and either irradiated (11.92 kGy) or nonirradiated spray-dried animal plasma (SDAP). Irradiated SDAP had less total bacterial amounts than nonirradiated SDAP, and pelleted diets also had less bacterial amounts than diets in meal form. However, the complete diets with and without irradiated SDAP had similar bacterial concentrations. There was a diet form x SDAP irradiation interaction (P < 0.05) for ADG from d 0 to 11 and d 0 to 25. Pigs fed irradiated SDAP in meal form had increased ADG compared with pigs fed the nonirradiated meal diet, with no change in ADG of pigs fed pelleted diets. In addition, from d 0 to 11, pigs fed irradiated SDAP or pelleted diets had greater G:F (P < 0.01) compared with pigs fed regular SDAP and meal diets, respectively. In Exp. 2, a total of 350 pigs (initial BW, 4.9 kg) were used in a 22-d experiment to determine the effects of feeding irradiated protein sources (SDAP, soybean meal, fish meal, or all 3) in meal and pellet diets on pig performance. Pigs were blocked by BW and randomly allotted to 1 of 10 treatments consisting of a single diet formulation fed in either meal or pellet form containing either no irradiated protein sources or irradiated SDAP, soybean meal, fish meal, or all 3 irradiated protein sources (10.20 kGy). Irradiated SDAP, soybean meal, and fish meal tended to have reduced total bacterial concentrations compared with nonirradiated plasma, and pelleted diets had reduced bacterial concentrations compared with diets in meal form. No irradiation x diet form interactions (P > 0.16) were observed. From d 0 to 11, pigs fed diets containing irradiated protein sources had greater (P < 0.03) G:F compared with pigs fed the control diets, with no difference in ADG or ADFI. From d 0 to 11, and overall (d 0 to 22), pigs fed pellet diets had greater G:F (P < 0.01) compared with pigs fed meal diets, with no difference in ADG and ADFI. These studies indicate that both irradiation and pelleting are manufacturing processes that can reduce bacteria concentrations in feed ingredients and diets. Irradiated SDAP, soybean meal, and fish meal improved G:F compared with control diets containing nonirradiated ingredients. Furthermore, pigs fed pelleted diets had increased G:F compared with pigs fed meal diets.

  6. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    PubMed

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  7. Nutritional vitamin B12 deficiency in a breast-fed infant of a vegan-diet mother.

    PubMed

    Sklar, R

    1986-04-01

    A 7-month-old male presented with lethargy and failure to thrive. The child was exclusively breast-fed from birth by a mother who was a strict vegetarian. Laboratory data revealed macrocytic anemia and methylmalonic acid in the urine, consistent with vitamin B12 deficient anemia. The patient responded well to supplementation with B12 alone and was developmentally normal by 11 months of age. This study emphasizes the need for assuring maternal dietary adequacy during pregnancy and after birth.

  8. Exaggerated response to mild stress in rats fed high-fat diet.

    PubMed

    Legendre, Ariadne; Harris, Ruth B S

    2006-11-01

    It has been suggested that high-fat (HF) diet exaggerates the stress-induced release of glucocorticoids due to activation of the hypothalamic-pituitary-adrenal (HPA) axis. In an initial experiment, in which rats were fed HF diet for 4 days, we found that HF-fed controls stopped gaining weight, indicating that they were hyperresponsive to the mild stress of tail bleeding but responded the same as low-fat (LF)-fed rats to the more severe stress of restraint. A second experiment confirmed these results when rats fed a HF diet for 4 days showed an exaggerated corticosterone release in response to an intraperitoneal injection of saline and movement to a novel cage, compared with LF-fed rats. Experiment 3 tested the same parameters as experiment 2 but interchanged the diets. This allowed us to differentiate between the effects of the dietary fat and the novelty of the diet. Additionally, this experiment determined whether hyperresponsiveness to mild stress in HF-fed rats was sustained during a prolonged exposure to diet. The results confirmed that a HF diet, not novelty, exaggerated the endocrine stress response after 9 days on the diet but that the effect was no longer present after 23 days on the diet. The hyperresponsiveness of the HPA axis in HF-fed rats is similar to that observed in animals that have been exposed to a significant chronic or acute stress, suggesting that the HF diet may initially be perceived as a stressor.

  9. Comparison of the Effects of the 1975 Japanese Diet and the Modern Mediterranean Diet on Lipid Metabolism in Mice.

    PubMed

    Mizowaki, Yui; Sugawara, Saeko; Yamamoto, Kazushi; Sakamoto, Yu; Iwagaki, Yui; Kawakami, Yuki; Igarashi, Miki; Tsuduki, Tsuyoshi

    2017-01-01

    The Japanese diet and the Mediterranean diet are both known to be good for health, but there had been no direct comparison of their health benefits. In this study, we compared the 1975 Japanese diet, which has been found to have high health benefits, with the 2010 Italian diet, which contributes to the longest life expectancy in Mediterranean countries. Diets were created using one-week menus of the two diets based on FAOSTAT Food Balance Sheets. The diets were prepared, freeze-dried, powdered and fed to mice for 4 weeks to examine their effects on lipid metabolism. In mice fed the Japanese diet, the visceral fat weight was lower, adipocytes were smaller, the liver weight was lower and liver TG tended to be lower than those fed the Italian diet, and little lipid accumulation was observed in hepatocytes of mice fed the Japanese diet. In addition, in mice fed the Japanese diet, the expression levels of genes related to fatty acid synthesis were lower, whereas those of genes related to catabolism of fatty acids and cholesterol were higher than those fed the Italian diet. Therefore, the Japanese diet reduced accumulation of lipids in the white adipose tissue and liver by suppressing fatty acid synthesis and promoting catabolism of fatty acids and cholesterol in the liver, compared to the Italian diet.

  10. Motivation for hay: effects of a pelleted diet on behavior and physiology of horses.

    PubMed

    Elia, Jamie B; Erb, Hollis N; Houpt, Katherine Albro

    2010-12-02

    The natural diet of free-ranging horses is grass, which is typically high in fiber and calorically dilute, however diets for high performance domestic horses are often low in fiber and calorically dense. The aim of the study was to determine the motivation of horses for hay when fed a low roughage diet. Their motivation could be used to determine if low roughage diets compromise the welfare of horses. Eight mares were fed two different diets in counterbalanced order: ad libitum orchard grass hay; a complete pelleted feed (pellets). Each trial lasted three weeks, with a one-week transition period between diets. To determine the motivation of horses for fiber they were taught to press a panel to obtain a food reward. The fixed ratio (FR) was increased using a progressive ratio ((1,2,4,7,11…) technique. When fed pellets, the horses worked for a median FR of 1 (Range=1-497) to attain pellets, and when fed hay, they worked for a median FR of 25.5 (4-497) to attain pellets. When fed hay, the horses worked for a median FR of 0 (0-0) to attain hay, and when fed pellets, they worked for a FR of 13 (2-79) to attain hay. These results indicate a greater motivation for hay, a high fiber diet, when fed a low fiber diet. The horses spent 10 (5-19.4)% of their time during a 24-hour period eating pellets compared to 61.5 (29-76) % of their time eating hay. Horses spent 58% of their time standing when fed the pellets and only 37% of their time standing when fed hay. Searching behavior (i.e. sifting through wood shaving bedding for food particles) took up 11.5 (1.4-32) % of the horse's day when fed pellets, but only 1.2 (0-3.5) % of the daily time budget when fed hay. Horses chew more times when eating a hay diet (43,476chews/day) than when eating a pellet diet (10,036chews/day). Fecal pH was lower in horses fed the pelleted diet. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Influence of pirfenidone on airway hyperresponsiveness and inflammation in a Brown-Norway rat model of asthma.

    PubMed

    Mansoor, Jim K; Decile, Kendra C; Giri, Shri N; Pinkerton, Kent E; Walby, William F; Bratt, Jennifer M; Grewal, Harinder; Margolin, Solomon B; Schelegle, Edward S

    2007-01-01

    Pirfenidone was administered to sensitized Brown Norway rats prior to a series of ovalbumin challenges. Airway hyperresponsiveness, inflammatory cell infiltration, mucin and collagen content, and the degree of epithelium and smooth muscle staining for TGF-beta were examined in control, sensitized, and sensitized/challenged rats fed a normal diet or pirfenidone diet. Pirfenidone had no effect on airway hyperresponsiveness, but reduced distal bronchiolar cell infiltration and proximal and distal mucin content. Statistical analysis showed that the control group and sensitized/challenged pirfenidone diet group TGF-beta staining intensity scores were not significantly different from isotype controls, but that the staining intensity scores for the sensitized/challenged normal diet group was significantly different from isotype controls. These results suggest that pirfenidone treatment is effective in reducing some of the components of acute inflammation induced by allergen challenge.

  12. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    PubMed

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  13. Flaxseed reduces epithelial proliferation but does not affect basal cells in induced benign prostatic hyperplasia in rats.

    PubMed

    de Amorim Ribeiro, Ilma Cely; da Costa, Carlos Alberto Soares; da Silva, Vivian Alves Pereira; Côrrea, Lanna Beatriz Neves Silva; Boaventura, Gilson Teles; Chagas, Mauricio Alves

    2017-04-01

    This study aimed to quantitatively and qualitatively evaluate the effects of a flaxseed-based diet on the histoarchitecture of the prostate of normal Wistar rats and of rats with induced BPH. The study included four experimental groups of ten animals each: casein control group (CCG), who were fed a casein-based diet; flaxseed control group (FCG), who were fed a flaxseed-based diet; hyperplasia-induced casein group (HICG), who were fed a casein-based diet; and hyperplasia-induced flaxseed group (HIFG), who were fed a flaxseed-based diet. Hyperplasia was induced by the subcutaneous implantation of silicone pellets containing testosterone propionate. After 20 weeks, the rats were euthanized and their prostate fixed in buffered formalin. Tissue sections were stained with HE, picrosirius red and immunostained for nuclear antigen p63. Histomorphometric analysis evaluated the epithelial thickness, epithelial area, individual luminal area, and total area of prostatic alveoli. The mean epithelial thickness obtained for HIFG and HICG was 16.52 ± 1.65 and 20.58 ± 2.86 µm, respectively. The mean epithelial thickness in HICG was greater than that in the other groups tested. HIFG had a smaller epithelial thickness and lower percentage of papillary projections in the prostatic alveoli. No significant difference was observed between CCG and FCG. The total area and mean alveolar area showed no significant differences between the groups. The number of cells immunostained for p63 was not significantly different between the groups evaluated. These results suggest that flaxseed has a protective effect on the prostate epithelium in BPH-induced animals.

  14. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P < 0.001). Plasma parathyroid hormone concentrations of S rats were twice that of R rats. S rats fed 2% salt had higher plasma 1,25-dihydroxyvitamin D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P < 0.001) and did not exhibit the expected calciuric response to salt. Proteinuria of the S rats was three times that of the R rats, suggesting kidney damage in the S rats. Low plasma 25-OHD and 24,25-dihydroxyvitamin D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  15. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency.

    PubMed

    Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio; Radosavljevic, Tatjana

    2015-04-01

    Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. © 2014 by the Society for Experimental Biology and Medicine.

  16. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats

    PubMed Central

    Müller-Fielitz, Helge; Lau, Margot; Geißler, Cathleen; Werner, Lars; Winkler, Martina; Raasch, Walter

    2015-01-01

    Background and Purpose AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Experimental Approach Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg−1·day−1, 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood–brain barrier. Key Results Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin-than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Conclusions and Implications Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan. PMID:25258168

  17. S100A8 Production in CXCR2-Expressing CD11b+Gr-1high Cells Aggravates Hepatitis in Mice Fed a High-Fat and High-Cholesterol Diet.

    PubMed

    Mukai, Kaori; Miyagi, Takuya; Nishio, Kumiko; Yokoyama, Yoshinobu; Yoshioka, Teppei; Saito, Yoshinobu; Tanaka, Satoshi; Shigekawa, Minoru; Nawa, Takatoshi; Hikita, Hayato; Sakamori, Ryotaro; Yoshihara, Harumasa; Imai, Yasuharu; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a spectrum of presentations. S100A8 has been suggested to play a pivotal role as an endogenous immune-activator in inflammatory diseases. In this study, we investigated the involvement of S100A8 in the development of NAFLD. We used a diet model of NAFLD, in which mice were fed either a high-fat and high-cholesterol diet (HFHCD) or a normal diet (ND) as a control. We also assessed liver tissues from patients with NAFLD, including patients with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). HFHCD-fed mice, but not ND-fed mice, developed steatohepatitis. S100A8 expression was significantly elevated in the livers of HFHCD-fed mice compared with the controls. S100A8 was exclusively expressed in CXCR2-expressing CD11b(+)Gr-1(high) cells, which significantly increased in the livers of HFHCD-fed mice. These cells were F4/80 negative and did not possess a suppressor function. TNF-α expression was enhanced by S100A8 in primary liver leukocytes or a hepatocyte cell line and significantly elevated in the livers of HFHCD-fed mice. TNF-α was primarily produced from CD11b(+)F4/80(+) cells in liver leukocytes in response to S100A8. TNF-α deficiency attenuated hepatitis in HFHCD-fed mice. S100A8 was significantly more expressed in the liver tissues of patients with NASH than in those of patients with NAFL. In conclusion, these results suggest that S100A8 is primarily produced from CXCR2-expressing CD11b(+)Gr-1(high) cells, and it upregulates TNF-α production in CD11b(+)F4/80(+) cells through cellular cross-talk, which is an important mechanism in the development of NAFLD. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks.

    PubMed

    Wils-Plotz, E L; Jenkins, M C; Dilger, R N

    2013-03-01

    Coccidiosis is a major contributor to economic losses in the poultry industry due to its detrimental effects on growth performance and nutrient utilization. We hypothesized that the combined effects of supplemental dietary Thr and purified fiber may modulate the intestinal environment and positively affect intestinal immune responses and barrier function in broiler chicks infected with Eimeria maxima. A Thr-deficient basal diet (3.1 g of Thr/kg of diet) was supplemented with 70 g/kg of silica sand (control) or high-methoxy pectin and 1 of 2 concentrations of Thr (1.8 or 5.3 g/kg of diet; 4 diets total), and fed to chicks from hatch to d 16 posthatch. On d 10 posthatch, chicks received 0.5 mL of distilled water or an acute dose of Eimeria maxima (1.5 × 10(3) sporulated oocytes) with 6 replicate pens of 6 chicks per each of 8 treatment combinations (4 diets and 2 inoculation states). Body weight gain, feed intake, and G:F increased (P < 0.01) with addition of 5.3 g of Thr/kg of diet. Eimeria maxima schizonts were present only in intestinal tissue sampled from infected birds (P < 0.01). Weights of cecal digesta were highest (P < 0.01) in pectin-fed birds, and ceca with the heaviest weights also had the highest concentrations of total short-chain fatty acids. Expression of interleukin-12 in ileal mucosa was highest (P < 0.01) in infected birds receiving the control diet with 5.3 g of supplemental Thr/kg. In cecal tonsils, interferon-γ expression was highest in infected birds receiving the control diet (fiber × infection, P < 0.05); interferon-γ expression was lowest in infected birds fed the high Thr diet (Thr × infection, P < 0.05). There were no differences due to infection or Thr supplementation for cytokine expression in birds fed pectin-containing treatments. Overall, we conclude that although pectin has some protective function against coccidiosis, Thr supplementation had the greatest effect on intestinal immune response and maintenance of near normal growth in young broiler chicks infected with E. maxima.

  19. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets.

    PubMed

    Lu, Kang-Le; Wang, Li-Na; Zhang, Ding-Dong; Liu, Wen-Bin; Xu, Wei-Na

    2017-02-01

    High-fat diets may have favorable effects on growth and cost, but high-fat diets often induce excessive fat deposition, resulting in liver damage. This study aimed to identify the hepatoprotective of a Chinese herb (berberine) for blunt snout bream (Megalobrama amblycephala). Fish were fed with a normal diet (LFD, 5 % fat), high-fat diet (HFD, 15 % fat) or berberine-supplemented diets (BSD, 15 % fat with berberine 50 or 100 mg/kg level) for 8 weeks. After the feeding, histology, oxidative status and mitochondrial function of liver were assessed. The results showed that HFD caused fat accumulation, oxidative stress and apoptosis in hepatocytes of fish. Hepatocytes in HFD group appeared to be hypertrophied, with larger liver cells diameter than these of LFD group. Berberine-supplemented diets could attenuate oxidative stress and hepatocytes apoptosis. HFD induced the decreasing mitochondrial complexes activities and bulk density and surface area density. Berberine improved function of mitochondrial respiratory chain via increasing the complex activities. Moreover, the histological results showed that berberine has the potential to repair mitochondrial ultrastructural damage and elevate the density in cells. In conclusion, our study demonstrated that berberine has attenuated liver damage induced by the high fat mainly via the protection for mitochondria.

  20. Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model

    PubMed Central

    Boots, C.E.; Boudoures, A.; Zhang, W.; Drury, A.; Moley, K.H.

    2016-01-01

    STUDY QUESTION Does supplementation with co-enzyme Q10 (CoQ10) improve the oocyte mitochondrial abnormalities associated with obesity in mice? SUMMARY ANSWER In an obese mouse model, CoQ10 improves the mitochondrial function of oocytes. WHAT IS KNOWN ALREADY Obesity impairs oocyte quality. Oocytes from mice fed a high-fat/high-sugar (HF/HS) diet have abnormalities in mitochondrial distribution and function and in meiotic progression. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to a normal, chow diet or an isocaloric HF/HS diet for 12 weeks. After 6 weeks on the diet, half of the mice receiving a normal diet and half of the mice receiving a HF/HS diet were randomly assigned to receive CoQ10 supplementation injections for the remaining 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Dietary intervention was initiated on C57Bl6 female mice at 4 weeks of age, CoQ10 versus vehicle injections were assigned at 10 weeks, and assays were conducted at 16 weeks of age. Mice were super-ovulated, and oocytes were collected and stained to assess mitochondrial distribution, quantify reactive oxygen species (ROS), assess meiotic spindle formation, and measure metabolites. In vitro fertilization was performed, and blastocyst embryos were transferred into control mice. Oocyte number, fertilization rate, blastulation rate and implantation rate were compared between the four cohorts. Bivariate statistics were performed appropriately. MAIN RESULTS AND THE ROLE OF CHANCE HF/HS mice weighed significantly more than normal diet mice (29 versus 22 g, P< 0.001). CoQ10 supplementation did not influence weight. Levels of ATP, citrate, and phosphocreatine were lower and ROS levels were higher in HF/HS mice than in controls (P< 0.001). CoQ10 supplementation significantly increased the levels of metabolites and decreased ROS levels in oocytes from normal diet mice but not in oocytes from HF/HS mice. However, CoQ10 completely prevented the mitochondrial distribution abnormalities observed in the HF/HS mice. Overall, CoQ10 supplementation significantly increased the percentage of normal spindle and chromosome alignment (92.3 versus 80.2%, P= 0.039). In the sub-analysis by diet, the difference did not reach statistical significance. When undergoing IVF, there were no statistically significant differences in the number of mature oocytes, the fertilization rate, blastocyst formation rates, implantation rates, resorption rates or litter size between HF/HS mice receiving CoQ10 or vehicle injections. LIMITATIONS, REASONS FOR CAUTION Experiments were limited to one species and strain of mice. The majority of experiments were performed after ovulation induction, which may not represent natural cycle fertility. WIDER IMPLICATIONS OF THE FINDINGS Improvement in oocyte mitochondrial distribution and function of normal, chow-fed mice and HF/HS-fed mice demonstrates the importance of CoQ10 and the efficiency of the mitochondrial respiratory chain in oocyte competence. Clinical studies are now needed to evaluate the therapeutic potential of CoQ10 in women's reproductive health. STUDY FUNDING/COMPETING INTEREST(S) C.E.B. received support from the National Research Training Program in Reproductive Medicine sponsored by the National Institute of Health (T32 HD040135-13) and the Scientific Advisory Board of Vivere Health. K.H.M received support from the American Diabetes Association and the National Institute of Health (R01 HD083895). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This study is not a clinical trial. PMID:27432748

  1. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  2. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet

    PubMed Central

    Hikone, Kumiko; Hasegawa, Tomoka; Tsuchiya, Erika; Hongo, Hiromi; Sasaki, Muneteru; Yamamoto, Tomomaya; Kudo, Ai; Oda, Kimimitsu; Haraguchi, Mai; de Freitas, Paulo Henrique Luiz; Li, Minqi; Iida, Junichiro; Amizuka, Norio

    2017-01-01

    To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho−/− mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho−/−norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase–positive osteoblasts and tartrate-resistant acid phosphatase–reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho−/− lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling. PMID:28122194

  3. Milk composition, milk fatty acid profile, digestion, and ruminal fermentation in dairy cows fed whole flaxseed and calcium salts of flaxseed oil.

    PubMed

    Côrtes, C; da Silva-Kazama, D C; Kazama, R; Gagnon, N; Benchaar, C; Santos, G T D; Zeoula, L M; Petit, H V

    2010-07-01

    Four ruminally lactating Holstein cows averaging 602+/-25 kg of body weight and 64+/-6 d in milk at the beginning of the experiment were randomly assigned to a 4 x 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of alpha-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    PubMed

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  5. Intake of phytic acid and myo-inositol lowers hepatic lipogenic gene expression and modulates gut microbiota in rats fed a high-sucrose diet.

    PubMed

    Okazaki, Yukako; Sekita, Ayaka; Katayama, Tetsuyuki

    2018-05-01

    Dietary phytic acid (PA) was recently reported by our group to suppress hepatic lipogenic gene expression and modulate gut microbiota in rats fed a high-sucrose (HSC) diet. The present study aimed to investigate whether the modulatory effects of PA depend on the dietary carbohydrate source and are attributed to the myo-inositol (MI) ring of PA. Male Sprague-Dawley rats were fed an HSC or a high-starch (HSR) diet with or without 1.02% sodium PA for 12 days. Subsequently, the rats were fed the HSC diet, the HSC diet containing 1.02% sodium PA or an HSC diet containing 0.2% MI for 12 days. The HSC diet significantly increased the hepatic triglyceride (TG) concentration as well as the activity and expression of hepatic lipogenic enzymes compared with the HSR diet. The increases were generally suppressed by dietary PA with a concomitant increase in the fecal and cecal ratios of Lactobacillus spp. In rats fed the HSR diet, PA intake did not substantially affect the factors associated with hepatic lipid metabolism or gut microbiota composition. The effects of MI intake were similar to that of PA intake on hepatic lipogenesis and gut microbiota in rats fed the HSC diet. These results suggest that dietary PA downregulates hepatic lipogenic gene expression and modulates gut microbiota composition in rats fed an HSC diet but not in rats fed an HSR diet. The MI ring of PA may be responsible for the effects of PA intake on hepatic lipogenic gene expression and gut microbiota.

  6. Alpha-mannosidase activity in goats fed with Sida carpinifolia.

    PubMed

    Bedin, Marisete; Moleta Colodel, Edson; Viapiana, Marli; Matte, Ursula; Driemeier, David; Giugliani, Roberto

    2010-03-01

    Human alpha-mannosidosis results from alpha-mannosidase deficiency and progressive accumulation of mannose-rich oligosaccharides in lysosomes. Two days before Saanen goats were fed with Sida carpinifolia, alpha-mannosidase activity in leukocytes was 128+/-28 nmoles4-MU/h/mgprotein (first trial) and 104+/-6 nmoles4-MU/h/mgprotein (second trial). At day 5, after the introduction of S. carpinifolia diet, the alpha-mannosidase activity in leukocytes was significantly increased, both in the first (288+/-13 nmoles4-MU/h/mgprotein) and in the second trial (303+/-45 nmoles4-MU/h/mgprotein), and it returned to normal levels 2 days after the withdrawal of the plant from the diet (114+/-7 nmoles4-MU/h/mgprotein in first trial, and 108+/-25 nmoles4-MU/h/mgprotein in the second one). Plasma alpha-mannosidase activity decreased significantly 4 days after animal exposure to the S. carpinifolia diet (769+/-167 nmoles4-MU/h/ml) and returned to normal values 10 days after the withdrawal of the plant from the diet (1289+/-163 nmoles4-MU/h/ml). Thin-layer chromatography showed an abnormal excretion of oligosaccharides in urine as of day 2 after diet exposure, which persisted until one day after the withdrawal of the plant. Animals presented neurological clinical signs beginning at day 37 (in the first trial) and at day 25 (in the second trial) after being fed with the plant. The results obtained herein suggest that oligosaccharides observed in urine are a result of a decrease in alpha-mannosidase activity in plasma. S. carpinifolia seems to have other compounds that act on alpha-mannosidase enzyme in leukocytes in a competitive manner with swainsonine. The increase in alpha-mannosidase enzyme in leukocytes could be attributed to one of these compounds present in S. carpinifolia. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum).

    PubMed

    Zhou, Qicun; Wang, Ligai; Wang, Hualang; Xie, Fengjun; Wang, Tuo

    2012-06-01

    This study was conducted to evaluate the effects of dietary vitamin C on growth performance, hematologic parameters and innate immune responses in juvenile cobia, Rachycentron canadum. Seven practical diets were formulated to contain 0.0 (as the basal diet), 13.6, 27.2, 54.4, 96.6, 193.4 and 386.5 mg ascorbic acid equivalent kg(-1) diet. Each diet was fed to triplicate groups of juvenile cobia with initial body weight of 5.5 g in 500-L cylindrical fiberglass tank. The results of 8 weeks feeding trial showed that typical vitamin C-deficient signs such as spinal deformation and body nigrescence were observed in the fish fed the basal diet. Fish fed the basal diet had significantly lower weight gain, specific growth rate (SGR), protein efficiency ratio (PER) and feed efficiency (FE) than those fed the diets supplemented with vitamin C, but no significant differences were observed among diets supplemented with vitamin C. However, survival rate was significantly affected by the dietary vitamin C levels, fish fed the basal diet had lower survival rate than those fed the diets supplemented with vitamin C. The ascorbic acid concentration in liver was correlated positively with the dietary vitamin C levels, however, the thiobarbituric acid reactive substances (TBARS) concentrations in liver was not significantly affected by the dietary vitamin C levels, although, fish fed the basal diet had the highest TBARS values among all treatments. The activities of serum lysozyme, superoxide dismutase (SOD), alkaline phophatase (AKP) and total immunoglobulin (Ig) were significantly influenced by the dietary vitamin C levels, fish fed the basal diet had lower lysozyme, SOD, AKP and total Ig than those fed diets supplemented with vitamin C. The serum glucose and triglyceride concentrations were significantly affected by the dietary vitamin C levels. Fish fed the basal diet had lower red blood cell and hemoglobin values than those fed the vitamin C supplemented diets. The challenge experiment with Vibrio harveyi showed that lower cumulative survival was in fish fed the unsupplemented diet, the cumulative survival were significantly increased with increase of the dietary ascorbic acid levels from 13.6 to 96.6 mg kg(-1), while the cumulative survival reached plateau when dietary ascorbic acid levels increased from 96.6 to 386.5 mg kg(-1). These results indicated that dietary vitamin C did significantly influence on growth performance and immune response of juvenile cobia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal.

    PubMed

    Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin

    2014-12-01

    This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.

  9. Effects of feeding canola meal or wheat dried distillers grains with solubles as a major protein source in low- or high-crude protein diets on ruminal fermentation, omasal flow, and production in cows.

    PubMed

    Mutsvangwa, T; Kiran, D; Abeysekara, S

    2016-02-01

    The objective of this study was to determine the effects of feeding canola meal (CM) or wheat dried distillers grains with solubles (W-DDGS) as the major source of protein in diets varying in crude protein (CP) content on ruminal fermentation, microbial protein production, omasal nutrient flow, and production performance in lactating dairy cows. Eight lactating dairy cows were used in a replicated 4×4 Latin square design with 29-d periods (21 d of dietary adaptation and 8 d of measurements) and a 2×2 factorial arrangement of dietary treatments. Four cows in 1 Latin square were ruminally cannulated to allow ruminal and omasal sampling. The treatment factors were (1) source of supplemental protein (CM vs. W-DDGS) and (2) dietary CP content (15 vs. 17%; DM basis). Diets contained 50% forage and 50% concentrate, and were fed twice daily at 0900 and 1600 h as total mixed rations for ad libitum intake. Dry matter intake and milk yield were unaffected by dietary treatments; however, milk yield in cows that were fed CM was numerically greater (+1.1 kg/d) when compared with cows fed W-DDGS. Feeding CM increased milk lactose content compared with feeding W-DDGS. Milk urea nitrogen and ruminal NH3-N concentrations were greater in cows fed the high-CP compared with those fed the low-CP diet. The rumen-degradable protein supply was greater in cows fed the high-CP when compared with those fed the low-CP diet when diets contained CM, whereas rumen-degradable protein supply was lower in cows fed the high-CP when compared with those fed the low-CP diet when diets contained W-DDGS. Total N flow at the omasal canal was not affected by diet; however, omasal flow of NH3-N was greater in cows fed CM when compared with those fed W-DDGS. The rumen-undegradable protein supply was greater in cows fed the low-CP when compared with those fed the high-CP diet when diets contained CM, whereas rumen-undegradable protein supply was lower in cows fed the low-CP when compared with those fed the high-CP diet when diets contained W-DDGS. Omasal flow of fluid-associated bacteria was greater and that of particle-associated bacteria tended to be greater in cows fed CM when compared with those fed W-DDGS; however, omasal flow of total microbial nonammonia N was unaffected by dietary treatment. Omasal flows of threonine and tryptophan were greater, whereas that of histidine and lysine tended to be greater in cows fed CM when compared with those fed W-DDGS. Our results show that when dairy diets are formulated to contain 15 or 17% CP, CM or W-DDGS can be used as the major source of protein and achieve similar levels of milk production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs.

    PubMed

    Almeida, F N; Htoo, J K; Thomson, J; Stein, H H

    2014-10-01

    Two experiments were conducted to investigate if adjustments in diet formulations either based on total analysed amino acids or standardized ileal digestible (SID) amino acids may be used to eliminate negative effects of including heat-damaged soybean meal (SBM) or heat-damaged corn distillers dried grains with solubles (DDGS) in diets fed to weanling pigs. In Experiment 1, four corn-SBM diets were formulated. Diet 1 contained non-autoclaved SBM (315 g/kg), and this diet was formulated on the basis of analysed amino acid concentrations and using SID values from the AminoDat® 4.0 database. Diet 2 was similar to Diet 1 in terms of ingredient composition, except that the non-autoclaved SBM was replaced by autoclaved SBM at 1 : 1 (weight basis). Diet 3 was formulated using autoclaved SBM and amino acid inclusions in the diet were adjusted on the basis of analysed total amino acid concentrations in the autoclaved SBM and published SID values for non-autoclaved SBM (AminoDat® 4.0). Diet 4 also contained autoclaved SBM, but the formulation of this diet was adjusted on the basis of analysed amino acids in the autoclaved SBM and SID values that were adjusted according to the degree of heat damage in this source of SBM. Pigs (160; initial BW: 10.4 kg) were allotted to the four treatments with eight replicate pens per treatment in a randomized complete block design. Diets were fed to pigs for 21 days. The gain to feed ratio (G : F) was greater (P<0.05) for pigs fed Diet 1 compared with pigs fed the other diets and pigs fed Diet 4 had greater (P<0.05) G : F than pigs fed Diet 2. In Experiment 2, 144 pigs (initial BW: 9.9 kg) were allotted to four diets with eight replicate pens per diet. The four diets contained corn, SBM (85 g/kg) and DDGS (220 g/kg), and were formulated using the concepts described for Experiment 1, except that heat-damaged DDGS, but not heat-damaged SBM, was used in the diets. Pigs fed Diet 1 had greater (P<0.05) G : F than pigs fed Diet 2, but no differences were observed for G : F among pigs fed diets containing autoclaved DDGS. Results demonstrate that the negative effects of heat damage of SBM or DDGS may be ameliorated if the reduced concentration and digestibility of amino acids in heat-damaged SBM or DDGS is taken into account in diet formulation. Further research is needed to improve the prediction of the ileal digestibility of amino acids in heat-processed ingredients used in practical diet formulations.

  11. Standardized total tract digestibility of phosphorus in flaxseed meal fed to growing and finishing pigs without or with phytase supplementation.

    PubMed

    Kim, J W; Ndou, S P; Mejicanos, G A; Nyachoti, C M

    2017-02-01

    Two experiments were conducted to determine the apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of P in flaxseed meal (FM) and the effect of dietary microbial phytase on the digestibility of P in FM fed to growing and finishing pigs. In Exp. 1, eighteen growing barrows (26.6 ± 1.8 kg BW) were allotted to 1 of 3 experimental diets consisting of a diet containing 32% FM that was fed with or without phytase at 500 phytase units (FTU/kg and a P-free diet in a completely randomized design to give 6 replicates per diet. The experimental period lasted 12 d including first 7 d for adaptation and 5 d for total collection of feces. Pigs were fed their assigned diets at 4% of BW at the beginning of the experiment. The daily feed allowance was offered in 2 equal portions at 0800 and 1600 h. All experimental diets were provided in mash form. Results indicated that pigs fed the diets containing FM with dietary phytase had less ( < 0.05) fecal P concentration and daily P output than those fed the diets without phytase supplementation. Also, phytase supplementation increased ( < 0.05) the ATTD of P of the diets containing FM from 37.3% to 51.8% and STTD of P of the diets containing FM from 43.2% to 57.7%. The basal endogenous P losses (EPL) was calculated at 140 ± 11 mg/kg of DMI in growing pigs fed the P-free diet. In Exp. 2, eighteen finishing pigs (78.7 ± 2.4 kg BW) were randomly allotted to 1 of 3 dietary treatments. The experimental diets and procedures were similar to those described in Exp. 1. Similar to Exp. 1, pigs fed FM diets with phytase supplementation had less ( < 0.05) P concentration in feces than those fed diets without phytase supplementation. Also, daily P output was reduced ( = 0.08) when pigs were fed the FM diets with phytase compared to those fed the FM diets without phytase. The ATTD of P in FM diets was increased ( < 0.01) from 31.4% to 45.8%, whereas the STTD of P in FM diets was increased ( < 0.01) from 37.8% to 52.3% as a result of phytase supplementation. The basal EPL was calculated at 164 ± 19 mg/kg of DMI in finishing pigs fed the P-free diet. In conclusion, the ATTD and STTD of P in FM fed to growing pigs were 37.3% and 43.2%, respectively, whereas respective values for finishing pigs were 31.4%, and 37.8%, respectively. Also, dietary phytase supplementation improved both ATTD and STTD of P in FM for both stages of pigs by an average of 33%.

  12. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    PubMed

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with V max . Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  13. Growth and feed efficiency of juvenile shrimp Litopenaeus vannamei fed formulated diets containing different levels of poultry by-product meal

    NASA Astrophysics Data System (ADS)

    Chi, Shuyan; Tan, Beiping; Mai, Kangsen; Zheng, Shixuan

    2009-12-01

    This feeding trial was conducted to evaluate the potential of poultry by-product meal (PBM) as a protein source in the culture of Litopenaeus vannamei. Seven isonitrogenous and isoenergetic diets were formulated to near to commercial diet with about 40% protein and 7.5% lipid. Fish meal was replaced by 0, 30%, 40%, 50%, 60%, 70% and 100% of PBM (diets 1-7). The diet with 100% fish meal was used as a control (diet 1). Post-larvae were reared in an indoor semi-closed re-circulating system. Each dietary treatment was tested in 4 replicate tanks (260 L) of 40 shrimp, arranged in a completely randomized design. The shrimps were hand-fed for three times a day to near-satiation (0700, 1200 and 1800) for 60 d. Percentage weight gain, survival, feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition of shrimps were measured. There were no significant differences ( P>0.05) in growth performance among shrimps fed diets 1-5 (0-60% fish meal replacement). However, shrimps fed diet 7 (100% fish meal replacement) had significantly lower ( P<0.05) growth than those fed diets 1-5 (0-60% fish meal replacement). Shrimp fed diets 2-4 (30%-50% fish meal replacement) showed significantly higher growth than those fed diets 6 and 7 (70% and 100% fish meal replacement, respectively). Survival ranged from 94.7% to 100.0% and did not differ significantly ( P>0.05) among different experimental diets. No differences in body composition were found among shrimps fed different diets. These results showed that up to 70% of fish meal protein can be replaced by PBM without adversely affecting the growth, survival, FCR, PER and body composition of Litop enaeus vannamei.

  14. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet

    PubMed Central

    Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Soleimany, Mansureh

    2015-01-01

    Objective(s): Lectin-like low density lipoprotein receptor (LOX-1) has pivot role in vascular complications, which is upregulated in numerous pathological conditions. Since exercise has beneficial effects in prevention of hyperlipidemic complications, present study examined protective effects of aerobic exercise through reduction of LOX-1 expression in heart during dyslipidemia. Materials and Methods: Four groups of rats were used (N=25): Normal, Normal and exercise, High fat and High fat and exercise. High fat diet (HFD) was made by adding 10% animal oil, 2% cholesterol and 0.5% colic acid to standard rodent chow. Exercise protocol consisted of swimming 1 hr/day, and 5 days/week for 8 weeks. Plasma lipids were evaluated at the end of experiment, 48 hr after final session of exercise. At the end, rats were sacrificed and heart was removed for determination of malondialdehyde (MDA) content, and LOX-1 expression. Results: HFD meaningfully changed lipid profile (>50%), but chronic exercise had no significant effects on lipid profile. LOX-1 expression was significantly increased in heart of rats fed with HFD, while swimming exercise considerably reduced gene expression of LOX-1. MDA content was significantly enhanced in rats fed with HFD (4.37±0.6 nmol/mg, P<0.01) compared to normal group (1.56±0.48 nmol/mg), whereas swimming exercise decreased MDA level of heart in rats fed with HFD (2.28±0.32, P<0.01). Conclusion: Findings indicated that swimming exercise is able to diminish heart expression of LOX-1 receptor concomitant reduction of oxidative stress. Since these parameters are involved in generation of dyslipidemic complications, swimming exercise is a good candidate to reduce these complications. PMID:26557970

  15. Gonadal and extra-gonadal sperm reserves and sperm production of pubertal rabbits fed dietary fumonisin B1.

    PubMed

    Ewuola, E O; Egbunike, G N

    2010-06-01

    The influence of fumonisin B(1) (a mycotoxin produced by Fusarium verticillioides) on sperm reserves and production of crossbred pubertal rabbits was studied using an experimental model that lasted 28 weeks. Forty-eight male rabbits, 7 weeks old and with average weight of 757.50+/-0.50 g, were allotted to four dietary fumonisin B(1) concentrations of 0.13, 5.0, 7.5 and 10.0 mg kg(-1) constituting diets 1 (control), 2, 3 and 4, respectively. The paired testes weight of rabbits fed diet 3 was significantly (P<0.05) higher than those fed diet 2 and the control. However, the epididymal weight was significantly (P<0.05) lower in rabbits fed the control diet as compared to others on test diets. The gonadal sperm reserves of the animals were significantly (P<0.05) reduced by the toxin with increased concentrations of the toxin in the diets. The sperm reserves per testis and per gram testis were significantly (P<0.05) higher in the control rabbits than those fed diets 3 and 4. The sperm reserves in caput, corpus and caudal epididymis declined significantly with each increase in the fumonisin concentration in the diets. The number of spermatozoa in total caput, corpus and cauda was significantly (P<0.05) higher in rabbits fed the control diet and the least in rabbits fed diet 4 containing 10.0mg fumonisin B(1)/kg. Extra-gonadal sperm reserves significantly decreased (P<0.05) in rabbits fed diets 3 and 4 compared to the control. The daily sperm production of the animals fed diets 2, 3 and 4 declined significantly to 67, 59 and 36% relative to those animals fed the control diet. This study suggests that exposure of breeding male rabbits to diets contaminated with fumonisin B(1) up to 7.5 mg fumonisin B(1)/kg will depress testicular and epididymal sperm reserves and sperm production and potentially impair reproduction in the animals. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, Platichthys stellatus.

    PubMed

    Park, Youngjin; Moniruzzaman, Mohammad; Lee, Seunghan; Hong, Jeongwhui; Won, Seonghun; Lee, Jong Min; Yun, Hyeonho; Kim, Kang-Woong; Ko, Daegyun; Bai, Sungchul C

    2016-12-01

    An 8-week feeding trial was conducted to evaluate the effects of dietary probiotics on growth performance and non-specific immune responses in starry flounder, Platichthys stellatus. Fish averaging 46.5 ± 0.65 g (mean ± SD) were fed one of the six experimental diets; one control (Cont), and five other diets were prepared by supplementing single-probiotics 1 (Bacillus subtilis; SP 1 , 2 × 10 9  CFU kg -1 diet), single-probiotics 2 (Bacillus licheniformis; SP 2 , 2 × 10 9  CFU kg -1 diet), multi-probiotics 1 (Bacillus subtilis + Bacillus licheniformis; MP 1 , 2 × 10 9  CFU kg -1 diet), multi-probiotics 2 (commercial probiotics; Bacillus subtills + Bacillus licheniformis + Paenibacillus polymyxa + Aspergillus oryzae + Saccharomyces cerevisiae; MP 2 , 2 × 10 9  CFU kg -1 diet) and oxytetracycline (OTC) at 5 g OTC kg -1 diet. At the end of 8 weeks feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed SP 1 , MP 1 and MP 2 diets were significantly higher than those of fish fed control diet (P < 0.05). Superoxide dismutase (SOD) activity of fish fed MP 2 diet was significantly higher than those of fish fed OTC diet (P < 0.05). Nitro blue tetrazolium (NBT) activity and lysozyme activity of fish fed SP 1 , MP 1 and MP 2 diets were significantly higher than those of fish fed OTC diet (P < 0.05). However, there was no significant difference among fish fed SP 1 , SP 2 , MP 1 and MP 2 diets. During the Edwardsiella tarda challenge test, the first mortality occurred on day 2. After the 14 days challenge test, cumulative survival rate of fish fed MP 1 and MP 2 diets were significantly higher than those of fish fed control diet (P < 0.05). However, there was no significant difference among fish fed SP 1 , SP 2 , MP 1 , MP 2 and OTC diets in survival rate at the termination of the challenge test. Although there was little advantage in immunological parameters with fish fed MP diets, single and multi-probiotics were equally effective statistically. These results demonstrated that single or multi-probiotics had equal beneficial effect as an antibiotic replacer in terms of growth performance, non-specific immune responses and disease resistance in starry flounder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Influence of Dietary Avocado on Gut Health in Rats.

    PubMed

    Paturi, Gunaranjan; Butts, Christine A; Bentley-Hewitt, Kerry L

    2017-09-01

    This study investigated the impact of diets containing various levels of avocado (5, 10 and 15%) on gut health in rats fed for six weeks. Avocado-fed rats had significantly higher food intakes while their body weights remained similar to the control diet-fed rats. No significant changes in intestinal bacterial populations (ileum, cecum and colon) were found in rats fed avocado diets compared to the control diet. Ileum and colon tissues of rats fed avocado diets showed significantly higher expression of genes (β-defensin 1, mucin 3 or mucin 4) and a greater number of mucin-producing goblet cells in the colon. The percentage of avocado in the diet had varying effects in altering the biomarkers, whereby diet containing 15% avocado was the more effective diet. This study delivers new knowledge on the role of avocado on gut health in rats.

  18. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice.

    PubMed

    Pimenta, Marcel; Bringhenti, Isabele; Souza-Mello, Vanessa; Dos Santos Mendes, Iara Karise; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2015-10-15

    To investigate the possible beneficial effect of high-intensity interval training (HIIT) on skeletal muscle oxidative stress, body mass (BM) and systolic blood pressure (SBP) in ovariectomized mice fed or not fed a high-fat diet. Three-month-old female C57BL/6 mice were bilaterally ovariectomized (OVX group) or submitted to surgical stress without ovariectomy (SHAM group) and separated into standard chow (SHAM-SC; OVX-SC) and high-fat diet (SHAM-HF; OVX-HF) groups. After 13 weeks, an HIIT program (swimming) was carried out for 8 weeks in non-trained (NT) and trained (T) groups. The significant reduction of uterine mass and the cytological examination of vaginal smears in the OVX group confirmed that ovariectomy was successful. Before the HIIT protocol, the ovariectomized groups showed a greater BM than the SHAM group, irrespective of the diet they received. The HIIT minimized BM gain in animals fed an HF diet and/or ovariectomized. SBP and total cholesterol were increased in the OVX and HF animals compared to their counterparts, and the HIIT efficiently reduced these factors. In the HF and OVX mice, the muscular superoxide dismutase and catalase levels were low while their glutathione peroxidase and glutathione reductase levels were high and the HIIT normalized these parameters. Diet-induced obesity maximizes the deleterious effects of an ovariectomy. The HIIT protocol significantly reduced BM, SBP and oxidative stress in the skeletal muscle indicating that HIIT diminishes the cardiovascular and metabolic risk that is inherent to obesity and menopause. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Beneficial effects of paeoniflorin on osteoporosis induced by high-carbohydrate, high-fat diet-associated hyperlipidemia in vivo.

    PubMed

    Wang, Yanmao; Zhu, Yu; Lu, Shengdi; Hu, Chengfang; Zhong, Wanrun; Chai, Yimin

    2018-04-15

    Osteoporosis is linked to reduced bone mineral density (BMD) as a major risk factor for fragility fractures. Recent studies indicated an association between BMD and abnormally elevated lipid levels in blood as common indicators for hyperlipidemia. In this study, we assessed the protective effect of paeoniflorin, a phytochemical compound with multiple pharmacological activities, against hyperlipidemia-induced osteoporosis in rats fed a high-carbohydrate, high-fat diet (HCHF). The special diet-fed rats were subjected to an 8-week treatment with either paeoniflorin (20 mg/kg, daily) or vehicle. The control group received a normal diet during the entire study. At study conclusion, serum markers of lipid metabolism and bone turnover were measured. Bone strength was assessed by biomechanical testing, and femurs were scanned using micro-computed tomography to analyze trabecular and cortical bone structure. Interestingly, paeoniflorin controlled the serum lipid profile by significantly decreasing HCHF-induced high levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Paeoniflorin significantly improved trabecular and cortical parameters as well as femur length and width that were negatively affected by HCHF diet. Biomechanical strength testing showed that femurs of HCHF diet-fed rats endured significantly lower force but higher displacement and strain than those of control rats, whereas paeoniflorin reversed the negative effects. Moreover, paeoniflorin rescued osteoblast differentiation and cell spreading activities along with bone turnover markers. In conclusion, HCHF-induced hyperlipidemia caused adverse effects on the bone that were rescued by paeoniflorin treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A role for PPARα in the regulation of arginine metabolism and nitric oxide synthesis.

    PubMed

    Guelzim, Najoua; Mariotti, François; Martin, Pascal G P; Lasserre, Frédéric; Pineau, Thierry; Hermier, Dominique

    2011-10-01

    The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using (15)N(2)-guanido-arginine and measuring urinary (15)NO(3) and [(15)N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.

  1. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    PubMed

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  2. Effect of dietary Garcinia cambogia extract on serum essential minerals (calcium, phosphorus, magnesium) and trace elements (iron, copper, zinc) in rats fed with high-lipid diet.

    PubMed

    Gürsel, Feraye Esen; Ateş, Atila; Bilal, Tanay; Altiner, Ayşen

    2012-09-01

    The aim of the study was to investigate the effect of Garcinia cambogia extract on serum calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn) and copper (Cu) concentrations in rats fed with the normal or the high-lipid and -cholesterol diet. Thirty 1-year-old female Sprague-Dawley rats (pathogen-free), weighing an average of 229 g, were randomly assigned to three experimental groups of ten animals each. Diets and tap water were given ad libitum for 75 days. Group 1 (control group) was fed with basal diet (2 % liquid vegetable oil, 0 % cholesterol), while the diets of groups 2 and 3 contained vegetable oil (2 % liquid vegetable oil and 5 % hydrogenated vegetable oil) and cholesterol (3 %) in high levels. 4,5 % G. cambogia extract containing 65 % HCA was added to the diet of group 3 as from day 45. Blood samples were withdrawn on days 0, 45 and 75. Serum mineral levels were analyzed using standard enzymatic colorimetric methods with a spectrophotometer. All significant differences were p<0.05. Serum Ca levels were not significantly different between all groups on days 45 and 75. Serum P level was significantly higher in the group fed with high-lipid diet and G. cambogia extract than in the control group on day 45. Serum Mg level was significantly higher in group 2 than in the control group on day 45. Serum Fe levels were significantly lower in the control group than in the other groups on days 45 and 75. Serum Zn level of the group fed with high-lipid diet and G. cambogia extract was significantly higher than in the control group on day 75. Serum Cu levels were significantly higher in group 2 than in the control group, and in group 3 than in group 2 on day 75. In conclusion, a diet containing the high fat amounts may lead to the increase in circular levels of some minerals due to the short-chain fatty acid production lowering the luminal pH which increases mineral solubility, or serving as a fuel for mucosal cells and stimulating cell proliferation in the large intestine. G. cambogia extract may be used in the P and Cu deficiencies due to increases resulting in the present P and Cu amounts in G. cambogia extract, or the use of phytate P in diet. It was hoped that with further evidence-based study this product will enter to mainstream medicines.

  3. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    NASA Astrophysics Data System (ADS)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  4. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    PubMed

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  5. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    PubMed

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  6. Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets.

    PubMed

    Gidlund, H; Hetta, M; Krizsan, S J; Lemosquet, S; Huhtanen, P

    2015-11-01

    This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2 × 4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600 g/kg of grass silage and 400 g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88 g/kg of DM), providing 130 g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250 g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150 g/kg of diet DM) or TCM (70, 140, or 210 g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Interaction of dietary high-oleic-acid sunflower hulls and different fat sources in broiler chickens.

    PubMed

    Viveros, A; Ortiz, L T; Rodríguez, M L; Rebolé, A; Alzueta, C; Arija, I; Centeno, C; Brenes, A

    2009-01-01

    The effect of dietary fat sources (high-oleic-acid sunflower seeds, HOASS; palm oil, PO; and high-oleic-acid sunflower oil, HOASO) and high-oleic-acid sunflower hulls (HOAS hulls; 40 g/kg of diet) on performance, digestive organ size, fat digestibility, and fatty acid profile in abdominal fat and blood serum parameters was evaluated in chickens (from 1 to 21 d of age). Bird performance and digestive organ size were not affected by either dietary fat source or sunflower hull supplementation. Fat digestibility in birds fed diets enriched (HOASS and HOASO) in monounsaturated fatty acids (MUFA) was increased compared with those fed the PO diet. The addition of sunflower hulls did not modify fat digestibility. The fatty acids pattern of abdominal fat reflected the dietary fat profile. The greatest concentrations of C16:0 and C18:0 were found in birds fed PO diets. The C18:1n-9 content was increased in birds that received HOASS and HOASO diets compared with those fed PO diets. The greatest content of C18:2n-6 was observed in birds fed HOASS diets. The ratio of polyunsaturated fatty acid (PUFA) to MUFA was significantly increased in birds fed PO diets compared with those fed HOASS or HOASO diets. The addition of sunflower hulls to the diets resulted in a decrease of C18:2n-6 and PUFA concentrations and PUFA:MUFA ratio in abdominal fat. Dietary fat sources and sunflower hulls modify blood triglycerides and serum lipoproteins. A decrease in triglyceride concentrations was observed in birds fed HOASS diets compared with those fed PO and HOASO diets. The greatest concentrations of serum high density, very low density (VLDL), and low density lipoproteins were found in birds receiving HOASO, PO, and HOASS diets, respectively. The addition of sunflower hulls to the diets caused an increase of serum triglycerides and VLDL concentrations. The MUFA-enriched diets had lower triglyceride and VLDL concentrations than did diets rich in saturated fatty acids. However, the sunflower hull addition had the opposite effect.

  8. High-dose ascorbic acid decreases cholesterolemic factors of an atherogenic diet in guinea pigs.

    PubMed

    Filis, Konstantinos; Anastassopoulou, Aikaterini; Sigala, Fragiska; Theodorou, Dimitrios; Manouras, Andreas; Leandros, Emanouel; Sigalas, Panagiotis; Hepp, Wolfgang; Bramis, John

    2007-03-01

    The study evaluates the effect of a high supplemental dose of ascorbic acid (AA) on plasma concentrations of total cholesterol (TC), triglycerides (TG), total lipids (TL), and lipoprotein fractions high-density, very-low-density-, and low-density lipoprotein (HDL, VLDL, LDL) in guinea pigs fed with atherogenic diet. Group I consisted of 5 normally fed guinea pigs plus a low dose of AA (1 mg/100 g/day), group II consisted of 7 guinea pigs fed with food enriched with 2% cholesterol plus a low dose of AA (1 mg/100 g/day), and group III consisted of 7 guinea pigs fed with food enriched with 2% cholesterol plus a high dose of AA (30 mg/100 g/day). Cholesterolemic factors concentrations were determined after nine weeks. Concentrations of TC, TG, TL, LDL, and VLDL were increased in group II compared to group I (p < 0.01 for all differences). Supplementation with a high dose of AA resulted in decreased concentrations of TC (p < 0.01), TG (p < 0.01), TL (p < 0.01), and LDL (p < 0.01) in group III compared to group II. Additionally, concentration of HDL was increased in group III compared to group II (p < 0.01). High-dose AA supplementation to an atherogenic diet decreases concentrations of TC, TG, TL, and LDL and increases concentration of HDL compared to low-dose AA.

  9. Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets.

    PubMed

    Alarcón, Gabriela; Roco, Julieta; Medina, Analia; Van Nieuwenhove, Carina; Medina, Mirta; Jerez, Susana

    2016-01-20

    Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs). Rabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA. BW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers. HFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.

  10. Food intake adjustments of chicks: short term reactions to deficiencies in lysine, methionine and tryptophan.

    PubMed

    Picard, M L; Uzu, G; Dunnington, E A; Siegel, P B

    1993-09-01

    1. Two experiments were conducted to compare food intake responses of broiler chicks fed diets varying in lysine, methionine, and tryptophan. Diet D was formulated to create simultaneous deficiencies of lysine, methionine, and tryptophan. Diet A matched National Research Council (1984) recommendations for broilers, and diets B and C were, respectively, 2:1 and 1:2 mixes of diets A and D. 2. Short-term food intake can provide information on the sequences of adaptation of chicks to a diet deficient in essential amino acids. 3. Chicks consumed 26% less of diet D than A during the first 24 h posthatch. When chicks fed diet A or D to 7 d of age were then fed one of 4 diets singly, within 24 h intake was lowest for chicks fed diet D. Within 48 h, food intake of diet C was more than that of diet D and less than that of diet A, while for diet B intake was more than of diet D but not different from diet A. 4. In the second experiment, chicks were fed diet A to 8 d and then diets A or D alone or given a choice of diets A and D from 8 to 20 d of age. Within 4 to 8 h, food intake of chicks fed diet D alone decreased markedly followed by partial recovery within 24 h. In a choice setting, consistent preference of Diet A over Diet D was observed within 7 h followed by stabilisation at about 65% diet A to 35% diet D. 5. Chicks fed diet D alone from 8 to 20 d of age, then placed in the same choice situation preferred diet A to D with a delay of less than one h and stabilisation at about 85%. Chicks provided a choice of diets A and D from 8 to 20 d, and then diet D alone reduced their food intake more quickly than those not given a choice initially. 6. Broiler chicks appear to react to amino acid deficiencies within a short period (hours) by adjusting their feed intake and/or selection. The response is influenced by age and prior experience.

  11. Pyridostigmine protects against cardiomyopathy associated with adipose tissue browning and improvement of vagal activity in high-fat diet rats.

    PubMed

    Lu, Yi; Wu, Qing; Liu, Long-Zhu; Yu, Xiao-Jiang; Liu, Jin-Jun; Li, Man-Xiang; Zang, Wei-Jin

    2018-04-01

    Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mineral absorption by albino rats as affected by some types of dietary pectins with different degrees of esterification.

    PubMed

    el-Zoghbi, M; Sitohy, M Z

    2001-04-01

    Male albino rats were fed diets contained 6.85% mineral salts for 2 weeks (adaptation condition). Then they were fed the dietary pectin administered diet for 6 weeks to evaluate the effect of administration of pectin on the absorption of some monovalent, bivalent and heavy metals in the serum of rats. The experimental parameters included, monovalent minerals (K, Na), bivalent minerals (Zn, Cu, Ca, Fe), heavy metals (Pb, Cd), serum uric acid and serum creatinine. The obtained results indicated that the serum contents of monovalent minerals were negatively affected by pectin administration. The low degree of esterification of pectin was more effective on the absorption of bivalent minerals. Also, the rat serum levels of lead and cadmium were reduced by pectin administration. Serum total proteins were reduced by pectin administration. The level of rat serum of uric acid and creatinine fed different sources of pectin were within normal levels and were insignificantly lower than that recorded for control samples.

  13. Chronic ethanol feeding inhibits plasma levels of insulin-like growth factor-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonntag, W.E.; Boyd, R.L.

    1988-01-01

    The purpose of this study was to determine whether the generalized catabolic effects of chronic ethanol may be associated with a decline in plasma of insulin-like growth factor-1 (IGF-1). Male Sprague-Dawley rats were fed a liquid diet containing 5% ethanol or pair-fed a diet made isocaloric with maltose-dextrin. Animals were maintained on this diet for either 12 days or 4.5 months. Another groups of animals were fed control diet ad libitum for 2 weeks. After 12 days of feeding, plasma concentrations of IGF-1 in ad libitum fed rats were 771 +/- 41 ng/ml which was greater than concentrations in eithermore » pair-fed or ethanol-fed rats. After 4.5 months of feeding, plasma levels of IGF-1 in ad libitum and pair-fed rats were similar to the 12 day study. However, a significant decrease in plasma levels of IGF-1 was observed in ethanol-fed animals over the 4.5 month period. Results of a similar study in rats fed a high-fat diet for 4.5 months were similar to those found with the low-fat diet.« less

  14. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work.

    PubMed

    Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R

    2016-09-01

    Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. © 2016. Published by The Company of Biologists Ltd.

  15. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    PubMed Central

    Sanghez, Valentina; Cubuk, Cankut; Sebastián-Leon, Patricia; Carobbio, Stefania; Dopazo, Joaquin; Vidal-Puig, Antonio; Bartolomucci, Alessandro

    2016-01-01

    Abstract Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus. PMID:26946982

  16. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide

    PubMed Central

    Gainey, Stephen J.; Kwakwa, Kristin A.; Bray, Julie K.; Pillote, Melissa M.; Tir, Vincent L.; Towers, Albert E.; Freund, Gregory G.

    2016-01-01

    Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288

  17. The Effects of Selected Hot and Cold Temperament Herbs Based on Iranian Traditional Medicine on Some Metabolic Parameters in Normal Rats

    PubMed Central

    Parvinroo, Shirin; Zahediasl, Saleh; Sabetkasaei, Masoumeh; Kamalinejad, Mohammad; Naghibi, Farzaneh

    2014-01-01

    This study was aimed to evaluate the effects of diets containing some hot and cold temperament herb seeds according to Iranian traditional medicine (ITM) on some metabolic parameters in acute (24 h) and sub-acute (7 day) experiments that were performed on rats. For each experiment, effects of diets containing 10% herb seeds in category of hot (anise, fennel, ajowan) and cold (cucumber, watermelon, pumpkin) temperaments were analyzed on body weight gain, food intake, water consumption, urine output, serum glucose (SG) and insulin levels of rats. In the acute experiment, anise or fennel fed groups showed a significant decrease in food intake and there were not any changes in other parameters. The hot temperament groups in comparison with the cold temperament ones showed a significant decrease in food intake and a significant increase in SG level. In the sub-acute experiment, anise and fennel fed groups had a significant decrease in body weight gain on the 4thday. On the 7th day, the anise fed group experienced a significant decrease in body weight gain and a significant increase in SG levels. The groups that were fed hot temperament diets compared to the ones that consumed cold temperament diets showed a significant decrease in body weight gain and food intake rates and a considerable increase in SG levels. Considering the findings of this study, one can conclude that it is possible that hot temperament herbs such as anise and fennel be useful for humans for certain conditions such as weight control. PMID:24711844

  18. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease

    PubMed Central

    Briskey, David; Heritage, Mandy; Jaskowski, Lesley-Anne; Peake, Jonathan; Gobe, Glenda; Subramaniam, V. Nathan; Crawford, Darrell; Campbell, Catherine; Vitetta, Luis

    2016-01-01

    Background: We have investigated the effects of a multispecies probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high-fat diet or obesity-induced liver steatosis. Methods: Three groups of C57B1/6J mice were fed either a standard chow or a high-fat diet for 20 weeks, while a third group was fed a high-fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results: The expression of the tight-junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high-fat diet-fed mice compared to chow-fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high-fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow-fed mice. Mice fed a high-fat diet ± probiotics had significant steatosis development compared with chow-fed mice (p < 0.05); steatosis was less severe in the probiotics group compared with the high-fat diet group. Hepatic triglyceride concentration was higher in mice fed a high-fat diet ± probiotics compared with the chow group (p < 0.05), and was lower in the probiotics group compared with the high-fat diet group (p < 0.05). Compared with chow-fed mice, serum glucose, cholesterol concentration and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high-fat diet ± probiotics. Conclusions: Supplementation with a multispecies probiotic formulation helped to maintain tight-junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentration compared with a high-fat diet alone. PMID:27366215

  19. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet-induced obesity.

    PubMed

    Zlotnikov, Nataliya; Javid, Ashkan; Ahmed, Mijhgan; Eshghi, Azad; Tang, Tian Tian; Arya, Anoop; Bansal, Anil; Matar, Fatima; Parikh, Maitry; Ebady, Rhodaba; Koh, Adeline; Gupta, Nupur; Song, Peng; Zhang, Yang; Newbigging, Susan; Wormser, Gary P; Schwartz, Ira; Inman, Robert; Glogauer, Michael; Moriarty, Tara J

    2017-05-01

    Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high-fat diet-induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil- and macrophage-based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi-infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high-fat diet, toll-like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow-derived macrophages from obese, B. burgdorferi-infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  20. Does dietary hyperphagia contradict the lipostatic theory?

    PubMed

    Ramirez, I

    1990-01-01

    It has frequently been suggested that body weight or fat somehow exerts an inhibitory influence on food intake in a way that acts to maintain a stable body weight or fat. The principal evidence supporting this idea is that animals that have been induced to overeat and become overweight by various means, eat less than control rats when they are permitted to eat freely. If the degree of suppression of appetite by overweight is as large as several experiments suggest, then dietary hyperphagia should be self-limiting. Any overeating induced by dietary treatments should disappear after animals become moderately overweight. Animals fed some kinds of hyperhagia-promoting diets do show this pattern. However, animals fed other kinds of diets do not show this pattern, and with most diets, dietary hyperphagia continues for extended periods. This implies that either 1) overweight does not suppress appetite as much as suggested by various authorities, 2) dietary manipulations can override normal regulatory mechanisms, or 3) certain diets induce irreversible changes in body fat that are not evident from changes in body weight.

  1. Effect of cyanogenic glycosides and protein content in cassava diets on hamster prenatal development.

    PubMed

    Frakes, R A; Sharma, R P; Willhite, C C; Gomez, G

    1986-08-01

    Cassava is a staple food for 450-500 million people in 26 tropical countries. Groups of pregnant hamsters were fed diets consisting of cassava meal:laboratory chow (80:20) during Days 3-14 of gestation. One low cyanide (sweet) cassava meal and one high cyanide (bitter) cassava meal were studied. One additional group was fed a diet which resembled cassava in nutritional value, but which lacked the cyanogenic glycosides. Thiocyanate concentrations increased significantly in the urine and blood of dams fed cassava diets. Increased tissue thiocyanate concentrations were observed in fetuses recovered from cassava-fed dams. Cassava-fed dams gained significantly less weight than did control animals and their offspring showed evidence of fetotoxicity. Reduced fetal body weight and reduced ossification of sacrocaudal vertebrae, metatarsals, and sternebrae were associated with cassava diets. High cyanide cassava diets were also associated with a significant increase in the numbers of runts compared to litters from dams fed either low protein or laboratory stock diets.

  2. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    PubMed

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of corn-based reduced-starch diets using alternative carbohydrate sources on performance of lactating Holstein cows.

    PubMed

    Dann, H M; Fredin, S M; Cotanch, K W; Grant, R J; Kokko, C; Ji, P; Fujita, K

    2015-06-01

    Increases in grain prices have led to renewed interest in feeding reduced-starch diets to lactating dairy cows. An experiment was conducted to determine the effects of altering carbohydrate sources and reducing dietary starch on lactational performance, feeding behavior, and ruminal measures of Holstein dairy cows. Fifteen multiparous cows (6 ruminally cannulated) were blocked and assigned to 1 of 5 squares and used in a replicated 3×3 Latin square design with 21-d periods. Cows were fed 1 of 3 experimental diets: a control diet containing 20% brown midrib corn silage, 20% conventional corn silage, and 10% hay crop silage (CON); a reduced-starch high-forage diet containing 53% brown midrib corn silage and 10% hay crop silage (HFOR); and a reduced-starch diet containing the same forages as CON with partial replacement of corn meal by nonforage fiber sources (HNFFS). The CON diet contained (% of dry matter) 26.0% starch and 34.7% neutral detergent fiber (NDF), whereas the HFOR and HNFFS diets contained 21.4 or 21.3% starch and 38.3 or 38.0% NDF, respectively. Dry matter intake tended to be greater for cows fed the CON diet (28.2 kg/d) compared with those fed the HFOR diet (27.2 kg/d). Dry matter intake for cows fed the HNFFS diet was intermediate (27.7 kg/d). Milk yield was greater for cows fed the CON diet (51.6 kg/d) compared with those fed the HFOR diet (48.4 kg/d), but milk fat content tended to increase for cows fed the HFOR diet (3.98%) compared with those fed the CON diet (3.66%). Consequently, fat-corrected and solids-corrected milk yields were unaffected by dietary treatments. Total chewing, eating, and rumination times were similar across all dietary treatments. Rumination time per kilogram of DM was greatest for the HFOR diet, intermediate for the HNFFS diet, and least for the CON diet, whereas rumination time per kilogram of NDF was greatest for the CON diet and least for the HNFFS diet. Mean ruminal pH, NH3-N (mg/dL), and total volatile fatty acid concentrations (mM) were similar across all dietary treatments. Molar proportion of ruminal acetate (mol/100 mol) was increased for cows fed the HFOR diet compared with cows fed the CON diet. Microbial N yield measured by urinary purine derivatives was unaffected by dietary treatment. Reduced-starch diets containing greater amounts of high quality, highly digestible forage or nonforage fiber sources in place of corn meal resulted in similar fat-corrected or solids-corrected milk yield for high-producing dairy cows in the short term. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Growth, food consumption, and energy status of juvenile pallid sturgeon fed natural or artificial diets

    USGS Publications Warehouse

    Meyer, Hilary A.; Chipps, Steven R.; Graeb, Brian D. S.; Klumb, Robert A.

    2016-01-01

    Stocking of hatchery-raised fish is an important part of the pallid sturgeon Scaphirhynchus albus recovery program. In the wild, juvenile pallid sturgeon consume primarily aquatic insects, although little is known about specific dietary needs. In hatchery settings, pallid sturgeon are fed commercial diets that are formulated for salmonids. To compare food consumption, growth, and energy status of pallid sturgeon fed artificial or natural diets, we conducted a laboratory study using 24 juvenile pallid sturgeon (initial fork length 153–236 mm). Pallid sturgeon were fed a daily ration of either commercial pellets (1 mm, slow sinking; 45% protein, 19% fat) or chironomid larvae for 5 wk. Natural-fed pallid sturgeon exhibited a greater specific growth rate (2.12% d−1) than pellet-fed fish (0.06% d−1). Similarly, relative condition was greater for natural-fed sturgeon (Kn = 1.11) than that observed for pellet-fed fish (Kn = 0.87). In contrast, the hepatosomatic index was significantly higher in pellet-fed fish (2.5%), indicating a high lipid diet compared with natural-fed sturgeon (1.4%). Given the importance of natural diets to fish digestion and growth, it is suggested that a more holistic approach be applied in the development of a practical diet for pallid sturgeon that incorporates attributes of natural prey.

  5. Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus.

    PubMed

    Liu, Xiang-he; Ye, Chao-xia; Ye, Ji-dan; Shen, Bi-duan; Wang, Chun-yan; Wang, An-li

    2014-10-01

    The effect of dietary amylose/amylopectin (AM/AP) ratio on growth, feed utilization, digestive enzyme activities, plasma parameters, and postprandial blood glucose responses was evaluated in juvenile obscure puffer, Takifugu obscurus. Five isonitrogenous (430 g kg(-1) crude protein) and isolipidic (90 g kg(-1) crude lipid) diets containing an equal starch level (250 g kg(-1) starch) with different AM/AP ratio diets of 0/25, 3/22, 6/19, 9/16 and 12/13 were formulated. Each experimental diet was fed to triplicate groups (25 fish per tank), twice daily during a period of 60 days. After the growth trial, a postprandial blood response test was carried out. Fish fed diet 6/19 showed best growth, feed efficiency and protein efficiency ratio. Hepatosomatic index, plasma total cholesterol concentration, liver glycogen and lipid content, and gluconokinase, pyruvate kinase and fructose-1,6-bisphosphatase activities were lower in fish fed highest AM/AP diet (12/13) than in fish fed the low-amylose diets. Activities of liver and intestinal trypsin in fish fed diet 3/22 and diet 6/19 were higher than in fish fed diet 9/16 and diet 12/13. Activities of liver and intestinal amylase and intestinal lipase, and starch digestibility were negatively correlated with dietary AM/AP ratio. Fish fed diet 3/22 and diet 6/19 showed higher plasma total amino acid concentration than fish fed the other diets, while plasma urea nitrogen concentration and activities of alanine aminotransferase and aspartate aminotransferase showed the opposite trend. Equal values were found for viscerosomatic index and condition factor, whole body and muscle composition, plasma high-density and low-density lipoprotein cholesterol concentrations, and activities of lipase and hexokinase and glucose-6-phosphatase in liver. Postprandial plasma glucose and triglyceride peak value of fish fed diet 12/13 were lower than in fish fed the low-amylose diets, and the peak time of plasma glucose was later than in fish fed the other diets. Plasma glucose and triglyceride concentrations showed a significant difference at 2 and 4 h after a meal and varied between dietary treatments. According to regression analysis of weight gain against dietary AM/AP ratio, the optimum dietary AM/AP ratio for maximum growth of obscure puffer was 0.25. The present result indicates that dietary AM/AP ratio could affect growth performance and feed utilization, some plasma parameters, digestive enzyme as well as hepatic glucose metabolic enzyme activities in juvenile obscure puffer.

  6. Erythrocyte membrane cholesterol and lipid core growth in a rabbit model of atherosclerosis: modulatory effects of rosuvastatin.

    PubMed

    Tziakas, Dimitrios; Chalikias, Georgios; Kapelouzou, Alkistis; Tentes, Ioannis; Schäfer, Katrin; Karayannakos, Panagiotis; Kostakis, Alkiviadis; Boudoulas, Harissios; Konstantinides, Stavros

    2013-12-10

    Lipid core expansion is partly responsible for the conversion of a stable atherosclerotic lesion to a rupture-prone plaque. Intraplaque hemorrhage contributes to the accumulation of cholesterol within unstable plaques. In the present study, we investigated, using a rabbit model of atherosclerosis, the extent to which diet-induced increases in cholesterol content of erythrocyte membranes (CEM) contribute to lipid core expansion and the modulatory effect of rosuvastatin use. Rabbits fed with atherogenic diet (0.75% cholesterol) for 5 months exhibited advanced atherosclerotic lesions (mean plaque area, 0.39 ± 0.03 mm(2)), and lipid core size was associated with the concentration-time integral (CTI) of CEM levels (r=0.567, P=0.004) independent of other established predictors of lipid core size. Further experiments were performed by feeding rabbits atherogenic diet (1% cholesterol) for 3 months, followed by either normal diet or normal diet plus rosuvastatin for the next 3 months. Although no differences were observed in total plaque area between both groups, administration of rosuvastatin was associated with significantly smaller lipid cores, fewer macrophages within the lipid core, less microvessels as well as with lower CTI of CEM levels compared to normal diet alone. Moreover, intraplaque erythrocyte membranes covered a smaller lipid core area in rabbits under rosuvastatin plus normal diet as opposed to rabbits under diet alone. Increased CEM levels, induced by high-cholesterol diet, are associated with lipid core growth. Ingestion of a potent HMG-CoA reductase inhibitor (rosuvastatin) may decrease CEM levels, and this effect may contribute to regression of the lipid core. © 2013.

  7. Differences in response to corticotropin-releasing factor after short- and long-term consumption of a high-fat diet.

    PubMed

    Legendre, Ariadne; Papakonstantinou, Emilia; Roy, Marie-Claude; Richard, Denis; Harris, Ruth B S

    2007-09-01

    We previously reported an exaggerated endocrine and weight loss response to stress in rats fed a high-fat (HF) diet for 5 days. Others report blunted stress-induced anxiety in rats made obese on a HF diet. Experiments described here tested whether sensitivity to stress-related peptides was changed in obese and nonobese HF-fed rats. Third ventricle infusion of corticotropin-releasing factor (CRF) in rats made obese on HF diet (40% kcal fat) produced an exaggerated hypophagia, which is thought to be mediated by CRF(2) receptors. Obese rats responded to a lower dose of CRF for a longer time than rats fed a low-fat (LF) diet (12% kcal fat). CRF-induced release of corticosterone, which is thought to be mediated by CRF(1) receptors, was not exaggerated in obese HF-fed rats. In contrast, rats fed HF diet for 5 days showed the same food intake and corticosterone response to CRF as LF-fed rats. CRF mRNA expression in the paraventricular nucleus of the hypothalamus was stimulated by mild stress (ip saline injection and placement in a novel cage) in LF-fed rats but not in rats fed HF diet for 5 days because of a nonsignificant increase in expression in nonstressed HF-fed rats. In addition, nonstressed levels of urocortin (UCN) I mRNA expression in the Edinger-Westphal nucleus were significantly inhibited in HF-fed rats. These data suggest that rats that have become obese on a HF diet show a change in responsiveness to stress peptides, whereas the increased stress response in nonobese HF-fed rats may be associated with changes in basal CRF and UCN I mRNA expression.

  8. Primary anestrus due to dietary hyperthyroidism in a miniature pinscher bitch

    PubMed Central

    Sontas, Besim Hasan; Schwendenwein, Ilse; Schäfer-Somi, Sabine

    2014-01-01

    A 2-year-old intact miniature pinscher bitch that had been on a bones and raw foods diet since birth showed no signs of estrus despite a 40-day course of cabergoline. Elevated levels of thyroxine were detected in the serum (51 nmol/L) and in the juice of the meat (183 nmol/L) fed to the dog. Change in diet and treatment with oral cabergoline resulted in signs of proestrus in 13 d, pregnancy, and normal birth of 5 puppies. PMID:25082994

  9. Primary anestrus due to dietary hyperthyroidism in a miniature pinscher bitch.

    PubMed

    Sontas, Besim Hasan; Schwendenwein, Ilse; Schäfer-Somi, Sabine

    2014-08-01

    A 2-year-old intact miniature pinscher bitch that had been on a bones and raw foods diet since birth showed no signs of estrus despite a 40-day course of cabergoline. Elevated levels of thyroxine were detected in the serum (51 nmol/L) and in the juice of the meat (183 nmol/L) fed to the dog. Change in diet and treatment with oral cabergoline resulted in signs of proestrus in 13 d, pregnancy, and normal birth of 5 puppies.

  10. Expression of kyphosis in young pigs is induced by a reduction of supplemental vitamin D in maternal diets and vitamin D, Ca, and P concentrations in nursery diets.

    PubMed

    Rortvedt, L A; Crenshaw, T D

    2012-12-01

    Kyphosis is an idiopathic disease characterized by abnormal, outward spinal curvature. A spontaneous outbreak and subsidence of kyphosis over a 4-mo period in the University of Wisconsin Swine Research and Teaching Center herd coincided with an accidental omission of vitamin D(3) in 1 of 2 premixes used in sow diets. This controlled experiment was conducted to determine whether vitamin D deletion from premixes used in sow diets would induce kyphosis in their offspring. Crossbred (Landrace × Large White), multiparous sows (n = 8) were fed corn-soybean meal diets supplemented with either 325 IU vitamin D(3)/kg (+D) or 45 IU vitamin D(3)/kg (-D) diet from breeding through lactation. The vitamin D concentrations duplicated formulations of diets fed during the earlier spontaneous outbreak. At weaning (approximately 4 wk), pigs were fed diets devoid of supplemental vitamin D and formulated to supply either 120% of the Ca and P requirements (HCaP) or 80% of the Ca and P requirements (LCaP) until wk 9. At wk 9, all pigs were fed the HCaP diet until wk 13. No evidence of kyphosis was observed in pigs at weaning. Pigs produced by -D sows and fed LCaP diets exhibited a 17% incidence (4/23 pigs) of kyphosis at wk 9. At wk 13, the incidence of kyphosis had increased to 32% (6/19 pigs). Unexpectedly at wk 13, pigs produced by +D sows and fed LCaP diets exhibited a 26% incidence (5/19 pigs) of kyphosis. None of the pigs fed HCaP diets from wk 4 to 13 displayed kyphosis, regardless of maternal diets. Evidence of kyphosis was detected at a younger age if pigs were produced by sows fed -D diets. Whole body and femur bone mineral content determined with dual energy X-ray absorptiometry were reduced (P < 0.05) in pigs fed LCaP vs. HCaP diets, but pigs produced by -D sows were more severely affected. Femur bending moments were reduced (P < 0.05) at wk 9 and 13 in pigs fed LCaP vs. HCaP diets. At wk 13, pigs produced by -D sows and fed LCaP diets had reduced (P < 0.05) bone mineral density and femur yield bending moment compared with pigs from +D sows fed LCaP diets. In conclusion, the 20 to 30% incidence of kyphosis induced by altering vitamin D, Ca, and P concentrations in maternal and nursery diets mimics the incidence observed in spontaneous outbreaks in afflicted herds. A reproducible vitamin D-induced kyphosis in young pigs offers a suitable model to study skeletal tissue characteristics, fetal skeletal tissue development, and potential treatments for pigs and human patients afflicted by this disease.

  11. Toxic threshold of dietary microcystin (-LR) for quart medaka.

    PubMed

    Deng, Dong-Fang; Zheng, Keke; Teh, Foo-Ching; Lehman, Peggy W; Teh, Swee J

    2010-04-01

    This study was designed to estimate the toxic threshold of male and female fish to microcystins based on different biomarkers. Japanese medaka (Oryzias latipes) were fed dietary Microcystin-LR (0, 0.46, 0.85, 2.01 and 3.93 microg MC-LR/g dry diet for 8 weeks at 25 degrees C. The results revealed that dietary MC-LR inhibited growth at the end of 8 weeks. The survival of embryos and the RNA/DNA ratio of whole fish decreased significantly (P < 0.05) in fish fed 3.93 microg MC-LR/g dry diet. Heat shock protein (Hsp60) expression was induced in the liver of female and male fish fed diets containing > or =0.85 and 0.46 microg MC-LR/g diet, respectively. The activity of liver caspase 3/7 was significantly higher in female fish fed 3.93 microg MC-LR/g diet and in males fed 2.01 MC-LR microg/g dry diet than fish fed the control diet. The threshold for inhibition of liver protein phosphatase expression was lower in female (2.01 microg/g diet) than that in male fish (3.93 microg/g diet). Histopathological examination showed significant single-cell necrosis in female and male medaka fed diets containing 0.85 and 3.93 microg MC-LR/g diet, respectively. Based on different biomarkers, this study demonstrated that dietary MC-LR is toxic to Medaka and the effects are gender dependent. Published by Elsevier Ltd.

  12. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    PubMed

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  13. Parturient hypocalcemia in jersey cows fed alfalfa haylage-based diets with different cation to anion ratios.

    PubMed

    Gaynor, P J; Mueller, F J; Miller, J K; Ramsey, N; Goff, J P; Horst, R L

    1989-10-01

    Jersey cows were fed three alfalfa haylage-based diets with different cation-anion balances beginning 6 wk preceding third or later calving and ending 24 to 36 h postpartum. Sodium and Cl as percentages of dietary DM were .08 and 1.66 in diet 1 (anionic, 5 cows), .44 and .91 in diet 2 (intermediate, 6 cows), and 1.60 and .34 in diet 3 (cationic, 6 cows). Cation-anion balances were 22, 60, and 126 meq/100 g DM; Ca:P ratios averaged 4:1. Cows fed diet 1 in comparison with cows fed diets 2 or 3 over 6 wk had similar concentrations of Ca, P, and Na but higher concentrations of Mg and K in plasma and higher urinary excretions of Ca and Mg. Concentrations of 1,25-dihydroxyvitamin D 3 d before parturition were higher in cows fed diet 1 than in cows fed diets 2 or 3. Within 36 h after calving, mean concentrations of Ca in plasma (mg/dl, range) of cows fed diets 1 to 3, respectively, were 7 (8.7 to 6.2), 6.5 (7.8 to 3.9), and 6.3 (7.8 to 3.8). Number of cases of clinical milk fever by diet were 0 of 5, 2 of 6, and 1 of 6 cows. Alteration of dietary cation-anion balance by addition of Cl may effectively reduce incidence and severity of parturient hypocalcemia.

  14. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    PubMed

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Selenium retention in tissues of swine fed carcasses of pigs grown on diets containing sodium selenite or high selenium white sweet clover grown on fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandisodza, K.T.; Pond, W.G.; Lisk, D.J.

    1980-04-01

    Growing pigs were fed diets containing 5 or 10% white sweet clover, and 0, 3.5 or 7.0 ppM selenium (Se) supplied as sodium selenite (Na/sub 2/SeO/sub 3/) or occurring naturally in white sweet clover harvested from a coal fly ash dump. Ground carcasses of these pigs were included in corn meal diets at 23% and fed back to pigs. Compared to the pigs fed the high Se, fly ash-grown clover diets, the pigs fed Na/sub 2/SeO/sub 3/ diets had higher blood Se levels but lower Se concentrations in kidney, liver and skeletal muscle. Tissues of the pigs which were fedmore » carcasses of the high Se clover-fed pigs had higher Se concentrations than those of the pigs fed carcasses of the Na/sub 2/SeO/sub 3/ - fed pigs.« less

  16. T and B lymphocyte function in response to a protein-free diet.

    PubMed Central

    Carlomagno, M A; Alito, A E; Almiron, D I; Gimeno, A

    1982-01-01

    Groups of female adult rats were fed either isocaloric protein-free or 18% protein diets for various intervals. Four days before sacrifice, the animals were immunized either with sheep erythrocytes or with a trinitrophenyl-lipopolysaccharide (TNP-LPS) conjugate. Spleen lymphoid cell populations, spleen plaque-forming cells, and serum hemolysins were measured. A persistent diminution, proportional to the duration of protein deprivation, was observed in all parameters studied after immunization with the T-dependent antigen, sheep erythrocytes. The immune dysfunction was more pronounced for hemolysin titers, which became undetectable after 15 days of protein-free diet. The response of the protein-free group to the T-independent antigen (TNP-LPS) after 15 days of diet was only 34% of the control. When a T-cell lymphokine, macrophage migration inhibitory factor, was measured, a normal response was observed in the protein-free group. Feeding a normal diet rapidly restored the spleen plaque-forming cell populations to 60% of normal after 4 days and to 100% after 6 days. Protein starvation influenced the production of antibodies more than it did the number of antibody-forming cells. The nutritional impairment of immunoglobulin synthesis appears to be reversible. PMID:6216214

  17. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets.

    PubMed

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2010-10-01

    1. The influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets was examined up to 21 d of age. The experimental design was a 2 × 3 factorial arrangement of treatments evaluating two grain types (maize and wheat) and three conditioning temperatures (60°C, 75°C and 90°C). Broiler starter diets, each based on one grain (maize or wheat), were formulated and pelleted at the three temperatures. 2. Increasing conditioning temperature decreased the body-weight gain and feed intake in wheat-based diets, but birds fed on maize-based diets conditioned at 60°C and 90°C had higher body-weight gain and feed intake than those fed on the diet conditioned at 75°C. Increasing conditioning temperature increased feed per body-weight gain in both grain-type diets but improved pellet durability index (PDI) only in wheat-based diets; PDI was unaffected in maize-based diets. 3. In wheat-based diets, increasing conditioning temperature decreased the ileal digestibility of nitrogen and starch. Ileal nitrogen digestibility of maize-based diets conditioned at 60°C and 90°C was higher than at 75°C. Starch digestibility was unaffected by conditioning temperature in maize-based diets. No effect of conditioning temperature was found for apparent metabolisable energy (AME). Increasing conditioning temperature decreased digestible protein and AME intakes in wheat-based diets but, in maize-based diets, birds fed on the diet conditioned at 75°C had lower digestible protein and AME intakes compared to those fed on diets conditioned at 60°C and 90°C. 4. Small intestine was longer in birds fed on diets conditioned at 75°C and 90°C compared with those fed on diets conditioned at 60°C. 5. Overall, the data suggest that while the effects of conditioning temperature on body-weight gain and feed intake of broilers to 21 d of age differed depending on the grain type, feed per body-weight gain was adversely affected by higher conditioning temperatures.

  18. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    PubMed

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry.

    PubMed

    Lyu, Zhiqian; Li, Yakui; Liu, Hu; Li, Enkai; Li, Peili; Zhang, Shuai; Wang, Fenglai; Lai, Changhua

    2018-05-04

    The objective of this experiment was to determine the effects of increased fiber content in diets on heat production (HP) and NE:ME ratio and to determine the NE content and NE:ME ratio of full-fat rice bran (FFRB), defatted rice bran (DFRB), corn gluten feed (CGF), and corn germ meal (CGM) fed to growing barrows using indirect calorimetry (IC). Thirty growing barrows (28.5 ± 2.4 kg BW) were allotted in a completely randomized design to 5 dietary treatments that included a corn-soybean meal basal diet and 4 experimental diets with a constant ratio of corn and soybean meal (difference method) containing 30% FFRB, DFRB, CGF, and CGF. Pigs were housed in individual metabolism crates for 20 d including 14-d adaptation to the diet and 6 d to determine the HP and total collection of feces and urine in respiration chambers. Pigs were fed their respective diets at 550 kcal ME·kg BW0.60-1·d-1 on the basis of BW measured on days 0, 7, and 14. The apparent total tract digestibility (ATTD) of DM, GE, and OM were greater (P < 0.01) in pigs fed the basal diet. The ATTD of DM, GE, and OM in pigs fed the DFRB diet were lesser (P < 0.01) when compared with those fed the basal and FFRB diets. The ATTD of ether extract (EE) in pigs fed the FFRB diet was greater (P < 0.01) compared with those fed basal, DFRB, CGF, and CGM diets. The HP adjusted for the same ME intake was greater (P < 0.01) in pigs fed the DFRB, CGF, and CGM diets compared with those fed basal and FFRB diets. The NE:ME ratio in pigs fed the FFRB diet was greater (P < 0.01) when compared with those fed the DFRB, CGF, and CGM diets. The NE content of FFRB, DFRB, CGF, and CGM determined using the IC method were 2,952, 1,100, 1,747, and 2,079 kcal/kg DM, respectively. The NE content of FFRB, CGF, and CGM determined using the IC method were 3.5%, 3.8%, and 1.8% greater, respectively, than the predicted values, whereas NE content of DFRB determined using the IC method was 2.1% lower than the predicted values. In conclusion, pigs fed the fiber-rich ingredients had greater HP and lower nutrient digestibility. However, pigs fed FFRB diets containing greater fat content had a lower heat increment and, therefore, higher utilization efficiency. The NE:ME ratio ranged from 71.6% to 82.4%. The NE of FFRB, DFRB, CGF, and CGM determined using the IC method were 2,952, 1,100, 1,747, and 2,079 kcal/kg DM, respectively.

  20. Protein source and nutrient density in the diets of male broilers from 8 to 21 d of age: Effects on small intestine morphology.

    PubMed

    Wang, X; Peebles, E D; Morgan, T W; Harkess, R L; Zhai, W

    2015-01-01

    In a companion study, high amino acid (AA) or apparent metabolizable energy (AME) densities in the diets of broilers from 8 to 21 d of age were found to improve feed conversion. A total of 1,120 male Ross×Ross 708 chicks were randomly allocated to 80 pens (8 treatments, 10 replications per treatment, 14 chicks per pen). A 2×2×2 factorial arrangement of treatments was used to investigate the interaction among the protein source (high distillers dried grains with solubles diet [hDDGS] or high meat and bone meal diet [hMBM]), AA density (moderate or high), and AME density (2,998 or 3,100 kcal/kg) of diets on small intestine morphology. Duodenum, jejunum, and ileum samples from 2 chicks per pen were collected and measured individually at 21 d. Jejunum sections were processed for histological analysis. Chicks fed hDDGS diets exhibited longer small intestines than did chicks fed hMBM diets. Particularly, when chicks were fed high AA density diets, jejuna were longer in groups fed hDDGS diets than groups fed hMBM diets. Dietary treatments did not affect jejunum villus height, width, area, crypt depth, villus to crypt ratio, goblet cell size, or cell density. In birds fed diets containing a moderate AA and a high AME density, jejunum muscle layers of chicks fed hDDGS diets were thicker than those fed hMBM diets. Chicks exhibited a lower feed conversion ratio (FCR) and a higher BW gain when their crypts were shorter. In conclusion, an hDDGS diet may facilitate small intestine longitudinal growth in broilers, which may subsequently improve dietary nutrient absorption. In addition, broiler chicks with shallow intestinal crypts exhibited better growth performance. © 2014 Poultry Science Association Inc.

  1. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs.

    PubMed

    Lei, Xin Jian; Cheong, Jin Young; Park, Jae Hong; Kim, In Ho

    2017-12-01

    Effects of adding protease with or without fructooligosaccharide (FOS) to low protein diet on growth performance, nutrient digestibility and fecal noxious gas emission were evaluated in 160 finishing pigs (57.70 ± 1.16 kg) in a 9-week study. Pigs were randomly divided into four dietary treatments, PC: positive control diet (15.97% crude protein (CP)); NC: negative control diet (12.94% CP); PRO: NC supplemented with 0.05% protease; PROFOS: NC supplemented with 0.05% protease and 0.1% FOS. During weeks 4-9 and weeks 0-9, gain : feed ratio was impaired (P < 0.05) in pigs fed NC diet compared with those fed PC, PRO and PROFOS diets. Pigs fed PC, PRO and PROFOS diets had higher (P < 0.05) apparent total tract digestibility (ATTD) of CP than pigs fed NC diet. Pigs fed PROFOS diet had reduced (P < 0.05) ammonia emissions compared to pigs fed NC and PRO diets. These data indicate that reducing dietary CP concentrations impaired growth performance, decreased ATTD of CP and reduced ammonia emissions. Supplementation of protease in low CP diet improved growth performance and increased ATTD of CP. Dietary supplementation with protease and FOS in low CP diet improved growth performance, increased ATTD of CP and decreased fecal ammonia emission. © 2017 Japanese Society of Animal Science.

  2. Effects of dietary sweet potato leaf meal on the growth, non-specific immune responses, total phenols and antioxidant capacity in channel catfish (Ictalurus punctatus).

    PubMed

    Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace

    2013-04-01

    Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.

  3. Intestinal Mechanomorphological Remodeling Induced by Long-Term Low-Fiber Diet in Rabbits.

    PubMed

    Liu, Yue; Zhao, Jingbo; Liao, Donghua; Wang, Guixue; Gregersen, Hans

    2017-12-01

    Short-term feeding with low-fiber diet remodels the mechanomorphological properties in the rabbit small intestine. The aims were to study the effect of feeding low-fiber diet for 5 months on mechanomorphological properties including the collagen fraction in the rabbit intestines. Fifteen rabbits were divided into an Intervention group (IG, n = 10) fed a low-fiber diet and a Control group (CG, n = 5) fed a normal diet for 5 months. Five months later, four 10-cm-long segments obtained from the duodenum, jejunum, ileum and large intestine were used for histological and mechanical analysis, respectively. The wall thickness, wall area, mucosa and muscle layer thickness decreased whereas the submucosa layer thickness increased in the IG (p < 0.05). The collagen fraction decreased in all layers and segments in the IG (p < 0.05). The opening angle increased in the large intestine and decreased in the ileum in the IG (p < 0.05). The intestinal stress-strain curves for IG shifted to the right, indicating softening. The creep did not change in the four segments. The wall stiffness was associated with wall thickness and collagen fraction in the submucosa layer. Long-term low-fiber diet in rabbits induced histomorphometric and biomechanical remodelling of the intestines.

  4. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias

    PubMed Central

    Hasan, Wohaib; Streiff, Cole T.; Houle, Jennifer C.; Woodward, William R.; Giraud, George D.; Brooks, Virginia L.; Habecker, Beth A.

    2013-01-01

    Obesity increases the risk of arrhythmias and sudden cardiac death, but the mechanisms are unknown. This study tested the hypothesis that obesity-induced cardiac sympathetic outgrowth and hyperinnervation promotes the development of arrhythmic events. Male Sprague-Dawley rats (250–275 g), fed a high-fat diet (33% kcal/fat), diverged into obesity-resistant (OR) and obesity-prone (OP) groups and were compared with rats fed normal chow (13% kcal/fat; CON). In vitro experiments showed that both OR and OP rats exhibited hyperinnervation of the heart and high sympathetic outgrowth compared with CON rats, even though OR rats are not obese. Despite the hyperinnervation and outgrowth, we showed that, in vivo, OR rats were less susceptible to arrhythmic events after an intravenous epinephrine challenge compared with OP rats. On examining total and stimulus-evoked neurotransmitter levels in an ex vivo system, we demonstrate that atrial acetylcholine content and release were attenuated in OP compared with OR and CON groups. OP rats also expressed elevated atrial norepinephrine content, while norepinephrine release was suppressed. These findings suggest that the consumption of a high-fat diet, even in the absence of overt obesity, stimulates sympathetic outgrowth and hyperinnervation of the heart. However, normalized cardiac parasympathetic nervous system control may protect the heart from arrhythmic events. PMID:24014675

  5. The genomic response of the mouse kidney to low-phosphate diet is altered in X-linked hypophosphatemia.

    PubMed

    Meyer, Martha H; Dulde, Emily; Meyer, Ralph A

    2004-06-17

    The mechanism for the renal adaptation to low-phosphate diets is not well understood. Whether the Hyp mutation of the Phex gene blocks this adaptation is also not clear. To gain further insight into this, 5-wk-old normal and Hyp mice were fed a control (1.0% P) or low-phosphate diet (0.03% P) for 3-5 days. Renal RNA was hybridized to Affymetrix U74Av2 microarrays (5 arrays/group). Of the 5,719 detectable genes on each array, 290 responded significantly (P < 0.01) to low-phosphate diet in normal mice. This was reduced significantly (P < 0.001) to 7 in the Hyp mice. This suggested that the adaptations of the normal kidney to a low-phosphate environment were blocked by the Hyp mutation. The Npt2 phosphate transporter, vitamin D 1alpha- and 24-hydroxylases, and calbindins D9K and D28K responded in the expected fashion. Genes with significant (P < 0.05) diet-by-genotype interaction were analyzed by GenMAPP and MAPPFinder. This revealed a cluster of differentially expressed genes associated with microtubule-based processes. Most alpha- and beta-tubulins and most kinesins had responses to low-phosphate diet in normal mice which were abolished or reversed in Hyp mice. In summary, renal adaptation to low-phosphate diet involved changes in the mRNA expression of specific genes. Disruption of these responses in Hyp mice may contribute to their abnormal phosphate homeostasis.

  6. The Effect of Exposure to a High-Fat Diet on MicroRNA Expression in the Liver of Blunt Snout Bream (Megalobrama amblycephala)

    PubMed Central

    Zhang, Dingdong; Lu, Kangle; Dong, Zaijie; Jiang, Guangzhen; Xu, Weina; Liu, Wenbin

    2014-01-01

    Blunt snout bream (Megalobrama amblycephala) are susceptible to hepatic steatosis when maintained in modern intensive culture systems. The aim of this study was to investigate the potential roles of microRNAs (miRNAs) in diet-induced hepatic steatosis in this species. MiRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level, are involved in diverse biological processes, including lipid metabolism. Deep sequencing of hepatic small RNA libraries from blunt snout bream fed normal-fat and high-fat diets identified 202 (193 known and 9 novel) miRNAs, of which 12 were differentially expressed between the normal-fat and high-fat diet groups. Quantitative stem-loop reverse transcriptase-polymerase chain reaction analyses confirmed the upregulation of miR-30c and miR-30e-3p and the downregulation of miR-145 and miR-15a-5p in high-fat diet-fed fish. Bioinformatics tools were used to predict the targets of these verified miRNAs and to explore potential downstream gene ontology biological process categories and Kyoto Encyclopedia of Genes and Genomes pathways. Six putative lipid metabolism-related target genes (fetuin-B, Cyp7a1, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 2, 3-oxoacid CoA transferase 1b, stearoyl-CoA desaturase, and fatty-acid synthase) were identified as having potential important roles in the development of diet-induced hepatic steatosis in blunt snout bream. The results presented here are a foundation for future studies of miRNA-controlled lipid metabolism regulatory networks in blunt snout bream. PMID:24788396

  7. Antihyperlipidemic activity of adenosine triphosphate in rabbits fed a high-fat diet and hyperlipidemic patients.

    PubMed

    Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong

    2016-10-01

    Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.

  8. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase.

    PubMed

    Kiarie, E; Romero, L F; Ravindran, V

    2014-05-01

    Efficacy of supplemental xylanase on growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn- or wheat-based diets was investigated. In experiment 1, 192 male broilers (8 birds/pen; n = 6) were fed 4 diets (corn or wheat without or with 1,250 xylanase units/kg) in 2 phases (starter, d 0-21 and grower, d 22-42). There was no interaction (P > 0.05) between diet and xylanase on performance (d 0-42). Wheat diets resulted (P < 0.01) in better performance than corn diets, whereas xylanase-fed birds had improved (P < 0.01) BW gain (2,457 vs. 2,275 g) and feed per gain (1.677 vs. 1.762) relative to birds not fed xylanase. In experiment 2, TiO2 (0.3%) was added in starter diets used in experiment 1, allocated to 13-d-old broiler chicks (n = 6) housed in cages (6 birds/cage) and fed up to d 21. Excreta samples were obtained from d 17 to 20 and birds were euthanized on d 21 for digesta. Corn diets had a greater concentration (10.7 vs. 9.8%) of insoluble nonstarch polysaccharides (NSP) than wheat diets, which in turn had more than twice the concentration of soluble NSP. There was an interaction (P < 0.03) between diet type and xylanase on jejunal digesta viscosity but not (P > 0.10) on apparent ileal digestibilities of nutrients, cecal volatile fatty acids, and AMEn. In this context, diet type influenced (P < 0.05) cecal volatile fatty acids and retention of nutrients and fiber but did not affect (P = 0.45) AMEn. In contrast, xylanase-fed birds showed higher (P < 0.05) ceca digesta acetic acid, apparent ileal digestibilities of nutrients, and retention of components. As a result, birds fed xylanase had higher AMEn (3,059 vs. 2,995 kcal/kg; P < 0.01) compared with birds not fed xylanase. Although wheat diets had superior growth performance, the AMEn was similar in both diets. Xylanase improved growth performance and AMEn independent of diet type, suggesting hydrolysis of both soluble and insoluble NSP.

  9. Performance of broiler chickens fed diets supplemented with a direct-fed microbial.

    PubMed

    Angel, R; Dalloul, R A; Doerr, J

    2005-08-01

    From hatch to 18 d of age broilers were fed starter diets with (0.9 kg/ton) or without direct fed microbial (DFM). At 18 d, birds were weighed and, within DFM treatment (trt), randomly assigned to battery pens. In Exp 1, a 2 x 2 factorial arrangement of nutrient density [control (C, 19.3% protein (CP), 0.84%, Ca 0.37% nonphytin P (nPP); and 17.1% CP, 0.8% Ca, and 0.3% nPP in the grower (Gr) and finisher (Fn) diets, respectively) and moderate (M) (17% CP, 0.69% Ca, 0.30% nPP; 15% CP, 0.66% Ca, 0.25% nPP in the Gr and Fn diets, respectively)] and DFM concentration [0 or 0.9 kg/ton (++)] was used. Exp 2 was a 2 (DSM at 0 and 0.45 kg/ton) x 3 (nutrient densities) factorial. Exp 2 included a low (L) nutrient density that differed from diet M only in Ca and nPP concentrations and an added trt, diet M with 0.45 kg/ ton DFM as in Exp 1. At the end of the Gr and Fn weight, feed efficiency, apparent nutrient retention were determined, and 4 birds per pen were sampled for tibia ash. In Exp 2, gains in the Gr phase were 1,122.0, 983.7, 1,121.5, 930.7, and 1,151.5 g in birds fed the C, M, M+, L, and L+ diets, respectively. Addition of DFM to the M diet overcame the negative effect of nutrient concentration on performance but not when the L diet was fed. Nutrient level and DFM affected apparent protein, Ca, and P retention at 32 or 42 d of age with retention increasing as nutrient level decreased and with DFM added to the diet. Ca and P retention at 28 d (Exp 1) was higher in birds fed M++ (45.8 and 46%, respectively) than in those fed the C diet (38.7 and 40.0%, respectively). Feeding the M and L diets resulted in lower tibia ash than that of birds fed the C diet, but the addition of DFM to low nutrient diets overcame this negative effect.

  10. Effect of dietary supplementation with clay-based binders on biochemical and histopathological changes in organs of turkey fed with aflatoxin-contaminated diets.

    PubMed

    Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O

    2016-12-01

    This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Fecal shedding of Salmonella in exotic felids.

    PubMed

    Clyde, V L; Ramsay, E C; Bemis, D A

    1997-06-01

    Two collections of exotic felids were screened for the presence of Salmonella by selective fecal culture utilizing selenite broth and Hektoen enteric agar. In > 90% of the samples, Salmonella was isolated from a single culture. A commercial horsemeat-based diet was fed in both collections, and one collection also was fed raw chicken. Salmonella was cultured from the raw chicken and the horsemeat diet for both collections. Multiple Salmonella serotypes were identified, with S. typhimurium and S. typhimurium (copenhagen) isolated most frequently. Approximately half of the Salmonella isolates demonstrated multiple antibiotic resistance. The ability to harbor Salmonella as normal nonpathogenic bacteria of the gastrointestinal tract may be a physiological adaptation to carnivory. The high rate of fecal shedding of Salmonella in healthy individuals clouds the interpretation of a positive fecal culture in an ill felid, or one with diarrhea. All zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions.

  12. Comparative effect of gromwell (Lithospermum erythrorhizon) extract and borage oil on reversing epidermal hyperproliferation in guinea pigs.

    PubMed

    Kim, Juyoung; Kim, Hyunae; Jeong, Do Hyeon; Kim, Sung Han; Park, Seong Kyu; Cho, Yunhi

    2006-09-01

    To compare the systemic efficacy of borage oil (Borago officinalis: BO) and gromwell (Lithospermum erythrorhizon), two plant species of the Boraginaceae family, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil diet for 8 weeks. Subsequently, guinea pigs were fed diets of BO (group HBO), organic extract (group HGO), or water extract (group HGW) of gromwell for 2 weeks. In groups HGO and HGW, proliferation scores and the level of ceramides, the major lipid maintaining epidermal barrier, were similar with those in normal control group BO fed BO diet for 10 weeks. Despite accumulation of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent anti-proliferative metabolite of gamma-linolenic acid (GLA: major polyunsaturated fatty acid in BO), the reversal of epidermal hyperproliferation and the ceramide level of group HBO were less than those of groups HGO and HGW. Taken together, our data demonstrate that gromwell is more effective in reversing epidermal hyperproliferation with a marked increase in ceramides.

  13. Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus.

    PubMed

    Liu, Tailiang; Wen, Hua; Jiang, Ming; Yuan, Danning; Gao, Pan; Zhao, Yujiang; Wu, Fan; Liu, Wei

    2010-09-01

    An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg(-1) were fed to triplicate groups of 20 fish (initial weight of 12.78 +/- 1.16 g, mean +/- SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg(-1) was the highest (77.67 mg g(-1)). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg(-1) had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg(-1), but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg(-1). Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg(-1) diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg(-1) (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg(-1) for grass carp according to growth.

  14. Glucose metabolism and regulation in lactating mink (Mustela vison)--effects of low dietary protein supply.

    PubMed

    Fink, Rikke; Børsting, Chr F; Damgaard, Birthe Marie; Rosted, Anne Katrine Lundegård

    2002-04-01

    Eighteen lactating mink raising litters of 6 to 7 kits were fed ad libitum from parturition on diets with 32% of ME derived from protein and decreasing fat:carbohydrate ratios [high fat:low carbohydrate (HFLC): 67:1, medium fat:medium carbohydrate (MFMC): 52:16, low fat:high carbohydrate (LFHC): 37:31]. Four weeks post partum the dams were fitted with a jugular vein catheter, and the experiment started with a 3 hours fasting period, after which the dams were fed 210 kJ ME of the experimental diets. Blood samples were collected 10 and 5 min before feeding and 30, 60, 90, 120, 150 and 180 min postprandially. Two hours postprandially a single dose of 50 microCi U-14C-labelled glucose was administered to each dam and blood samples were collected 5, 10, 20, 30, 45 and 60 min after the tracer administration. Plasma concentrations of glucose and insulin 30 to 120 min postprandially were higher in dams fed the LFHC diet, than in dams fed the HFLC diet, values for dams fed the MFMC diet being intermediate. Plasma glucagon concentrations were not significantly affected by dietary treatment. The glucagon:insulin ratios decreased postprandially in all dams, the response being significant in dams fed the LFHC diet. Plasma concentrations of urea were not significantly affected by dietary treatment. Plasma FFA concentrations tended to increase postprandially in dams fed the HFLC diet. Glucose turnover rates were approximately 4.0% per min in all dams, irrespective of dietary treatment. However, the daily glucose flux was lower in dams fed the HFLC diet than in dams fed the LFHC diet, and tended to be lower than in dams fed the MFMC diet. In conclusion, a dietary protein supply of 32% of ME simultaneously with a carbohydrate supply of 16% or 31% of ME had no adverse effects on glucose homeostasis or glucose metabolism in lactating mink.

  15. Identification and characterization of lipid metabolism-related microRNAs in the liver of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by deep sequencing.

    PubMed

    Tao, Yi-Fan; Qiang, Jun; Yin, Guo-Jun; Xu, Pao; Shi, Qiong; Bao, Jing-Wen

    2017-10-01

    MicroRNAs (miRNAs) play vital roles in modulating diverse metabolic processes in the liver, including lipid metabolism. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China, is susceptible to hepatic steatosis when reared in intensive culture systems. To investigate the miRNAs involved in GIFT lipid metabolism, two hepatic small RNA libraries from high-fat diet-fed and normal-fat diet-fed GIFT were constructed and sequenced using high-throughput sequencing technology. A total of 204 known and 56 novel miRNAs were identified by aligning the sequencing data with known Danio rerio miRNAs listed in miRBase 21.0. Six known miRNAs (miR-30a-5p, miR-34a, miR-145-5p, miR-29a, miR-205-5p, and miR-23a-3p) that were differentially expressed between the high-fat diet and normal-fat diet groups were validated by quantitative real-time PCR. Bioinformatics tools were used to predict the potential target genes of these differentially expressed miRNAs, and Gene Ontology enrichment analysis indicated that these miRNAs may play important roles in diet-induced hepatic steatosis in GIFT. Our results provide a foundation for further studies of the role of miRNAs in tilapia lipid homeostasis regulation, and may help to identify novel targets for therapeutic interventions to reduce the occurrence of fatty liver disease in farmed tilapia. Copyright © 2017. Published by Elsevier Ltd.

  16. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet.

    PubMed

    Gao, X; Oba, M

    2014-05-01

    The objectives of the current study were to evaluate the variation in severity of subacute ruminal acidosis (SARA) among lactating dairy cows fed a high-grain diet and to determine factors characterizing animals that are tolerant to high-grain diets. Sixteen ruminally cannulated late-lactating dairy cows (days in milk=282 ± 33.8; body weight=601 ± 75.9 kg) were fed a high-grain diet consisting of 35% forage and 65% concentrate mix. After 17 d of diet adaptation, chewing activities were monitored for a 24-h period and ruminal pH was measured every 30s for 72 h. Acidosis index, defined as the severity of SARA (area of pH <5.8) divided by dry matter intake (DMI), was determined for individual animals to assess the severity of SARA normalized for a feed intake level. Although all cows were fed the same diet, minimum pH values ranged from 5.16 to 6.04, and the acidosis index ranged from 0.0 to 10.9 pH · min/kg of DMI. Six cows with the lowest acidosis index (0.04 ± 0.61 pH · min/kg) and 4 with the highest acidosis index (7.67 ± 0.75 pH · min/kg) were classified as animals that were tolerant and susceptible to the high-grain diet, respectively. Total volatile fatty acid concentration and volatile fatty acid profile were not different between the groups. Susceptible animals sorted against long particles, whereas tolerant animals did not (sorting index=87.6 vs. 97.9, respectively). However, the tolerant cows had shorter total chewing time (35.8 vs. 45.1 min/kg of DMI). In addition, although DMI, milk yield, and milk component yields did not differ between the groups, milk urea nitrogen concentration was higher for tolerant cows compared with susceptible cows (12.8 vs. 8.6 mg/dL), which is possibly attributed to less organic matter fermentation in the rumen of tolerant cows. These results suggest that a substantial variation exists in the severity of SARA among lactating dairy cows fed the same high-grain diet, and that cows tolerant to the high-grain diet might be characterized by less sorting behavior but less chewing time, and higher milk urea nitrogen concentration. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Efficacy of dietary spray dried plasma protein to mitigate the negative effects on performance of pigs fed diets with corn naturally contaminated with multiple mycotoxins.

    PubMed

    Weaver, A C; Campbell, J M; Crenshaw, J D; Polo, J; Kim, S W

    2014-09-01

    The ability of spray dried plasma protein (SDPP) to reduce the negative effects of multiple mycotoxins from naturally contaminated corn on weaned pig performance and health was investigated (n = 180; 6.84 ± 0.11 kg). For 12 d after weaning, pigs were fed phase 1 nursery diets with either 0% SDPP (PP0) or 6% SDPP (PP6). After 12 d, pigs were fed phase 2 diets for 3 wk. Pigs fed PP0 in phase 1 continued to be fed a phase 2 diet with no SDPP (PP0/PP0) or were fed a diet including corn naturally contaminated with multiple mycotoxins (M), labeled PP0/PP0M. Pigs fed SDPP in phase 1 were fed either a diet with no SDPP (PP6/PP0), a diet with M and no SDPP (PP6/PP0M), a diet with M and 3% SDPP (PP6/PP3M), or a diet with M and 6% SDPP (PP6/PP6M). During phase 1, pigs fed PP6 had increased (P < 0.05) ADG, ADFI, and G:F, whereas immunological parameters were not altered. During phase 2, pigs consuming PP0/PP0M had reduced ADG (P < 0.01) and ADFI (P < 0.05) in contrast to pigs fed PP0/PP0, whereas the performance of pigs fed PP6/PP0M was intermediate to pigs fed PP0/PP0M and PP6/PP0. The ADG and ADFI did not differ for pigs fed PP0/PP0M and PP6/PP0M during phase 2. Performance of pigs fed PP6/PP3M in contrast to pigs fed PP6/PP0M during phase 2 did not differ; however, these pigs had lower (P < 0.05) tumor necrosis factor α and tended (P = 0.094) to have lower DNA damage. During phase 2, ADG and ADFI of pigs fed PP6/PP6M did not differ from pigs fed PP6/PP0M, but G:F tended (P = 0.067) to be increased in pigs fed PP6/PP6M. Over the entire study period, pigs fed PP0/PP0M had reduced (P < 0.05) ADG and tended (P = 0.067) to have reduced ADFI. During this time, pigs fed PP6/PP0M tended to have greater ADG and ADFI (P = 0.093 and P = 0.067, respectively) compared with pigs fed PP0/PP0M. Overall, feeding a diet with SDPP improved growth performance and feed intake of young pigs directly after weaning. Feeding multiple M had a negative impact on growth performance of pigs during this trial. This response was more significant when pigs were not fed SDPP in phase 1. Overall, when combining phase 1 and 2 performance data, daily gain and feed intake tended to be reduced when pigs were not fed 6% SDPP in phase 1. This study indicates that the composition of diets fed immediately after weaning may be important for pigs that subsequently are under a M challenge.

  18. Effect of diets containing potato protein or soya bean meal on the incidence of spontaneously-occurring subclinical necrotic enteritis and the physiological response in broiler chickens.

    PubMed

    Fernando, P S; Rose, S P; Mackenzie, A M; Silva, S S P

    2011-02-01

    1. An experiment was conducted to compare and explain the incidence of spontaneously occurring subclinical necrotic enteritis in broiler chickens that were fed on two practical broiler diets that differed in the major protein concentrates (soya bean meal or potato protein concentrates) and examine the relationships between the severity of the disease and the growth performance and physiological responses of the chickens. 2. A total of 840, 20-d-old birds were randomly allocated to 12 pens. Two maize-based nutritionally complete diets that either contained some potato protein or soya bean meal as the major protein supplement were fed for 16 d. Twelve birds were randomly sampled from each pen at the end of the feeding period and their blood sampled and intestinal tracts and livers dissected. 3. The birds fed on the potato protein diet had a significantly 7·7% lower feed intake and a significantly 7·8% lower growth rate compared with the birds fed on the soya-based diet. There were no significant differences in feed conversion efficiency or mortality. There were no differences in the determined apparent metabolisable energy concentrations, however, the apparent dry matter digestibility of the potato protein diet was significantly higher than that of the soya based diet and the apparent crude protein digestibility of the potato protein diet was significantly lower. 4. A significantly higher alpha toxin antibody titre was found in the birds fed on the potato protein diet compared with those fed on the soya protein diet. There was a significantly increased incidence of hepatic lesions in the birds fed on the potato protein diet compared with the birds fed on the soya diet. The mean incidence of intestinal necroses tended to be greater in the birds fed on the potato protein diet (23·6%) compared with the birds fed on the soya-based diet (15·3%). 5. There was a significant linear relationship between ileal digesta sialic acid concentration and serum alpha toxin antibodies, although there were a considerable number of outliers to this relationship. Measurement of sialic acid concentration may be a useful variable to indicate the severity of necrotic enteritis in broiler flocks.

  19. Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats

    PubMed Central

    Cheim, Loanda Maria G; Oliveira, Elisângela A; Arantes, Vanessa C; Veloso, Roberto V; Reis, Marise Auxiliadora B; Gomes-da-Silva, Maria Helena G; Carneiro, Everardo M; Boschero, Antonio C; Latorraca, Márcia Q

    2009-01-01

    Background Malnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet. Methods Five groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA) and insulin by radioimmunoassay (RIA). Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA). Results The LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC group. Conclusion Protein restriction during intrauterine life and lactation periods did not provoke obesity in adulthood. Nutritional recovery with soybean diet decreased the body weight at the expense of lower energy efficiency with repercussion on lean mass. PMID:19703309

  20. POTENTIAL ADMINISTRATION OF LIPOIC ACID AND COENZYME Q AGAINST ADIPOGENSIS: TARGET FOR WEIGHT REDUCTION.

    PubMed

    Al-Ghamdi, Maryam A; Choudhry, Hani; Al-Doghather, Huda A; Huwait, Etimad H; Kumosani, Taha A; Moselhy, Said S

    2017-01-01

    Body overweight and obesity were considered as a risk factor for many systemic diseases as diabetic hypertension, cardiovascular diseases, and some cancers. The lipoic acid and Co Q are considered as coenzymes needed for enhancement metabolic rate. The goal of this study is to evaluate the anti-obese effect of lipoic acid alone or combined with Co-Q in rats. Ninety male albino rats (100-150g) were used in this study, divided into six groups (15 each). Group I: Normal rats fed normal diet. Group II: Rats fed high fat diet (HFD). Group III: Rats fed HFD were given lipoic acid (10 μg/kg b w/day) intra-gastric by stomach tube. Group IV: Rats fed HFD were given Co-Q (10 μg/kg b.w/day) intra-gastric. Group V: Rats fed HFD were given lipoic acid (50 mg/kg b w/day) and Co-Q (10 μg/kg b. w/day). Group VI: Rats were given orlistat intra-gastric (10 mg/kg b w/day) as positive control for 6 weeks. Serum was subjected for determination of lipid profile, liver function tests atherogenic factor and lipoprotein lipase. It was found that treatment with lipoic acid or Co-Q or combined showed increase in the activity of lipoprotein lipase ( P < 0.001) and reduction of atherogenic effect and obesity index ( P <0.001). The effect of combined gives good results than orlistat or individual treatment. lipoic acid combined with Co-Q increase fat oxidation and prevent fat accumulation. The consumption of lipoic acid daily promotes fat oxidation and prevents its accumulation in visceral tissues. Further studies should be carried out to examine the mechanistic signals of these nutrients that helps in weight management.

  1. POTENTIAL ADMINISTRATION OF LIPOIC ACID AND COENZYME Q AGAINST ADIPOGENSIS: TARGET FOR WEIGHT REDUCTION

    PubMed Central

    AL-Ghamdi, Maryam A.; Choudhry, Hani; AL-Doghather, Huda A.; Huwait, Etimad H.; Kumosani, Taha A; Moselhy, Said S

    2017-01-01

    Background: Body overweight and obesity were considered as a risk factor for many systemic diseases as diabetic hypertension, cardiovascular diseases, and some cancers. The lipoic acid and Co Q are considered as coenzymes needed for enhancement metabolic rate. The goal of this study is to evaluate the anti-obese effect of lipoic acid alone or combined with Co-Q in rats. Materials and Methods: Ninety male albino rats (100-150g) were used in this study, divided into six groups (15 each). Group I: Normal rats fed normal diet. Group II: Rats fed high fat diet (HFD). Group III: Rats fed HFD were given lipoic acid (10 μg/kg b w/day) intra-gastric by stomach tube. Group IV: Rats fed HFD were given Co-Q (10 μg/kg b.w/day) intra-gastric. Group V: Rats fed HFD were given lipoic acid (50 mg/kg b w/day) and Co-Q (10 μg/kg b. w/day). Group VI: Rats were given orlistat intra-gastric (10 mg/kg b w/day) as positive control for 6 weeks. Serum was subjected for determination of lipid profile, liver function tests atherogenic factor and lipoprotein lipase. Results: It was found that treatment with lipoic acid or Co-Q or combined showed increase in the activity of lipoprotein lipase (P < 0.001) and reduction of atherogenic effect and obesity index (P <0.001). The effect of combined gives good results than orlistat or individual treatment. Conclusion: lipoic acid combined with Co-Q increase fat oxidation and prevent fat accumulation. The consumption of lipoic acid daily promotes fat oxidation and prevents its accumulation in visceral tissues. Further studies should be carried out to examine the mechanistic signals of these nutrients that helps in weight management. PMID:28480405

  2. Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose.

    PubMed

    Martire, Sarah I; Westbrook, R Fred; Morris, Margaret J

    2015-02-01

    When exposed to a diet containing foods that are rich in fat and sugar, rats eat to excess and gain weight. We examined the effects of alternating this diet with laboratory chow on intake of each type of diet, the eating elicited by a palatable food (biscuits), and the drinking elicited by sweet solutions that did (sucrose) or did not (saccharin) contain calories. Each week for 13 weeks, cycled rats were provided with the cafeteria diet for three successive days/nights and the chow diet for the remaining four days/nights, whereas other rats received continuous access to either the cafeteria or the chow diets. On each of the 13 weeks, cycled rats ate more across the first 24 hour exposure to the cafeteria diet than rats continuously fed this diet. In contrast, cycled rats ate less across the first 24 hour exposure to the chow diet than rats continuously fed this diet and ate less when presented a novel palatable biscuit than chow-fed rats. The three groups exhibited similar licks per cluster to saccharin, but cafeteria-fed and cycled rats showed fewer clusters than chow-fed rats. In contrast, chow-fed rats and cycled rats exhibited more licks per cluster to sucrose than cafeteria-fed rats, but all three groups had a similar number of clusters. The results were discussed in relation to the effects of diet cycling on eating patterns, body weight, and 'wanting' and 'liking'. These findings with rats may have important implications for yo-yo dieting in people. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets.

    PubMed

    Yu, Cangyou; Zhang, Shihai; Yang, Qing; Peng, Qian; Zhu, Jinlong; Zeng, Xiangfang; Qiao, Shiyan

    2016-08-01

    The aim of the experiment on 180 weaned piglets (8.9 kg body weight) was to investigate the influence of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility, diarrhoea incidence and numbers of faecal microbiota. The dietary treatments included a Control diet and five high fibre diets formulated with different fibre sources including wheat bran, soybean hulls, naked oat hulls, palm kernel expeller and bamboo fibre. The high fibre diets averaged 14.6% neutral detergent fibre with different non-starch polysaccharides (NSP) components and were fed ad libitum for 28 d. Faecal samples were collected during the last 3 d of the experiment and the apparent total tract digestibility of nutrients and fibre components were determined. Pigs fed the Control and wheat bran diets had a higher (p ≤ 0.05) average daily gain (ADG) than pigs fed the palm kernel expeller and bamboo meal diets. The reduced ADG for pigs appeared to be related to reductions in the digestibility of gross energy and dry matter, respectively. The feed-to-gain ratio was significantly higher (p ≤ 0.05) for pigs fed the fibre diets. The digestibility of NSP components was different among the treatments. The diarrhoea incidence was not affected by treatments. The abundance of faecal bifidobacteria was significantly higher (p ≤ 0.05) for pigs fed the wheat bran diet than for pigs fed the bamboo meal diet. It was concluded that the diets formulated with different fibre sources when fed to weaned piglets have different effects on pig performance, nutrient digestibility and numbers of faecal microbiota. The wheat bran diet rich in arabinoxylans enabled a better performance than the other tested diets with fibre addition.

  4. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet.

    PubMed

    Adjoumani, Jean-Jacques Yao; Wang, Kaizhou; Zhou, Man; Liu, Wenbin; Zhang, Dingdong

    2017-12-01

    An 8-week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance, antioxidant capacity, and lipid metabolism in high-fat diet-fed blunt snout bream (Megalobrama amblycephala) with initial body weight 4.3 ± 0.1 g [mean ± SEM]. Five practical diets were formulated to contain normal-fat diet (NFD), high-fat diet (HFD), and high-fat diet with betaine addition (HFB) at difference levels (0.6, 1.2, 1.8%), respectively. The results showed that the highest final body weight (FBW), weight gain ratio (WGR), specific growth rate (SGR), condition factor (CF), and feed intake (FI) (P < 0.05) were obtained in fish fed 1.2% betaine supplementation, whereas feed conversion ratio (FCR) was significantly lower in the same group compared to others. Hepatosomatic index (HSI) and abdominal fat rate (AFR) were significantly high in fat group compared to the lowest in NDF and 1.2% betaine supplementation, while VSI and survival rate (SR) were not affected by dietary betaine supplementation. Significantly higher (P < 0.05), plasma total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), aspartate transaminase (AST), alanine transaminase (ALT), cortisol, and lower high-density lipoprotein (HDL) content were observed in HFD but were improved when supplemented with 1.2% betaine. In addition, increase in superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in 1.2% betaine inclusion could reverse the increasing malondialdehyde (MDA) level induced by HFD. Based on the second-order polynomial analysis, the optimum growth of blunt snout bream was observed in fish fed HFD supplemented with 1.2% betaine. HFD upregulated fatty acid synthase messenger RNA (mRNA) expression and downregulated carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor α, and microsomal triglyceride transfer protein mRNA expression; nevertheless, 1.2% betaine supplementation significantly reversed these HFD-induced effects, implying suppression of fatty acid synthesis, β-oxidation, and lipid transport. This present study indicated that inclusion of betaine (1.2%) can significantly improve growth performance and antioxidant defenses, as well as reduce fatty acid synthesis and enhance mitochondrial β-oxidation and lipid transportation in high-fat diet-fed blunt snout bream, thus effectively alleviating fat accumulation in the liver by changing lipid metabolism.

  5. The effect of low-density broiler breeder diets on performance and immune status of their offspring.

    PubMed

    Enting, H; Boersma, W J A; Cornelissen, J B W J; van Winden, S C L; Verstegen, M W A; van der Aar, P J

    2007-02-01

    Effects of low-density broiler breeder diets on offspring performance and mortality were studied using 2,100 female and 210 male Cobb 500 breeders. Breeder treatments involved 4 experimental groups and a control group with normal density diets (ND, 2,600 kcal of AME/kg during rearing and 2,800 kcal of AME/kg during laying). In treatment 2, nutrient densities were decreased by 12% (LD12) and 11% (LD11) during the rearing and laying periods, respectively, whereas in treatment 3, nutrient densities were decreased by 23% (LD23) and 21% (LD21) during the rearing and laying periods, respectively. The nutrient density in these treatments was decreased through inclusion of palm kernel meal, wheat bran, wheat gluten feed, and sunflower seed meal in the diets. Treatment 4 included diets with the same nutrient densities as in treatment 2 but included oats and sugar beet pulp (LD12(OP) and LD11(OP)). In treatment 5, the same low-density diet was given to the breeders as in treatment 2 during the rearing period, but it was followed by a normal density diet during the laying period (LD12-ND). Treatments were applied from 4 to 60 wk of age. On low-density diets, offspring showed an increased 1-d-old weight. As compared with offspring of breeders that received ND, the d 38 live weight of chickens from 29-wk-old breeders fed LD11 was improved. Mortality was reduced in offspring from 60-wk-old parent stock given low-density diets. The IgM titers in 35-d-old offspring from eggs with a lower-than-average weight were reduced when 29-wk-old broiler breeders were fed low-density diets. In offspring from eggs with a higher-than-average weight from 60-wk-old parent stock given LD11 or LD21 diets, IgM titers were higher compared with ND. It was concluded that low-density broiler breeder diets can improve offspring growth rates, reduce mortality, and reduce or increase immune responses, depending on breeder age and egg weight.

  6. Parametrial adipose tissue and metabolic dysfunctions induced by fructose-rich diet in normal and neonatal-androgenized adult female rats.

    PubMed

    Alzamendi, Ana; Castrogiovanni, Daniel; Ortega, Hugo H; Gaillard, Rolf C; Giovambattista, Andres; Spinedi, Eduardo

    2010-03-01

    Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.

  7. Enhancement of Muscle Mitochondrial Oxidative Capacity and Alterations in Insulin Action Are Lipid Species Dependent

    PubMed Central

    Turner, Nigel; Hariharan, Krit; TidAng, Jennifer; Frangioudakis, Georgia; Beale, Susan M.; Wright, Lauren E.; Zeng, Xiao Yi; Leslie, Simon J.; Li, Jing-Ya; Kraegen, Edward W.; Cooney, Gregory J.; Ye, Ji-Ming

    2009-01-01

    OBJECTIVE Medium-chain fatty acids (MCFAs) have been reported to be less obesogenic than long-chain fatty acids (LCFAs); however, relatively little is known regarding their effect on insulin action. Here, we examined the tissue-specific effects of MCFAs on lipid metabolism and insulin action. RESEARCH DESIGN AND METHODS C57BL6/J mice and Wistar rats were fed either a low-fat control diet or high-fat diets rich in MCFAs or LCFAs for 4–5 weeks, and markers of mitochondrial oxidative capacity, lipid levels, and insulin action were measured. RESULTS Mice fed the MCFA diet displayed reduced adiposity and better glucose tolerance than LCFA-fed animals. In skeletal muscle, triglyceride levels were increased by the LCFA diet (77%, P < 0.01) but remained at low-fat diet control levels in the MCFA-fed animals. The LCFA diet increased (20–50%, P < 0.05) markers of mitochondrial metabolism in muscle compared with low-fat diet–fed controls; however; the increase in oxidative capacity was substantially greater in MCFA-fed animals (50–140% versus low-fat–fed controls, P < 0.01). The MCFA diet induced a greater accumulation of liver triglycerides than the LCFA diet, likely due to an upregulation of several lipogenic enzymes. In rats, isocaloric feeding of MCFA or LCFA high-fat diets induced hepatic insulin resistance to a similar degree; however, insulin action was preserved at the level of low-fat diet–fed controls in muscle and adipose from MCFA-fed animals. CONCLUSIONS MCFAs reduce adiposity and preserve insulin action in muscle and adipose, despite inducing steatosis and insulin resistance in the liver. Dietary supplementation with MCFAs may therefore be beneficial for preventing obesity and peripheral insulin resistance. PMID:19720794

  8. Apolipoprotein B variant derived from rat intestine.

    PubMed Central

    Krishnaiah, K V; Walker, L F; Borensztajn, J; Schonfeld, G; Getz, G S

    1980-01-01

    A variant of apolipoprotein B has been observed in the lymph lipoproteins [chylomicrons, very low density lipoproteins (VLDL), and low density lipoproteins (LDL)] of rats, in the plasma VLDL of fed rats, and in the plasma VLDL and LDL of rats fed a high-fat, high-cholesterol diet. It is the sole apolipoprotein B in the chylomicrons and VLDL of lymph. It differs from the apolipoprotein B of normal plasma LDL in its immunological properties and in its apparent molecular weight from electrophoresis on 3.5% NaDodSO4/polyacrylamide gel. Images PMID:6933436

  9. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition.

    PubMed

    Craig, S R; Gatlin, D M

    1995-12-01

    The ability of juvenile red drum (Sciaenops ocellatus) to utilize medium-chain triglycerides (MCT) and other saturated dietary lipids was investigated in two 6-wk feeding experiments. Diets contained solvent-extracted menhaden fish meal to which menhaden fish oil (control), coconut oil, corn oil, beef tallow or various levels of MCT as tricaprylin (30, 46, 65 and 80% of total lipid) were added. Diets were fed to triplicate groups of juvenile red drum in aquaria containing brackish (6%) water. In the first feeding experiment, red drum fed the control diet had the greatest weight gains and feed efficiencies. Weight gain, but not feed was slightly, of fish fed corn oil and fish fed coconut oil was slightly (P < 0.05) lower. In the second feeding experiment, fish fed coconut oil and those fed beef tallow had significantly higher weight gains and feed efficiencies than did fish fed the control diet. Fish fed the diets containing tricaprylin at all inclusion levels in both feeding experiments had significantly lower weight gains and feed efficiencies and higher levels of beta-hydroxybutyric acid in plasma. Fish fed diets with high levels of MCT also had lower (n-3) and greater (n-6) fatty acid levels in the neutral lipid fraction of muscle tissue compared with fish fed the control diet. Coconut oil and beef tallow consistently resulted in greater liver lipid deposition but had variable effects on other tissue indices. Saturated dietary lipids had variable effects on fatty acid composition of muscle polar and neutral lipid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. The Effect of Feed Form on Diet Digestibility and Cecal Parameters in Rabbits

    PubMed Central

    Alvarenga, Isabella Corsato; Aldrich, Charles Gregory; Kohles, Micah

    2017-01-01

    Simple Summary In addition to hay or forage in the diet pet rabbits are commonly fed a supplementary food as a muesli (granular mix), pellets, or extruded croquettes. This study aimed to determine if form of this supplementary diet (pelleted vs. extruded) or composition (muesli) had an effect on the diets total tract digestibility and cecal fermentation patterns. Rabbits had slightly higher intake when fed extruded and pelleted diets compared to muesli. Digestibility results were inconsistent between estimation methods. The extruded diet was more digestible than pelleted according to the total collection digestibility method, but according to internal marker acid insoluble ash the pelleted diet was the most digestible. Both the extruded and pelleted diet had similar fermentation patterns, with lower cecal pH and greater proportions of butyrate. Our findings suggest that diet composition, rather than form, may have a greater impact on nutrient utilization by rabbits. Abstract Fifteen New Zealand rabbits were randomly assigned to one of 3 dietary treatment groups of 5 animals each and fed pelleted, extruded, or muesli diets in a completely randomized design experiment. Rabbits were placed in individual cages with ad libitum access to water and food for 45 days acclimation followed by 30 days experimental period. Feed intake of rabbits fed pelleted and extruded diets was greater (p < 0.05) than rabbits fed the muesli diet (125.6 and 130.4 vs. 91.9 g/d), but weight change and feed efficiency were not affected by treatment. Diet digestibility among the treatments was inconsistent when comparing results obtained from total fecal collection and AIA (please define) as an internal marker. Rabbits fed extruded and pelleted diets had lower (p < 0.05) cecal pH (6.42 and 6.38 vs. 7.02, respectively), and higher (p < 0.05) production of SCFA (18.5 and 19.0 vs. 11.7 mM, respectively) than those fed muesli. The fermentation products from rabbits fed pelleted and extruded diets had a greater proportion of butyrate and less propionate than rabbits fed muesli. The results of this study indicate that the basal dietary composition had a greater impact on diet utilization and cecal fermentation than food form. PMID:29215569

  11. Long-term toxicity and carcinogenicity studies of cake made from chlorinated flour. 1. Studies in rats.

    PubMed

    Fisher, N; Hutchinson, J B; Berry, R; Hardy, J; Ginocchio, A V

    1983-08-01

    Wistar rats were fed for 104 wk on cake-based diets in which the cake, prepared from unchlorinated flour, or flour treated with 1250 or 2500 ppm chlorine, formed 79% of the diet on a 12.6% moisture basis. A fourth group was fed stock diet 41B. No differences in appearance, health, behaviour or mortalities attributable to the flour treatment were observed. Female but not male mortalities were significantly higher for cake-fed rats than for those fed diet 41B. Dose-related haematological effects were seen at various stages in cake-fed rats. Dose-related increases in plasma alanine and aspartate aminotransferases were noted at 12 months in males but not in females, for whom all the values were elevated. A dose-related diminution in blood sugar at 12 months was seen only in females. A dose-related increase in urinary aspartate aminotransferase was seen only in males. Urinary N-acetylglucosaminidase activity per mg creatinine did not differ significantly between groups. At post mortem a dose-related reduction in spleen weight was found in the females only. The lesions found were those expected in ageing rats, but were observed earlier in rats fed cake. Glomerulonephrosis affected rats fed cake more than those fed diet 41B. Cake diets promoted nephrocalcinosis, unrelated to flour treatment. Increased splenic haematopoiesis occurred in about half of the females in the cake diet groups but less frequently in males or in rats fed diet 41B. Tumours were mainly chromophobe adenomas of the pituitary, common in rats. Insulomas were seen in two males in each of the groups fed on cake made from chlorinated flour, but an earlier form of this tumour was found in all cake groups and its incidence is thus regarded as unrelated to the flour treatment. The incidence of tumours of the reticuloendothelial system was not related to flour treatment. Covalent chlorine concentrations in the perirenal fat of the cake-fed rats were correlated with treatment levels, with values of 50-912 ppm in males and 59-1174 ppm in females. Since concentrations in the lipid of the diet fed to the animals were much higher than these, accumulation of the additive was absent or negligible. The chlorine concentrations in the perirenal fat of male and female rats fed diet 41B were 62 and 72 ppm respectively.

  12. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    PubMed

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  13. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    PubMed

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  14. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    PubMed

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  15. Ecdysone has an effect on the regeneration of midgut epithelial cells that is distinct from 20-hydroxyecdysone in the silkworm Bombyx mori.

    PubMed

    Tanaka, Y; Yukuhiro, F

    1999-12-01

    We investigated the effects of two ecdysteroids, ecdysone (E) and 20-hydroxyecdysone (20E), on silkworm larval development. Silkworm larvae, Bombyx mori, were fed an artificial diet supplemented with 20E during the fourth instar to promote premature molting. At the onset of the fifth instar, these precocious fifth-instar larvae were fed diets supplemented with either E or 20E to determine the effects of the two ecdysteroids on the morphology of midgut epithelial cells. Regeneration of midgut epithelial cells normally occurs only during the molting period. However, in larvae fed E, complete replacement of midgut epithelial cells was observed 24 h before the larvae entered apolysis. In larvae fed 20E, the morphology of midgut epithelial cells was disrupted, leading to death of the larvae during the fifth instar. We also observed similar differences in the effects of the two ecdysteroids in an in vitro experiment. These results suggest that E has a specific effect on the morphological change of midgut epithelial cells in precocious fifth-instar larvae that is distinct from 20E. Copyright 1999 Academic Press.

  16. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals.

  17. Odor and odorous compound emissions from manure of swine fed standard and dried distillers grains with soluble (DDGS) supplemented diets

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to determine the impact diets containing dried distillers grains with soluble (DDGS) have on emissions of odor and odorous compounds from swine manure storage. Twenty-four pigs were fed either a corn-soybean meal (CSBM) diet or a CSBM diet containing 35% DDGS. Pigs were fed ...

  18. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    PubMed

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  19. Decreasing phosphorus runoff losses from land-applied poultry litter with dietary modifications and alum addition.

    PubMed

    Smith, Douglas R; Moore, P A; Miles, D M; Haggard, B E; Daniel, T C

    2004-01-01

    Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.

  20. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    PubMed

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Effects of diet energy concentration and an exogenous carbohydrase on growth performance of weanling pigs fed diets containing canola meal produced from high protein or conventional canola seeds.

    PubMed

    Pedersen, T F; Liu, Y; Stein, H H

    2016-12-01

    The objectives were to determine effects of diet NE and an exogenous carbohydrase on growth performance and physiological parameters of weanling pigs fed a corn-soybean meal (SBM) diet or diets containing high protein canola meal (CM-HP) or conventional canola meal (CM-CV). A total of 492 pigs (initial BW: 9.15 ± 0.06 kg) were used in a randomized complete block design with 12 dietary treatments and 9 pens per treatment. A control diet based on corn and SBM and 4 diets containing 20% or 30% CM-HP or 20% or 30% CM-CV were formulated to a similar NE by adjusting inclusion of choice white grease. Four additional diets also contained 20% or 30% CM-HP or 20% or 30% CM-CV, but no additional choice white grease, and NE in these diets, therefore, was less than in the control diet. The control diet and the diets containing 30% CM-HP or CM-CV without increased choice white grease were also formulated with inclusion of an exogenous carbohydrase. Pigs were fed experimental diets for 22 d and 1 pig per pen was sacrificed at the conclusion of the experiment. Results indicated that compared with the control diet, there was no impact of canola meal on final BW, ADG, ADFI, or G:F, but pigs fed CM-CV had greater ( < 0.05) final BW, ADG, and ADFI than pigs fed CM-HP, and pigs fed diets with reduced NE had greater ( < 0.05) ADG and ADFI than pigs fed diets with constant NE. Only minor effects of CM-HP or CM-CV on intestinal weight, gut fill, digesta pH, cecal VFA concentrations, and serum concentrations of urea N, total N, or albumin were observed, but the weight of the thyroid gland increased ( < 0.05) as the concentration of dietary canola meal increased. Serum concentrations of IgG were reduced if canola meal was included in the diets without the carbohydrase, but that was not the case if the carbohydrase was included in the diet (interaction, ( < 0.05). In conclusion, up to 30% CM-HP or CM-CV in diets fed to weanling pigs from 2 wk postweaning did not impact growth performance compared with pigs fed a corn-SBM diet, and NE in diets containing canola meal does not have to be similar to that of corn-SBM diets. However, inclusion of CM-CV containing 4.43 µmol/g glucosinolates in the diets resulted in improved growth performance compared with inclusion of CM-HP containing 12.60 µmol/g glucosinolates.

  2. Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice

    PubMed Central

    Boudry, Gaëlle; Hamilton, M. Kristina; Chichlowski, Maciej; Wickramasinghe, Saumya; Barile, Daniela; Kalanetra, Karen M.; Mills, David A.; Raybould, Helen E.

    2017-01-01

    Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health. PMID:28131576

  3. Feeding value of different levels of malt sprout and katikala atella on nutrient utilization and growth performance of sheep fed basal diet of Rhodes grass hay.

    PubMed

    Nurfeta, Ajebu; Abdu, Yunus

    2014-03-01

    Nonconventional agro-industrial by-products such as traditional liquor residues (locally called katikala atella) are widely used by livestock farmers in Ethiopia. The objective of this experiment was to evaluate the supplementary value of katikala atella and malt sprout (MS) on performance of sheep fed a basal diet of Rhodes grass hay. Thirty intact yearling male sheep with an average initial body weight of 17.4 ± 0.74 kg (mean ± SD) were assigned to the treatments in a completely randomized block design: atella alone (T1), 75 % atella + 25 % malt sprout (MS) (T2), 50 % atella + 50 % MS (T3), 25 % atella + 75 % MS (T4), MS alone (T5), and Rhodes grass hay alone (T6). Grass hay was fed ad libitum to all treatments. The total dry matter (DM) and organic matter (OM) intakes of sheep fed T4, T5, and T3 diets were the highest (P < 0.05), while sheep receiving T6 had the lowest DM intake. The highest (P < 0.05) total crude protein (CP) intake was for sheep fed T5 diet, while the lowest was for those fed T6 diet. Sheep receiving T3 diet had higher (P < 0.05) DM, OM, CP, neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility as compared with those fed T1, T2, and T6 diets. Sheep supplemented with 50-100 % malt sprout had similar (P > 0.05) DM, OM, CP, NDF, and ADF digestibility. The highest (P < 0.05) average daily gain was for sheep fed T3, T4, and T5 diets, while sheep in T6 lost body weight. Sheep fed T5 diet had the highest (P < 0.05) nitrogen retention, while those fed T6 diet had the lowest. The study has shown that a mixture diet consisting of equal parts of katikala atella and malt sprout (T3) are found to be superior in most of the required nutrient characteristics.

  4. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    NASA Technical Reports Server (NTRS)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water-selective channel involved in interstitial fluid homeostasis, showed an upregulated trend in HS retinas; however, these results are preliminary. Total retinal thickness increased significantly (P = 0.049) in HS rats fed a resveratrol enriched diet compared to HS rats on a normal diet. This change appeared to be reversed during the 2 weeks of recovery post HS, but no differences in retina thickness were observed between HS animals and HS recovered animals when both groups consumed a normal diet. The reversibility of the increase in retinal thickness induced by resveratrol during HS may therefore reflect an interaction between the stress provoked by HS and the cytoprotective mechanisms elicited by resveratrol

  5. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolismmore » of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.« less

  6. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  7. Improving glucose tolerance by reducing weight gain in a polygenic obese mouse model: use of a high protein diet.

    PubMed

    Blair, A R; Strube, M L; Proietto, J; Andrikopoulos, S

    2015-03-01

    Diets to decrease body weight have limited success in achieving and importantly maintaining this weight loss long-term. It has recently been suggested that energy intake can be regulated by the amount of protein ingested, termed the protein leverage hypothesis. In this study, we determined whether a high protein diet would be effective in achieving and maintaining weight loss in a genetically obese model, the New Zealand Obese (NZO) mouse. NZO and C57BL/6J (C57) control mice were fed a high protein or chow diet for 5 weeks from weaning (3 weeks of age). Body weight and food intake were determined. Mice on the same diet were bred to produce offspring that were fed either a chow or high protein diet. Body weight, food intake, and glucose tolerance were determined. Feeding NZO and C57 mice a high protein diet for 5 weeks resulted in reduced food intake and consequently energy intake and body weight gain compared with mice on a chow diet. NZO mice fed a high protein diet showed a significant improvement in glucose tolerance compared with their chow-fed counterparts, while no difference was seen in C57 mice fed chow or protein diet. The offspring of NZO mice that were fed a high protein diet during gestation and weaning were also lighter and displayed improved glucose tolerance compared with chow fed animals. We conclude that a high protein diet is a reasonable strategy to reduce body weight gain and improve glucose tolerance in the NZO mouse, a polygenic model of obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Effects of insoluble and soluble dietary fiber on glycemic control in dogs with naturally occurring insulin-dependent diabetes mellitus.

    PubMed

    Kimmel, S E; Michel, K E; Hess, R S; Ward, C R

    2000-04-01

    To evaluate the effects of diets differing in type and quantity of fiber on glycemic control in dogs with naturally occurring insulin-dependent diabetes mellitus. Prospective randomized crossover controlled trial. 7 dogs with well-regulated naturally occurring insulin-dependent diabetes mellitus. Dogs were fed 1 of 3 diets for 1 month each in 1 of 6 randomized diet sequences. Diets included a low-fiber diet (LF) and 2 high-fiber diets; 1 contained only insoluble fiber (HIF), and 1 contained soluble fiber in addition to insoluble fiber (HSF). Caloric intake was unchanged throughout the study. Glycemic control was assessed after each feeding trial by measuring serum fructosamine concentration and performing 5 serial measurements of blood glucose concentration every 2 hours after the morning feeding and insulin injection. Significant differences were not detected in body weight, required insulin dosage, or albumin concentration among dogs fed the HIF, HSF, and LF diets. Mean and maximum blood glucose concentrations and area under the blood glucose curve were significantly lower in dogs fed the HIF diet, compared with values in the same dogs fed the HSF or LF diet. Fructosamine concentration was significantly lower in dogs fed the HIF or HSF diet, compared with values in the same dogs fed the LF diet. In dogs with naturally occurring insulin-dependent diabetes mellitus, a dry, high insoluble-fiber diet may aid in glycemic control.

  9. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet.

    PubMed

    Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc

    2015-03-01

    This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative function of the HBP reflecting the nutrient status of lipids or glucose and further implicate the importance of the pathway in insulin signaling for the regulation of metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High intake of saturated fat, but not polyunsaturated fat, improves survival in heart failure despite persistent mitochondrial defects.

    PubMed

    Galvao, Tatiana F; Brown, Bethany H; Hecker, Peter A; O'Connell, Kelly A; O'Shea, Karen M; Sabbah, Hani N; Rastogi, Sharad; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C

    2012-01-01

    The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy. Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30-35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca(2+)-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet. These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.

  11. Dietary and microbiome factors determine longevity in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K.; Mollinedo, Faustino

    2016-01-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225

  12. Effects of weaning age and diet on growth and carcass characteristics in steers.

    PubMed

    Fluharty, F L; Loerch, S C; Turner, T B; Moeller, S J; Lowe, G D

    2000-07-01

    Two experiments were conducted to determine the effects of diet on growth of steers weaned at approximately 100 vs 205 d of age. In Exp. 1, a 2 x 2 x 2 factorial experiment was conducted using 78 Angus crossbred cow-calf pairs. The factors examined were age at weaning (early, at 103+/-3 d [EW] vs normal, at 203+/-3 d [NW]), feeding strategy (ad libitum vs postweaning programmed intake), and dietary CP concentration (100 vs 120% of NRC [1984] recommended levels). Early-weaned calves had a greater (P < .001) ADG than NW calves from 103 to 203 d and reached market weight at 385 d vs 418 d for NW calves (P < .001). Likewise, steers offered feed for ad libitum consumption reached market weight at 394 d, compared with 409 d for programmed-intake steers (P < .05). In Exp. 2, 64 Angus crossbred steers were either weaned at 93+/-3 d and fed one of four diets, weaned at 210+/-3 d without access to creep feed, or weaned at 210+/-3 d with access to creep feed for 60 d prior to weaning. Early-weaned calves were heavier (P < .01) than NW calves at 210 d if fed either 100 or 90% concentrate diets, and they had greater (P < .001) backfat thickness at 210 d but no difference (P > .10) in longissimus muscle area compared to EW calves fed a 60% concentrate diet. At slaughter, 80 to 100% of steers on all treatments graded low Choice or higher. Feeding high-concentrate diets to EW beef calves accelerated growth rate and fat deposition early in the feeding period and may be a way to provide young cattle for a high-quality beef market.

  13. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    PubMed

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  14. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice.

    PubMed

    Shon, Soo-Min; Jang, Hee Jeong; Schellingerhout, Dawid; Kim, Jeong-Yeon; Ryu, Wi-Sun; Lee, Su-Kyoung; Kim, Jiwon; Park, Jin-Yong; Oh, Ji Hye; Kang, Jeong Wook; Je, Kang-Hoon; Park, Jung E; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Juneyoung; Nahrendorf, Matthias; Park, Jong-Ho; Kim, Dong-Eog

    2017-09-25

    The aim of this study is to identify the principal circulating factors that modulate atheromatous matrix metalloproteinase (MMP) activity in response to diet and exercise.Methods and Results:Apolipoprotein-E knock-out (ApoE -/- ) mice (n=56) with pre-existing plaque, fed either a Western diet (WD) or normal diet (ND), underwent either 10 weeks of treadmill exercise or had no treatment. Atheromatous MMP activity was visualized using molecular imaging with a MMP-2/9 activatable near-infrared fluorescent (NIRF) probe. Exercise did not significantly reduce body weight, visceral fat, and plaque size in either WD-fed animals or ND-fed animals. However, atheromatous MMP-activity was different; ND animals that did or did not exercise had similarly low MMP activities, WD animals that did not exercise had high MMP activity, and WD animals that did exercise had reduced levels of MMP activity, close to the levels of ND animals. Factor analysis and path analysis showed that soluble vascular cell adhesion molecule (sVCAM)-1 was directly positively correlated to atheromatous MMP activity. Adiponectin was indirectly negatively related to atheromatous MMP activity by way of sVCAM-1. Resistin was indirectly positively related to atheromatous MMP activity by way of sVCAM-1. Visceral fat amount was indirectly positively associated with atheromatous MMP activity, by way of adiponectin reduction and resistin elevation. MMP-2/9 imaging of additional mice (n=18) supported the diet/exercise-related anti-atherosclerotic roles for sVCAM-1. Diet and exercise affect atheromatous MMP activity by modulating the systemic inflammatory milieu, with sVCAM-1, resistin, and adiponectin closely interacting with each other and with visceral fat.

  15. Resistant starch reduces colonic and urinary p-cresol in rats fed a tyrosine-supplemented diet, whereas konjac mannan does not.

    PubMed

    Chen, Bixiao; Morioka, Sahya; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2016-10-01

    The effect of resistant starch (RS) and konjac mannan (KM) to maintain and improve the large intestinal environment was compared. Wistar SPF rats were fed the following diets for 4 weeks: negative control diet (C diet), tyrosine-supplemented positive control diet (T diet), and luminacoid supplemented diets containing either high-molecular konjac mannan A (KMAT diet), low-molecular konjac mannan B (KMBT diet), high-amylose cornstarch (HAST diet), or heat-moisture-treated starch (HMTST diet). The luminacoid-fed group had an increased content of short-chain fatty acids in the cecum. HAS caused a significant decrease in p-cresol content in the cecum, whereas KM did not. Urinary p-cresol was reduced in the HAST group compared with the T group, but not the KM fed groups. Deterioration in the large intestinal environment was only improved completely in the HAST and HMTST groups, suggesting that RS is considerably more effective than KM in maintaining the large intestinal environment.

  16. Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster.

    PubMed

    Chattopadhyay, Debarati; James, Joel; Roy, Debasish; Sen, Soumadeep; Chatterjee, Rishita; Thirumurugan, Kavitha

    2015-01-01

    Drosophila melanogaster is an ideal model organism for developmental studies. This study tests the potential of semolina-jaggery (SJ) diet as a new formulation for bulk rearing of flies. Semolina and jaggery are organic products obtained from wheat endosperm and cane sugar, respectively. Semolina is a rich source of carbohydrates and protein. Jaggery has a high content of dietary sugars. Moreover, preparation of semolina jaggery diet is cost-effective and easy. Thus, the current study aimed to compare survival and developmental parameters of flies fed the SJ diet to flies fed the standard cornmeal-sugar-yeast (CSY) diet. SJ diet enhanced survival of flies without affecting fecundity; male flies showed increased resistance to starvation. A higher number of flies emerged at F2 and F3 generation when fed the SJ diet than when fed the control CSY diet. SJ diet did not increase fly body weight and lipid percentage. Therefore, SJ diet can be used for bulk rearing of healthy flies at par with the standard cornmeal-sugar-yeast diet.

  17. A 90-Day Feeding Study in Rats to Assess the Safety of Genetically Engineered Pork.

    PubMed

    Xiao, Gao-Jun; Jiang, Sheng-Wang; Qian, Li-Li; Cai, Chun-Bo; Wang, Qing-Qing; Ma, De-Zun; Li, Biao; Xie, Shan-Shan; Cui, Wen-Tao; Li, Kui

    2016-01-01

    Our laboratory recently produced genetically engineered (GE) Meishan pigs containing a ZFN-edited myostatin loss-of-function mutant. These GE pigs develop and grow as normal as wild type pigs but produce pork with greater lean yield and lower fat mass. To assess any potential subchronic toxicity risks of this GE pork, a 90-day feeding study was conducted in Sprague-Dawley rats. Rats were randomly divided into five groups, and fed for 90 days with basic diet and basic diets formulated with low dose and high dose pork prepared from wild type pigs and GE pigs, respectively. Animal behaviors and clinical signs were monitored twice daily, and body weight and food consumption were measured and recorded weekly. At days 45 and 90, blood tests (lipid panel, electrolytes, parameters related to liver and kidney functions, and complete blood counts) were performed. Additionally, gross pathology and histopathological analyses were performed for major organs in each group. Data analysis shows that there were no significant differences in growth rate, food consumption, and blood test parameters between rat groups fed with GE pork and wild type pork. Although differences in some liver function parameters (such as aspartate aminotransferase, total proteins, albumin, and alkaline phosphatase) and white blood cell counts (such as lymphocyte percentage and monocyte percentage) were observed between rats fed with high dose GE pork and basic diet, all test results in rats fed with GE pork are in the normal range. Additionally, there are no apparent lesions noted in all organs isolated from rats in all five feeding groups on days 45 and 90. Overall, our results clearly indicate that food consumption of GE pork produced by ZFN-edited myostatin loss-of-function mutant pigs did not have any long-term adverse effects on the health status in rats.

  18. A 90-Day Feeding Study in Rats to Assess the Safety of Genetically Engineered Pork

    PubMed Central

    Xiao, Gao-jun; Jiang, Sheng-Wang; Qian, Li-Li; Cai, Chun-Bo; Wang, Qing-qing; Ma, De-Zun; Li, Biao; Xie, Shan-shan; Cui, Wen-Tao; Li, Kui

    2016-01-01

    Our laboratory recently produced genetically engineered (GE) Meishan pigs containing a ZFN-edited myostatin loss-of-function mutant. These GE pigs develop and grow as normal as wild type pigs but produce pork with greater lean yield and lower fat mass. To assess any potential subchronic toxicity risks of this GE pork, a 90-day feeding study was conducted in Sprague-Dawley rats. Rats were randomly divided into five groups, and fed for 90 days with basic diet and basic diets formulated with low dose and high dose pork prepared from wild type pigs and GE pigs, respectively. Animal behaviors and clinical signs were monitored twice daily, and body weight and food consumption were measured and recorded weekly. At days 45 and 90, blood tests (lipid panel, electrolytes, parameters related to liver and kidney functions, and complete blood counts) were performed. Additionally, gross pathology and histopathological analyses were performed for major organs in each group. Data analysis shows that there were no significant differences in growth rate, food consumption, and blood test parameters between rat groups fed with GE pork and wild type pork. Although differences in some liver function parameters (such as aspartate aminotransferase, total proteins, albumin, and alkaline phosphatase) and white blood cell counts (such as lymphocyte percentage and monocyte percentage) were observed between rats fed with high dose GE pork and basic diet, all test results in rats fed with GE pork are in the normal range. Additionally, there are no apparent lesions noted in all organs isolated from rats in all five feeding groups on days 45 and 90. Overall, our results clearly indicate that food consumption of GE pork produced by ZFN-edited myostatin loss-of-function mutant pigs did not have any long-term adverse effects on the health status in rats. PMID:27812153

  19. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    PubMed

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  20. Effect of crude protein concentration and dietary electrolyte balance on litter quality, foot pad dermatitis, growth performance and processing yields in two medium heavy turkey hybrids.

    PubMed

    Veldkamp, T; Hocking, P M; Vinco, L J

    2017-10-01

    1. An experiment was conducted to investigate the effect of crude protein (CP) concentration and dietary electrolyte balance (DEB) on growth performance, processing yields, litter quality and foot pad dermatitis (FPD) in male turkeys from two commercial hybrids. Soya bean meal was replaced by vegetable protein sources selected for lower K concentrations to lower DEB in order to improve litter quality and subsequent quality of foot pads. 2. Effects of CP on litter friability and wetness were not consistent during the production period. FPD in turkeys fed on diets with low CP was significantly lower than FPD in turkeys fed on diets with high CP until 84 d. Growth performance was adversely affected at low CP. Processing yields were not affected by CP. 3. Litter was significantly dryer in pens of turkeys fed on diets with low DEB than in pens of turkeys fed on diets with high DEB. FPD in turkeys fed on diets with low DEB was significantly lower than in turkeys fed on diets with high DEB. Growth performance and processing yields were adversely affected at low DEB. 4. FPD in turkey hybrid A was higher than in turkey hybrid B at 28 d of age. Thereafter, no differences in FPD between turkey hybrids were observed. Growth performance and processing yields were not affected by turkey hybrid. 5. Overall, a significant interaction effect of CP × DEB was observed for FCR: in turkeys fed on the high DEB treatment, FCR of turkeys fed on the high CP diets was lower than FCR of turkeys fed on the low CP (LCP) diets whereas on the low DEB treatment, FCR was not affected by CP treatment. 6. It was concluded that litter quality can be improved and FPD may be decreased in turkeys fed on diets containing lower CP and DEB levels.

  1. Dan-gua fang improves glycolipid metabolic disorders by promoting hepatic adenosine 5'-monophosphate activated protein kinase expression in diabetic Goto-Kakizaki rats.

    PubMed

    Lan, Yuan-long; Huang, Su-ping; Heng, Xian-pei; Chen, Ling; Li, Peng-hui; Wu, Jing; Yang, Liu-qing; Pan, Xu-dong; Lin, Tong; Cheng, Xin-ling; Lin, Qing; Chen, Si-xin

    2015-03-01

    To investigate the effect of Dan-gua Fang on adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) α expression in liver and subsequent improvement of glucose and lipid metabolism. Forty 13-week-old diabetic Goto-Kakizaki (GK) rats were randomly divided into model, Dan-gua Fang, metformin and simvastatin groups (n=10 for each), and fed high-fat diet ad libitum. Ten Wistar rats were used as normal group and fed normal diet. After 24 weeks, liver expression of AMPKα mRNA was assessed by real-time PCR. AMPKα and phospho-AMPKα protein expression in liver was evaluated by Western blot. Liver histomorphology was carried out after hematoxylin-eosin staining, and blood glucose (BG), glycosylated hemoglobin A1c (HbA1c), food intake and body weight recorded. Similar AMPKα mRNA levels were found in the Dan-gua Fang group and normal group, slightly higher than the values obtained for the remaining groups (P<0.05). AMPKα protein expression in the Dan-gua Fang group animals was similar to other diabetic rats, whereas phospho-AMPKα (Thr-172) protein levels were markedly higher than in the metformin group and simvastatin group (P<0.05), respectively. However, phosphor-AMPKα/AMPKα ratios were similar in all groups. Dan-gua Fang reduced fasting blood glucose with similar strength to metformin, and was superior in reducing cholesterol, triglycerides, high-density lipoprotein cholesterol as well as improving low-density lipoprotein cholesterol in comparison with simvastatin and metformin. Dan-gua Fang decreases plasma alanine aminotransferase (ALT) significantly. Dan-gua Fang, while treating phlegm-stasis, could decrease BG and lipid in type 2 diabetic GK rats fed with high-fat diet, and effectively protect liver histomorphology and function. This may be partly explained by increased AMPK expression in liver. Therefore, Dan-gua Fang might be an ideal drug for comprehensive intervention for glucose and lipid metabolism disorders in type 2 diabetes mellitus.

  2. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Effects of supplemental coated or crystalline methionine in low-fishmeal diet on the growth performance and body composition of juvenile cobia Rachycentron canadum (Linnaeus)

    NASA Astrophysics Data System (ADS)

    Chi, Shuyan; Tan, Beiping; Dong, Xiaohui; Yang, Qihui; Liu, Hongyu

    2014-11-01

    We evaluated the effects of supplemental coated and crystalline methionine (Met) on the growth performance and feed utilization of juvenile cobia ( Rachycentron canadum Linnaeus) in a 60-d feeding trial. Fish groups were fed one of six isonitrogenous and isolipidic diets: 1) fishmeal control; 2) un-supplemented experimental (low-fish-meal diet deficient in Met); or 3) one of four Met diets supplemented with crystalline L-Met, cellulose-acetate-phthalate coated L-Met, acrylic-resin coated L-Met, or tripalmitin-polyvinyl alcohol coated L-Met. The test diets were fed to triplicate groups of cobia (initial body weight 5.40±0.07 g) twice a day. The weight gain and specific growth rate of the fish fed the RES diet were highest among the Met-supplemented groups and were 23.64% and 7.99%, respectively, higher than those of the fish fed with the un-supplemented experimental diet ( P<0.05). The protein efficiency ratio of the fish fed the MET diet was significantly higher than that of the fish fed the un-supplemented experimental diet and the fish in the other methionine supplementation groups ( P<0.05). Our results suggest that supplementation of crystalline Met in low-fish-meal diets promotes the growth performance of juvenile cobia.

  4. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda-Yamahara, Mako; Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp; Yamahara, Kosuke

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with highermore » energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.« less

  5. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide.

    PubMed

    Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2015-12-01

    Gelidium amansii (GA) is an edible red algae that is distributed mainly in northeastern Taiwan. This study was designed to investigate the effects of GA on plasma glucose, lipids, and adipocytokines in rats with streptozotocin-nicotinamide-induced diabetes. Rats were divided into four groups: (1) rats without diabetes fed a high-fat diet (control group); (2) rats with diabetes fed a high-fat diet; (3) rats with diabetes fed a high-fat diet with thiazolidinedione in the diet; and (4) rats with diabetes fed a high-fat diet and GA. The experimental diet and drinking water were available ad libitum for 11 weeks. After the 11-week feeding study, plasma glucose, triglyceride, and cholesterol concentrations were lower in rats with diabetes fed the GA diet than in animals with diabetes fed the control diet. In addition, cholesterol and triglyceride excretion were significantly higher in rats with diabetes fed the GA diet. Moreover, GA feeding induced lipolysis in both paraepididymal and perirenal adipose tissues. Adipose tissue (paraepididymal and perirenal) weight and triglyceride contents were lower after GA treatment. Plasma adipocytokines including tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1 were reduced by GA feeding in rats with diabetes. The results of the current study suggest that GA feeding may regulate plasma glucose and lipid levels and prevent adipose tissue accumulation in rats with diabetes. Copyright © 2015. Published by Elsevier B.V.

  6. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs.

    PubMed

    Li, Yinghui; Li, Fengna; Wu, Li; Wei, Hongkui; Liu, Yingying; Li, Tiejun; Tan, Bie; Kong, Xiangfeng; Yao, Kang; Chen, Shuai; Wu, Fei; Duan, Yehui; Yin, Yulong

    2016-01-01

    To investigate the effects of dietary crude protein (CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs (62.30 ± 0.88 kg) were allotted to 3 groups and fed with the recommended adequate protein (AP, 16 % CP) diet, moderately restricted protein (MP, 13 % CP) diet and low protein (LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle (LDM), psoas major muscle (PMM) and biceps femoris muscle (BFM) were collected and analyzed. Results showed that growing-finishing pigs fed the MP or AP diet improved (P < 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase (P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated (P < 0.05) muscular mRNA expression of all the selected key genes, except that myosin heavy chain (MyHC) IIb, MyHC IIx, while mRNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1 (mTORC1) pathway was stimulated (P < 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet. The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and mTORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.

  7. Sterol O-acyltransferase 1 deficiency improves defective insulin signaling in the brains of mice fed a high-fat diet.

    PubMed

    Xu, Ning; Meng, Hao; Liu, Tian-Yi; Feng, Ying-Li; Qi, Yuan; Zhang, Dong-Huan; Wang, Hong-Lei

    2018-05-05

    Insulin resistance induced by a high-fat diet (HFD) is related to metabolic diseases, and sterol O-acyltransferase 1 (SOAT1) is a key enzyme for the biosynthesis of cholesteryl ester. In the present study, wild-type (WT) mice and SOAT1-knockout (KO) mice with a C57BL6 background fed a HFD were used to explore the role of SOAT1 in the hypothalamus. The results show that the WT mice exhibited a significant increase in body weight as well as hepatic histologic changes; they also had a lower glucose and insulin tolerance than the WT mice fed a normal diet. However, the metabolic syndrome was attenuated in the SOAT1-KO HFD-fed mice. With regard to brain function, the SOAT1-KO HFD-fed mice showed improved cognitive function; they also manifested reduced levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, which would otherwise be raised by a HFD. In addition, the HFD led to the overexpression of GFAP and phosphorylated NF-κB in the hypothalamus, changes that were reversed in the SOAT1-KO HFD-fed mice. Moreover, SOAT1-KO mice improved HFD-caused defective hypothalamic insulin resistance, as evidenced by the upregulation of p-insulin receptor (INSR), p-AKT and p-glycogen synthase kinase (GSK)-3β, while the downregulation of p-AMP-activated protein kinase (AMPK)-α and p-acetyl-CoA carboxylase (ACC)-α. In addition, similar results were observed in high fructose (HFR)-stimulated astrocytes (ASTs) isolated from WT or KO mice. These results suggest that SOAT1 plays an important role in hypothalamic insulin sensitivity, linked to cognitive impairment, in HFD-fed mice. Copyright © 2018. Published by Elsevier Inc.

  8. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior.

    PubMed

    Lyte, Mark; Chapel, Ashley; Lyte, Joshua M; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J

    2016-01-01

    The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to "dial-in" a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.

  9. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis.

    PubMed

    Ganesan, Murali; Feng, Dan; Barton, Ryan W; Thomes, Paul G; McVicker, Benita L; Tuma, Dean J; Osna, Natalia A; Kharbanda, Kusum K

    2016-11-01

    Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis. Copyright © 2016 by the Research Society on Alcoholism.

  10. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  11. Folate and vitamin B12 improved alcohol-induced hyperhomocysteinemia in rats.

    PubMed

    Chen, Ya-Ling; Yang, Sien-Sing; Peng, Hsiang-Chi; Hsieh, Yi-Ching; Chen, Jiun-Rong; Yang, Suh-Ching

    2011-10-01

    The purpose of this study was to investigate the protective effects of combined treatment of folate and vitamin B12 against alcoholic liver disease. Male Wistar rats weighing about 160 g were divided into four groups: an ethanol group fed an ethanol liquid diet; a control group pair-fed an isoenergetic diet without ethanol; an ethanol and vitamin group fed an ethanol-containing diet that was supplemented with folate (10 mg/kg of body weight per day) and vitamin B12 (0.5 mg/kg of body weight per day); and a control and vitamin group fed an isoenergetic diet without ethanol, which was supplemented with folate (10 mg/kg of body weight per day) and vitamin B12 (0.5 mg/kg of body weight per day). After 16 wk, the plasma folate concentration in the ethanol group was significantly lower than in the other three groups. The plasma homocysteine concentration in the ethanol group was significantly higher than in the other three groups. The hepatic matrix metalloproteinase-2 concentration in the ethanol group was significantly higher than in the control and ethanol/vitamin groups. Furthermore, the plasma homocysteine concentration at the 16th week and the hepatic matrix metalloproteinase-2 concentration showed a significant positive correlation in rats of each group. In addition, pathologic evidence of liver fibrosis was observed only in the ethanol group. Furthermore, hepatic cytochrome 2E1 protein expression in group E increased significantly. These results suggest that combined treatment of folate and vitamin B12 can alleviate alcoholic liver injury that may be related to normalization of plasma homocysteine levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Feeding sorghum ergot (Claviceps africana) to sows before farrowing inhibits milk production.

    PubMed

    Kopinski, J S; Blaney, B J; Downing, J A; McVeigh, J F; Murray, S-A

    2007-05-01

    To assess the impact of feeding different amounts of sorghum ergot to sows before farrowing. Fifty-one pregnant sows from a continually farrowing piggery were sequentially inducted into the experiment each week in groups of four to seven, as they approached within 14 days of farrowing. Diets containing sorghum ergot sclerotia within the range of 0 (control) up to 1.5% w/w (1.5% ergot provided 7 mg alkaloids/kg, including 6 mg dihydroergosine/kg) were randomly allocated and individually fed to sows. Ergot concentrations were varied with each subsequent group until an acceptable level of tolerance was achieved. Diets with ergot were replaced with control diets after farrowing. Post-farrowing milk production was assessed by direct palpation and observation of udders, and by piglet responses and growth. Blood samples were taken from sows on three days each week, for prolactin estimation. Three sows fed 1.5% ergot for 6 to 10 days preceding farrowing produced no milk, and 87% of their piglets died despite supplementary feeding of natural and artificial colostrums, milk replacer, and attempts to foster them onto normally lactating sows. Ergot inclusions of 0.6% to 1.2% caused lesser problems in milk release and neo-natal piglet mortality. Of 23 sows fed either 0.3% or 0.6% ergot, lactation of only two first-litter sows were affected. Ergot caused pronounced reductions in blood prolactin, and first-litter sows had lower plasma prolactin than multiparous sows, increasing their susceptibility to ergot. Sorghum ergot should not exceed 0.3% (1 mg alkaloid/kg) in diets of multiparous sows fed before farrowing, and should be limited to 0.1% for primiparous sows, or avoided completely.

  13. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein source on hepatic tumor promotion in a mouse model reflecting aspects of non-alcoholic fatty liver disease (NAFLD). A high-fat liquid diet with casein as the protein source promotes hepatic injury and tumor promotion in diethylnitrosamine-treated mice. Replacing casein with a soy protein isolate led to a pronounced diminishment of tumor promotion and associated hepatic injury and inflammation. The study thus demonstrates that a dietary protein source can have beneficial, preventative effects on hepatic tumor promotion.

  14. Dietary toxicity and tissue accumulation of methylmercury in American kestrels

    USGS Publications Warehouse

    Bennett, Richard S.; French, John B.; Rossmann, Ronald; Haebler, Romona J.

    2009-01-01

    American kestrels (Falco sparverius) were fed meat diets containing 0, 3, 6, or 12 ppm (dry weight) methylmercury chloride. Birds fed the 12-ppm diet started to show signs of neurotoxicity after 26 days and all died in 39?49 days. One male kestrel fed the 6-ppm diet died after 75 days of exposure and several others showed signs of neurotoxicity after 45 days. None of the birds fed the 3-ppm diet died or showed signs of toxicity. After 59 days of exposure, mercury concentrations in the liver, kidney, and blood of nonreproducing kestrels increased with increasing dietary concentration. Tissue concentrations of mercury also steadily increased over time in birds fed diets with 6 ppm mercury, which were necropsied at 8, 15, 29, or 59 days of exposure, reaching mean total mercury concentrations of 57, 46, and 45 ppm (wet weight) at 59 days in the liver, kidney, and whole blood, respectively. Two pairs of kestrels at each dietary concentration were allowed to breed. Eggs averaged 8.3 and 18.1 ppm (wet weight) total mercury from birds fed 3- and 6-ppm diets, respectively. Feathers grown during mercury exposure contained high concentrations of mercury: Birds fed 3- and 6-ppm diets contained 275 and 542 ppm total mercury, respectively.

  15. Impact of diet on incisor growth and attrition and the development of dental disease in pet rabbits.

    PubMed

    Meredith, A L; Prebble, J L; Shaw, D J

    2015-06-01

    To assess the impact of four rabbit diets (hay only; extruded diet with hay; muesli with hay; muesli only) on length and curvature of cheek teeth and eruption and attrition rates of incisors. Thirty-two Dutch rabbits, randomly divided into four diet groups, had length and saggital plane curvature of the first cheek teeth measured radiographically at 1, 9 and 17 months. Eruption/attrition of the left upper incisor was directly measured at weeks 30, 32 and 35. Eruption rates matched attrition rates in all groups, but were higher in the hay only group than in both groups fed muesli. By month 9, a greater degree of tooth curvature was present in rabbits fed muesli only than in those fed hay only and extruded diet with hay. After 17 months, rabbits fed muesli only and muesli with hay had longer lower first cheek teeth and larger interdental spaces between the first two molars than rabbits fed extruded diet and hay and hay only. Three rabbits fed muesli only developed evidence of dental disease. Presence of increased tooth length, curvature and interdental spaces indicated early dental pathology in rabbits fed muesli. Muesli diets cannot be recommended for pet rabbits. © 2015 British Small Animal Veterinary Association.

  16. Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids.

    PubMed Central

    Rustan, A C; Christiansen, E N; Drevon, C A

    1992-01-01

    Rats were fed, for 3 weeks, high-fat (20% w/w) diets containing sunflower-seed oil, linseed oil or fish oil. Chow-fed rats were used as a low-fat reference. The high-fat diets markedly reduced non-fasting-rat serum triacylglycerol as compared with the low-fat reference, and the highest reduction (85%) was observed with the fish-oil group, which was significantly lower than that of the other high-fat diets. The serum concentration of phospholipids was significantly reduced (30%) only in the fish-oil-fed animals, whereas serum non-esterified fatty acids were reduced 40-50% by both the fish-oil- and linseed-oil-fed groups. The liver content of triacylglycerol showed a 1.7-fold increase with the fish-oil diet and 2-2.5-fold with the other dietary groups when compared with rats fed a low-fat diet, whereas the hepatic content of phospholipids was unchanged. Peroxisomal fatty acid oxidation (acyl-CoA oxidase) was 2-fold increased for the rats fed fish oil; however this was not significantly higher when comparison was made with rats fed the linseed-oil diet. There was no difference in phosphatidate hydrolysis (microsomal and cytosolic fractions) among animals fed the various diets. Acyl-CoA:diacylglycerol acyltransferase activity was increased by all high-fat diets, but the fish-oil-diet-fed group showed a significantly lower enzyme activity than did rats fed the other high-fat diets. A linear correlation between acyl-CoA:diacylglycerol acyltransferase activity and liver triacylglycerol was observed, and the microsomal enzyme activity was decreased 40-50% by incubation in the presence of eicosapentaenoyl-CoA. CoA derivatives of arachidonic, linolenic and linoleic acid had no inhibitory effect when compared with the control. These results indicate that dietary fish oil may have greater triacylglycerol-lowering effect than other polyunsaturated diets, owing to decreased triacylglycerol synthesis caused by inhibition of acyl-CoA:diacylglycerol acyltransferase. In addition, increased peroxisomal fatty acid oxidation and decreased availability of non-esterified fatty acids could also contribute by decreasing the amounts of fatty acids as substrates for triacylglycerol synthesis and secretion. Images Fig. 3. PMID:1349473

  17. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    PubMed

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

  18. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

    PubMed Central

    Heden, Timothy D.; Morris, E. Matthew; Kearney, Monica L.; Liu, Tzu-Wen; Park, Young-min; Kanaley, Jill A.; Thyfault, John P.

    2015-01-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1 tissue) than in LF- (0.50 ± 0.16 nmol·g−1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. PMID:24669989

  19. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  20. The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice

    PubMed Central

    2013-01-01

    Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422

Top