Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao
2018-01-02
To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.
Filamentous bacteria existence in aerobic granular reactors.
Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A
2015-05-01
Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.
Ultrasound pre-treatment for anaerobic digestion improvement.
Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F
2009-01-01
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
Geed, S R; Shrirame, B S; Singh, R S; Rai, B N
2017-10-01
The biodegradation of synthetic wastewater containing Atrazine, Malathion and Parathion was studied in two stage Integrated Aerobic Treatment Plant using Bacillus sp. (consortia) isolated from agricultural field. The influent stream containing these pesticides with initial COD of 1232mg/L were fed to first reactor and treated effluent of first reactor was fed to second reactor. The maximum removal of pesticides in IATP was found to be greater than 90%. The various process parameters such as pH, DO, Redox potential and BOD 5 /COD were monitored during the treatment. The degradation of pesticides and its metabolites in the treated effluent were confirmed by GC-MS. Kinetic parameters such as first order rate constant (K obs ), cell yield (Y X/C ) and decay coefficients (K dp ) were evaluated and found to be 0.00425 per hr, 0.696mg of COD/mg MLSS and 0.0010 per hr respectively. This integrated process was found more effective than physico-chemical treatment of pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E
2016-12-01
Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acharya, Bhavik K; Pathak, Hilor; Mohana, Sarayu; Shouche, Yogesh; Singh, Vasdev; Madamwar, Datta
2011-08-01
Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m⁻³ d⁻¹). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (U(max)) and saturation value constant (K(B)) were found to be 2 kg m⁻³ d⁻¹ and 1.69 kg m⁻³ d⁻¹ respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.
González-Fernández, Cristina; Riaño-Irazábal, Berta; Molinuevo-Salces, Beatriz; Blanco, Saúl; García-González, Maria Cruz
2011-05-01
There is great controversy regarding the best substrate (fresh or anaerobically digested swine slurry) for the development of microalgae-bacteria consortia. This study aims to elucidate the best substrate by assessing biomass productivity, microorganism predominance, and their ability for organic matter removal. In addition to the different substrates, different operational conditions and influent strengths were evaluated. Increasing organic matter content when favourable temperature and illumination conditions were present improved biomass production. However, these conditions were not favourable for microalgal growth, but they were favourable for bacteria. Regardless of the operational conditions, reactors fed with fresh slurry not only resulted in the highest biomass productivity, but also the greatest removal of total and soluble chemical oxygen demand (COD). On the other hand, reactors fed with digested slurry showed biomass productivity and COD removal values lower than those obtained for reactors fed with fresh slurry, most probably due to the recalcitrant nature of the former. Nevertheless, digested slurry was the substrate more appropriate for microalgae growth under harsh operational conditions (16 °C and 9-h illumination) at low influent strength and optimum operational conditions (30 °C and 24-h illumination) at higher influent strength.
Lee, M Y; Cheon, J H; Hidaka, T; Tsuno, H
2008-01-01
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.
Janczukowicz, Wojciech; Rodziewicz, Joanna; Thornton, Arthur; Czaplicka, Kamila
2012-09-01
This study determined the potential for fermented wastewaters from butter production plant to act as a carbon source to facilitate phosphates removal. Synthetic dairy wastewaters were treated using SBR, with doses of fermented wastewaters. An increase in the fermented wastewater doses were found to improve the effluent quality in respect of phosphates and nitrates. The lowest concentrations of phosphate and nitrates, respectively 0.10 ± 0.04 mg PO(4)-PL(-1) and 1.03 ± 0.22 mg NO(3)-NL(-1), were noted in the effluent from the reactor fed with fermented wastewaters in a dose of 0.25 L d(-1) per 0.45 L d(-1) of wastewaters fed to the reactor. In the case of the two highest doses, an increase in effluent COD was stated. The higher effectiveness resulted from the fact that the introduction of fermented wastewaters caused an increase in the easily-available carbon compounds content and the predominance of acetic acid amongst VFAs available to dephosphatating and denitrifying bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Torrijos, M; Sousbie, P; Badey, L; Bosque, F; Steyer, J P
2012-01-01
The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69-0.77 l CH(4)/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.
New Strategy for a Suitable Fast Stabilization of the Biomethanization Performance
Fernández-Güelfo, L. A.; Álvarez-Gallego, C. J.; Sales Márquez, D.; Romero García, L. I.
2012-01-01
The start-up strategies for thermophilic anaerobic reactors usually consist of an initial mesophilic stage (35°C), with an approximate duration of 185 days, and a subsequent thermophilic stage (55°C), which normally requires around 60 days to achieve the system stabilizatio. During the first 8–10 days of the mesophilic stage, the reactor is not fed so that the inoculum, which is generally a mesophilic anaerobic sludge, may be adapted to the organic solid waste. Between mesophilic and thermophilic conditions the reactor is still not fed in an effort to prevent possible imbalances in the proces. As a consequence, the start-up and stabilization of the biomethanization performance described in the literature require, at least, around 245 days. In this sense, a new strategy for the start-up and stabilization phases is presented in this study. This approach allows an important reduction in the overall time necessary for these stages in an anaerobic continuous stirred tank reactor (CSTR) operated at thermophilic-dry conditions for treating the organic fraction of the municipal solid waste (OFMSW): 60 days versus 245 days of conventional strategies. The new strategy uses modified SEBAC technology to adapt an inoculum to the OFMSW and the operational conditions prior to seeding the CSTR. PMID:23193374
Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata
2018-04-01
In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.
Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W
2014-04-01
The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M
2007-10-01
The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.
Friedl, Gregor F; Mockaitis, Gustavo; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio
2009-10-01
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L(-1)), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO(4)(2-)] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L(-1) and sulfate concentrations of 373, 746, and 1,493 mg SO(4)(2-) L(-1) in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30 +/- 1 degrees C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO(4)(2-)] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO(4)(2-)] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO(4)(2-)] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.
Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo
2015-01-01
This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131
Buitrón, G; Moreno-Andrade, I; Linares-García, J A; Pérez, J; Betancur, M J; Moreno, J A
2007-01-01
This work presents the results and discussions of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a synthetic wastewater constituted by 4-chlorophenol. An aerobic automated discontinuous reactor system of 1.3 m3, with a useful volume of 0.75 m3 and an exchange volume of 60% was used. As part of the control strategy influent is fed into the reactor in such a way as to obtain the maximal degradation rate avoiding inhibition of microorganisms. Such an optimal strategy was able to manage increments of 4-chlorophenol concentrations in the influent between 250 and 1000 mg/L. it was shown that the optimally controlled influent flow rate strategy brings savings in reaction time and flexibility in treating high concentrations of an influent with toxic characteristics.
Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.
Elmitwalli, Tarek; Otterpohl, Ralf
2011-01-01
The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.
Impact of paper and cardboard suppression on OFMSW anaerobic digestion.
Fonoll, X; Astals, S; Dosta, J; Mata-Alvarez, J
2016-10-01
Mechanical-biological treatment plants treat municipal solid waste to recover recyclable materials, nutrients and energy. Waste paper and cardboard (WP), the second main compound in municipal solid waste (∼30% in weight basis), is typically used for biogas generation. However, its recovery is gaining attention as it can be used to produce add-value products like bioethanol and residual derived fuel. Nevertheless, WP suppression or replacement will impact anaerobic digestion in terms of biogas production, process stability and digestate management. Two lab-scale reactors were used to assess the impact of WP in anaerobic digestion performance. A control reactor was only fed with biowaste (BioW), while a second reactor was fed with two different mixtures of BioW and WP, i.e. 85/15% and 70/30% (weight basis). Results indicate that either replacing half of the WP by BioW or removing half of the WP has little impact on the methane production. When removing half of the WP, methane production could be sustained by a larger waste biodegradability. The replacement of all WP by BioW increased the reactor methane production (∼37%), while removing all WP would have reduced the methane production about 15%. Finally, replacing WP loading rate by BioW led to a system less tolerant to instability periods and with poorer digestate quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removal properties of diesel exhaust particles by a dielectric barrier discharge reactor.
Suzuki, Ken-ichiro; Takeuchi, Naomi; Madokoro, Kazuhiko; Fushimi, Chihiro; Yao, Shuiliang; Fujioka, Yuichi; Nihei, Yoshimasa
2008-02-01
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions.
Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.
Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle
2013-01-01
A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan
2017-08-02
A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.
Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.
Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K
2012-06-01
The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.
Effect of temperature on selenium removal from wastewater by UASB reactors.
Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L
2016-05-01
The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E
2017-12-01
Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen
2017-09-01
This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sanz, Jose Luis; Rojas, Patricia; Morato, Ana; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina
2017-02-01
Microalgae biomasses are considered promising feedstocks for biofuel and methane productions. Two Continuously Stirred Tank Reactors (CSTR), fed with fresh (CSTR-C) and heat pre-treated (CSTR-T) Chlorella biomass were run in parallel in order to determine methane productions. The methane yield was 1.5 times higher in CSTR-T with regard to CSTR-C. Aiming to understand the microorganism roles within of the reactors, the sludge used as an inoculum (I), plus raw (CSTR-C) and heat pre-treated (CSTR-T) samples were analyzed by high-throughput pyrosequencing. The bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. Spirochaetae and Actinobacteria were only detected in sample I. Proteobacteria, mainly Alfaproteobacteria, were by far the dominant phylum within of the CSTR-C bioreactor. Many of the sequences retrieved were related to bacteria present in activated sludge treatment plants and they were absent after thermal pre-treatment. Most of the sequences affiliated to the Bacteroidetes were related to uncultured groups. Anaerolineaceae was the sole family found of the Chloroflexi phylum. All of the genera identified of the Firmicutes phylum carried out macromolecule hydrolysis and by-product fermentation. The proteolytic bacteria were prevalent over the saccharolytic microbes. The percentage of the proteolytic genera increased from the inoculum to the CSTR-T sample in a parallel fashion with an available protein increase owing to the high protein content of Chlorella. To relate the taxa identified by high-throughput sequencing to their functional roles remains a future challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva, Bruno Garcia; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio
2018-04-20
This study assessed the simultaneous nitrification and denitrification processes and remaining organic matter removal from anaerobic reactor effluent treating wastewater in a single reactor. A structured-bed reactor, with polyurethane foam as support media, was subjected to intermittent aeration and effluent recirculation. Aerated/non-aerated periods varied in the range of 2/1-1/3 h. The chemical oxygen demand (COD) in the effluent remained between 26 and 42 mg L -1 throughout all the aeration conditions. Aeration periods of 1/2 h removed 80 and 26% of Total Kjeldahl Nitrogen and Total Nitrogen, respectively. A low solid production was observed during the 300 days of operation, resulting in a solid retention time of 139 days. The results indicate that the non-aerated periods generated alkalinity that favored nitrification, maintaining low COD concentrations in the effluent. The structured bed reactor presented a low solid production and effluent loss below 20 mgSSV L -1 , similar to concentrations obtained in secondary decanters.
Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maranon, E.; Castrillon, L.; Fernandez, Y.
2006-07-01
The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1more » cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.« less
Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste
NASA Astrophysics Data System (ADS)
Shin, Hang-Sik
2008-02-01
This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehia, Ashraf; Mizuno, Akira
An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, thatmore » have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.« less
Qureshi, Nasib; Klasson, K Thomas; Saha, Badal C; Liu, Siqing
2018-04-25
In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 gL -1 SSB hydrolysis, a fed-batch reactor with in-situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 gL -1 h -1 and 0.36 were obtained, respectively. In the fed-batch reactor fed with SSB hydrolyzates these productivity and yield values were 0.44 gL -1 h -1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 gL -1 ) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-04-01
Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.
Carosia, Mariana Fronja; Okada, Dagoberto Yukio; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2014-09-01
The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.
Load limit of a UASB fed septic tank-treated domestic wastewater.
Lohani, Sunil Prasad; Bakke, Rune; Khanal, Sanjay N
2015-01-01
Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT≥6 h, indicating a hydraulic load design limit. The tested septic tank-UASB combined system can be a low-cost and effective on-site sanitation solution.
Luostarinen, S; Rintala, J
2006-01-01
Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.
Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.
Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini
2012-04-01
The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Copyright © 2011 Wiley Periodicals, Inc.
Anammox process for nitrogen removal from anaerobically digested fish canning effluents.
Dapena-Mora, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2006-01-01
The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700-1000 g NH4+ -Nm(-3)), organic carbon content (1000-1300 g TOCm(-3)) and salinity up to 8,000-10,000 g NaCl m(-3). In the Sharon reactor, approximately 50% of the NH4+ -N was oxidised to NO2- -N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m(-3) x d(-1). The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO2- -N concentration was higher than the NH4+ -N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340g NH4+ -N m(-3) and 440 g NO2- -N m(-3), respectively. Based on these results, it seems that the Sharon-Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO2- -N/NH4+ -N ratio.
Neem leaves as a source of fertilizer-cum-pesticide vermicompost.
Gajalakshmi, S; Abbasi, S A
2004-05-01
Vermicomposting of neem (Azadirachta indica A. Juss) was accomplished in "high-rate" reactors operated at the earthworm (Eudrilus eugeniae) densities of 62.5 and 75 animals per litre of reactor volume. Contrary to the fears that neem--a powerful nematicide--might not be palatable to the annelids, the earthworms fed voraciously on the neem compost, converting upto 7% of the feed into vermicompost per day. Indeed the worms grew faster and reproduced more rapidly in the neem-fed vermireactors than in the reactors fed with mango leaf litter earlier studied by the authors (Gajalakshmi et al., 2003). Another set of experiments on the growth, flowering, and fruition of brinjal (Solanum melongena) plants with and without fertilization with vermicompost, revealed that the vermicompost had a significantly beneficial impact.
Alcántara-Hernández, R J; Taş, N; Carlos-Pinedo, S; Durán-Moreno, A; Falcón, L I
2017-06-01
Anaerobic digestion of organic residues offers economic benefits via biogas production, still methane (CH 4 ) yield relies on the development of a robust microbial consortia for adequate substrate degradation, among other factors. In this study, we monitor biogas production and changes in the microbial community composition in two semi-continuous stirred tank reactors during the setting process under mesophilic conditions (35°C) using a 16S rDNA high-throughput sequencing method. Reactors were initially inoculated with anaerobic granular sludge from a brewery wastewater treatment plant, and gradually fed organic urban residues (4·0 kg VS m -3 day -1 ) . The inocula and biomass samples showed changes related to adaptations of the community to urban organic wastes including a higher relative proportion of Clostridiales, with Ruminococcus spp. and Syntrophomonas spp. as recurrent species. Candidatus Cloacamonas spp. (Spirochaetes) also increased from ~2·2% in the inoculum to >10% in the reactor biomass. The new community consolidated the cellulose degradation and the propionate and amino acids fermentation processes. Acetoclastic methanogens were more abundant in the reactor, where Methanosaeta spp. was found as a key player. This study demonstrates a successful use of brewery treatment plant granular sludge to obtain a robust consortium for methane production from urban organic solid waste in Mexico. This study describes the selection of relevant bacteria and archaea in anaerobic digesters inoculated with anaerobic granular sludge from a brewery wastewater treatment plant. Generally, these sludge granules are used to inoculate reactors digesting organic urban wastes. Though, it is still not clearly understood how micro-organisms respond to substrate variations during the reactor start-up process. After feeding two reactors with organic urban residues, it was found that a broader potential for cellulose degradation was developed including Bacteroidetes, Firmicutes and Spirochaetes. These results clarify the bacterial processes behind new reactors establishment for treating organic wastes in urban areas. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.
2018-01-01
Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.
Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.
Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini
2017-05-01
Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Generation and Reduction of NOx on Air-Fed Ozonizers
NASA Astrophysics Data System (ADS)
Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki
A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.
Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P
2003-01-01
Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.
Tang, Kai; Ooi, Gordon T H; Litty, Klaus; Sundmark, Kim; Kaarsholm, Kamilla M S; Sund, Christina; Kragelund, Caroline; Christensson, Magnus; Bester, Kai; Andersen, Henrik R
2017-07-01
Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contains insufficient organic matter to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority of pharmaceuticals was enhanced through the intermittent feeding of the MBBR. First-order rate constants for pharmaceutical removal, normalised to biomass, were significantly higher compared to other studies on activated sludge and suspended biofilms, especially for diclofenac, metoprolol and atenolol. Due to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1h and was thus much faster than any hitherto described wastewater bioreactor treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
High yields of hydrogen production from methanol steam reforming with a cross-U type reactor
Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei
2017-01-01
This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067
High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei
2017-01-01
This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.
Anaerobic treatment of distillery spent wash - a study on upflow anaerobic fixed film bioreactor.
Acharya, Bhavik K; Mohana, Sarayu; Madamwar, Datta
2008-07-01
Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.
AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA
MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...
The effect of mixing on fermentation of primary solids, glycerol, and biodiesel waste.
Ghasemi, Marzieh; Randall, Andrew A
2018-03-01
In this study, the effect of mixing on volatile fatty acid (VFA) production and composition was investigated through running five identical bench-scale reactors that were filled with primary solid and dosed with either pure glycerol or biodiesel waste. Experimental results revealed that there was an inverse correlation between the mixing intensity and the VFA production. The total VFA production in the un-mixed reactor was 9,787 ± 3,601 mg COD/L, whereas in the reactor mixed at 100 rpm this dropped to 3,927 ± 1,175 mg COD/L, while both types of reactor were dosed with pure glycerol at the beginning of each cycle to reach the initial concentration of 1,000 mg/L (1,217 mg COD/L). Propionic acid was the dominant VFA in all the reactors except the reactor mixed at 30 rpm. It is hypothesized that low mixing facilitated hydrogen transfer between obligate hydrogen producing acetogens (OHPA) and hydrogen consuming acidogens in these non-methanogenic reactors. Also, in a narrower range of mixing (0 or 7 rpm), the total VFA production in biodiesel waste-fed reactors was considerably higher than that of pure glycerol-fed reactors.
Heidrich, E S; Dolfing, J; Wade, M J; Sloan, W T; Quince, C; Curtis, T P
2018-02-01
The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q 10 : 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo
2014-10-01
Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schmideder, Andreas; Weuster-Botz, Dirk
2017-07-01
The microbial expression of intracellular, recombinant proteins in continuous bioprocesses suffers from low product concentrations. Hence, a process for the intracellular production of photoactivatable mCherry with Escherichia coli in a continuously operated cascade of two stirred-tank reactors was established to separate biomass formation (first reactor) and protein expression (second reactor) spatially. Cascades of miniaturized stirred-tank reactors were implemented, which enable the 24-fold parallel characterization of cascade processes and the direct scale-up of results to the liter scale. With PAmCherry concentrations of 1.15 g L -1 cascades of stirred-tank reactors improved the process performance significantly compared to production processes in chemostats. In addition, an optimized fed-batch process was outperformed regarding space-time yield (149 mg L -1 h -1 ). This study implicates continuous cascade processes to be a promising alternative to fed-batch processes for microbial protein production and demonstrates that miniaturized stirred-tank reactors can reduce the timeline and costs for cascade process characterization.
Thermal Destruction of TETS: Experiments and Modeling ...
Symposium Paper In the event of a contamination event involving chemical warfare agents (CWAs) or toxic industrial chemicals (TICs), large quantities of potentially contaminated materials, both indoor and outdoor, may be treated with thermal incineration during the site remediation process. Even if the CWAs or TICs of interest are not particularly thermally stable and might be expected to decompose readily in a high temperature combustion environment, the refractory nature of many materials found inside and outside buildings may present heat transfer challenges in an incineration system depending on how the materials are packaged and fed into the incinerator. This paper reports on a study to examine the thermal decomposition of a banned rodenticide, tetramethylene disulfotetramine (TETS) in a laboratory reactor, analysis of the results using classical reactor design theory, and subsequent scale-up of the results to a computer-simulation of a full-scale commercial hazardous waste incinerator processing ceiling tile contaminated with residual TETS.
Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang
2013-11-01
Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dries, Jan
2016-01-01
On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.
Gustavsson, J; Svensson, B H; Karlsson, A
2011-01-01
The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 degrees C). It was concluded that daily supplementation with Co (0.5 mg L(-1)), Ni (0.2 mg L(-1)) and Fe (0.5 g L(-1)) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L(-1) day(-1).
Szuhaj, Márk; Ács, Norbert; Tengölics, Roland; Bodor, Attila; Rákhely, Gábor; Kovács, Kornél L; Bagi, Zoltán
2016-01-01
Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the process is the gas-liquid mass transfer of H2. Fed-batch reactor configuration was tested at mesophilic temperature in laboratory experiments in order to improve the contact time and H2 mass transfer between the gas and liquid phases. Effluent from an industrial biogas facility served as biocatalyst. The bicarbonate content of the effluent was depleted after some time, but the addition of stoichiometric CO2 sustained H2 conversion for an extended period of time and prevented a pH shift. The microbial community generated biogas from the added α-cellulose substrate with concomitant H2 conversion, but the organic substrate did not facilitate H2 consumption. Fed-batch operational mode allowed a fourfold increase in volumetric H2 load and a 6.5-fold augmentation of the CH4 formation rate relative to the CSTR reactor configuration. Acetate was the major by-product of the reaction. Fed-batch reactors significantly improve the efficiency of the biological power-to-gas process. Besides their storage function, biogas fermentation effluent reservoirs can serve as large-scale bio CH4 reactors. On the basis of this recognition, a novel concept is proposed, which merges biogas technology with other means of renewable electricity production for improved efficiency and sustainability.
Kiely, Patrick D; Rader, Geoffrey; Regan, John M; Logan, Bruce E
2011-01-01
To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.
Oz, Nilgun Ayman; Uzun, Alev Cagla
2015-01-01
This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p<0.05) in terms of SCOD parameter, but not for raw OMW (p>0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (p<0.05). Anaerobic batch reactor fed with ultrasound pretreated diluted OMW produced approximately 20% more biogas and methane compared with the untreated one (control reactor). The overall results indicated that low frequency ultrasound pretreatment increased soluble COD in OMW and subsequently biogas production. Copyright © 2014 Elsevier B.V. All rights reserved.
Langer, Susanne G; Ahmed, Sharif; Einfalt, Daniel; Bengelsdorf, Frank R; Kazda, Marian
2015-01-01
Numerous observations indicate a high flexibility of microbial communities in different biogas reactors during anaerobic digestion. Here, we describe the functional redundancy and structural changes of involved microbial communities in four lab-scale continuously stirred tank reactors (CSTRs, 39°C, 12 L volume) supplied with different mixtures of maize silage (MS) and sugar beet silage (SBS) over 80 days. Continuously stirred tank reactors were fed with mixtures of MS and SBS in volatile solid ratios of 1:0 (Continuous Fermenter (CF) 1), 6:1 (CF2), 3:1 (CF3), 1:3 (CF4) with equal organic loading rates (OLR 1.25 kgVS m−3 d−1) and showed similar biogas production rates in all reactors. The compositions of bacterial and archaeal communities were analysed by 454 amplicon sequencing approach based on 16S rRNA genes. Both bacterial and archaeal communities shifted with increasing amounts of SBS. Especially pronounced were changes in the archaeal composition towards Methanosarcina with increasing proportion of SBS, while Methanosaeta declined simultaneously. Compositional shifts within the microbial communities did not influence the respective biogas production rates indicating that these communities adapted to environmental conditions induced by different feedstock mixtures. The diverse microbial communities optimized their metabolism in a way that ensured efficient biogas production. PMID:26200922
ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS
Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...
Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio
2008-02-01
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.
Pakarinen, O; Kaparaju, P; Rintala, J
2011-10-01
The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m³/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m³/d and shortening the HRT from 30 to 6 days. The highest H₂ yield of 42 L/kgVS(fed) was obtained with a maximum H₂ content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT. Copyright © 2011 Elsevier Ltd. All rights reserved.
Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Hoon; Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr
2011-09-15
Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) ismore » attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.« less
Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell
2016-01-15
Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann
2015-01-01
Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462
2009-01-01
Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1), negligible if compared to that of the parental strain (0.028 h-1). However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the available carbon source for maintenance, rather than for further proliferation. The mathematical model used evidenced that the energy demand for maintenance was even higher in the case of the Δyca1 mutant, accounting for the growth arrest observed despite the fact that cell viability remained comparatively high. Conclusions The paper points out the relevance of a proper ACA formulation for the outcome of a fed-batch reactor growth carried out with S. cerevisiae BY4741 [PIR4-IL1β] strain and shows the sensitivity of this commonly used auxotrophic strain to aerated fed-batch operations. A Δyca1 disruption was able to reduce the loss of viability, but not to improve the overall performance of the process. A mathematical model has been developed that is able to describe the behaviour of both the parental and mutant producer strain during fed-batch runs, and evidence the role played by the energy demand for maintenance in the outcome of the process. PMID:20042083
Schingoethe, D J; Voelker, H H; Beardsley, G L; Parsons, J G
1976-05-01
Alfalfa-brome hay, haylage, .5% urea-treated corn silage, or .5% urea plus 1% dried whey-treated corn silage was fed as the only forage to one of four groups of 10 lactating cows per group for a lactation trial of 10 wk. Rumen samples were collected via stomach tube 3 to 4 h after the morning feeding. The pH of the rumen samples from cows fed hay was higher than for cows fed haylage, urea-treated corn silage, and urea-whey corn silage, 6.69 versus 6.36, 6.40, and 6.50. Total volatile fatty acids and propionate were highest from cows fed urea-whey corn silage and were higher on all three fermented forages than cows fed hay. Acetate/propionate ratio was highest from cows fed hay and lowest from cows fed corn silages. Butyrate was highest from cows fed haylage or hay. Milk protein composition was not affected by ration although nonprotein nitrogen of milk was highest from cows fed the urea-treated corn silages. Oleic acid and total unsaturated fatty acids were lowest in milk fat from cows fed hay while palmitic acid was highest from cows fed hay and haylage. These results suggest that type of forage fed may cause small changes in rumen fermentation and in milk composition. The importance of these changes is unknown but may affect properties of dairy products produced from this milk.
Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.
Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel
2018-05-31
The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4 kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrogasification reactor and method of operating same
Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki
2013-09-10
The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.
Kantor, Rose S; Huddy, Robert J; Iyer, Ramsunder; Thomas, Brian C; Brown, Christopher T; Anantharaman, Karthik; Tringe, Susannah; Hettich, Robert L; Harrison, Susan T L; Banfield, Jillian F
2017-03-07
Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.
Li, Yanqi; Nguyen, Duc Ninh; de Waard, Marita; Christensen, Lars; Zhou, Ping; Jiang, Pingping; Sun, Jing; Bojesen, Anders Miki; Lauridsen, Charlotte; Lykkesfeldt, Jens; Dalsgaard, Trine Kastrup; Bering, Stine Brandt; Sangild, Per Torp
2017-06-01
Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants. Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM. Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg -1 · d -1 ) and increasing volumes of the 3 DM diets ( n = 19 each, average 89 mL · kg -1 · d -1 ) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated. Results: A high bacterial load in the UP (6×10 5 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) ( P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) ( P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine ( P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs fed UVC-treated milk than in pigs fed UP and those fed HP-treated milk in both cecum contents (20% and 10%) and distal intestinal mucosa (24% and 20%) (all P < 0.05). Conclusions: UVC is better than HP treatment in preserving bioactive factors in DM. UVC-treated milk may induce better weight gain, intestinal health, and resistance against bacterial infections as shown in preterm pigs as a model for DM-fed preterm infants. © 2017 American Society for Nutrition.
Liquid metal pump for nuclear reactors
Allen, H.G.; Maloney, J.R.
1975-10-01
A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank.
Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor.
D'Anteo, Sibilla; Mannucci, Alberto; Meliani, Matteo; Verni, Franco; Petroni, Giulio; Munz, Giulio; Lubello, Claudio; Mori, Gualtiero; Vannini, Claudia
2015-01-01
A membrane bioreactor (MBR), fed with domestic wastewater, was bioaugmented with nitrifying biomass selected in a side-stream MBR fed with a synthetic high nitrogen-loaded influent. Microbial communities evolution was monitored and comparatively analysed through an extensive bio-molecular investigation (16S rRNA gene library construction and terminal-restriction fragment length polymorphism techniques) followed by statistical analyses. As expected, a highly specialized nitrifying biomass was selected in the side-stream reactor fed with high-strength ammonia synthetic wastewater. The bioaugmentation process caused an increase of nitrifying bacteria of the genera Nitrosomonas (up to more than 30%) and Nitrobacter in the inoculated MBR reactor. The overall structure of the microbial community changed in the mainstream MBR as a result of bioaugmentation. The effect of bioaugmentation in the shift of the microbial community was also verified through statistical analysis.
Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin
2014-10-01
An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.
Municipal-wastewater treatment using upflow-anaerobic filters.
Manariotis, loannis D; Grigoropoulos, Sotirios G
2006-03-01
Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.
NASA Astrophysics Data System (ADS)
Wang, Weifang; Mai, Kangsen; Zhang, Wenbing; Xu, Wei; Ai, Qinghui; Yao, Chunfeng; Li, Huitao
2009-09-01
A study was conducted to evaluate the effects of dietary carbohydrates on triglyceride, cholesterol and fatty acid concentrations in abalone, Haliotis discus hannai Ino. Six semi-purified diets with different carbohydrates (dextrin, heat-treated wheat starch, wheat starch, corn starch, tapioca starch and potato starch, respectively), all containing a carbohydrate level of 33.5%, were fed to abalone (initial shell length: 29.98 mm ± 0.09 mm; initial weight: 3.42 g ± 0.02 g) for 24 weeks in a recirculation system. The results indicate that serum triglyceride concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch and wheat starch than those fed with corn starch, and serum cholesterol concentrations were significantly ( P < 0.05) higher in the abalone fed with dextrin, heat-treated wheat starch than those fed with corn starch. Fatty acid C20:4n-6 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin than those fed with wheat starch, corn starch, tapioca starch and potato starch. Fatty acid C20:4n-6 in hepatopancreas was significantly ( P < 0.05) lower in abalone fed with heat-treated wheat starch than those fed with corn starch, tapioca starch and potato starch. Fatty acid C22:6n-3 in the foot muscles were significantly ( P < 0.05) lower in the abalone fed with dextrin and heat-treated wheat starch than those fed with wheat starch and potato starch.
Evaluation of enzymatic reactors for large-scale panose production.
Fernandes, Fabiano A N; Rodrigues, Sueli
2007-07-01
Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.
Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.
Colleran, E; Pender, S
2002-01-01
The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.
Process and apparatus for coal hydrogenation
Ruether, John A.; Simpson, Theodore B.
1991-01-01
In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder; ...
2017-01-31
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Xie, Xuehui; Liu, Na; Ping, Jing; Zhang, Qingyun; Zheng, Xiulin; Liu, Jianshe
2018-06-01
In present study, a hydrolysis acidification (HA) reactor was used for simulated dyeing wastewater treatment. Co-substrates included starch, glucose, sucrose, yeast extract (YE) and peptone were fed sequentially into the HA reactor to enhance the HA process effects. The performance of the HA reactor and the microbial community structure in HA process were investigated under different co-substrates conditions. Results showed that different co-substrates had different influences on the performance of HA reactor. The highest decolorization (50.64%) and COD removal rate (60.73%) of the HA reactor were obtained when sucrose was as the co-substrate. And it found that carbon co-substrates starch, glucose and sucrose exhibited better decolorization and higher COD removal efficiency of the HA reactor than the nitrogen co-substrates YE and peptone. Microbial community structure in the HA process was analyzed by Illumina MiSeq sequencing. Results revealed different co-substrates had different influences on the community structure and microbial diversity in HA process. It was considered that sucrose could enrich the species such as Raoultella, Desulfovibrio, Tolumonas, Clostridium, which might be capable of degrading the dyes. Sucrose was considered to be the best co-substrate of enhancing the HA reactor's performance in this study. This work would provide deep insight into the influence of many different co-substrates on HA reactor performance and microbial communities in HA process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tay, J H; Liu, Q S; Liu, Y
2002-08-01
Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.
Silva, A; Genovés, S; Martorell, P; Zanini, S F; Rodrigo, D; Martinez, A
2015-09-01
The aim of this study was to evaluate the effect of two antimicrobial substances, carvacrol and citral, on Listeria monocytogenes and Listeria innocua cells, as well as possible virulence changes in injured cells, using Caenorhabditis elegans as a model test. The results indicated that the percentage of sublethal damage was higher in L. monocytogenes than in L. innocua. The results of the study carried out by using C. elegans indicated that C. elegans fed in a lawn of L. monocytogenes previously treated with carvacrol showed a loss in life span (p ≤ 0.05) as compared with L. monocytogenes treated with citral, Escherichia coli OP50 as a negative control, and treated and untreated L. innocua. Egg laying was also affected: worms fed in a lawn of treated and untreated L. monocytogenes laid fewer eggs than those fed in a lawn of treated and untreated L. innocua or fed with OP50 as a negative control. Worms fed in a lawn of treated and untreated L. innocua also laid fewer eggs than those fed with OP50 as a negative control. A phenotype named bag of worms and an undescribed new one, "vulva inflammation", were also observed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Looman, Marc R.
2012-07-01
This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part ofmore » the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)« less
Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source
Paulson, Leland E.
1990-01-01
A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.
Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source
Paulson, L.E.
1988-05-13
A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.
USDA-ARS?s Scientific Manuscript database
In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...
Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria
NASA Astrophysics Data System (ADS)
Bilgin, A.; Jaffe, P. R.
2017-12-01
Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T
2012-07-13
Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation.
Heat dissipating nuclear reactor with metal liner
Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.
1985-11-21
A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.
Heat dissipating nuclear reactor with metal liner
Gluekler, Emil L.; Hunsbedt, Anstein; Lazarus, Jonathan D.
1987-01-01
Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won
2013-12-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi
2013-01-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models. PMID:24381497
del Agua, Isabel; Usack, Joseph G; Angenent, Largus T
2015-01-01
The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor.
Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11.
Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk
2015-09-01
A novel iron-reducing yeast, Candida sp. IR11, was isolated from an anodic biofilm in a MFC reactor fed glucose as a feedstock. 200-250 mV of voltage was produced in the air-cathode MFC inoculated with a pure culture of the strain IR11 where glucose was supplied as a feedstock. When the strain IR11 was inoculated into a conventional MFC treating rejected wastewater from an upflow anaerobic sludge blanket, maximum power density and coulombic efficiency were enhanced from 15.2 ± 0.36 to 20.6 ± 1.52 mW m(-2) and from 14.4 ± 0.45% to 21.9 ± 0.71%, respectively. In addition, the inoculation with IR11 improved COD removal from 79.1 ± 1.53% to 91.3 ± 5.29%. The quantitative PCR results showed that the strain IR11 successfully attached the anodic biofilm of the MFC reactors. These results indicate that Candida sp. IR11 is a promising biocatalyst for the enhancement of MFC performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok
2012-09-01
The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen
2016-12-01
This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.
2014-02-01
Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.
Wu, Sarah Xiao; Zhu, Jun; Chen, Lide
2017-07-03
This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m 3 .sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH 4 + -N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO 3 -N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.
Mariottini, Yanina; Russo, Leticia M.; Vianna, M. Florencia; Scorsetti, Ana C.; Lange, Carlos E.
2017-01-01
In this study, the effects of strain Beauveria bassiana (LPSC 1067) as an endophyte in corn plants on consumption, fecundity, and food preference of Dichroplus maculipennis were examined. We observed that the daily consumption by grasshoppers fed with control plants was almost twice that of those that were fed treated plants. Significant differences in fecundity of grasshoppers that were fed with treated plants compared with those that only fed on control plants were also observed. The number of eggs laid per female fed with control plants was 27.2, while the number of eggs laid per female that were fed during 15 d with treated plants was 17.7. Similar results were observed when the number of embryonated eggs was evaluated. The highest number of embryonated eggs were recorded in those females that only fed on control plants (96%) while fewer embryonated eggs were recorded in grasshoppers fed for 15 d with treated plants only (25%). In relation to food preference the average consumption rate for D. maculipennis females on control corn plants was 303.8 ± 24.5 mg while it was only 25 ± 2.1 mg on plants treated with B. bassiana as an endophyte. In summary, we observed that B. bassiana as a corn plant endophyte negatively affected the daily consumption rate, fecundity and food preference of D. maculipennis. PMID:28423416
Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor.
Kim, B W; Chang, H N; Kim, I K; Lee, K S
1992-08-01
Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 microm, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.
Tanaka, Yasuo; Hasegawa, Teruaki; Sugimoto, Kiyomi; Miura, Keiichi; Aketo, Tsuyoshi; Minowa, Nobutaka; Toda, Masaya; Kinoshita, Katsumi; Yamashita, Takahiro; Ogino, Akifumi
2014-01-01
Advanced treatment using an agent synthesized from amorphous silica and hydrated lime (M-CSH-lime) was developed and applied to swine wastewater treatment. Biologically treated wastewater and M-CSH-lime (approximately 6 w/v% slurry) were fed continuously into a column-shaped reactor from its bottom. Accumulated M-CSH-lime gradually formed a bed layer. The influent permeated this layer and contacted the M-CSH-lime, and the treatment reaction progressed. Treated liquid overflowing from the top of the reactor was neutralized with CO₂gas bubbling. The colour removal rate approximately exceeded 50% with M-CSH-lime addition rates of > 0.15 w/v%. The removal rate of PO(3⁻)(4) exceeded 80% with the addition of>0.03 w/v% of M-CSH-lime. The removal rates of coliform bacteria and Escherichia coli exceeded 99.9% with > 0.1 w/v%. Accumulated M-CSH-lime in the reactor was periodically withdrawn from the upper part of the bed layer. The content of citric-acid-soluble P₂O₅ in the recovered matter was>15% when the weight ratio of influent PO(3⁻)(4) -P to added M-CSH-lime was > 0.15. This content was comparable with commercial phosphorus fertilizer. The inhibitory effect of recovered M-CSH-lime on germination and growth of leafy vegetable komatsuna (Brassica rapa var. perviridis) was evaluated by an experiment using the Neubauer's pot. The recovered M-CSH-lime had no negative effect on germination and growth. These results suggest that advanced water treatment with M-CSH-lime was effective for simultaneous removal of colour, [Formula: see text] and coliform bacteria at an addition rate of 0.03-0.15 w/v%, and that the recovered M-CSH-lime would be suitable as phosphorus fertilizer.
Leite, Wanderli; Magnus, Bruna Scandolara; Guimarães, Lorena Bittencourt; Gottardo, Marco; Belli Filho, Paulo
2017-10-01
Thermophilic anaerobic digestion (AD) arises as an optimized solution for the waste activated sludge (WAS) management. However, there are few feasibility studies using low solids content typically found in the WAS, and that consider uncommon operational conditions such as intermittent mixing and low hydraulic retention time (HRT). In this investigation, a single-stage pilot reactor was used to treat WAS at low HRT (13, 9, 6 and 5 days) and intermittent mixing (withholding mixing 2 h prior feeding). Thermophilic anaerobic digestion (55 °C) was initiated from a mesophilic digester (35 °C) by the one-step startup strategy. Although instabilities on partial alkalinity (1245-3000 mgCaCO 3 /L), volatile fatty acids (1774-6421 mg/L acetic acid) and biogas production (0.21-0.09 m 3 /m 3 reactor .d) were observed, methanogenesis started to recover in 18 days. The thermophilic treatment of WAS at 13 and 9 days HRT efficiently converted VS into biogas (22 and 21%, respectively) and achieved high biogas yield (0.24 and 0.22 m 3 /kgVS fed , respectively). Intermittent mixing improved the retention of methanogens inside the reactor and reduced the washout effect even at low HRT (<9 days). The negative thermal balance found was influenced by the low solids content in the WAS (2.1% TS) and by the heat losses from the digester walls. The energy balance and economic analyses demonstrated the feasibility of thermophilic AD of WAS in a hypothetical full-scale system, when the heat energy could be recovered from methane in a scenario of higher solids concentration in the substrate (>5% TS). Copyright © 2017 Elsevier Ltd. All rights reserved.
Linke, Bernd; Rodríguez-Abalde, Ángela; Jost, Carsten; Krieg, Andreas
2015-02-01
This study investigated the potential of producing biogas on demand from maize silage using a novel two-phase continuously fed leach bed reactor (LBR) which is connected to an anaerobic filter (AF). Six different feeding patterns, each for 1week, were studied at a weekly average of a volatile solids (VS) loading rate of 4.5 g L(-1) d(-1) and a temperature of 38°C. Methane production from the LBR and AF responded directly proportional to the VS load from the different daily feeding and resulted in an increase up to 50-60% per day, compared to constant feeding each day. The feeding patterns had no impact on VS methane yield which corresponded on average to 330 L kg(-1). In spite of some daily shock loadings, carried out during the different feeding patterns study, the reactor performance was not affected. A robust and reliable biogas production from stalky biomass was demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Milquez-Sanabria, Harvey; Blanco-Cocom, Luis; Alzate-Gaviria, Liliana
2016-10-03
Agro-industrial wastes are an energy source for different industries. However, its application has not reached small industries. Previous and current research activities performed on the acidogenic phase of two-phase anaerobic digestion processes deal particularly with process optimization of the acid-phase reactors operating with a wide variety of substrates, both soluble and complex in nature. Mathematical models for anaerobic digestion have been developed to understand and improve the efficient operation of the process. At present, lineal models with the advantages of requiring less data, predicting future behavior and updating when a new set of data becomes available have been developed. The aim of this research was to contribute to the reduction of organic solid waste, generate biogas and develop a simple but accurate mathematical model to predict the behavior of the UASB reactor. The system was maintained separate for 14 days during which hydrolytic and acetogenic bacteria broke down onion waste, produced and accumulated volatile fatty acids. On this day, two reactors were coupled and the system continued for 16 days more. The biogas and methane yields and volatile solid reduction were 0.6 ± 0.05 m 3 (kg VS removed ) -1 , 0.43 ± 0.06 m 3 (kg VS removed ) -1 and 83.5 ± 9.8 %, respectively. The model application showed a good prediction of all process parameters defined; maximum error between experimental and predicted value was 1.84 % for alkalinity profile. A linear predictive adaptive model for anaerobic digestion of onion waste in a two-stage process was determined under batch-fed condition. Organic load rate (OLR) was maintained constant for the entire operation, modifying effluent hydrolysis reactor feed to UASB reactor. This condition avoids intoxication of UASB reactor and also limits external buffer addition.
Heated-Pressure-Ball Monopropellant Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D.
2005-01-01
A recent technology disclosure presents a concept for a monopropellant thermal spacecraft thruster that would feature both the simplicity of a typical prior pressure-fed propellant supply system and the smaller mass and relative compactness of a typical prior pump-fed system. The source of heat for this thruster would likely be a nuclear- fission reactor. The propellant would be a cryogenic fluid (a liquefied low-molecular-weight gas) stored in a tank at a low pressure. The propellant would flow from the tank, through a feedline, into three thick-walled spherical tanks, denoted pressure balls, that would be thermally connected to the reactor. Valves upstream and downstream of the pressure balls would be operated in a three-phase cycle in which propellant would flow into one pressure ball while the fluid underwent pressurization through heating in another ball and pressurized propellant was discharged from the remaining ball into the reactor. After flowing through the reactor, wherein it would be further heated, the propellant would be discharged through an exhaust nozzle to generate thrust. A fraction of the pressurized gas from the pressure balls would be diverted to maintain the desired pressure in the tank.
Dynamics of microbial communities in untreated and autoclaved food waste anaerobic digesters.
Blasco, Lucia; Kahala, Minna; Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka; Joutsjoki, Vesa
2014-10-01
This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established. Copyright © 2014 Elsevier Ltd. All rights reserved.
KINETICS OF TREAT USED AS A TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C.E.; Johnson, R.D.; Gasidlo, J.
1962-05-01
An analysis is presented concerning the reactor kinetics of TREAT used as a pulsed, engineering test reactor for fast reactor fuel element studies. A description of the reactor performance is given for a wide range of conditions associated with its use as a test reactor. Supplemental information on meltdown experimentation is included. (J.R.D.)
Pelizza, Sebastian A; Mariottini, Yanina; Russo, Leticia M; Vianna, M Florencia; Scorsetti, Ana C; Lange, Carlos E
2017-01-01
In this study, the effects of strain Beauveria bassiana (LPSC 1067) as an endophyte in corn plants on consumption, fecundity, and food preference of Dichroplus maculipennis were examined. We observed that the daily consumption by grasshoppers fed with control plants was almost twice that of those that were fed treated plants. Significant differences in fecundity of grasshoppers that were fed with treated plants compared with those that only fed on control plants were also observed. The number of eggs laid per female fed with control plants was 27.2, while the number of eggs laid per female that were fed during 15 d with treated plants was 17.7. Similar results were observed when the number of embryonated eggs was evaluated. The highest number of embryonated eggs were recorded in those females that only fed on control plants (96%) while fewer embryonated eggs were recorded in grasshoppers fed for 15 d with treated plants only (25%). In relation to food preference the average consumption rate for D. maculipennis females on control corn plants was 303.8 ± 24.5 mg while it was only 25 ± 2.1 mg on plants treated with B. bassiana as an endophyte. In summary, we observed that B. bassiana as a corn plant endophyte negatively affected the daily consumption rate, fecundity and food preference of D. maculipennis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath
2016-02-01
A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kujawa-Roeleveld, K; Elmitwalli, T; Gaillard, A; van Leeuwen, M; Zeeman, G
2003-01-01
Co-digestion of concentrated black water and kitchen refuse within the DESAR concept was the objective of this pilot research. The digestion took place in two, non-mixed accumulation reactors (AC1 and AC2) inoculated with digested primary sludge from a WWTP at a temperature of 20 degrees C for a period of around 150 days. Reactor AC1 was fed with a mixture of faeces, urine and kitchen refuse in the equivalent amount that one individual generates per day. The AC2 was fed with a mixture of faeces and kitchen refuse in the equivalent amount that two individuals produce per day. Some contribution of urine to AC2 was not to be avoided. Detailed characterisation of waste(water) was performed. The performance of the stratified reactor was followed by monitoring the reactor content for several reactors' heights as well as being based on the biogas production. In general the system exposed good process stability. The methanisation of 34 and 61% was obtained for AC1 and AC2 respectively. The biogas yield was 26.5 and 50.8 L/p/d for the respective reactors. Proper choice of inoculum as well as good buffering capacity did not lead to accumulation of VFA and an inhibitive effect due to relatively high ammonium concentration. The chosen process is a promising technology showing good process stability especially for high strength influent.
Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone
NASA Astrophysics Data System (ADS)
Setyopratomo, P.; Sudibandriyo, M.; Wulan, P. P. D. K.
2018-03-01
This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 – 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 – 14 nm and an inner diameter range 4 – 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.
Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.
Neves, L; Oliveira, R; Alves, M M
2009-12-01
Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.
Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
Kalogo, Youssouf; Bagley, David M
2008-02-01
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.
Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia
2018-01-15
The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Triglyceride kinetics in fasted and fed E. coli septic rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza-Jacoby, S.; Tabares, A.
1990-02-26
The mechanism for the development of hypertriglyceridemia during gram-negative sepsis was studies by examining the liver production and clearance of very-low-density lipoprotein (VLDL) triglyceride (TG). To assess the liver output and peripheral clearance the kinetics of VLDL-TG were determined by a constant intravenous infusion of (2-{sup 3}H) glycerol-labeled VLDL in fasted control, fasted E. coli-treated, fed control, and fed E.coli-treated rats. Lewis inbred rats, 275-300 g, were made septic with 8 {times} 10{sup 7} live E.coli colonies per 100 g body weight. Twenty-four hours following E.coli injection serum TG of fasted E.coli-treated rats was elevated by 170% which was attributedmore » to a 67% decrease in the clearance rate of VLDL-TG in fasted E.coli-treated rats compared with their fasted controls. The secretion of VLDL-TG declined by 31% in the livers of the fasted E.coli-treated rats which was accompanied by a 2-fold increase in the composition of liver TG. In a second series of experiments control and E.coli-treated rats were fed intragastrically (IG) a balanced solution containing glucose plus fat as the sources of nonprotein calories. Serum TG were 26% lower in the fed E.coli-treated rats because the clearance rate increased by 86%. The secretion of TG in the fed septic rats increased by 40% but this difference was not significant. In the septic rat the ability to clear triglycerides from the plasma depends upon the nutritional state.« less
Saady, Noori M Cata; Massé, Daniel I
2015-06-01
Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Rivera, Isaac; Bakonyi, Péter; Cuautle-Marín, Manuel Alejandro; Buitrón, Germán
2017-05-01
In this study single-chamber microbial electrolysis cells (MECs) were applied to treat cheese whey (CW), an industrial by-product, and recover H 2 gas. Firstly, this substrate was fed directly to the MEC to get the initial feedback about its H 2 generation potential. The results indicated that the direct application of CW requires an adequate pH control to realize bioelectrohydrogenesis and avoid operational failure due to the loss of bioanode activity. In the second part of the study, the effluents of anaerobic (methanogenic) digester and hydrogenogenic (dark fermentative H 2 -producing) reactor utilizing the CW were tested in the MEC process (representing the concept of a two-stage technology). It turned out that the residue of the methanogenic reactor - with its relatively lower carbohydrate- and higher volatile fatty acid contents - was more suitable to produce hydrogen bioelectrochemically. The MEC operated with the dark fermentation effluent, containing a high portion of carbohydrates and low amount of organic acids, produced significant amount of undesired methane simultaneously with H 2 . Overall, the best MEC behavior was attained using the effluent of the methanogenic reactor and therefore, considering a two-stage system, methanogenesis is an advisable pretreatment step for the acidic CW to enhance the H 2 formation in complementary microbial electrohydrogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hernández, Jerónimo; Prado, Oscar J; Almarcha, Manuel; Lafuente, Javier; Gabriel, David
2010-06-15
The performance of three biofilters (BF1-BF3) packed with a new hybrid (inert/organic) packing material that consists of spherical argyle pellets covered with compost was examined in different operational scenarios and compared with a biofilter packed with pine bark (BF4). BF1, BF2 and BF4 were inoculated with an enriched microbial population, while BF3 was inoculated with sludge from a wastewater treatment plant. A gas mixture containing ammonia and six VOCs was fed to the reactors with N-NH(3) loads ranging from 0 to 10 g N/m(3)h and a VOCs load of around 10 g C/m(3)h. A profound analysis of the fate of nitrogen was performed in all four reactors. Results show that the biofilters packed with the hybrid packing material and inoculated with the microbial pre-adapted population (BF1 and BF2) achieved the highest nitrification rates and VOCs removal efficiencies. In BF3, nitratation was inhibited during most of the study, while only slight evidence of nitrification could be observed in BF4. All four reactors were able to treat the VOCs mixture with efficiencies greater than 80% during the entire experimental period, regardless of the inlet ammonia load. Copyright 2010 Elsevier B.V. All rights reserved.
Rodríguez-Nava, Odín; Ramírez-Saad, Hugo; Loera, Octavio; González, Ignacio
2016-12-01
Pharmaceutical degradation in conventional wastewater treatment plants (WWTP) represents a challenge since municipal wastewater and hospital effluents contain pharmaceuticals in low concentrations (recalcitrant and persistent in WWTP) and biodegradable organic matter (BOM) is the main pollutant. This work shows the feasibility of coupling electro-oxidation with a biological system for the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole (BGIS)) and BOM from wastewater. High removal efficiencies were attained without affecting the performance of activated sludge. BGIS degradation was performed by advanced electrochemical oxidation and the activated sludge process for BOM degradation in a continuous reactor. The selected electrochemical parameters from microelectrolysis tests (1.2 L s(-1) and 1.56 mA cm(-2)) were maintained to operate a filter press laboratory reactor FM01-LC using boron-doped diamond as the anode. The low current density was chosen in order to remove drugs without decreasing BOM and chlorine concentration control, so as to avoid bulking formation in the biological process. The wastewater previously treated by FM01-LC was fed directly (without chemical modification) to the activated sludge reactor to remove 100% of BGIS and 83% of BOM; conversely, the BGIS contained in wastewater without electrochemical pre-treatment were persistent in the biological process and promoted bulking formation.
An economical bioreactor for evaluating biogas potential of particulate biomass.
Wilkie, Ann C; Smith, P H; Bordeaux, F M
2004-03-01
An economical bioreactor designed for evaluating the biogas potential of particulate biomass is described. The bioreactor uses a simple stirring apparatus, called the Bordeaux stirrer, to enable gas-tight mixing of fermentation cultures. The apparatus consists of a low-rpm motor connected to a bent steel stir rod, which is placed in a length of flexible plastic tubing inserted through a rubber stopper in a gas-tight manner. This stirrer is suitable for providing intermittent or continuous mixing in bench-scale anaerobic cultures containing particulate biomass. The reactor system may be operated as a batch-fed or semi-continuously fed digester. This communication documents the advantages of the stirring apparatus, describes the details of reactor fabrication and operation, and outlines the type of experimental work for which the bioreactor is suitable.
Rodded shutdown system for a nuclear reactor
Golden, Martin P.; Govi, Aldo R.
1978-01-01
A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
Two-stage dehydration of sugars
Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Wang, Yong [Richland, WA; Werpy, Todd A [West Richland, WA
2009-11-10
The invention includes methods for producing dianhydrosugar alcohol by providing an acid catalyst within a reactor and passing a starting material through the reactor at a first temperature. At least a portion of the staring material is converted to a monoanhydrosugar isomer during the passing through the column. The monoanhydrosugar is subjected to a second temperature which is greater than the first to produce a dianhydrosugar. The invention includes a method of producing isosorbide. An initial feed stream containing sorbitol is fed into a continuous reactor containing an acid catalyst at a temperature of less than 120.degree. C. The residence time for the reactor is less than or equal to about 30 minutes. Sorbitol converted to 1,4-sorbitan in the continuous reactor is subsequently provided to a second reactor and is dehydrated at a temperature of at least 120.degree. C. to produce isosorbide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzonella, David, E-mail: david.bolzonella@univr.it; Cavinato, Cristina, E-mail: cavinato@unive.it; Fatone, Francesco, E-mail: francesco.fatone@univr.it
2012-06-15
Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 +more » 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.« less
Rodriguez, Renata P; Zaiat, Marcelo
2011-04-01
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mazzola, Giuseppe; Murphy, Kiera; Ross, R Paul; Di Gioia, Diana; Biavati, Bruno; Corvaglia, Luigi T; Faldella, Giacomo; Stanton, Catherine
2016-01-01
The faecal microbiota composition of infants born to mothers receiving intrapartum antibiotic prophylaxis with ampicillin against group B Streptococcus was compared with that of control infants, at day 7 and 30 of life. Recruited newborns were both exclusive breastfed and mixed fed, in order to also study the effect of dietary factors on the microbiota composition. Massive parallel sequencing of the V3-V4 region of the 16S rRNA gene and qPCR analysis were performed. Antibiotic prophylaxis caused the most marked changes on the microbiota in breastfed infants, mainly resulting in a higher relative abundance of Enterobacteriaceae, compared with control infants (52% vs. 14%, p = 0.044) and mixed-fed infants (52% vs. 16%, p = 0.13 NS) at day 7 and in a lower bacterial diversity compared to mixed-fed infants and controls. Bifidobacteria were also particularly vulnerable and abundances were reduced in breastfed (p = 0.001) and mixed-fed antibiotic treated groups compared to non-treated groups. Reductions in bifidobacteria in antibiotic treated infants were also confirmed by qPCR. By day 30, the bifidobacterial population recovered and abundances significantly increased in both breastfed (p = 0.025) and mixed-fed (p = 0.013) antibiotic treated groups, whereas Enterobacteriaceae abundances remained highest in the breastfed antibiotic treated group (44%), compared with control infants (16%) and mixed-fed antibiotic treated group (28%). This study has therefore demonstrated the short term consequences of maternal intrapartum antibiotic prophylaxis on the infant faecal microbial population, particularly in that of breastfed infants.
NASA Technical Reports Server (NTRS)
Ryason, P. R. (Inventor)
1977-01-01
Hydrogen is produced by the solar photolysis of water in a first photooxidation vessel with a transparent wall in the presence of a water soluble photooxidizable reagent and an insoluble hydrogen recombination catalyst. Simultaneously oxygen is produced in a second photoreduction reactor with a transparent wall in the presence of an insoluble photoreduction reagent catalyst. When spent, the solution from the first reactor is fed into the second reactor. A reaction occurs in the dark in which the redox reagents are regenerated, and the regenerated photooxidation reagent solution is recycled to the first reactor. The photoreduction-catalyst is a bifunctional reagent catalyst including a transition metal salt together with a hydroxyl or chlorohydroxyl decomposition catalyst of high area.
Progressing batch hydrolysis process
Wright, J.D.
1985-01-10
A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.
Jeison, D; van Lier, J B
2007-09-01
The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition.
Numerical model of spray combustion in a single cylinder diesel engine
NASA Astrophysics Data System (ADS)
Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria
2017-11-01
A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia
2016-01-01
To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification. PMID:27708368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Rangaraj; Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr; Sousbie, Philippe
Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatilemore » solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, B.; Cao, Bin; Mishra, Bhoopesh
2012-09-23
Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of:more » 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.« less
Khanitchaidecha, W; Koshy, P; Kamei, T; Shakya, M; Kazama, F
2013-01-01
A drinking water supply system operates at Chyasal (in the Kathmandu Valley, Nepal) for purifying the groundwater that has high levels of ammonium nitrogen (NH4-N). However, high NO3-N concentrations were seen in the water after treatment. To further improve the quality of the drinking water, two types of attached growth reactors were developed for the purification system: (i) a hydrogenotrophic denitrification (HD reactor) and (ii) a concurrent reactor with anammox and hydrogenotrophic denitrification (AnHD reactor). For the HD reactor fed by water containing NO3-N, the denitrification efficiency was high (95-98%) for all NO3-N feed rates (20-40 mg/L). The nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) concentrations in the effluent were ∼0.5 mg/L. On the other hand, the AnHD reactor fed with water containing NH4-N and NO2-N was operated under varying flow rates of H2(30-70 mL/min) and intermittent supply periods (1-2 h). The efficiency of the anammox process was found to increase with decreasing H2flow rates or with increasing intermittency of the H2supply, while the efficiency of denitrification decreased under these conditions. For the optimal condition of 1.5 h intermittent H2supply, the anammox and denitrification efficiencies of the AnHD reactor reached 80% and 42%, respectively, while the concentrations of both NH4-N and NO2-N in the effluent were <1.0 mg/L, and no NO3-N was detected. From the experimental results, it is clear that both HD and AnHD reactors can function as efficient and critical units of the water purification system.
Spatial variation of a short-lived intermediate chemical species in a Couette reactor
NASA Astrophysics Data System (ADS)
Vigil, R. Dennis; Ouyang, Q.; Swinney, Harry L.
1992-04-01
We have conducted experiments and simulations of the spatial variation of a short-lived intermediate species (triiodide) in the autocatalytic oxidation of arsenite by iodate in a reactor that is essentially one dimensional—the Couette reactor. (This reactor consists of two concentric cylinders with the inner one rotating and the outer one at rest; reagents are continuously fed and removed at each end in such a way that there is no net axial flux and there are opposing arsenite and iodate gradients.) The predictions of a one-dimensional reaction-diffusion model, which has no adjustable parameters, are in good qualitative (and, in some cases, quantitative) agreement with experiments. Thus, the Couette reactor, which is used to deliberately create spatial inhomogeneities, can be exploited to enhance the recovery of short-lived intermediate species relative to that which can be obtained with either a batch or continuous-flow stirred-tank reactor.
Catalytic wet oxidation: mathematical modeling of multicompound destruction.
Yang, J; Hand, D W; Hokanson, D R; Crittenden, J C; Oman, E J
2003-01-01
A mathematical model of a three-phase catalytic reactor, CatReac, was developed for analysis and optimization of a catalytic oxidation reactor that is used in the International Space Station potable water processor. The packed-bed catalytic reactor, known as the volatile reactor assembly (VRA), is operated as a three-phase reactor and contains a proprietary catalyst, a pure-oxygen gas phase, and the contaminated water. The contaminated water being fed to the VRA primarily consists of acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid ranging in concentration from 1 to 10 mg/L. The Langmuir-Hinshelwood Hougen-Watson (L-H) (Hougen, 1943) expression was used to describe the surface reaction rate for these compounds. Single and multicompound short-column experiments were used to determine the L-H rate parameters and calibrate the model. The model was able to predict steady-state multicomponent effluent profiles for short and full-scale reactor experiments.
Shofie, Mohammad; Qiao, Wei; Li, Qian; Takayanagi, Kazuyuki; Li, Yu-You
2015-09-01
The CSTR process has previously not been successfully applied to treat coffee residues under thermophilic temperature and long term operation. In this experiment, the CSTR was fed with mixture substrate (TS ∼ 70 g/L) of coffee grounds, coffee wastewater, milk waste and municipal sludge and it was operated under 55 °C for 225 days. A steady state was achieved under HRT 30 days and OLR 4.0 kg-COD/m(3)/d. However, there was an 35 days inhibition with VFA accumulation (propionic acid 700-1900 mg/L) when doubling the OLR by shortening HRT to 15 days. But, an addition of microelements and sulfate (0.5 g/L) in feedstock increased reactor resilience and stability under high loading rate and propionic acid stress. Continuous monitoring of hydrogen in biogas indicated the imbalance of acetogenesis. The effectiveness of comprehensive parameters (total VFA, propionic acid, IA/PA, IA/TA and CH4 content) was proved to manage the thermophilic system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hari, Ananda Rao; Venkidusamy, Krishnaveni; Katuri, Krishna P.; Bagchi, Samik; Saikaly, Pascal E.
2017-01-01
Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m2), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m2; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m2), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m2; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor’s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its possible role in maintaining functional stability of MECs fed with low and high concentrations of acetate and propionate. Taken together, these results provide new insights on the microbial community dynamics and its correlation to performance in MECs fed with different concentrations of acetate and propionate, which are important volatile fatty acids in wastewater. PMID:28775719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, W.N. Jr.
1993-06-01
Two-year-old seedlings of white oak, Quercus alba L., and red oak, Q. rubra L., were exposed to ozone (O[sub 3]) fumigations in four continuously stirred tank reactor chambers in the greenhouse for 8 h/d, 3 d/wk for 6 wk. Fumigation treatments were charcoal-filtered air (CFA) and CFA + 0.15 ppm O[sub 3]. Two simulated rain treatments, pH 4.2 and pH 3.0, of-1.25 cm were applied once each week in rain-simulation chambers. Gypsy moth, Lymantria dispar (L.), third instars were allowed to feed on leaf disks from treated seedlings for 24 h. Leaf area consumed, food assimilated, weight gain, and relativemore » growth rate (RGR) were examined. Overall, larvae fed white oak foliage consumed more foliage and gained more weight than those fed red oak foliage. Response to the fumigation and rain treatments was different for each oak species. On white oak foliage, larvae consumed significantly less foliage treated with CFA + pH 3.0 rain, but the lowest RGR occurred with the 0.15 ppm O[sub 3] + pH 4.2 rain treatment. The most food assimilated, greatest weight gain, and highest RGR occurred with the CFA + pH 4.2 rain control. Red oak foliage consumed was equivalent for all treatments, but foliage exposed to CFA + pH 3.0 rain resulted in more food assimilated, greater weight gain, and higher RGR for that species.« less
Johnson, D A
1988-01-01
Chronic administration of the catecholamine-depleting agent, reserpine (0.5 mg/kg), resulted in a reduction in food intake after 3 days. To differentiate effects of the drug from those of reduced food intake a pair-fed group, whose daily caloric intake was restricted to the amount consumed by the reserpine-treated rats, was included. After 7 days, both the reserpine-treated and pair-fed control exhibited a marked reduction in the volume of saliva collected in a 30 min interval following a secretory stimulus compared to untreated ad libitum-fed controls, and the proportion of salivary proteins attributable to acidic and basic proline-rich proteins and to minor 1b protein were decreased whereas deoxyribonuclease was increased. For two of the salivary proteins (fractions I and V) changes for the reserpine-treated and pair-fed groups were different. Fraction I was reduced in both groups, but exhibited a greater decrease in the pair-fed than in the reserpine-treated, whereas fraction V was significantly increased only in the pair-fed group. Thus many of the salivary changes associated with reserpine treatment may have resulted from the change in feeding habits and not from reserpine treatment per se. The study demonstrates the importance of controlling for food intake under experimental circumstances which may lead to a marked change in daily feeding habits.
NASA Astrophysics Data System (ADS)
Vickstrom, K. E.; Azizian, M.; Semprini, L.
2015-12-01
Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the transformation of CT. The results clearly demonstrate that reductive dechlorination of CT can be promoted by anaerobic cultures not previously acclimated to CT. 1. G. Pon, M. R. Hyman, L. Semprini, Environ. Sci. Technol. 37, 3181-3188 (2003).
Iyer, P V; Lee, Y Y
1999-01-01
Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid was investigated using a two-zone bioreactor. The system is composed of an immobilized cell reactor, a separate column reactor containing the lignocellulosic substrate and a hollow-fiber membrane. It is operated by recirculating the cell free enzyme (cellulase) solution from the immobilized cell reactor to the column reactor through the membrane. The enzyme and microbial reactions thus occur at separate locations, yet simultaneously. This design provides flexibility in reactor operation as it allows easy separation of the solid substrate from the microorganism, in situ removal of the product and, if desired, different temperatures in the two reactor sections. This reactor system was tested using pretreated switchgrass as the substrate. It was operated under a fed-batch mode with continuous removal of lactic acid by solvent extraction. The overall lactic acid yield obtainable from this bioreactor system is 77% of the theoretical.
Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung
2015-12-15
This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.
Oko, Bonahis J; Tao, Yu; Stuckey, David C
2017-01-01
Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other crude oil-waste-related bioengineering studies, such as bioaugmentation and bioremediation.
Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.
Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J
2014-10-01
In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimation of the specific surface area for a porous carrier.
Levstek, Meta; Plazl, Igor; Rouse, Joseph D
2010-03-01
In biofilm systems, treatment performance is primarily dependent upon the available biofilm growth surface area in the reactor. Specific surface area is thus a parameter that allows for making comparisons between different carrier technologies used for wastewater treatment. In this study, we estimated the effective surface area for a spherical, porous polyvinyl alcohol (PVA) gel carrier (Kuraray) that has previously demonstrated effectiveness for retention of autotrophic and heterotrophic biomass. This was accomplished by applying the GPS-X modeling tool (Hydromantis) to a comparative analysis of two moving-bed biofilm reactor (MBBR) systems. One system consisted of a lab-scale reactor that was fed synthetic wastewater under autotrophic conditions where only the nitrification process was studied. The other was a pre-denitrification pilot-scale plant that was fed real, primary-settled wastewater. Calibration of an MBBR process model for both systems indicated an effective specific surface area for PVA gel of 2500 m2/m3, versus a specific surface area of 1000 m2/m3 when only the outer surface of the gel beads is considered. In addition, the maximum specific growth rates for autotrophs and heterotrophs were estimated to be 1.2/day and 6.0/day, respectively.
Ratering, S.; Kramer, I.; Schmidt, M.; Zerr, W.; Schnell, S.
2012-01-01
In the present study, bacterial communities in 200-liter biogas reactors containing liquid manure consecutively fed with casein, starch, and cream were investigated over a period of up to 33 days. A 16S rRNA gene clone library identified Bacteroidetes and Firmicutes as the most abundant bacterial groups in the starting material, at 58.9% and 30.1% of sequences, respectively. The community development of both groups was monitored by real-time PCR and single-strand conformation polymorphism (SSCP) analysis. The Firmicutes and Bacteroidetes communities were unexpectedly stable and hardly influenced by batch-feeding events. The continuous feeding of starch led to community shifts that nevertheless contributed to a stable reactor performance. A longer starving period and a change in the pH value resulted in further community shifts within the Bacteroidetes but did not influence the Firmicutes. Predominant DNA bands from SSCP gels were cloned and sequenced. Sequences related to Peptococcaceae, Cytophagales, and Petrimonas sulfuriphila were found in all samples from all experiments. Real-time PCR demonstrated the abundance of members of the phylum Bacteroidetes and also reflected changes in gene copy numbers in conjunction with a changing pH value and acetate accumulation. PMID:22247168
Reactor transient control in support of PFR/TREAT TUCOP experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, D.R.; Larsen, G.R.; Harrison, L.J.
1984-01-01
Unique energy deposition and experiment control requirements posed bythe PFR/TREAT series of transient undercooling/overpower (TUCOP) experiments resulted in equally unique TREAT reactor operations. New reactor control computer algorithms were written and used with the TREAT reactor control computer system to perform such functions as early power burst generation (based on test train flow conditions), burst generation produced by a step insertion of reactivity following a controlled power ramp, and shutdown (SCRAM) initiators based on both test train conditions and energy deposition. Specialized hardware was constructed to simulate test train inputs to the control computer system so that computer algorithms couldmore » be tested in real time without irradiating the experiment.« less
Kobayashi, Naohiro; Oshiki, Mamoru; Ito, Toshihiro; Segawa, Takahiro; Hatamoto, Masashi; Kato, Tsuyoshi; Yamaguchi, Takashi; Kubota, Kengo; Takahashi, Masanobu; Iguchi, Akinori; Tagawa, Tadashi; Okubo, Tsutomu; Uemura, Shigeki; Harada, Hideki; Motoyama, Toshiki; Araki, Nobuo; Sano, Daisuke
2017-03-01
A down-flow hanging sponge (DHS) reactor has been developed as a cost-effective wastewater treatment system that is adaptable to local conditions in low-income countries. A pilot-scale DHS reactor previously demonstrated stable reduction efficiencies for chemical oxygen demand (COD) and ammonium nitrogen over a year at ambient temperature, but the pathogen reduction efficiency of the DHS reactor has yet to be investigated. In the present study, the reduction efficiency of a pilot-scale DHS reactor fed with municipal wastewater was investigated for 10 types of human pathogenic viruses (norovirus GI, GII and GIV, aichivirus, astrovirus, enterovirus, hepatitis A and E viruses, rotavirus, and sapovirus). DHS influent and effluent were collected weekly or biweekly for 337 days, and concentrations of viral genomes were determined by microfluidic quantitative PCR. Aichivirus, norovirus GI and GII, enterovirus, and sapovirus were frequently detected in DHS influent, and the log 10 reduction (LR) of these viruses ranged from 1.5 to 3.7. The LR values for aichivirus and norovirus GII were also calculated using a Bayesian estimation model, and the average LR (±standard deviation) values for aichivirus and norovirus GII were estimated to be 1.4 (±1.5) and 1.8 (±2.5), respectively. Quantitative microbial risk assessment was conducted to calculate a threshold reduction level for norovirus GII that would be required for the use of DHS effluent for agricultural irrigation, and it was found that LRs of 2.6 and 3.7 for norovirus GII in the DHS effluent were required in order to not exceed the tolerable burden of disease at 10 -4 and 10 -6 disability-adjusted life years loss per person per year, respectively, for 95% of the exposed population during wastewater reuse for irrigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David
The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less
The electrical characteristics of the dielectric barrier discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehia, Ashraf, E-mail: yehia30161@yahoo.com; Department of Physics, Faculty of Science, Assiut University, Assiut 71516
2016-06-15
The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltagemore » between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.« less
Krustok, I; Odlare, M; Truu, J; Nehrenheim, E
2016-02-01
The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.
Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S
2005-03-01
Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.
Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija
2018-05-24
This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.
Hausler, K; Godden, S M; Schneider, M J; Lightfield, A R; Bulthaus, M; Haines, D
2013-04-01
The objective was to conduct a study to investigate if violative meat residues are detected in very young bob veal calves that are fed first-milking colostrum harvested from cows that were dry treated, on-label, with cephapirin benzathine. First-milking colostrum was collected from cows that were given intramammary treatment at dry off, on-label, with cephapirin benzathine (ToMORROW, Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO). Newborn bull calves meeting study inclusion criteria were removed from their dams shortly after birth and before suckling, and assigned to 1 of 2 trials. For the first trial, 6 treated calves were fed 3.8L of fresh maternal colostrum and 1 control calf was fed 1.5 doses of a plasma-derived colostrum replacer (Secure Calf Colostrum Replacer, VitaPlus Inc., Madison, WI) within 1h after birth. For the second trial, 5 treated calves were fed 3.8L of fresh maternal colostrum and 1 control calf was fed 1.5 doses of Secure Calf Colostrum Replacer within 1h after birth. All calves were humanely euthanized at 24h (trial 1) or 48h (trial 2) of age, and tissues were harvested for antimicrobial residue testing. Samples of maternal colostrum and colostrum replacer were also submitted for antimicrobial residue testing. Kidneys collected from all study calves tested negative for cephapirin benzathine residues when using both the KIS assay (Charm Sciences, Lawrence, MA) and liquid chromatography-tandem mass spectrometry analysis. The potential transfer of cephapirin from cows treated on-label at dry off to calves via colostrum may not be a significant source of cephapirin residues in veal tissues. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.
Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min
2004-01-01
Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.
Anaerobic sequencing batch reactors for wastewater treatment: a developing technology.
Zaiat, M; Rodrigues, J A; Ratusznei, S M; de Camargo, E F; Borzani, W
2001-01-01
This paper describes and discusses the main problems related to anaerobic batch and fed-batch processes for wastewater treatment. A critical analysis of the literature evaluated the industrial application viability and proposed alternatives to improve operation and control of this system. Two approaches were presented in order to make this anaerobic discontinuous process feasible for industrial application: (1) optimization of the operating procedures in reactors containing self-immobilized sludge as granules, and (2) design of bioreactors with inert support media for biomass immobilization.
Steam reforming of heptane in a fluidized bed membrane reactor
NASA Astrophysics Data System (ADS)
Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.
n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.
Kumar, Neeraj; Jadhao, S B; Chandan, N K; Kumar, Kundan; Jha, A K; Bhushan, S; Kumar, Saurav; Rana, R S
2012-08-01
A five-week experiment was conducted to delineate stress-mitigating effects of three different methyl donors in Labeo rohita fingerlings subjected to endosulfan toxicity. Four iso-nitrogenous and iso-caloric feed were prepared with and without supplementation of methyl donors. The feed were basal or control diet (i.e., without methyl donor supplementation), feed supplemented with choline, feed supplemented with betaine and feed supplemented with lecithin. Two hundred and twenty-five fishes were distributed randomly in five treatment groups each with three replicates. The experimental setup were normal water (without endosulfan) and fed with control diet (control group), endosulfan-treated water and fed with control diet (T₁), endosulfan-treated water and fed with choline supplemented feed (T₂), endosulfan-treated water and fed with betaine supplemented feed (T₃) and endosulfan-treated water and fed with lecithin-supplemented feed (T₄). The level of endosulfan in endosulfan treated water was maintained at the level of 1/10 of LC₅₀, that is, 0.2 ppb. During the experiment, growth performances, metabolic enzyme activity and histological examination were done to assess the effect of treatments. The growth performance (percentage weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio) and nutrient digestibility were significantly different (P<0.01) in lecithin, betaine and choline fed group when compared to endosulfan-exposed group fed with basal diet. The liver LDH and MDH activity were significantly (P<0.01) improved in the groups fed with methyl donor supplemented diet. The liver AST and ALT, brain AChE and muscle ALT did not change with supplementation in the diet, but muscle ALT and G6PDH significantly (P<0.01) changed with supplementation. The gill and liver ATPase and intestinal ALP were significantly (P<0.01) noticeably changed in supplemented group. After endosulfan exposure, histopathology alter like slight large vacuolation in hepatocyte and lipoid vacuole were observed and with supplementation normal appearance of liver were observed. The chromosome aberration (karyotype) was observed in endosulfan-exposed group. The result obtained in present study concluded that inclusion of methyl donors, particularly lecithin and betaine, in feed as nutritional supplements has a potential stress-mitigating effect in L. rohita fingerlings.
Assay for hypoglycemic functional food of cocoyam (Xanthosoma sagittifolium (L.) Schott.) tuber
NASA Astrophysics Data System (ADS)
Handajani, N. S.; Harini, M.; Yuliningsih, R.; Afianatuzzahra, S.; Hasanah, U.; Widiyani, T.
2018-03-01
Diabetes Mellitus (DM) type II is a degenerative disease that is a major killer in many countries. It is characterized by an increase of the blood glucose level above normal. It is important to choose an appropriate food sources using glycemic index (GI) concept in order to prevent blood glucose increase. One of Indonesian traditional carbohydrate source is cocoyam (Xanthosoma sagittifolium (L.) Schott.) tuber. The tuber is assumed having a higher carbohydrate content with lower GI. The research aims to measure GI of cocoyam tuber (CT) and determine glucose and glycogen level in animal model after CT fed. Experimental research was carried out by using completely randomized design. We used twenty four male rats as animal models. They were grouped in to 4 different treatments. Group I was treated with standard feed, group II was treated with standard feed and glucose, group III was treated with steamed CT, and group IV was treated hypoglicemic agent standard, glibencamide. The research results that GI of steamed CT was low. It was 54. Blood glucose of diabetic rats after fed by CT decreased significantly (p<0.05), similar to diabetic rats after treated by glibencamide. Whereas glycogen level in diabetic rats after fed by CT was higher than in diabetic rats after fed by standard feed. Cocoyam tuber increased glycogen level in diabetic rats significantly (p<0,05). Glycogen level in diabetic rats fed by CT was as high as in healthy rats. Therefore CT is potential consumed for DM type II patients.
NASA Technical Reports Server (NTRS)
Genequand, P.
1980-01-01
The direct production of hydrogen from water and solar energy concentrated into a high temperature aperture is described. A solar powered reactor able to dissociate water vapor and to separate the reaction product at high temperature was developed, and direct water splitting has been achieved in a laboratory reactor. Water vapor and radiative heating from a carbon dioxide laser are fed into the reactor, and water vapor enriched in hydrogen and water vapor enriched in oxygen are produced. The enriched water vapors are separated through a separation membrane, a small disc of zirconium dioxide heated to a range of 1800 k to 2800 k. To avoid water vapor condensation within the reactor, the total pressure within the reactor was limited to 0.15 torr. A few modifications would enable the reactor to be operated at an increased pressure of a few torrs. More substantial modifications would allow for a reaction pressure of 0.1 atmosphere.
Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F
2012-10-01
The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo
2015-02-01
This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inhibition kinetics and granular sludge in an ANAMMOX reactor treating mature landfill leachate.
Yun, Li; Zhaoming, Zheng; Jun, Li; Baihang, Zhao; Wei, Bian; Yanzhuo, Zhang; Xiujie, Wang
2016-12-01
The present study reports the inhibition kinetics and granular sludge in an anaerobic ammonium oxidation (ANAMMOX) - up-flow anaerobic sludge blanket reactor fed with diluted mature landfill leachate. The activity of ANAMMOX bacteria was inhibited by addition of mature landfill leachate, but gradually adapted to the leachate. The system achieved efficient nitrogen removal during 65-75 d and the average removal efficiencies for NH 4 + -N, NO 2 - -N and total nitrogen (TN) were 96%, 95% and 87%, respectively. ANAMMOX was the main pathway of nitrogen removal in the system, and heterotrophic denitrification occurred simultaneously. In addition, aerobic ammonia oxidation and aerobic nitrite oxidation were active in this system. Inhibition kinetic experiments showed that the NH 4 + -N and NO 2 - -N inhibition concentration threshold of ANAMMOX were 489.03 mg/L and 192.36 mg/L, respectively. ANAMMOX was significantly inhibited by mature landfill leachate, and was completely inhibited when the leachate concentration was 1,450.69 mg/L (calculated in chemical oxygen demand). Thus, the inhibition concentration of substrate and landfill leachate should be considered when applying the ANAMMOX process to landfill leachate. The color of granular sludge ANAMMOX changed from brick-red into a reddish-brown. The particle size increased from small to large, with evident granulation of the ANAMMOX sludge.
Lozada, Mariana; Basile, Laura; Erijman, Leonardo
2007-01-01
The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.
Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk
2012-09-01
Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site. Copyright © 2012 Elsevier Ltd. All rights reserved.
SBR treatment of olive mill wastewaters: dilution or pre-treatment?
Farabegoli, G; Chiavola, A; Rolle, E
2012-01-01
The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.
Fischer-Tropsch Wastewater Utilization
Shah, Lalit S.
2003-03-18
The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C
2017-06-01
An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m 2 was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.
Exploitation of olive mill wastewater and liquid cow manure for biogas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina
2010-10-15
Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {supmore » o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.« less
Modeling of biomass to hydrogen via the supercritical water pyrolysis process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divilio, R.J.
1998-08-01
A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonablemore » prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.« less
Wang, Ai-Hua; Wu, Jin-Cai; Yu, Yue-Shu; Liu, Jing-Lan; Yue, Jiang-Fei; Wang, Mei-Yue
2005-08-01
The use of selective insecticides in rice, Oryza sativa L., fields often causes resurgence of nontarget pest insects. This study was conducted to investigate the effect of two selective insecticides, buprofezin and imidacloprid, on Tryporyza incertulas (Walker), a nontarget pest. After larval feeding on rice plants treated with each insecticide, fecundity, ovary protein content, and titer of juvenile hormone III (JHIII) in the resulting female moths were determined with 'Xiushui 63' rice susceptible to T. incertulas and 'Zhendao 2' moderately resistant to T. incertulas. The fecundity of females developed from larvae that fed on the insecticide-treated Xiushui 63 plants was stimulated compared with that of moths from larvae that fed on rice plants that were not treated with either insecticide. There was no stimulating effect in females from larvae that fed on insecticide-treated Zhendao 2 plants. The weight of fourth instars (final instars) that fed on the insecticide-treated Xiushui 63 rice plants was significantly greater than that of control, increasing by 50.3 and 46.7% for 60 and 112.5 g (AI) ha(-1) buprofezin, and by 23.7 and 19.5% for 15 and 37.5 g (AI) ha(-1) imidacloprid treatments, respectively. Ovary protein content in adult females developed from larvae that fed on the rice treated with the high dose of buprofezin was significantly higher than that in control. For the high and low doses of imidacloprid during the second instar, and the low dose of imidacloprid during the fourth instar, JHIII titers in female adults were also significantly higher than that in control, increasing by 152.81, 90.52, and 114.19%, respectively.
Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; ...
2016-05-01
Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.
Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.
This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compoundsmore » was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.« less
Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor
NASA Astrophysics Data System (ADS)
Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.
Major, A; Schweighauser, A; Hinden, S E; Francey, T
2014-12-01
Acquired Fanconi syndrome is characterized by inappropriate urinary loss of amino acids, bicarbonate, electrolytes, and water. It has recently been described in dogs fed chicken jerky treats from China, a new differential diagnosis to the classical inciting infectious diseases (e.g. leptospirosis, pyelonephritis) and toxins. A dog fed exclusively chicken jerky treats purchased in Switzerland was presented to our clinic with severe polyuria, polydipsia and profound electrolyte and acid base disturbances. Other inciting causes of Fanconi syndrome were ruled out. The requirement of a very intensive supportive treatment in this dog stands in contrast to treatment of chronic forms of Fanconi syndrome as described in the Basenji. This intensive therapy and the associated monitoring can be a real challenge and a limiting factor for the prognosis of acquired Fanconi syndrome. Veterinarians should be aware of the risk of excessive feeding of chicken jerky treats.
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
Duarte, Maria Salomé; Silva, Sérgio A; Salvador, Andreia F; Cavaleiro, Ana Júlia; Stams, Alfons J M; Alves, Maria Madalena; Pereira, Maria Alcina
2018-05-15
Conversion of unsaturated long chain fatty acids (LCFA) to methane in continuous bioreactors is not fully understood. Palmitate (C16:0) often accumulates during oleate (C18:1) biodegradation in methanogenic bioreactors, and the reason why this happens and which microorganisms catalyze this reaction remains unknown. Facultative anaerobic bacteria are frequently found in continuous reactors operated at high LCFA loads, but their function is unclear. To get more insight on the role of these bacteria, LCFA conversion was studied under microaerophilic conditions. For that, we compared bioreactors treating oleate-based wastewater (organic loading rates of 1 and 3 kg COD m-3 d-1), operated under different redox conditions (strictly anaerobic-AnR, -350 mV; microaerophilic-MaR, -250 mV). At the higher load, palmitate accumulated 7 times more in the MaR, where facultative anaerobes were more abundant, and only the biomass from this reactor could recover the methanogenic activity after a transient inhibition. In a second experiment, the abundance of facultative anaerobic bacteria, particularly Pseudomonas spp. (from which two strains were isolated), was strongly correlated (p<0.05) with palmitate-to-total LCFA percentage in the biofilm formed in a continuous plug flow reactor fed with very high loads of oleate. This work strongly suggests that micro-aeration stimulates the development of facultative bacteria that are critical for achieving LCFA conversion to methane in continuous bioreactors. Microbial networks and interactions of facultative and strict anaerobes in microbial communities should be considered in future studies.
Anaerobic co-digestion of sewage sludge and food waste.
Prabhu, Meghanath S; Mutnuri, Srikanth
2016-04-01
Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. © The Author(s) 2016.
Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D
2017-12-01
In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, G.L.; Berger, L.L.; Fahey, G.C. Jr.
Ruminant nitrogen utilization of soybean meal treated with (1) 70% ethanol at 23 or 78/sup 0/C, (2) 10% coconut oil or tallow, or (3) a combination of 70% ethanol at 78/sup 0/C and coconut oil or tallow was evaluated. Nitrogen solubility was lowest for soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil and ethanol plus tallow. In situ nitrogen disappearance was lowest for soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil, and ethanol plus tallow. Rates of nitrogen disappearance between 3 and 12 h were lowest for soybean meal treated with ethanolmore » at 78/sup 0/C, ethanol plus coconut oil, and ethanol plus tallow. Nitrogen retained by lambs was greater for lambs fed soybean meal treated with ethanol at 78/sup 0/C than for those fed untreated soybean meal. Ruminal ammonia 4 h post feeding was lowest for lambs fed soybean meal treated with ethanol at 78/sup 0/C, ethanol plus coconut oil, and coconut oil. These data indicate that the 78/sup 0/C ethanol treatment improved nitrogen utilization.« less
Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan
2008-05-01
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.
Degradation of aqueous phenol solutions by coaxial DBD reactor
NASA Astrophysics Data System (ADS)
Dojcinovic, B. P.; Manojlovic, D.; Roglic, G. M.; Obradovic, B. M.; Kuraica, M. M.; Puric, J.
2008-07-01
Solutions of 2-chlorophenol, 4-chlorophenol and 2,6-dichlorophenol in bidistilled and water from the river Danube were treated in plasma reactor. In this reactor, based on coaxial dielectric barrier discharge at atmospheric pressure, plasma is formed over a thin layer of treated water. After one pass through the reactor, starting chlorophenols concentration of 20 mg/l was diminished up to 95 %. Kinetics of the chlorophenols degradation was monitored by High Pressure Liquid Chromatography method (HPLC).
Evaluation of biomass production in unleaded gasoline and BTEX-fed batch reactors.
Acuna-Askar, K; Englande, A J; Ramirez-Medrano, A; Coronado-Guardiola, J E; Chavez-Gomez, B
2003-01-01
BTEX removal under aerobic conditions by unleaded gasoline acclimated biomass and BTEX acclimated biomass, and the effect of surfactant on BTEX biodegradation were evaluated. The effect of BTEX concentration as the sole source of carbon for biomass acclimation and the effect of yeast extract on cell growth in unleaded gasoline-fed reactors were also evaluated. For the unleaded gasoline acclimated biomass, benzene was shown the most recalcitrant among all BTEX, followed by o-xylene and toluene with 16-23%, 35-41% and 57-69% biodegradation, respectively. Ethylbenzene was consistently the fastest BTEX chemical removed with 99% biodegradation for the four bioreactor acclimated biomasses tested. For the 1,200 ppm BTEX acclimated biomass, benzene showed the highest removal efficiency (99%) among the four biomass environmental conditions tested, along with 99% toluene and 99% ethylbenzene biodegradation. O-xylene showed 92-94% removal. In all bioassays tested Tergitol NP-10 was fully removed, and did not have a substantial effect on BTEX biodegradation at the end of a 10-day evaluation.
Holzem, R M; Gardner, C M; Gunsch, C K
2018-01-01
Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH 4 + removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH 4 + removal. Elevated levels of NO 3 - and NO 2 - were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.
Acidogenesis and Two-Phase Codigestion of Fats, Oils, and Greases and Municipal Biosolids.
Varin, Ross; Novak, John; Bott, Charles
2016-11-01
Acidogenic codigestion of fats, oils, and greases (FOG) was studied using suspended growth sludge digesters operated as batch fed reactors that were fed twice daily. The digesters were maintained at a 2-day retention time and at 37 °C to mimic the acid phase of an acid-gas digestion system. As FOG loading rates increased, volatile fatty acid (VFA) production was found to increase, although the percentage of VFA production compared to theoretical values decreased exponentially to just 20% at the highest loading rates. FOG matter was found to have accumulated in the reactor vessel in semi-solid balls that floated near the liquid surface. Two-phase codigestion of FOG was studied at 37 °C using Continuously Stirred Tank Reactors (CSTRs) as acid phase digesters (APD) operated with 2-day retention times, followed by gas phase digesters (GPD) with 15-day retention times. The two-phase systems were compared by FOG addition to the APD versus GPD. FOG addition to the APD resulted in 88% destruction of LCFAs, whereas FOG addition to the GPD resulted in 95% destruction of LCFAs. Accumulated LCFAs were found in the APD receiving FOG and were primarily composed palmitic acid (16:0), followed by oleic acid (18:1) and stearic acid (18:0).
Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification.
Reyes-Avila, Jesús; Razo-Flores, Elías; Gomez, Jorge
2004-01-01
Refinery wastewaters may contain aromatic compounds and high concentrations of sulfide and ammonium which must be removed before discharging into water bodies. In this work, biological denitrification was used to eliminate carbon, nitrogen and sulfur in an anaerobic continuous stirred tank reactor of 1.3 L and a hydraulic retention time of 2 d. Acetate and nitrate at a C/N ratio of 1.45 were fed at loading rates of 0.29 kg C/m3 d and 0.2 kg N/m3 d, respectively. Under steady-state denitrifying conditions, the carbon and nitrogen removal efficiencies were higher than 90%. Also, under these conditions, sulfide (S(2-)) was fed to the reactor at several sulfide loading rates (0.042-0.294 kg S(2-)/m3 d). The high nitrate removal efficiency of the denitrification process was maintained along the whole process, whereas the carbon removal was 65% even at sulfide loading rates of 0.294 kg S(2-)/m3 d. The sulfide removal increased up to approximately 99% via partial oxidation to insoluble elemental sulfur (S0) that accumulated inside the reactor. These results indicated that denitrification is a feasible process for the simultaneous removal of nitrogen, carbon and sulfur from effluents of the petroleum industry.
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Lai, Wei-Yi; Zhou, Wei-Li; He, Sheng-Bing
2013-08-01
In order to shorten the start-up time of anaerobic ammonium oxidation (ANAMMOX) reactor, biological activated cabon reactor was applied. Three lab scale UASB reactors were seeded with anaerobic sludge, fed with synthetic wastewater containing ammonia and nitrite, and supplemented with granular activated carbon on day 0, 33 and 56, respectively. The nitrogen removal performance of the first reactor, into which GAC was added on day 0, showed no significant improvement in 90 days. After being suspended for about one month, the secondary start-up of this reactor succeeded in another 33 days (totally 123 days). 49 d and 85 d were taken for the other two reactors started up by the addition of GAC on day 33 and 56, respectively. After the reactors were started up, the average removal rates of total nitrogen were 89.8%, 86.7% and 86.7%, respectively. The start-up process could be divided into four stages, namely, the bacterial autolysis phase, the lag phase, the improve phase and the stationary phase, and the best time for adding GAC carrier was right after the start of the lag phase.
Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors
Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent
2008-01-01
The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139
Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.
Zhang, Bo; Cai, Wei-min; He, Pin-jing
2007-01-01
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
Carbothermic reduction with parallel heat sources
Troup, Robert L.; Stevenson, David T.
1984-12-04
Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.
Casperson, Brittany A; Wertz-Lutz, Aimee E; Dunn, Jim L; Donkin, Shawn S
2018-03-01
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH) 2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH) 2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio
2006-01-01
Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023
EVALUATION OF THE FULL-SCALE BASE CATALYZED DECOMPOSITION PROCESS (BCDP) UNIT LOCATED IN GUAM
This report summarizes performance data collected in February 1997 on the removal of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) from soil fed to a first-stage rotary kiln reactor of the Base Catalyzed Dec...
Fate of pharmaceuticals in full-scale source separated sanitation system.
Butkovskyi, A; Hernandez Leal, L; Rijnaarts, H H M; Zeeman, G
2015-11-15
Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by oxygen-limited autotrophic nitrification-denitrification in a rotating biological contactor and struvite precipitation. Grey water is treated in an aerobic activated sludge process. Concentration of 10 pharmaceuticals and 2 transformation products in black water ranged between low μg/l to low mg/l. Additionally, 5 pharmaceuticals were also present in grey water in low μg/l range. Pharmaceutical influent loads were distributed over two streams, i.e. diclofenac was present for 70% in grey water, while the other compounds were predominantly associated to black water. Removal in the UASB reactor fed with black water exceeded 70% for 9 pharmaceuticals out of the 12 detected, with only two pharmaceuticals removed by sorption to sludge. Ibuprofen and the transformation product of naproxen, desmethylnaproxen, were removed in the rotating biological contactor. In contrast, only paracetamol removal exceeded 90% in the grey water treatment system while removal of other 7 pharmaceuticals was below 40% or even negative. The efficiency of pharmaceutical removal in the source separated sanitation system was compared with removal in the conventional sewage treatment plants. Furthermore, effluent concentrations of black water and grey water treatment systems were compared with predicted no-effect concentrations to assess toxicity of the effluent. Concentrations of diclofenac, ibuprofen and oxazepam in both effluents were higher than predicted no-effect concentrations, indicating the necessity of post-treatment. Ciprofloxacin, metoprolol and propranolol were found in UASB sludge in μg/g range, while pharmaceutical concentrations in struvite did not exceed the detection limits. Copyright © 2015 Elsevier Ltd. All rights reserved.
González, C; García, P A; Muñoz, R
2009-01-01
Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12-0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH(4)(+), TKN, respectively) while PO(4)(3-) was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severely hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of -400 mV, likely due to phosphate released from bacterial sludge.
Calpe-Berdiel, Laura; Escolà-Gil, Joan Carles; Benítez, Sonia; Bancells, Cristina; González-Sastre, Francesc; Palomer, Xavier; Blanco-Vaca, Francisco
2007-05-01
Although most studies have focused on the cholesterol-lowering activity of phytosterols, other biological actions have been ascribed to these plant sterol compounds, one of which is a potential immune modulatory effect. To gain insight into this issue, we used a mouse model of acute, aseptic inflammation induced by a single subcutaneous turpentine injection. Hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) mice, fed with or without a 2% phytosterol supplement, were treated with turpentine or saline and euthanized 48 h later. No differences were observed in spleen lymphocyte subsets between phytosterol- and control-fed apoE(-/-) mice. However, cultured spleen lymphocytes of apoE(-/-) mice fed with phytosterols and treated with turpentine showed increased IL-2 and IFN-gamma secretion (T-helper type1, Th1 lymphocyte cytokines) compared with turpentine-treated, control-fed animals. In contrast, there was no change in Th2 cytokines IL-4 and IL-10. Phytosterols also inhibit intestinal cholesterol absorption in wild-type C57BL/6J mice but, in this case, without decreasing plasma cholesterol. Spleen lymphocytes of turpentine-treated C57BL/6J mice fed with phytosterols also showed increased IL-2 production, but IFN-gamma, IL-4 and IL-10 production was unchanged. The Th1/Th2 ratio was significantly increased both in phytosterol-fed apoE(-/-) and C57BL/6J mice. We conclude that phytosterols modulate the T-helper immune response in vivo, in part independently of their hypocholesterolemic effect in a setting of acute, aseptic inflammation. Further study of phytosterol effects on immune-based diseases characterized by an exacerbated Th2 response is thus of interest.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, Mark C.
1995-01-01
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.
Lee, G H; Hur, W; Bremmon, C E; Flickinger, M C
1996-03-20
A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.
Lakshmikanthan, P; Sivakumar Babu, G L
2017-03-01
The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.
Rapid starting methanol reactor system
Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.
1984-01-01
The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.
Osuna, M Begoña; Sipma, Jan; Emanuelsson, Maria A E; Carvalho, M Fátima; Castro, Paula M L
2008-08-01
Two up-flow fixed-bed reactors (UFBRs), inoculated with activated sludge and operated for 162 days, were fed 1mmolL(-1)d(-1) with two model halogenated compounds, 2-fluorobenzoate (2-FB) and dichloromethane (DCM). Expanded clay (EC) and granular activated carbon (GAC) were used as biofilm carrier. EC did not have any adsorption capacity for both model compounds tested, whereas GAC could adsorb 1.3mmolg(-1) GAC for 2-FB and 4.5mmolg(-1) GAC for DCM. Both pollutants were degraded in both reactors under simultaneous feeding. However, biodegradation in the EC reactor was more pronounced, and re-inoculation of the GAC reactor was required to initiate 2-FB degradation. Imposing sequential alternating pollutant (SAP) feeding caused starvation periods in the EC reactor, requiring time-consuming recovery of 2-FB biodegradation after resuming its feeding, whereas DCM degradation recovered significantly faster. The SAP feeding did not affect performance in the GAC reactor as biodegradation of both pollutants was continuously observed during SAP feeding, indicating the absence of true starvation.
Glosson, K M; Hopkins, B A; Washburn, S P; Davidson, S; Smith, G; Earleywine, T; Ma, C
2015-02-01
Two experiments were conducted to determine the growth and health effects of supplementing heat-treated whole milk with pasteurized milk balancer products in calf-feeding programs. All calves were removed from their dams at birth (d 0), fed 3.8L of heat-treated colostrum, and received assigned treatments from d 1 until weaning at d 56. Calves were weighed and skeletal measurements taken every 7 d from d 0 until 56. Average daily gain (ADG) and feed efficiency (FE) were calculated. In experiment 1, 80 Holstein heifer calves were used to investigate the effects of supplementing 2 levels of heat-treated whole milk with or without a pasteurized all-milk balancer. Four dietary treatments (n=20) were used. Calves receiving milk (M) and milk plus balancer (M+B) were fed 3.8L of milk divided into 2 equal feedings daily. Calves fed increased milk (IM) and increased milk plus balancer (IM+B) received 3.8L of milk divided into 2 equal feedings from d 1 to 14, 5.7L from d 15 to 42, and 2.85L fed once daily from d 43 to 56. Treatments M+B and IM+B included pasteurized all-milk balancer fed at a rate of 0.23kg per 3.8L of milk. In experiment 2, 72 Holstein heifer calves were used to investigate the effects of supplementing either a pasteurized all-milk balancer or a pasteurized protein-blend milk balancer. Three dietary treatments (n=24) were used. Calves were fed 3.8L of milk divided into 2 equal feedings from d 1 to 14 and 5.7L from d 15 to 56. Treatment IM did not include any supplements. Balancer was added to IM+B and increased milk plus protein-blend balancer (IM+PB). Balancer was supplemented at a rate of 0.23kg per 3.8L of milk. In experiment 1, calves fed IM+B had greater average body weight (BW) and average daily gain compared with calves given other treatments. Calves fed 5.7L of milk had greater FE than those fed 3.8L regardless of balancer added. In experiment 2, calves fed IM+B and IM+PB had greater BW when compared with calves given M. Calves fed IM+PB had comparable BW and FE to calves given IM+B. The enhanced calf-feeding programs evaluated in this study were successful in increasing growth in preweaned calves when supplementing milk balancer product to heat-treated whole milk. Health scores of fecal, respiratory, and attitude determined illness. Feces were looser for calves receiving IM+B and IM+PB, but attitude scores did not confirm an illness and so overall health was not different between treatments. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Galvão, K N; Santos, J E P; Coscioni, A C; Juchem, S O; Chebel, R C; Sischo, W M; Villaseñor, M
2006-06-01
Objectives were to determine the effects of gossypol exposure during early embryo development on embryonic survival after transfer of frozen and thawed embryos to lactating dairy cows treated with human chorionic gonadotropin (hCG). Holstein cows (n = 269) were either treated or not treated with 3,300 IU of hCG on d 5 of the estrous cycle and received an embryo collected from heifers fed or not fed gossypol. Embryo donor heifers consumed either 0 or 12 g/d of free gossypol for 76 d prior to embryo collection, resulting in mean plasma gossypol concentrations of 0 and 7.38 microg/mL, respectively. Embryos were transferred on d 7 of the estrous cycle and pregnancy diagnosed 21 and 35 d later. Progesterone was analyzed in plasma collected on d 5 and 12 of the estrous cycle. Treatment with hCG increased the total luteal area on d 12 (818.0 vs. 461.1 mm2) because of increased number of corpora lutea (2.0 vs. 1.0) and increased area of the original corpora lutea (522.7 vs. 443.5 mm2). Plasma progesterone concentrations were similar between treatments on d 5, but increased by d 12 in hCG-treated cows (6.46 vs. 4.78 ng/ mL). Pregnancy rates on d 28 and 42 were not affected by hCG. However, after transfer into lactating cows, embryos collected from heifers not fed gossypol resulted in higher pregnancy rates at 28 d (33.3 vs. 23.1%) and 42 d (29.6 vs. 20.2%) of gestation compared with embryos collected from heifers fed gossypol. Our data suggest that the negative effects of gossypol on fertility are mediated by changes in embryo viability in spite of similar grade quality at transfer.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.
Reduction of selenite to elemental selenium nanoparticles by activated sludge.
Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L
2016-01-01
Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.
USDA-ARS?s Scientific Manuscript database
Shewanella oneidensis MR-1 was grown in a chemostatic, continuously-fed bioelectrochemical cell under slightly aerated conditions. The start-up phase was controlled potentiostatically (0.4 V vs. SHE). When a stable performance was achieved, the reactor was switched to bio-electrocatalytic producti...
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd D. Christensen; Annette L. Schafer
2013-11-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
National Environmental Policy Act Hazards Assessment for the TREAT Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Boyd D.; Schafer, Annette L.
2014-02-01
This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less
Solar coal gasification reactor with pyrolysis gas recycle
Aiman, William R.; Gregg, David W.
1983-01-01
Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.
Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer
2014-09-20
An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.
Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André
2009-01-01
The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.
Generating Aromatics From CO2 on Mars or Natural Gas on Earth
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Zubrin, Robert; Berggren, Mark
2006-01-01
Methane to aromatics on Mars ( METAMARS ) is the name of a process originally intended as a means of converting Martian atmospheric carbon dioxide to aromatic hydrocarbons and oxygen, which would be used as propellants for spacecraft to return to Earth. The process has been demonstrated on Earth on a laboratory scale. A truncated version of the process could be used on Earth to convert natural gas to aromatic hydrocarbon liquids. The greater (relative to natural gas) density of aromatic hydrocarbon liquids makes it more economically feasible to ship them to distant markets. Hence, this process makes it feasible to exploit some reserves of natural gas that, heretofore, have been considered as being "stranded" too far from markets to be of economic value. In the full version of METAMARS, carbon dioxide is frozen out of the atmosphere and fed to a Sabatier reactor along with hydrogen (which, on Mars, would have been brought from Earth). In the Sabatier reactor, these feedstocks are converted to methane and water. The water is condensed and electrolyzed to oxygen (which is liquefied) and hydrogen (which is recycled to the Sabatier reactor). The methane is sent to an aromatization reactor, wherein, over a molybdenum-on-zeolite catalyst at a temperature 700 C, it is partially converted into aromatic hydrocarbons (specifically, benzene, toluene, and naphthalene) along with hydrogen. The aromatics are collected by freezing, while unreacted methane and hydrogen are separated by a membrane. Most of the hydrogen is recycled to the Sabatier reactor, while the methane and a small portion of the hydrogen are recycled to the aromatization reactor. The partial recycle of hydrogen to the aromatization reactor greatly increases the catalyst lifetime and eases its regeneration by preventing the formation of graphitic carbon, which could damage the catalyst. (Moreover, if graphitic carbon were allowed to form, it would be necessary to use oxygen to remove it.) Because the aromatics contain only one hydrogen atom per carbon atom, METAMARS produces four times as much propellant from a given amount of hydrogen as does a related process that includes the Sabatier reaction and electrolysis but not aromatization. In the terrestrial version of METAMARS, the Sabatier reactor and electrolyzer would be omitted, while the hydrogen/ methane membrane-separating membrane, the aromatization reactor, and the unreacted-gas-recycling subsystem would be retained. Natural gas would be fed directly to the aromatization reactor. Because natural gas consists of higher hydrocarbons in addition to methane, the aromatization subprocess should be more efficient than it is for methane alone.
Effect of P.G. 600 on rebreeding performance in sows limit-fed during lactation.
Estienne, Mark J; Harper, Allen F; Horsley, B Ryan
2006-03-01
The objective was to determine whether treatment with 400 IU PMSG and 200 IU hCG (P.G. 600; Intervet America, Inc., Millsboro, DE, USA) at weaning improved rebreeding performance in sows that were limit-fed during lactation. Crossbred sows were allowed ad libitum access to feed or were limited to 3.2 kg of feed/day during an 18-day lactation. At weaning, limit-fed sows received im treatment with P.G. 600 (n = 16) or saline (n = 19) and ad libitum-fed sows received saline (n = 18). The percentage of sows in estrus by day 7 post-weaning was greater (p<0.05), and the weaning-to-estrus interval was shorter (p<0.05), for ad libitum-fed sows compared to limit-fed, saline-treated sows, with limit-fed, P.G. 600-treated sows having intermediate values that were not different from the other two groups. The percentage of sows pregnant and the numbers of corpora lutea and embryos at day 30 post-mating were not different (p>0.1) among groups. In summary, low feed intake during lactation decreased the percentage of sows that displayed estrus within 7 days after weaning and increased the weaning-to-estrus interval. These effects were at least partially remediated by gonadotropin treatment. Pregnancy rate, and litter size at day 30 of gestation, were similar for ad libitum- and limit-fed sows and not affected by P.G. 600 treatment in limit-fed sows.
NASA Astrophysics Data System (ADS)
Yang, Z. Y.; Xu, Y. B.; Li, P. F.; Wang, Y. J.; Sun, J.; Zhang, Y. P.
2017-06-01
A solar-heated anaerobic reactor system was applied to decompose livestock wastewater, in which cattle manure and chopped straw were mixed (CODCr 15,000∼25,000 mg·l-1), the commercial microorganisms were added to ambient acidification (about 32°C) and the acclimated sludge was inoculated. Then, the experiments were carried out on wastewater anaerobic degradation and biogas production at 40∼42°C, as fed every 10 days till stable running. The results showed that NH3-N and PO4 3- of the biogas slurry were 441 mg·l-1 and 65.0 mg·l-1 on the 35th day, respectively. The concentration of K was up to 350 mg·l-1 in the biogas slurry, rather higher than that of Mg and Fe, which indicated that the available K could contribute more in the agricultural irrigation. Total amino acids were up to 23.7 mg·l-1 after anaerobic digestion, in which Lys, Thr, Ala and Arg were prominent in the biogas slurry. These amino acids could be beneficial to seed soaking, feed adding and apply as foliar fertilizer. The major volatile organic compounds were detected in the biogas slurry, including toluene, m-cresol (up to 0.036% in the process of ambient acidification) and triethylsilane, which could be reduced to scarcely influence on agricultural application after anaerobic digestion.
[Effect of pilot UASB-SFSBR-MAP process for the large scale swine wastewater treatment].
Wang, Liang; Chen, Chong-Jun; Chen, Ying-Xu; Wu, Wei-Xiang
2013-03-01
In this paper, a treatment process consisted of UASB, step-fed sequencing batch reactor (SFSBR) and magnesium ammonium phosphate precipitation reactor (MAP) was built to treat the large scale swine wastewater, which aimed at overcoming drawbacks of conventional anaerobic-aerobic treatment process and SBR treatment process, such as the low denitrification efficiency, high operating costs and high nutrient losses and so on. Based on the treatment process, a pilot engineering was constructed. It was concluded from the experiment results that the removal efficiency of COD, NH4(+) -N and TP reached 95.1%, 92.7% and 88.8%, the recovery rate of NH4(+) -N and TP by MAP process reached 23.9% and 83.8%, the effluent quality was superior to the discharge standard of pollutants for livestock and poultry breeding (GB 18596-2001), mass concentration of COD, TN, NH4(+) -N, TP and SS were not higher than 135, 116, 43, 7.3 and 50 mg x L(-1) respectively. The process developed was reliable, kept self-balance of carbon source and alkalinity, reached high nutrient recovery efficiency. And the operating cost was equal to that of the traditional anaerobic-aerobic treatment process. So the treatment process could provide a high value of application and dissemination and be fit for the treatment pf the large scale swine wastewater in China.
Repeated pulse feeding induces functional stability in anaerobic digestion.
De Vrieze, Jo; Verstraete, Willy; Boon, Nico
2013-07-01
Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.
2017-08-01
This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).
Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators
NASA Technical Reports Server (NTRS)
Kindler, Andrew; Narayan, Sri R.
2009-01-01
Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-01-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-03-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.
Tang, Xianjin; Naveedullah; Hashmi, Muhammad Zaffar; Zhang, Hu; Qian, Mingrong; Yu, Chunna; Shen, Chaofeng; Qin, Zhihui; Huang, Ronglang; Qiao, Jiani; Chen, Yingxu
2013-04-01
Livestock wastewater has high estrogen activity because animal excreta contain estrogen. In the past, when biological technologies were applied to treat livestock wastewater, the removal efficiency of estrogen pollutants was always ignored. Therefore, the efficiency of estrogen removal by anaerobic/aerobic (A/O) treatment and by up flow anaerobic sludge blanket and step-fed sequencing batch reactor (UASB-SFSBR) treatment was investigated in the present study. The results showed that the A/O treatment had no significant estrogenic removal ability, whereas the removal rates of estrogen after UASB-SFSBR treatment reached approximately 78 %, as measured by liquid chromatography and tandem mass spectrometry. The estrogen concentration decreased from 31.5 ng/L to an undetectable level according to the yeast estrogen screen analysis. We found differences between the estrogen removal rates measured by the chemical assay and those measured using the bioassay. More attention must be paid to the removal of estrogen pollutants in livestock wastewater to reduce the environmental risk.
Yang, K; Lamprecht, S A; Liu, Y; Shinozaki, H; Fan, K; Leung, D; Newmark, H; Steele, V E; Kelloff, G J; Lipkin, M
2000-09-01
In this study we investigated the chemopreventive effects of quercetin and rutin when added to standard AIN-76A diet and fed to normal and azoxymethane (AOM)-treated mice. Early changes in colonic mucosa were analyzed, including colonic cell proliferation, apoptotic cell death, cyclin D(1) expression and focal areas of dysplasia (FAD). The findings show that the number of colonic epithelial cells per crypt column increased (P: < 0.01) in each normal mouse group fed the flavonoids; AOM administration increased colonic crypt cell proliferation and resulted in a marked rise of bromodeoxyuridine-labeled cells in the lower proliferative zone of the crypt. Both supplementary dietary quercetin and rutin increased the apoptotic index and caused a redistribution of apoptotic cells along the crypt axis in normal mice fed a standard AIN-76A diet. The number of apoptotic cells/column and apoptotic indices markedly increased (P: < 0.01) in the AOM-treated group compared with untreated animals; apoptotic cells expanded throughout the colonic crypts after flavonoid supplementation and AOM administration. Positive cyclin D(1) expression was detected in mice on diets supplemented either with quercetin (P: < 0.01) or rutin (P: < 0.05). AOM administration resulted in the formation of FAD. Both the number of mice exhibiting FAD and the total numer of FAD observed were significantly reduced (P: < 0.01) in AOM-treated animals fed flavonoids compared with mice maintained on the standard AIN-76A diet. Surprisingly, however, quercetin alone was able to induce FAD in 22% of normal mice fed the standard AIN-76A diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo
Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less
Mochizuki, H; Oda, H; Yokogoshi, H
2000-04-01
The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.
Consumption of the electric power inside silent discharge reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehia, Ashraf, E-mail: yehia30161@yahoo.com
An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodesmore » in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.« less
Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G
2016-05-01
Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schroeder, A R; Duckworth, M J; Shike, D W; Schoonmaker, J P; Felix, T L
2014-10-01
The objectives of this study were to determine the effects of feeding dried corn distillers grains (DDGS) or modified wet corn distillers grains (MDGS) with or without CaO treatment to feedlot steers on 1) growth performance and carcass characteristics and 2) diet digestibility, pattern of intake, and meal distribution. In Exp. 1, steers (n = 139; average initial BW = 336 ± 75 kg) were used in a randomized complete block design. Treatments were arranged in a 2 × 2 factorial design, and pens were randomly allotted to 1 of the 4 dietary treatments (DM basis): 1) 50% DDGS untreated, 2) 48.8% DDGS treated with 1.2% CaO, 3) 50% MDGS untreated, or 4) 48.8% MDGS treated with 1.2% CaO. The remainder of the diet was corn husklage, dry rolled corn, and vitamin and mineral supplement. In Exp. 2, fistulated steers (n = 8; average initial BW = 540 ± 250 kg) were used in a replicated 4 × 4 Latin square design with the same dietary treatments as in Exp. 1. There was no interaction (P ≥ 0.14) between distillers grains plus solubles (DGS) and CaO inclusion for DMI, ADG, final BW, or USDA yield and quality grades. However, steers fed CaO-treated DGS had decreased (P < 0.01) DMI, regardless of DGS type. Because CaO treatment decreased DMI without affecting (P = 0.66) ADG, steers fed CaO-treated DGS had increased (P < 0.01) G:F compared to steers not fed CaO. The variation in DMI found in this experiment could be explained by differences in meal size and distribution. Steers fed CaO-treated DGS ate a similar (P = 0.36) number of meals but ate smaller (P < 0.01) meals. No effects (P ≥ 0.55) of CaO treatment or its interaction with DGS type were found for apparent total tract DM or NDF digestibility. However, steers fed MDGS had increased (P < 0.01) NDF digestibility compared to steers fed DDGS. In conclusion, CaO treatment of DGS improved feed efficiency when DGS-based diets were fed but did not improve digestibility.
Process for concentrated biomass saccharification
Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.
2010-10-05
Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.
Process for treating effluent from a supercritical water oxidation reactor
Barnes, Charles M.; Shapiro, Carolyn
1997-01-01
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.
Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.
Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer
2014-03-01
The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.
Fan, Qinbai
2016-04-19
An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.
Bioprocessing Data for the Production of Marine Enzymes
Sarkar, Sreyashi; Pramanik, Arnab; Mitra, Anindita; Mukherjee, Joydeep
2010-01-01
This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors. PMID:20479981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; Koerner, Michael R., E-mail: mkoern2@illinois.edu; Lampe, Jed N.
The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice.more » The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase activity. Black-Right-Pointing-Pointer Caspase-3 activity does not result in increased hepatocellular apoptotic cell death. Black-Right-Pointing-Pointer Neutrophil recruitment during acetaminophen occurs independently of nutritional status. Black-Right-Pointing-Pointer Fed or fasted state does not alter the mechanisms of acetaminophen-induced cell death.« less
GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function.
Horvath, Tamas L; Erion, Derek M; Elsworth, John D; Roth, Robert H; Shulman, Gerald I; Andrews, Zane B
2011-07-01
Guanidinopropionic acid (GPA) increases AMPK activity, mitochondrial function and biogenesis in muscle and improves physiological function, for example during aging. Mitochondrial dysfunction is a major contributor to the pathogenesis of Parkinson's disease. Here we tested whether GPA prevents neurodegeneration of the nigrostriatal dopamine system in MPTP-treated mice. Mice were fed a diet of 1% GPA or normal chow for 4 weeks and then treated with either MPTP or saline. Indices of nigrostriatal function were examined by HPLC, immunohistochemistry, stereology, electron microscopy and mitochondrial respiration. MPTP intoxication decreased TH neurons in the SNpc of normal chow-fed mice; however GPA-fed mice remarkably exhibited no loss of TH neurons in the SNpc. MPTP caused a decrease in striatal dopamine of both normal chow- and GPA-fed mice, although this effect was significantly attenuated in GPA-fed mice. GPA-fed mice showed increased AMPK activity, mitochondrial respiration and mitochondrial number in nigrostriatal TH neurons, suggesting that the neuroprotective effects of GPA involved AMPK-dependent increases in mitochondrial function and biogenesis. MPTP treatment produced a decrease in mitochondrial number and volume in normal chow-fed mice but not GPA-fed mice. Our results show the neuroprotective properties of GPA in a mouse model of Parkinson's disease are partially mediated by AMPK and mitochondrial function. Mitochondrial dysfunction is a common problem in neurodegeneration and thus GPA may slow disease progression in other models of neurodegeneration. Copyright © 2011 Elsevier Inc. All rights reserved.
Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream
Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).
Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E
2006-02-01
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.
1979-06-01
hematology, etc.) measured during the chronic tests. In the OCPD tissue residue study, Mallards and Bobwhites were fed or dosed with 14C-DCPD at the...Table 73. Body weight gain of 17-day-old Mallard ducklings during 3-day post-treatment on non-treated feed after withdrawal of OCPD -treated feed...treatment recovery period ................... 261 Table 107. Feed consumption, body weight, and amount of chemical ingested by adult mink fed OCPD at
Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene
2015-08-01
The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, M.C.
1995-02-14
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.
TREAT Reactor Control and Protection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.
1985-01-01
The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS).more » The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.« less
Process for treating effluent from a supercritical water oxidation reactor
Barnes, C.M.; Shapiro, C.
1997-11-25
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.
Mounteer, A H; Souza, L C; Silva, C M
2007-02-01
Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I
2015-12-01
To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.
Dritsakou, Kalliopi; Liosis, Georgios; Valsami, Georgia; Polychronopoulos, Evangelos; Skouroliakou, Maria
2016-01-01
To investigate the benefits of treating low birth weight infants predominantly with mother's own raw milk and early initiation of breastfeeding (raw human milk/breast-fed infants), in comparison to feeding only with donor banked milk (until the third week of life) and afterwards a preterm formula until hospital discharge (donor banked/formula-fed infants). One hundred and ninety-two predominantly raw human milk-fed infants (70% of raw and 30% of donor milk) were matched to 192 donor/formula-fed ones (on 1:1 ratio). Aggressive nutrition policy and targeted fortification of human milk were implemented in both groups. The two groups show similar demographic and perinatal characteristics. Predominantly raw milk-fed infants regained earlier their birth weight, suffered less episodes of feeding intolerance and presented a higher body length and head circumference at discharge (p < 0.001). Those treated mainly with their mothers' milk were able to initiate breastfeeding almost 2 weeks earlier compared to those fed with donor milk who achieved to be bottle-fed later on post-conceptual age (p < 0.001). Infants being breastfed until the 8th month of life conducted less visits for a viral infection to a pediatrician compared to those in the other group (p < 0.001). Feeding predominantly with mother's raw milk seems to result in optimal neonatal outcomes.
Kim, Min Hee; Lee, Jongsung; Jung, Sehyun; Kim, Joo Wan; Shin, Jae-Ho; Lee, Hae-Jeung
2017-04-01
The present study investigated the effect of ginseng berry hot water extract (GBx) on blood flow via the regulation of lipid metabolites and blood coagulation in rats fed a high-fat diet (HFD). Sixty rats were divided into five groups in descending order of body weight. Except for the control group, the other four groups were fed a HFD containing 45% kcal from fat for 11 wk without GBx. GBx groups were then additionally treated by gastric gavage with GBx dissolved in distilled water at 50 (GBx 50) mg/kg, 100 (GBx 100) mg/kg, or 150 (GBx 150) mg/kg body weight for 6 wk along with the HFD. To investigate the effects of GBx on rats fed a HFD, biochemical metabolite, blood coagulation assay, and histological analysis were performed. In the experiments to measure the serum levels of leptin and apolipoprotein B/A, GBx treatment attenuated the HFD-induced increases in these metabolites ( p < 0.05). Adiponectin and apolipoprotein E levels in GBx-treated groups were significantly higher than the HFD group. Prothrombin time and activated partial thromboplastin time were increased in all GBx-treated groups. In the GBx-treated groups, the serum levels of thromboxane A 2 and serotonin were decreased and concentrations of serum fibrinogen degradation products were increased ( p < 0.05). Moreover, histomorphometric dyslipidemia-related atherosclerotic changes were significantly improved by treatment with GBx. These results suggest the possibility that GBx can ameliorate blood flow by decreasing intima-media thickness via the regulation of blood coagulation factors related to lipid metabolites in rats fed a HFD.
High organic loading influences the physical characteristics of aerobic sludge granules.
Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L
2002-01-01
The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.
Gebreyohannes, Abaynesh Yihdego; Dharmjeet, Madhav; Swusten, Tom; Mertens, Matthias; Verspreet, Joran; Verbiest, Thierry; Courtin, Christophe M; Vankelecom, Ivo F J
2018-05-02
This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMR SP ). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction. Due to in-situ biocatalysis, there was limited filtration resistance. Simultaneous separation of the product helped to avoid enzyme product inhibition, achieve constant reaction rate over time and 50% higher enzyme efficiency than batch reactor. Stable enzyme immobilization and the ability to keep enzyme in the system for long period helped to achieve continuous productivity at very low enzyme but high solid loading, while also reducing the extent of membrane fouling. Hence, the BMR SP paves a path for sustainable production of bioethanol from the cheaply available lignocellulose. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xu, Hao; Tong, Na; Huang, Shaobin; Zhou, Shaofeng; Li, Shuang; Li, Jianjun; Zhang, Yongqing
2018-05-03
This study aimed to investigate the degradation efficiency of 2,4,6-trichlorophenol through a batch of potentiostatic experiments (0.2 V vs. Ag/AgCl). Efficiencies in the presence and absence of acetate and glucose were compared through open-circuit reference experiments. Significant differences in degradation efficiency were observed in six reactors. The highest and lowest degradation efficiencies were observed in the closed-circuit reactor fed with glucose and in the open-circuit reactor, respectively. This finding was due to the enhanced bacterial metabolism caused by the application of micro-electrical field and degradable organics as co-substrates. The different treatment efficiencies were also caused by the distinct bacterial communities. The composition of bacterial community was affected by adding different organics as co-substrates. At the phylum level, the most dominant bacteria in the reactor with the added acetate and glucose were Proteobacteria and Firmicutes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gallifuoco, Alberto; Cantarella, Maria; Marucci, Mariagrazia
2007-01-01
A stirred tank membrane reactor is used to study the kinetics of polygalacturonic acid (PGA) enzymatic hydrolysis. The reactor operates in semicontinuous configuration: the native biopolymer is loaded at the initial time and the system is continuously fed with the buffer. The effect of retention time (from 101 to 142 min) and membrane molecular weight cutoff (from 1 to 30 kDa) on the rate of permeable oligomers production is investigated. Reaction products are clustered in two different classes, those sized below the membrane cutoff and those above. The reducing power measured in the permeate is used as an estimate of total product concentration. The characteristic breakdown times range from 40 to 100 min. The overall kinetics obeys a first-order law with a characteristic time estimated to 24 min. New mathematical data handling are developed and illustrated using the experimental data obtained. Finally, the body of the experimental results suggests useful indications (reactor productivity, breakdown induction period) for implementing the bioprocess at the industrial scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.
2015-01-01
The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less
2003-11-01
treated anaerobically . To accommodate the longer residence times needed to treat waste anaerobically , the capacity is often much larger than a...the receiving tank (T1), where it is diluted and run through a trash pump (P1) to produce a homogenous slurry. 3 Figure 1. Sequencing...blower provides air to the reactor and receiving tank. The trash pump is also used to transfer sludge to the reactor and to recirculate sludge in
Babu, Suresh P.; Bair, Wilford G.
1992-01-01
A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.
Yoo, Dae Young; Kim, Woosuk; Yoo, Ki-Yeon; Nam, Sung Min; Chung, Jin Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo
2012-08-01
In this study, we challenged pyridoxine to mice fed a high-fat diet (HFD) and investigated the effects of pyridoxine on HFD-induced phenotypes such as blood glucose, reduction of cell proliferation and neuroblast differentiation in the dentate gyrus using Ki67 and doublecortin (DCX), respectively. Mice were fed a commercially available low-fat diet (LFD) as control diet or HFD (60% fat) for 8 weeks. After 5 weeks of LFD or HFD treatment, 350 mg/kg pyridoxine was administered for 3 weeks. The administration of pyridoxine significantly decreased body weight in the HFD-treated group. In addition, there were no significant differences in hepatic histology and pancreatic insulin-immunoreactive (-ir) and glucagon-ir cells of the HFD-treated group after pyridoxine treatment. In the HFD-fed group, Ki67-positive nuclei and DCX-ir neuroblasts were significantly decreased in the dentate gyrus compared with those in the LFD-fed mice. However, the administration of pyridoxine significantly increased Ki67-positive nuclei and DCX-ir neuroblasts in the dentate gyrus in both LFD- and HFD-fed mice. In addition, the administration of pyridoxine significantly increased the protein levels of glutamic acid decarboxylase 67 (GAD67) and brain-derived neurotrophic factor (BDNF) and the immunoreactivity of phosphorylated cyclic AMP response element binding protein (pCREB) compared with the vehicle-treated LFD- and HFD-fed mice. In contrast, the administration of pyridoxine significantly decreased HFD-induced malondialdehyde (MDA) levels in the hippocampus. These results showed that pyridoxine supplement reduced the HFD-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus via controlling the levels of GAD67, pCREB, BDNF, and MDA. Copyright © 2012 Wiley Periodicals, Inc.
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
Shen, Nan; Chen, Yun; Zhou, Yan
2017-05-01
Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
Hill, M R; Clarke, S; Rodgers, K; Thornhill, B; Peters, J M; Gonzalez, F J; Gimble, J M
1999-07-01
Inflammatory mediators orchestrate the host immune and metabolic response to acute bacterial infections and mediate the events leading to septic shock. Tumor necrosis factor (TNF) has long been identified as one of the proximal mediators of endotoxin action. Recent studies have implicated peroxisome proliferator-activated receptor alpha (PPARalpha) as a potential target to modulate regulation of the immune response. Since PPARalpha activators, which are hypolipidemic drugs, are being prescribed for a significant population of older patients, it is important to determine the impact of these drugs on the host response to acute inflammation. Therefore, we examined the role of PPARalpha activators on the regulation of TNF expression in a mouse model of endotoxemia. CD-1 mice treated with dietary fenofibrate or Wy-14,643 had fivefold-higher lipopolysaccharide (LPS)-induced TNF plasma levels than LPS-treated control-fed animals. Higher LPS-induced TNF levels in drug-fed animals were reflected physiologically in significantly lower glucose levels in plasma and a significantly lower 50% lethal dose than those in LPS-treated control-fed animals. Utilizing PPARalpha wild-type (WT) and knockout (KO) mice, we showed that the effect of fenofibrate on LPS-induced TNF expression was indeed mediated by PPARalpha. PPARalpha WT mice fed fenofibrate also had a fivefold increase in LPS-induced TNF levels in plasma compared to control-fed animals. However, LPS-induced TNF levels were significantly decreased and glucose levels in plasma were significantly increased in PPARalpha KO mice fed fenofibrate compared to those in control-fed animals. Data from peritoneal macrophage studies indicate that Wy-14,643 modestly decreased TNF expression in vitro. Similarly, overexpression of PPARalpha in 293T cells decreased activity of a human TNF promoter-luciferase construct. The results from these studies suggest that any anti-inflammatory activity of PPARalpha in vivo can be masked by other systemic effects of PPARalpha activators.
Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu
2018-05-01
Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better performance of the thermophilic reactor. Copyright © 2018. Published by Elsevier Ltd.
Hatzinger, Paul B; Lewis, Celeste; Webster, Todd S
2017-12-01
The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 μg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 μg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m 3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m 3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G
1998-03-20
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.
Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud
2016-01-01
Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.
Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs
2015-01-01
Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by thermal energy analysis on days 1–4 after nitrite or hot dog treatment was stopped. For two rats fed 480 mg NaNO2/L drinking water, mean urinary ANC excretion on days 1–4 was 30, 5.2, 2.5, and 0.8 nmol/day, respectively. For two to eight rats/dose given varied NaNO2 doses, mean urinary ANC output on day 1 increased from 0.9 (for no nitrite) to 37 (for 1000 mg NaNO2/L drinking water) nmol ANC/day. Urine samples of four rats fed 40–60% hot dogs contained 12–13 nmol ANC on day 1. Linear regression analysis showed highly significant correlations between urinary ANC excretion on day 1 after stopping treatment and varied (a) NaNO2 level in drinking water for rats fed semipurified or commercials diet and (b) hot dog levels in the diet. Some correlations remained significant up to 4 days after nitrite treatment was stopped. Urinary output of ANC precursors (compounds that yield ANC after mild nitrosation) for rats fed semipurified or commercial diet was 11–17 or 23–48 μmol/day, respectively. Nitrosothiols and iron nitrosyls were not detected in urinary ANC and ANCP. Excretion of urinary ANC was about 60% of fecal ANC excretion for 1 to 2 days after NaNO2 was fed. Administered NaNO2 was not excreted unchanged in rat urine. We conclude that urinary ANC excretion in humans could usefully be surveyed to indicate exposure to N-nitroso compounds. PMID:25183213
Cook, D E; Bender, R W; Shinners, K J; Combs, D K
2016-07-01
The objective of this trial was to evaluate, in dairy cattle, the effects of calcium hydroxide treatment of whole-plant corn and a treatment applied to the bottom stalk fraction of the corn plant, achieved by harvesting corn in 2 crop streams. The treatments were calcium hydroxide-treated corn silage (TRTCS), toplage supplemented with calcium hydroxide-treated stalklage (TPL), a positive control of brown midrib corn silage (BMR), and a negative control of conventional whole-plant corn silage (WPCS). The toplage was harvested at a height of 82 cm with 2 of the 6 rows set as ear-snapping to incorporate higher tissues into the stalklage. Stalklage was harvested at 12 cm, and other corn silages were harvested at 27 cm. Sixteen pens, each with 8 Holstein cows averaging 70±25 d in milk and 46±11 kg of milk d(-1), were assigned 4 per treatment in a completely randomized design. The diet was approximately 40% corn silage, 20% alfalfa silage, and 40% concentrate on a dry matter basis. A 2-wk covariate period with conventional corn silage was followed by an 8-wk treatment period in which the 4 corn silage treatments were the only effective difference in diets. Cows fed TPL and TRTCS consumed more (1.9 and 1.4 kg of organic matter d(-1), respectively) than did cows fed WPCS. Milk yield was greater for cows fed BMR, TPL, and TRTCS. Cows fed BMR and TPL produced 2.9 and 2.7 kg d(-1), respectively, more energy-corrected milk (ECM) than cows fed WPCS, and cows fed TRTCS had the greatest ECM production (4.8 kg of ECM d(-1) greater than cows fed WPCS). No differences in body weight or body condition scored were observed. Milk fat concentration was similar among treatments and milk protein concentration was reduced for TRTCS. Starch and neutral detergent fiber digestibility were greater for cows fed TRTCS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia
2017-08-01
Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Yujiao; Zuo, Jiane; Cui, Longtao; Deng, Qian; Dang, Yan
2010-02-01
Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.
Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes.
Sung, Shihwu; Santha, Harikishan
2003-04-01
The performance of temperature-phased anaerobic digestion (TPAD) system in the stabilization of dairy cattle wastes at high solids concentrations has never been evaluated, though the process has been established as a feasible alternative to conventional mesophilic processes for the treatment of municipal wastewater sludges. In this study, the TPAD system operating at a retention time of 14 days was subjected to varying total solids (TS) concentrations (3.46-14.54%) of dairy cattle wastes. At TS concentrations lower than 12.20%, corresponding to system volatile solids (VS) loadings in the range of 1.87-5.82 g VS/L/day, the system achieved an average VS removal of 40.2%. The maximum VS destruction of 42.6% was achieved at a TS concentration of 10.35%. Methane recovery from the wastes was consistently within 0.21-0.22 L/g VS fed. There was a drop in the system performance with respect to VS removal and methane recovery at TS concentrations higher than 10.35%. volatile fatty acid/alkalinity ratios less than 0.35 in the thermophilic reactor and 0.10 in the mesophilic reactor were found favorable for stable operation of the system. For the entire range of TS concentrations, the indicator organism counts in the biosolids were within the limits specified by USEPA in 40 CFR Part 503 regulations for Class A designation. After digestion, nearly 80-85% of total phosphorus was associated with the biosolids. Copyright 2002 Elsevier Science Ltd.
TREAT neutron-radiography facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, L.J.
1981-01-01
The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.
Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats
Müller-Fielitz, Helge; Lau, Margot; Geißler, Cathleen; Werner, Lars; Winkler, Martina; Raasch, Walter
2015-01-01
Background and Purpose AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Experimental Approach Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg−1·day−1, 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood–brain barrier. Key Results Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin-than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Conclusions and Implications Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan. PMID:25258168
Shen, Y Z; Ding, L Y; Chen, L M; Xu, J H; Zhao, R; Yang, W Z; Wang, H R; Wang, M Z
2018-06-04
Cereal grains treated with organic acids were proved to increase ruminal resistant starch and can relieve the risk of ruminal acidosis. However, previous study mainly focussed on acid-treated barley, the effects of organic acid-treated corn is still unknown. The objectives of this study were to evaluate whether feeding ground corn steeped in citric acid (CA) would affect ruminal pH and fermentation patterns, milk production and innate immunity responses in dairy goats. Eight ruminally cannulated Saanen dairy goats were used in a crossover designed experiment. Each experimental period was 21 day long including 14 days for adaption to new diet and 7 days for sampling and data collection. The goats were fed high-grain diet contained 30% hay and 70% corn-based concentrate. The corn was steeped either in water (control) or in 0.5% (wt/vol) CA solution for 48 h. Goats fed CA diet showed improved ruminal pH status with greater mean and minimum ruminal pH, and shorter (P<0.05) duration of ruminal pH<5.6 and less area of ruminal pH<5.6, 5.8 and 6.0. Concentration of total volatile fatty acid and molar proportion of propionate were less but the molar proportion of acetate was greater (P<0.05) in goats fed the CA diet than the control diet. Concentration of ruminal lipopolysaccharide (LPS) was lower (P<0.05) and that of lactic acid also tended (P<0.10) to be lower in goats fed CA than the control. Although dry matter intake, actual milk yield, yield and content of milk protein and lactose were not affected, the milk fat content and 4% fat-corrected milk tended (P<0.10) to be greater in goats fed CA diet. For the inflammatory responses, peripheral LPS did not differ, whereas the concentration of LPS binding protein and serum amyloid A tended (P<0.10) to be less in goats fed CA diet. Similarly, goats fed CA diet had less (P<0.05) concentration of haptoglobin and tumour necrosis factor. These results indicated that feeding ground corn treated with CA effectively improved ruminal pH status, thus alleviated the risk of ruminal acidosis, reduced inflammatory response, and tend to improve milk yield and milk fat test.
Different substrates and starter inocula govern microbial community structures in biogas reactors.
Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert
2016-01-01
The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.
Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less
Mahato, Sourav; De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Bhattacharya, Sumana; Schiavone, Marc T; Bhattacharya, Sanjoy K
2004-01-01
Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO2 on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations. PMID:15175111
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H
2011-01-01
To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.
Nonthermal plasma technology for organic destruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, W.O.; Birmingham, J.G.
1995-06-01
Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the Gas-Phase Corona Reactor (GPCR)III for treating air, the Liquid-Phase Corona Reactor for treating water, and In Situ Corona for treating soils. This presentation focuses on recent technical developments, commercial status, and project costs of OPCR as a cost-effective alternative to other air-purification technologies that are now in use to treat off-gases from site-remediation efforts as well as industrial emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Yang, S.T.
1998-11-20
Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivitymore » was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.« less
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.
Coliform culturability in over- versus undersaturated drinking waters.
Grandjean, D; Fass, S; Tozza, D; Cavard, J; Lahoussine, V; Saby, S; Guilloteau, H; Block, J-C
2005-05-01
The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pH
Silicon production in a fluidized bed reactor
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1986-01-01
Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.
Neutronics Analyses of the Minimum Original HEU TREAT Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.
2014-04-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less
General Theory of the Double Fed Synchronous Machine. Ph.D. Thesis - Swiss Technological Univ., 1950
NASA Technical Reports Server (NTRS)
El-Magrabi, M. G.
1982-01-01
Motor and generator operation of a double-fed synchronous machine were studied and physically and mathematically treated. Experiments with different connections, voltages, etc. were carried out. It was concluded that a certain degree of asymmetry is necessary for the best utilization of the machine.
Giustinianovich, Elisa A; Campos, José-Luis; Roeckel, Marlene D; Estrada, Alejandro J; Mosquera-Corral, Anuska; Val Del Río, Ángeles
2018-03-01
The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L -1 and 112 - 267 mg-TAN L -1 . The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 18.33 g-NaCl L -1 ; (B) direct application of high salt concentration (18 g-NaCl L -1 ). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L -1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 ± 0.007 g N/L·d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 ± 0.017 g-N L -1 d -1 was obtained with direct exposure of the inoculum to 18 g-NaCl L -1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L -1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anaerobic co-digestion of fruit and vegetable wastes and primary sewage sludge.
Velmurugan, B; Arathy, E C; Hemalatha, R; Philip, Jerry Elsa; Alwar Ramanujam, R
2010-01-01
Anaerobic co-digestion of fruit and vegetable wastes (FVW) and primary sewage sludge was carried out in a fed-batch reactor having a volume of 21 under ambient temperature conditions. Three different proportions (25:75, 50:50 and 75:25 in terms ofVS) of fruit and vegetable wastes and primary sewage sludge were studied for an organic loading rate (OLR) of 1.0 g VS/ l.d and with a hydraulic retention time (HRT) of 25 days. The reactor with 75% FVW and 25% sewage sludge (in terms of VS) showed better performance in terms of VS reduction and biogas yield when compared to other two proportions.
Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk
2016-11-01
In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.
Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y
2012-03-29
The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun
2018-01-02
In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, A.; Herrick, R.; Gunn, J.
2007-07-01
Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less
LaPara, Timothy M; Klatt, Christian G; Chen, Ruoyu
2006-02-10
Membrane-coupled bioreactors (MBRs) offer substantial benefits compared to conventional reactor designs for biological wastewater treatment. MBR treatment efficiency, however, has not been optimized because the effects of the MBR on process microbiology are poorly understood. In this study, the structure and function of the microbial communities growing in MBRs fed simple synthetic wastewater were investigated. In four starch-fed MBRs, the bacterial community substantially increased its alpha-glucosidase affinity (>1000-fold), while the leucine aminopeptidase and heptanoate esterase affinities increased slightly (<40-fold) or remained relatively constant. Concomitant to these physiological adaptations, shifts in the bacterial community structure in two of the starch-fed MBRs were detected by PCR-DGGE. Four of the bacterial populations detected by PCR-DGGE were isolated and exhibited specific growth rates in batch culture ranging from 0.009 to 0.22 h(-1). Our results suggest that bacterial communities growing under increasingly stringent nutrient limitation adapt their enzyme activities primarily for the nutrients provided, but that there is also a more subtle response not linked to the substrates included in the feed medium. Our research also demonstrates that MBRs can support relatively complex bacterial communities even on simple feed media.
Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale
Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.
2012-01-01
Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147
Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale.
Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E
2012-05-01
Oxygen-limited autotrophic nitrification/denitrification (OLAND) is a one-stage combination of partial nitritation and anammox, which can have a challenging process start-up. In this study, start-up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l(-1) day(-1) with minimal nitrite and nitrate accumulation were considered a successful start-up. SBR A and B were operated at 50% VER with 3 g NaCl l(-1) in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start-up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l(-1)). Start-up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10-0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass-specific nitrogen removal rates (141-220 mg N g(-1) VSS day(-1)). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start-up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Tao, Hu-Chun; Li, Wei; Liang, Min; Xu, Nan; Ni, Jin-Ren; Wu, Wei-Min
2011-04-01
A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m(3) with columbic efficiency of 5.3% was obtained using initial Cu(2+) concentration of 6400 mg/L. Higher current density favored the cathodic reduction of Cu(2+), and removal of Cu(2+) by 70% was observed within 144 h using initial concentration of 500 mg/L. Powder X-ray diffraction (XRD) analysis indicated that the Cu(2+) was reduced to Cu(2)O or Cu(2)O plus Cu which deposited on the cathode, and the deficient cathodic reducibility resulted in the formation of Cu(4)(OH)(6)SO(4) at high initial Cu(2+) concentration (500-6400 mg/L). This study suggested a novel low-cost approach to remove and recover Cu(II) from Cu(2+)-containing wastewater using MFC-type reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G
2018-01-01
Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.
Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR.
Osman, Wan Hasnidah Wan; Abdullah, Siti Rozaimah Sheikh; Mohamad, Abu Bakar; Kadhum, Abdul Amir H; Rahman, Rakmi Abd
2013-05-30
A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hemalatha, Manupati; Sravan, J Shanthi; Yeruva, Dileep Kumar; Venkata Mohan, S
2017-10-01
Sequential integration of three stage diverse biological processes was studied by exploiting the individual process advantage towards enhanced treatment of complex chemical based wastewater. A successful attempt to integrate sequence batch reactor (SBR) with bioelectrochemical treatment (BET) and finally with microalgae treatment was studied. The sequential integration has showed individual substrate degradation (COD) of 55% in SBR, 49% in BET and 56% in microalgae, accounting for a consolidated treatment efficiency of 90%. Nitrates removal efficiency of 25% was observed in SBR, 31% in BET and 44% in microalgae, with a total efficiency of 72%. The SBR treated effluents fed to BET with the electrode intervention showed TDS removal. BET exhibited relatively higher process performance than SBR. The integration approach significantly overcame the individual process limitations along with value addition as biomass (1.75g/L), carbohydrates (640mg/g), lipids (15%) and bioelectricity. The study resulted in providing a strategy of combining SBR as pretreatment step to BET process and finally polishing with microalgae cultivation achieving the benefits of enhanced wastewater treatment along with value addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Ok-Kyung; Lee, Minhee; Kwon, Han Ol; Lee, Dasom; Park, Jeongjin; Kim, Eungpil; You, Yanghee; Lim, Young Tae; Jun, Woojin; Lee, Jeongmin
2018-05-23
We investigated the potential effects of Costaria costata (CC) on atopic dermatitis (AD) development in chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. CC is a brown alga distributed across the seas of Korea, China, and Japan. A total of 40 mice were randomly assigned to 5 groups with 8 mice per group: untreated Balb/c mice, AD control (0.1% w/v DNCB-treated NC/Nga mice), positive control (i.e., DNCB-treated NC/Nga mice fed a dietary supplement of 66.6 mg/kg of body weight [b.w.] of CJLP133), DNCB-treated NC/Nga mice fed a dietary supplement of 100 mg/kg b.w. of CCE10 (CCE10 100), and DNCB-treated mice fed a dietary supplement of 300 mg/kg b.w. of CCE10 (CCE10 300) groups. The CCE10 100 and CCE10 300 treatment groups suppressed AD development including clinical and histopathological changes and a reduction in skin hydration induced by DNCB. In addition, Th2 cytokine production in primary splenocytes, serum IgE and histamine production, and mast cell infiltration into the skin were suppressed in the CCE10 300 mice compared to the CCE10 100 mice. Our finding demonstrated an inhibitory effect of CCE10 in AD development by means of improving the Th1/Th2 cytokine balance and anti-inflammatory effect in an in vivo model. © 2018 S. Karger AG, Basel.
Kim, Jongmin; Novak, John T
2011-09-01
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.
Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D
2017-09-01
Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.
Evaluation of a fine sediment removal tool in spring-fed and snowmelt driven streams
Sepulveda, Adam; Layhee, Megan J.; Sutphin, Zach; Sechrist, Juddson D.
2015-01-01
The accumulation of fine-grained sediments impairs the structure and function of streams, so removing fine sediments may be required to achieve restoration objectives. There has been little work on methods of removing excess sediment or on the efficacy of the methods. We used a 4-year before-after-control-impact design in southeastern Idaho streams to test a fine sediment removal system (FSRS) manufactured by Streamside Environmental LLC. The FSRS agitates fine sediment in the substrate with clean pump water and then vacuums the sediment out of the stream with a second pump. Our objectives were: 1) to test if the FSRS can selectively remove fine sediment; 2) to monitor the bio-physical responses in FSRS treated and downstream waters; and 3) to compare the bio-physical responses to the FSRS in spring-fed and snowmelt driven stream reaches. The FSRS removed ~ 14 metric tons of sediment from the two treated reaches. More than 90% of this sediment was < 2 mm, indicating that the FSRS selected for fine sediment in both stream types. Sustained effects of removing this sediment were confined to substrate improvements in treated reaches. Embeddedness in the spring-fed reach decreased and subsurface grain size in spring-fed and snowmelt driven reaches increased. We did not detect any sustained invertebrate or fish responses in treated reaches or any detrimental bio-physical responses in downstream waters. These results indicate that the FSRS reduced fine sediment levels but sediment removal did not reverse the impacts of sediment accumulation to stream biota within our monitoring time frame.
Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew
2014-01-01
Abstract Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin ( Nlvg ) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants’ defenses on phloem-feeding insects. PMID:25502025
Hille, Andrea; He, Mei; Ochmann, Clemens; Neu, Thomas R; Horn, Harald
2009-01-01
Two component biodegradable carriers for biofilm airlift suspension (BAS) reactors were investigated with respect to development of biofilm structure and oxygen transport inside the biofilm. The carriers were composed of PHB (polyhydroxybutyrate), which is easily degradable and PCL (caprolactone), which is less easily degradable by heterotrophic microorganisms. Cryosectioning combined with classical light microscopy and CLSM was used to identify the surface structure of the carrier material over a period of 250 days of biofilm cultivation in an airlift reactor. Pores of 50 to several hundred micrometers depth are formed due to the preferred degradation of PHB. Furthermore, microelectrode studies show the transport mechanism for different types of biofilm structures, which were generated under different substrate conditions. At high loading rates, the growth of a rather loosely structured biofilm with high penetration depths of oxygen was found. Strong changes of substrate concentration during fed-batch mode operation of the reactor enhance the growth of filamentous biofilms on the carriers. Mass transport in the outer regions of such biofilms was mainly driven by advection.
Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J
2012-12-01
The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lin, Tingting; Wang, Changbo; Liu, Xin; Gao, Fen; Xiao, Dongxue; Zhang, Dong; Zhu, Xialian
2017-06-19
Gastrointestinal disease is one of the most serious diseases in cultured seahorse juveniles. Treatment with antimicrobials of live food (i.e. copepods and Artemia) that is used to feed the juveniles may be a promising measure to alleviate the occurrence of gastrointestinal disease. However, relevant investigations are rare. In the present study, we first investigated the antimicrobial efficacies on bacteria within copepods that were treated with 4 antimicrobials, including 3 antibiotics (i.e. enrofloxacin hydrochloride, oxytetracycline and rifampicin [RFP]) that are approved for use in aquaculture and 1 disinfectant (i.e. povidone iodine). We then assessed the effects of copepods treated with the antimicrobial that had the best antimicrobial efficacy on survival, growth performance and immune capacity of juvenile lined seahorses Hippocampus erectus. The results showed that RFP had the best antimicrobial efficacy on both Pseudoalteromonas spp. and Vibrio spp., 2 dominant bacteria with potential pathogenicity within the copepods; the proper concentration of RFP was 6 mg l-1. Moreover, H. erectus juveniles fed with RFP-treated copepods demonstrated an improved survivorship and immune capacity and had a lower abundance of pathogenic bacteria within their gastrointestinal tracts compared to juveniles fed with untreated copepods. These results suggest that treating live food with RFP is a potential measure for reducing the incidence of gastrointestinal disease in seahorse juveniles.
Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax
2010-01-01
Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P < 0.01). The clonogenicity of glioma cells was reduced by BPA-BNCT compared with cells treated in the reactor (Group F, G, H, I), and with the control cells (P < 0.01). Upon BPA-BNCT treatment, the Bax level increased in glioma cells, whereas Bcl-2 expression decreased. Conclusions Compared with γ-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by BNCT may be related to activation of Bax and downregulation of Bcl-2. PMID:21122152
Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.
Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan
2018-08-01
This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso
2016-01-01
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088
Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan
2006-08-25
Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750+/-250 mg L(-1), and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L(-1), less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L(-1) for Reactor I and 151.6 mg L(-1) for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L(-1) for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L(-1) quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L(-1) gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.
Thermal Cracking of Tars in a Continuously Fed Reactor with Steam
2011-05-01
Fluidized Bed using biomass 8 Tars Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and
Endocrine and metabolic aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorski, J.R.
1988-01-01
Toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were characterized in male Sprague-Dawley rats in order to elucidate the mechanism of acute toxicity of this potent halogenated hydrocarbon. Studies in TCDD-treated, pair-fed control and ad libitum-fed control rates, as well as in thyroidectomized, adrenalectomized and hypophysectomized, revealed differential hormonal, toxicologic and histophathologic responses suggesting that these manifestations of TCDD exposure are the results of an insult to intermediary metabolism. Tissue specific alterations in de novo fatty acid synthesis were directly related to differential changes observed in thyroid hormone homeostasis. The increased hepatic de novo fatty acid synthesis provided a likely mechanism for themore » documented fact that TCDD-treated rats lose more body weight than corresponding pair-fed controls because de novo fatty acid synthesis represents an energy inefficient metabolic process. Experiments in adrenalectomized and hypophysectomized rats led to the hypothesis that severe hypoglycemia due to inhibition of gluconeogenesis is the cause of TCDD-induced death. A subsequent characterization of gluconeogenesis in TCDD-treated rats confirmed this hypothesis.« less
USDA-ARS?s Scientific Manuscript database
Some silage inoculants promote an increase in milk production, possibly through altering the rumen microflora. In this study, dairy cows fed alfalfa silage treated with the inoculant, Lactobacillus plantarum MTD/1 (LPS), were compared to cows fed untreated silage (Ctrl) with the objectives: 1) to de...
Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar
2009-08-01
The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.
Pintucci, Cristina; Carballa, Marta; Varga, Sam; Sarli, Jimena; Peng, Lai; Bousek, Johannes; Pedizzi, Chiara; Ruscalleda, Maël; Tarragó, Elena; Prat, Delphine; Colica, Giovanni; Picavet, Merijn; Colsen, Joop; Benito, Oscar; Balaguer, Marilos; Puig, Sebastià; Lema, Juan M; Colprim, Jesús; Fuchs, Werner; Vlaeminck, Siegfried E
2017-03-01
Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit ® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m -3 d -1 , with a biogas production rate of 1.4 Nm 3 m -3 d -1 . The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.
Stes, Hannah; Aerts, Sven; Caluwé, Michel; Dobbeleers, Thomas; Wuyts, Sander; Kiekens, Filip; D'aes, Jolien; De Langhe, Piet; Dries, Jan
2018-05-01
A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.25 kgCOD·(m 3 ·day) -1 ), (II) pH control and aeration control strategy to reduce OLR fluctuations (1.45 ± 0.65 kgCOD·(m 3 ·day) -1 ) and (III) no pH control and stable OLR (1.42 ± 0.18 kgCOD·(m 3 ·day) -1 ). Aerobic granule formation was successful after 80 days and maintained during the subsequent 380 days. The aerobic granular sludge was characterized by SVI 5 and SVI 30 values below 60 mL.g -1 and dominated by granular, dense structures. An oxygen uptake rate based aeration control strategy insured endogenous respiration at the end of the aerobic phase, resulting in stable SBR operation when the influent composition fluctuated. The quantitative polymerase chain reaction results show no significant enrichment of Accumulibacter or Competibacter during the granulation process. The 16S rRNA sequencing results indicate enrichment of other, possibly important species during aerobic granule formation while treating brewery wastewaters.
Lee, Yun-Yeong; Kim, Tae G; Cho, Kyung-Suk
2016-11-09
The chemical oxygen demand (COD) removal, electricity generation, and microbial communities were compared in 3 types of microbial fuel cells (MFCs) treating molasses wastewater. Single-chamber MFCs without and with a proton exchange membrane (PEM), and double-chamber MFC were constructed. A total of 10,000 mg L(-1) COD of molasses wastewater was continuously fed. The COD removal, electricity generation, and microbial communities in the two types of single-chamber MFCs were similar, indicating that the PEM did not enhance the reactor performance. The COD removal in the single-chamber MFCs (89-90%) was higher than that in the double-chamber MFC (50%). However, electricity generation in the double-chamber MFC was higher than that in the single-chamber MFCs. The current density (80 mA m(-2)) and power density (17 mW m(-2)) in the double-chamber MFC were 1.4- and 2.2-times higher than those in the single-chamber MFCs, respectively. The bacterial community structures in single- and double-chamber MFCs were also distinguishable. The amount of Proteobacteria in the double-chamber MFC was 2-3 times higher than those in the single-chamber MFCs. For the archaeal community, Methanothrix (96.4%) was remarkably dominant in the single-chamber MFCs, but Methanobacterium (35.1%), Methanosarcina (28.3%), and Methanothrix (16.2%) were abundant in the double-chamber MFC.
Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz
2016-05-18
Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS.
Jorgačević, Bojan; Vučević, Danijela; Đuričić, Ivana; Šobajić, Slađana; Mladenović, Dušan; Vesković, Milena; Vukićević, Rada Ješić; Radosavljević, Tatjana
2017-04-01
We used rimonabant to investigate the role of CB1 receptor on hepatic FFAs profile during NAFLD. Male mice C57BL/6 were divided into: control group fed with control diet 20 weeks (C; n=6); group fed with HFD 20 weeks (HF; n=6); group fed with control diet and treated with rimonabant after 18 weeks (R; n=9); group fed with HFD and treated with rimonabant after 18 weeks (HFR; n=10). Rimonabant (10mg/kg) was administered daily to HFR and R group by oral gavage. Rimonabant decreased liver palmitic acid proportion in HFR group compared to HF group (p<0.05). Liver stearic and oleic acid proportions were decreased in R group compared to control (p<0.01 respectively). Rimonabant increased liver linoleic and arachidonic acid proportions in HFR group compared to HF group (p<0.01 respectively). CB1 blockade may be useful in the treatment of HFD-induced NAFLD due to modulation of plasma lipid and hepatic FFA profile. Copyright © 2017 Elsevier B.V. All rights reserved.
Plasma spark discharge reactor and durable electrode
Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup
2017-01-10
A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BS> The dynamics of a power reactor is treated in some detail. Although the reactor is described by a nonlinear differential equation of the seventh order, a two-group approximstion with prompt neutrons and one averaged group of delayed neutrons may be used. When the reactor is in equilibrium, the reactor equation may be linearized in two ways. The effects of positive and negative coefficients of tins of the reactor are discussed. The nonlinear character of the control rods is trested. (D.L.C.)
Panigrahi, S; Morris, T R
1991-03-01
The effects of dietary screw-pressed cottonseed meal (CSM) and iron-treated CSM on laying performance and discolourations in eggs were examined in a range of hen genotypes. In experiment 1, six genotypes, obtained at point-of-lay from various sources, were fed on a non-CSM diet, a diet with 300 g CSM/kg, and a diet containing iron-treated CSM at 300 g/kg. In experiment 2, two of these genotypes were reared together from day-old and were fed from 10 to 18 weeks on a non-CSM diet or a diet containing iron-treated CSM at 250 g/kg. They were then fed on a non-CSM layer diet or a diet containing iron-treated CSM at 300 g/kg, in a 2 x 2 x 2 factorial design that also examined the effects of the rearing diet. 2. The effects on food intakes and egg production of including CSM and iron-treated CSM in layer diets depended on the genotype of the hens. The strongest interaction between breed and diet was on food intake, the breed Hubbard Golden Comet (HGC) being the least tolerant of CSM and iron-treated CSM. 3. Inclusion of iron-treated CSM in the rearer diet to supply approximately 70% of the dietary protein had no adverse effects on growth or age at first egg. Food intake and egg production between 18 and 26 weeks were affected by the iron-treated CSM layer diet, but there were no carry-over effects attributable to the rearing diets. 4. Genotype was not a factor in the development of the gossypol-related brown yolk discolouration in fresh or warm-stored eggs of hens fed on a CSM-based diet containing 197 mg free gossypol/kg and 52 mg cyclopropenoid fatty acids (CPFA)/kg (experiment 1). 5. In both experiments, the susceptibility of eggs to the CPFA-related cold storage effects depended on the genotype of the hen, eggs from hens of the HCG breed being more affected than those of ISA hens. 6. Treatment of CSM with crystalline ferrous sulphate heptahydrate, at a 4:1 weight ratio of iron to free gossypol, prevented brown yolk discolourations in all genotypes tested, as assessed by subjecting egg yolks to atmospheres of ammonia, and cold storage of eggs.
Kop-Bozbay, C; Ocak, N
2015-04-01
This study was conducted to determine weights of body (BW), carcass (CW), gastrointestinal tract (GTW), meat quality and some blood metabolite responses to corn starch, saccharose or glucose administration in the drinking water during pre-slaughter feed withdrawal (FW) in broilers. On day 42 of age, 200 broilers (Ross 308) were allocated randomly to five treatments with four replicates. During a 10-h FW, control broilers (C) were provided with non-treated water and the standard finisher diet ad libitum, whereas fasted broilers provided with non-treated (NFW) or treated water, 3 g glucose (G), saccharose (S) or corn starch (CS)/L. Eight birds (four males and four females) per treatment were slaughtered. Birds receiving non-treated or treated water had lower BW and higher carcass yield than the full-fed broilers. The full-fed broilers had higher absolute and relative GTW than the fasted birds. Broilers consumed more readily treated water compared with non-treated water. While the a* value of breast meat from CS birds was higher than that from NFW, the b* value of that was higher than S and C birds. The c* values of breast meat from S birds were lower compared with that from the CS treatment. The thigh meat from NFW broilers had higher h* value than that from C and G broilers. The thigh meats of C and CS broilers had higher c* value than that of G birds. The full-fed broilers had higher plasma triglyceride concentration than NFW, S and G birds. The full-fed broilers had higher plasma uric acid and uric acid nitrogen concentrations than S birds. These results show that carbohydrate administration in the drinking water cannot be a good alternative for the FW period before slaughter due to the fact that the carbohydrates do not reduce BW losses and do not lead to increases in meat quality. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Magnoni, Leonardo J.; Martos-Sitcha, Juan Antonio; Queiroz, Augusto; Calduch-Giner, Josep Alvar; Gonçalves, José Fernando Magalhães; Rocha, Cristina M. R.; Abreu, Helena T.; Schrama, Johan W.; Pérez-Sánchez, Jaume
2017-01-01
ABSTRACT Intensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l−1) and subsequent recovery normoxia (8.6 mg O2 l−1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated. PMID:28495962
Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F
2007-02-01
Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.
Bt crops benefit natural enemies to control non-target pests
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M.
2015-01-01
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM. PMID:26559133
Bt crops benefit natural enemies to control non-target pests.
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M
2015-11-12
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.
Lauterböck, B; Ortner, M; Haider, R; Fuchs, W
2012-10-01
The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.
Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less
Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
Comolli, Alfred G.; Lee, Lap-Keung
2001-01-01
A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.
Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor
2012-01-01
Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984
Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.
España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M
2012-11-21
A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.
The effect of bovine milk on the growth of Bombyx mori.
Konala, Niharika; Abburi, Praveena; Bovilla, Venugopal Reddy; Mamillapalli, Anitha
2013-01-01
Bombyx mori L. (Lepidoptera: Bombycidae) is a well-studied Lepidopteran model system because of its morphology, life cycle, and economic importance. Many scientists have placed importance on enhancing the economic traits of B. mori because it's larvae, silkworms, are vital in the production of silk. In this study, the effect of bovine milk on B. mori growth was tested. Bovine milk contains several components that aid in healthy growth. The treatment was given to fifth instar B. mori larvae because the fifth instar period is when B. mori eats voraciously and shows maximum growth among all its larval stages. The larvae were treated with fresh mulberry, Morus L. (Rosales: Moraceae), leaves and mulberry leaves dipped in milk from the first day of the fifth instar. Treatments were given on alternate days, and the silkworms were weighed every day to determine whether milk had any role in enhancing the weight of the larvae. Cocoon weights were measured, as the weight indicates the approximate amount of silk that can be reeled. The results showed that larvae gained 82.5% more weight by the end of fifth instar larval when fed with mulberry leaves dipped in milk than when fed with fresh mulberry leaves without milk. The larvae fed with milk-treated leaves gained 310% weight from day 1 to day 7 of the fifth instar, while the larvae fed with fresh leaves gained 153% weight in the same timespan. In addition, cocoon weight increased by 8% when milk was added compared to when it was not. These results suggest that B. mori larvae can be fed mulberry leaves treated with bovine milk for better growth rate and increased silk production.
The Effect of Bovine Milk on the Growth of Bombyx mori
Konala, Niharika; Abburi, Praveena; Bovilla, Venugopal Reddy; Mamillapalli, Anitha
2013-01-01
Bombyx mori L. (Lepidoptera: Bombycidae) is a well-studied Lepidopteran model system because of its morphology, life cycle, and economic importance. Many scientists have placed importance on enhancing the economic traits of B. mori because it's larvae, silkworms, are vital in the production of silk. In this study, the effect of bovine milk on B. mori growth was tested. Bovine milk contains several components that aid in healthy growth. The treatment was given to fifth instar B. mori larvae because the fifth instar period is when B. mori eats voraciously and shows maximum growth among all its larval stages. The larvae were treated with fresh mulberry, Morus L. (Rosales: Moraceae), leaves and mulberry leaves dipped in milk from the first day of the fifth instar. Treatments were given on alternate days, and the silkworms were weighed every day to determine whether milk had any role in enhancing the weight of the larvae. Cocoon weights were measured, as the weight indicates the approximate amount of silk that can be reeled. The results showed that larvae gained 82.5% more weight by the end of fifth instar larval when fed with mulberry leaves dipped in milk than when fed with fresh mulberry leaves without milk. The larvae fed with milk-treated leaves gained 310% weight from day 1 to day 7 of the fifth instar, while the larvae fed with fresh leaves gained 153% weight in the same timespan. In addition, cocoon weight increased by 8% when milk was added compared to when it was not. These results suggest that B. mori larvae can be fed mulberry leaves treated with bovine milk for better growth rate and increased silk production. PMID:24205942
Exacerbation of Acetaminophen Hepatotoxicity by the Anthelmentic Drug Fenbendazole
Gardner, Carol R.; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.
2012-01-01
Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8–12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole. PMID:22048645
Exacerbation of acetaminophen hepatotoxicity by the anthelmentic drug fenbendazole.
Gardner, Carol R; Mishin, Vladimir; Laskin, Jeffrey D; Laskin, Debra L
2012-02-01
Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8-12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.
Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu
2018-01-01
The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.
NASA Astrophysics Data System (ADS)
Bubanja, I. N.; Ivanović-Šašić, A.; Čupić, Ž.; Anić, S.; Kolar-Anić, Lj.
2017-12-01
Chaotic dynamic states with intermittent oscillations were generated in a Bray-Liebhafsky (BL) oscillatory reaction in an isothermal open reactor i.e., in the continuously-fed well-stirred tank reactor (CSTR) when the inflow concentration of potassium iodate was the control parameter. They are found between periodic oscillations obtained when [KIO3]0 < 3.00 × 10-2 M and stable steady states when [KIO3]0 > 4.10 × 10-2 M. It was shown that the most chaotic states obtained experimentally somewhere in the middle of this region are in high correlation with results obtained by means of largest Lyapunov exponents and phenomenological analysis based on the quantitative characteristics of intermittent oscillations.
Segregated exhaust SOFC generator with high fuel utilization capability
Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.
2003-08-26
A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary
2013-01-01
Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.
Acid-fast intranuclear inclusion bodies in the kidneys of mallards fed lead shot
Locke, L.N.; Bagley, George E.; Irby, H.D.
1966-01-01
Acid-fast intranuclear inclusion bodies were found in the cells of the proximal convoluted tubules of the kidneys of mallards fed one, two, three or eight number 6 lead shot and maintained on cracked or whole corn and on grain-duck pellet diets. No acid-fast inclusion bodies were found in mallards fed one or three lead shot but maintained on a duck pellet ration. Dietary factors may be responsible for the failure of mallards fed a duck pellet ration to develop lead Inclusion bodies when treated with one or three lead shot. The authors suggest these inclusion bodies can be used as presumptive evidence for lead intoxication in mallards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickel, Jonathan J.; Adhikari, Birendra; Sievers, David A.
Converting abundant lignocellulosic biomass to sugars as fungible precursors to fuels and chemicals has the potential to diversify the supply chain for those products, but further process improvements are needed to achieve economic viability. In the current work, process intensification of the key enzymatic hydrolysis unit operation is demonstrated by means of a membrane reactor system that was operated continuously. Lignocellulosic biomass (pretreated corn stover) and buffered enzyme solution were fed to a continuously stirred-tank reactor, and clarified sugar solution was withdrawn via a commercial tubular ultrafiltration membrane. The membrane permeance decline and membrane cleaning efficacy were studied and didmore » not vary significantly when increasing fraction insoluble solids (FIS) from 2.5% to 5%. Continuous enzymatic hydrolysis was successfully operated for more than 80 h. A model for the reactor system was able to predict dynamic behavior that was in reasonable agreement with experimental results. The modeled technical performance of anticipated commercial batch and continuous enzymatic hydrolysis processes were compared and showed that continuous operation would provide at least twice the volumetric productivity for the conditions studied. Further improvements are anticipated by better membrane selection and by increasing FIS.« less
Stickel, Jonathan J.; Adhikari, Birendra; Sievers, David A.; ...
2018-02-21
Converting abundant lignocellulosic biomass to sugars as fungible precursors to fuels and chemicals has the potential to diversify the supply chain for those products, but further process improvements are needed to achieve economic viability. In the current work, process intensification of the key enzymatic hydrolysis unit operation is demonstrated by means of a membrane reactor system that was operated continuously. Lignocellulosic biomass (pretreated corn stover) and buffered enzyme solution were fed to a continuously stirred-tank reactor, and clarified sugar solution was withdrawn via a commercial tubular ultrafiltration membrane. The membrane permeance decline and membrane cleaning efficacy were studied and didmore » not vary significantly when increasing fraction insoluble solids (FIS) from 2.5% to 5%. Continuous enzymatic hydrolysis was successfully operated for more than 80 h. A model for the reactor system was able to predict dynamic behavior that was in reasonable agreement with experimental results. The modeled technical performance of anticipated commercial batch and continuous enzymatic hydrolysis processes were compared and showed that continuous operation would provide at least twice the volumetric productivity for the conditions studied. Further improvements are anticipated by better membrane selection and by increasing FIS.« less
USDA-ARS?s Scientific Manuscript database
Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...
Abreu, Angela A; Alves, Joana I; Pereira, M Alcina; Karakashev, Dimitar; Alves, M Madalena; Angelidaki, Irini
2010-12-01
In the present study, two granular systems were compared in terms of hydrogen production rate, stability and bacterial diversity under extreme thermophilic conditions (70 degrees C). Two EGSB reactors were individually inoculated with heat treated methanogenic granules (HTG) and HTG amended with enrichment culture with high capacity of hydrogen production (engineered heat treated methanogenic granules - EHTG), respectively. The reactor inoculated with EHTG (R(EHTG)) attained a maximum production rate of 2.7l H(2)l(-1)day(-1) in steady state. In comparison, the R(HTG) containing the HTG granules was very unstable, with low hydrogen productions and only two peaks of hydrogen (0.8 and 1.5l H(2)l(-1)day(-1)). The presence of active hydrogen producers in the R(EHTG) system during the reactor start-up resulted in the development of an efficient H(2)-producing bacterial community. The results showed that "engineered inocula" where known hydrogen producers are co-inoculated with HTG is an efficient way to start up biohydrogen-producing reactors. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew
2014-01-01
Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Anburajan, Parthiban; Park, Jong-Hun; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Kumar, Gopalakrishnan; Choi, Chang-Su; Kim, Sang-Hyoun
2017-09-01
This study examined the mesophilic continuous biohydrogen fermentation from galactose and glucose mixture with an initial substrate concentration of 15 g/L (galactose 12 g/L and glucose 3 g/L) as a resembling carbon source of pretreated red algal hydrolyzate. A fixed bed reactor was fed with the sugar mixture at various hydraulic retention times (HRTs) ranging 12 to 1.5 h. The maximum hydrogen production rate of 52.6 L/L-d was found at 2 h HRT, while the maximum hydrogen yield of 2.3±0.1 mol/mol hexose added, was achieved at 3 h HRT. Microbial communities and species distribution were analyzed via quantitative polymerase chain reaction (qPCR) and the dominant bacterial population was found as Clostridia followed by Lactobacillus sp. Packing material retained higher 16S rRNA gene copy numbers of total bacteria and Clostridium butyricum fraction compared to fermentation liquor. The finding of the study has demonstrated that H 2 production from galactose and glucose mixture could be a viable approach for hydrogen production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Abreu, A A; Alves, J I; Pereira, M A; Sousa, D Z; Alves, M M
2011-08-01
Treatment of anaerobic granules with heat and two chemical treatments, contacting with 2-bromoethanesulfonate (BES) and with BES + Chloroform, were applied to suppress hydrogen-consuming microorganisms. Three mesophilic expanded granular sludge bed (EGSB) reactors-R(Heat), R(BES), and R(BES + Chlo)--were inoculated with the treated sludges and fed with synthetic sugar-based wastewater (5 g(COD) L(-1), HRT 20-12 h). Morphological integrity of granules and bacterial communities were assessed by quantitative image analysis and 16S rRNA gene based techniques, respectively. Hydrogen production in R(Heat) was under 300 mL H(2) L(-1) day(-1), with a transient peak of 1,000 mL H(2) L(-1) day(-1) after decreasing HRT. In R(BES + Chlo) hydrogen production rate did not exceed 300 mL H(2) L(-1) day(-1) and there was granule fragmentation, release of free filaments from aggregates, and decrease of granule density. In R(BES), there was an initial period with unstable hydrogen production, but a pulse of BES triggered its production rate to 700 ± 200 mL H(2) L(-1) day(-1). This strategy did not affect granules structure significantly. Bacteria branching within Clostridiaceae and Ruminococcaceae were present in this sludge. This work demonstrates that, methods applied to suppress H(2)-consuming microorganisms can cause changes in the macro- and microstructure of granular sludge, which can be incompatible with the operation of high-rate reactors. Copyright © 2011 Wiley Periodicals, Inc.
Optimization of a mainstream nitritation-denitritation process and anammox polishing.
Regmi, Pusker; Holgate, Becky; Fredericks, Dana; Miller, Mark W; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2015-01-01
This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.
Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B
2015-12-15
This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.
2012-01-01
Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG. PMID:23407455
Burch, Tucker R; Sadowsky, Michael J; Lapara, Timothy M
2013-01-01
Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG.
Sakai, Tohru; Ohhata, Miyuki; Fujii, Misaki; Oda, Sayaka; Kusaka, Yasuna; Matsumoto, Miki; Nakamoto, Akiko; Taki, Tomoyo; Nakamoto, Mariko; Shuto, Emi
2017-01-01
Propolis is a bee product with various biological properties. C57BL/6 mice were fed a high-fat diet and treated with propolis for 14 weeks. Body weight in mice treated with 2% propolis was less than that in control mice from 3 weeks after the start of treatment until 14 weeks except for the 7th week. Mice treated with propolis showed significantly lower epididymal fat weight and subcutaneous fat weight. Infiltration of epididymal fat by macrophages and T cells was reduced in the propolis group. Supplementation of propolis increased feces weight and fat content in feces, suggesting that mechanisms of weight reduction by propolis partly include a laxative effect and inhibition of fat absorption.
Imai, Yumi; Fink, Brian D; Promes, Joseph A; Kulkarni, Chaitanya A; Kerns, Robert J; Sivitz, William I
2018-06-01
We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain and reduced oxidative stress when administered to high-fat (HF) fed mice. Here, we examined the effects of mitoQ administered to HF fed mice on pancreatic islet morphology, dynamics of insulin secretion, and islet mitochondrial metabolism. C57BL/6J mice were fed HF for 130 days while we administered vehicle (cyclodextrin [CD]) or mitoQ added to the drinking water at up to 500 μmol/L. MitoQ-treated mice vs vehicle gained significantly less weight, expended significantly more energy as determined by indirect calorimetry, and trended to consume less (nonsignificant) food. As we and others reported before, mitoQ-treated mice drank less water but showed no difference in percent body fluid by nuclear magnetic resonance. Circulating insulin and glucose-stimulated insulin secretion by isolated islets were decreased in mitoQ-treated mice while insulin sensitivity (plasma insulin x glucose) was greater. Islet respiration as basal oxygen consumption (OCR), OCR directed at ATP synthesis, and maximal uncoupled OCR were also reduced in mitoQ-treated mice. Quantitative morphologic studies revealed that islet size was reduced in the mitoQ-treated mice while visual inspection of histochemically stained sections suggested that mitoQ reduced islet lipid peroxides. MitoQ markedly improved liver function as determined by plasma alanine aminotransferase. In summary, mitoQ treatment reduced the demand for insulin and reduced islet size, likely consequent to the action of mitoQ to mitigate weight gain and improve liver function. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Cai, Qinqing; Hu, Jiangyong
2018-04-24
Controlling of antibiotics is the crucial step for preventing antibiotic resistance genes (ARGs) dissemination; UV photocatalysis has been identified as a promising pre-treatment technology for antibiotics removal. However, information about the effects of intermediates present in the treated antibiotics wastewater on the downstream biological treatment processes or ARGs development is very limited. In the present study, continuous UVA/LED/TiO 2 photocatalysis removed more than 90% of 100 ppb sulfamethoxazole (SMX)/trimethoprim (TMP), the treated wastewater was fed into SBR systems for over one year monitoring. Residual SMX/TMP (2-3 ppb) and intermediates present in the treated wastewater did not adversely affect SBR performance in terms of TOC and TN removal. SMX and TMP resistance genes (sulI, sulII, sulIII, dfrII, dfrV and dfr13) were also quantified in SBRs microbial consortia. Results suggested that continuous feeding of treated SMX/TMP containing wastewaters did not trigger any ARGs promotion during the one year operation. By stopping the input of 100 ppb SMX/TMP, abundance of sulII and dfrV genes were reduced by 83% and 100%, respectively. sulI gene was identified as the most persistence ARG, and controlling of 100 ppb SMX input did not achieve significant removal of sulI gene. A significant correlation between sulI gene and class 1 integrons was found at the level of p = 1.4E-10 (r = 0.94), and sulII gene positively correlated with the plasmid transfer efficiency (r = 2.442E-10, r = 0.87). Continuous input of 100 ppb SMX enhanced plasmid transfer efficiency in the SBR system, resulting in sulII gene abundance increasing more than 40 times. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wilson, Fiona A.; Suryawan, Agus; Orellana, Renán A.; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Gazzaneo, Maria C.; Davis, Teresa A.
2008-01-01
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation (P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex. PMID:18682537
Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A
2008-10-01
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.
Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk
2017-11-01
A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pressure polymerization of polyester
Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.
2000-08-29
A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.
Enhanced nitrogen removal with spent mushroom compost in a sequencing batch reactor.
Yang, Yunlong; Tao, Xin; Lin, Ershu; Hu, Kaihui
2017-11-01
In order to remove nitrogen effectively from the wastewater with a low C/N ratio, the feasibility of using spent mushroom compost (SMC) hydrolysates as carbon sources for denitrification was investigated in a sequencing batch reactor (SBR). With SMCs supplement, the SBR performance was improved obviously within the 180days of operation. The total nitrogen removal was promoted from 46.9% to 81-89.4%, and no negative impact induced by different SMCs on the SBR system was observed. The abundance of functional genes including amoA, nirS/K, norB and nosZ in the active sludge was quantified by qPCR, and most of them elevated after SMC was fed. 16S rRNA gene high-throughput sequencing showed that the significant change in microbial community not only promoted pollutants removal but also benefited the stability of the reactor. Therefore, SMC could be an extremely promising carbon source used for nitrogen removal due to its cost-effective and efficient characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun
2017-09-01
This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Positive direct current corona discharges in single wire-duct electrostatic precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehia, Ashraf, E-mail: yehia30161@yahoo.com; Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Arab Republic of Egypt; Abdel-Fattah, E.
This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equationmore » included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.« less
Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder
NASA Technical Reports Server (NTRS)
Petersen, Elspeth M.
2016-01-01
The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.
Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge.
Refai, Sarah; Wassmann, Kati; van Helmont, Sebastian; Berger, Stefanie; Deppenmeier, Uwe
2014-12-01
Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50-100 mM ethanol, biomethanation increased by 50-150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10-20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that "normal" methane production continued to take place, but ethanol led to production of additional methane.
Application of a 2-step process for the biological treatment of sulfidic spent caustics.
de Graaff, Marco; Klok, Johannes B M; Bijmans, Martijn F M; Muyzer, Gerard; Janssen, Albert J H
2012-03-01
This research demonstrates the feasibility and advantages of a 2-step process for the biological treatment of sulfidic spent caustics under halo-alkaline conditions (i.e. pH 9.5; Na(+) = 0.8 M). Experiments with synthetically prepared solutions were performed in a continuously fed system consisting of two gas-lift reactors in series operated at aerobic conditions at 35 °C. The detoxification of sulfide to thiosulfate in the first step allowed the successful biological treatment of total-S loading rates up to 33 mmol L(-1) day(-1). In the second, biological step, the remaining sulfide and thiosulfate was completely converted to sulfate by haloalkaliphilic sulfide oxidizing bacteria. Mathematical modeling of the 2-step process shows that under the prevailing conditions an optimal reactor configuration consists of 40% 'abiotic' and 60% 'biological' volume, whilst the total reactor volume is 22% smaller than for the 1-step process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Method and apparatus for incinerating hazardous waste
Korenberg, Jacob
1990-01-01
An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.
Nelson, Bridget; Cray, Nicole; Ai, Yongfeng; Fang, Yinan; Liu, Peng; Whitley, Elizabeth M; Birt, Diane
2016-01-01
Dietary fiber has been reported to prevent preneoplastic colon lesions. The aim of this study was to determine the effect of resistant starches, novel dietary fibers, on the development of colonic preneoplasia and Wnt signaling in azoxymethane (AOM)-treated rats and mice fed resistant starches at 55% of the diet after AOM treatment. Another objective was to determine the effect of resistant starches on the development of preneoplasia in rats treated with antibiotics (Ab), administered between AOM treatment and resistant starch feeding. Diets containing resistant starches, high-amylose (HA7), high-amylose-octenyl succinic anhydride (OS-HA7), or high-amylose-stearic acid (SA-HA7) were compared with control cornstarch (CS). The resistant starch content of the diets did not alter the yield of colonic lesions but animals treated with AOM and fed the diet with the highest resistant starch content, SA-HA7 developed the highest average aberrant crypt foci (ACF) per animal. Mice fed the OS-HA7 diet had decreased expression of some upstream Wnt genes in the colonic crypts. This study suggests that further research is needed to determine if resistant starch impacts colon carcinogenesis in rodents.
Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira
2016-06-25
This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts.
Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk
2016-06-01
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.
USDA-ARS?s Scientific Manuscript database
This data file describes the bioinformatics analysis of uterine RNA-seq data comparing genome wide effects of feeding soy protein isolate compared to casein to ovariectomized female rats age 64 days relative to treatment of casein fed rats with 5 ug/kg/d estradiol and relative to rats treated with e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Derstine, K.; Wright, A.
2013-06-01
The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less
Teratological studies in defatted jojoba meal-supplemented rats.
Cokelaere, M; Flo, G; Lievens, S; Van Boven, M; Vermaut, S; Decuypere, E
2001-03-01
To look for possible developmental effects in the offspring of jojoba meal-treated Wistar rats, and to distinguish between the effects of reduced food intake and the specific developmental effects of jojoba meal itself, mated female rats were divided into three groups of 20 rats. They received during gestation: (a) normal rodent food (control group); (b) normal rodent food supplemented with 3% defatted jojoba meal (jojoba group); or (c) normal rodent food pair-fed with the jojoba group (pair-fed group). The jojoba meal group showed approximately 30% inhibition of food intake. Ten rats from each group were killed on gestation day 21. Compared to the control group, foetal body weight was reduced in both the jojoba and pair-fed groups, with a greater reduction in the jojoba group. Skeletal ossification was retarded to the same extent in both the jojoba and pair-fed groups. The other 10 rats from each group were left to produce litters. Compared with controls, the body weight of the pups was lower in both the jojoba and pair-fed groups; the reduction was slightly greater in the jojoba group, but this difference disappeared after 1 week. The offspring showed no other abnormalities and reproduced normally. We conclude that, at the dose used, the retardation in foetal skeletal ossification, induced by jojoba meal supplementation during gestation, is due to food intake inhibition. Moreover, the lower birth weight of the young of jojoba-treated dams compared with the pair-fed group is merely due to a lower body weight gain during gestation.
Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle
2018-04-01
Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.
Jaarin, Kamsiah; Renuvathani, M; Nafeeza, M I; Gapor, M T
1999-01-01
The effect of palm vitamin E on the healing of ethanol-induced gastric lesion was compared with ranitidine. Fifty-six male rats of Sprague-Dawley species (200–250 g of weight) were randomly divided into three groups (N = 14). Gastric mucosal injury was induced by orogastric tube administration of 0.5 ml 100% ethanol. Immediately after induction, Group I (k) rats was fed with a normal diet (control), group II (p) was fed palm vitamin E enriched diet (150 mg/kg food), Group III(r) was treated with ranitidine 30 mg/kg body weight intraperitoneally and Group IV (p + r) was fed with palm vitamin E and treated with ranitidine 30 mg/kg body weight intraperitoneally of the same dose. The rats were killed at the end of 1 week and 3 weeks of treatment or feeding. The rate of gastric healing was faster in palm vitamin E treated group compared to control and ranitidine treated groups as shown by a lower mean ulcer index. The effect was seen as early as the first week of treatment whereas ranitidine did not show any healing effect even after 3 weeks of therapy. Neither gastric acidity nor gastric mucus production are involved in gastroprotective effect of palm vitamin E. The most probable mechanism is via reducing lipid peroxidation process as shown by a significant decrease in gastric MDA PMID:10607016
The use of moving bed bio-reactor to laundry wastewater treatment
NASA Astrophysics Data System (ADS)
Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni
2017-11-01
Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.
Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S
2015-01-01
The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Onodera, Takashi; Syutsubo, Kazuaki; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Mizuochi, Motoyuki; Harada, Hideki
2015-01-01
This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing.
Park, YongJin; Hong, Feng; Cheon, JiHoon; Hidaka, Taira; Tsuno, Hiroshi
2008-01-01
Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.
The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment.
Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Morawski, Antoni Waldemar
2018-06-15
Large, laboratory scale biological treatment tests of real industrial wastewater, generated in a large industrial laundry facility, was conducted from October 2014 to January 2015. This research sought to develop laundry wastewater treatment technology which included tests of a two-stage Moving Bed Bio Reactor (MBBR); this had two reactors, was filled with carriers Kaldnes K5 (specific area - 800 m 2 /m 3 ) and were realized in aerobic condition. Operating on site, in the laundry, reactors were fed actual wastewater from the laundry retention tank. The laundry wastewater contained mainly surfactants and impurities originating from washed fabrics; a solution of urea to supplement nitrogen content and a solution of acid to correct pH were added. The daily flow of raw wastewater Qd varied from 0.6-1.0 m 3 /d. Wastewater quality indicators showed that the reduction of pollutants was obtained: BOD 5 by 95-98%, COD by 89-94%, the sum of anionic and nonionic surfactants by 85-96%. The quality of the purified wastewater after the start-up period met legal requirements regarding the standards for wastewater discharged into the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Biofuel from jute stick by pyrolysis technology
NASA Astrophysics Data System (ADS)
Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.
2017-06-01
In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.
Nikolausz, M; Walter, R F H; Sträuber, H; Liebetrau, J; Schmidt, T; Kleinsteuber, S; Bratfisch, F; Günther, U; Richnow, H H
2013-03-01
Laboratory biogas reactors were operated under various conditions using maize silage, chicken manure, or distillers grains as substrate. In addition to the standard process parameters, the hydrogen and carbon stable isotopic composition of biogas was analyzed to estimate the predominant methanogenic pathways as a potential process control tool. The isotopic fingerprinting technique was evaluated by parallel analysis of mcrA genes and their transcripts to study the diversity and activity of methanogens. The dominant hydrogenotrophs were Methanomicrobiales, while aceticlastic methanogens were represented by Methanosaeta and Methanosarcina at low and high organic loading rates, respectively. Major changes in the relative abundance of mcrA transcripts were observed compared to the results obtained from DNA level. In agreement with the molecular results, the isotope data suggested the predominance of the hydrogenotrophic pathway in one reactor fed with chicken manure, while both pathways were important in the other reactors. Short-term changes in the isotopic composition were followed, and a significant change in isotope values was observed after feeding a reactor digesting maize silage. This ability of stable isotope fingerprinting to follow short-term activity changes shows potential for indicating process failures and makes it a promising technology for process control.
Liu, Jianyong; Luo, Jinghuan; Zhou, Jizhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping
2012-06-01
The inhibitory effect of high-strength NH(3)-N on anaerobic biodegradation of landfill leachates in an EGSB bioreactor has been investigated. The research compared start-up performance of the reactor treating the landfill leachate with NH(3)-N in 242-1200 mg/l to that treating the compost leachate with NH(3)-N in 38-410 mg/l. The observations showed that the performance of the reactor treating the landfill leachate was only marginally worse than that treating the compost leachate at the mesophilic temperature when NH(3)-N concentration was under 1500 mg/l. We also noted that NH(3)-N at the concentration of 1500-3000 mg/l inhibited the biodegradation. The comparative biodegradation performance at the mesophilic and atmospheric temperature demonstrated that the maximal OLR of atmospheric digestion was only reduced to 44 kg COD/m(3)d. These findings indicate that landfill leachates with NH(3)-N less than 1500 mg/l could be efficiently treated in the EGSB bioreactor even under the atmospheric condition with methane generated. Copyright © 2011. Published by Elsevier Ltd.
Apparatus and process for the surface treatment of carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.
A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Schmidt, J E; Ahring, B K
1999-03-01
Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.
Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.
Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal
2015-10-15
Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmidt, Jens Ejbye; Ahring, Birgitte Kjær
1999-01-01
Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862
Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D
2014-01-01
Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.
1969-12-01
a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieter, M.P.; Ludke, J.L.
1975-03-01
It was found that mercury potentiated the toxicity and biochemical effects of parathion. Male Coturnix quail (Coturnix coturnix japonica) were fed a sublethal concentration of morsodren (4 ppm as methyl mercury) for 18 weeks. This resulted in an accumulation of 21.0 ppm of mercury in the liver and 8.4 ppm in the carcass. Birds fed clean feed and those fed morsodren-treated feed were orally dosed with 2, 4, 6, 8, and 10 mg/kg parathion, and their 48-h survival times compared. The computed LD/sub 50/ was 5.86 mg/kg in birds not fed morsodren and 4.24 in those fed the heavy metal.more » When challenged with a sublethal, oral dose of parathion (1.0 mg/kg), morsodren-fed birds exhibited significantly greater inhibition of plasma and brain cholinesterase activity than controls dosed with parathion. Brain cholinesterase activity was inhibited 41 percent in morsodren-fed birds and 26 percent in clean-fed birds dosed with parathion, which suggested that the increase in parathion toxicity in the presence of morsodren was directly related to the inhibition of brain cholinesterase. (auth)« less
Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.
Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J
2016-07-01
This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayr, S., E-mail: suvi.bayr@jyu.fi; Ojanperä, M.; Kaparaju, P.
Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. • Free NH{sub 3} inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55more » °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.« less
Crudo, Daniele; Bosco, Valentina; Cavaglià, Giuliano; Grillo, Giorgio; Mantegna, Stefano; Cravotto, Giancarlo
2016-11-01
Triglyceride transesterification for biodiesel production is a model reaction which is used to compare the conversion efficiency, yield, reaction time, energy consumption, scalability and cost estimation of different reactor technology and energy source. This work describes an efficient, fast and cost-effective procedure for biodiesel preparation using a rotating generator of hydrodynamic cavitation (HC). The base-catalyzed transesterification (methanol/sodium hydroxide) has been carried out using refined and bleached palm oil and waste vegetable cooking oil. The novel HC unit is a continuous rotor-stator type reactor in which reagents are directly fed into the controlled cavitation chamber. The high-speed rotation of the reactor creates micron-sized droplets of the immiscible reacting mixture leading to outstanding mass and heat transfer and enhancing the kinetics of the transesterification reaction which completes much more quickly than traditional methods. All the biodiesel samples obtained respect the ASTM standard and present fatty acid methyl ester contents of >99% m/m in both feedstocks. The electrical energy consumption of the HC reactor is 0.030kWh per L of produced crude biodiesel, making this innovative technology really quite competitive. The reactor can be easily scaled-up, from producing a few hundred to thousands of liters of biodiesel per hour while avoiding the risk of orifices clogging with oil impurities, which may occur in conventional HC reactors. Furthermore it requires minimal installation space due to its compact design, which enhances overall security. Copyright © 2016 Elsevier B.V. All rights reserved.
Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947
Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.
Economic value of urea-treated straw fed to lactating buffaloes during the dry season in Nepal.
Chemjong, P B
1991-08-01
An experiment was conducted to study the effects of feeding urea-treated rice straw to lactating buffaloes in the Koshi Hills. Six pairs of similar buffaloes on farms were selected. All were given a conventional diet based on rice straw for four weeks, then one of each pair was given 15 to 20 kg/day of urea-treated rice straw for a period of four weeks while the control group received untreated rice straw. In the final four week period all animals were given the conventional diet. Feeding straw treated with 4% urea increased the voluntary intake of straw by 25% and increased milk yield by 1.6 litres/day compared with buffaloes fed the conventional diet containing untreated straw. Milk production remained elevated after the four-week treatment period had finished. The results show that buffalo cows fed urea-treated straw achieved better weight gain, and milk yield increased significantly (P less than 0.01) compared with the control animals. During the treatment period the net benefit was 4.0 (i.e. US$1.16) Nepalese currency rupees (NCRs) per day and the incremental rate of return was 46 per cent. Moreover, in the four weeks following the treatment period the net benefit was 10.0 NCRs (i.e. US$0.40) per day. Ensiling rice straw with 4% urea can be recommended as a safe, economical and suitable method for improving the nutritional value of rice straw on small farms in Nepal thus increasing milk production and liveweight of lactating buffaloes. The practice of feeding urea-treated straw is economic for farmers during the dry season from January to April.(ABSTRACT TRUNCATED AT 250 WORDS)
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Multi-stage high cell continuous fermentation for high productivity and titer.
Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae
2011-05-01
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.
Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet
2013-01-01
Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression levels of liver enzymes related to cholesterol metabolism, including the down regulation of acyl-CoA:cholesterol acyltransferase (ACAT) and the upregulation of cholesterol 7α-hydroxylase (CYP7A1). Conclusion This study suggested that the two NS lactobacillus strains may affect lipid metabolism and have cholesterol-lowering effects in rats fed a high cholesterol diet. PMID:23656797
Use of tylvalosin-medicated feed to control porcine proliferative enteropathy.
Guedes, R M C; França, S A; Machado, G S; Blumer, M A; da Costa Cruz, E C
2009-09-19
The effect of an oral treatment with the tartrate salt of tylvalosin on the development of proliferative enteropathy in 60 experimentally challenged pigs was studied. Thirty of the pigs were fed a diet medicated with 50 ppm tylvalosin and 30 were fed the unmedicated diet. The treated animals started to receive the medicated feed the day before they were inoculated, and continued to receive it for 14 days. The pigs' bodyweight, feed consumption and clinical signs were evaluated, and they were examined postmortem 20 days after inoculation, and samples of ileum were collected for immunohistochemistry (IHC) for Lawsonia intracellularis. Clinical signs of the disease were more evident in the untreated group than in the treated group. The average daily weight gain, average daily feed consumption and feed conversion efficiency were better in the treated group. The combined length of intestine with lesions was 2847 cm in the untreated group and 183 cm in the treated group. The tylvalosin treatment significantly reduced the level of L intracellularis infection; almost half of the treated pigs were IHC-negative compared with 3.3 per cent of the untreated pigs.
Ndlovu, L R; Francis, J; Hove, E
1996-11-01
Sixty-four pairs of oxen owned by smallholders were randomly allocated to one of 3 supplementary treatments offered at one kg per head per day from July to October or to a control where no supplement was offered. The supplements were maize stover plus silverleaf hay (2:1 w/w), urea-treated maize stover (50 g urea/kg stover) and plain maize stover. Animals fed plain maize stover or no supplement lost weight (6 to 7% of initial weight), whilst those fed the other 2 supplements maintained their liveweights. Supplementation reduced time spent on feeding activities by 10 per cent. Animals fed on urea-treated maize stover or maize stover plus silverleaf hay ploughed at speeds that were 29% faster than oxen on the other treatments and covered 45% more area. Blood parameters indicated a general deficiency of nitrogen intake throughout the dry season. It was concluded that supplements of good quality have the potential to improve the working ability of communal area oxen.
NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER
The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...
Adaptive Nodal Transport Methods for Reactor Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Downar; E. Lewis
2005-08-31
Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.
Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)
Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.
2000-01-01
Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.
Toxicity of Anacostia River, Washington, D.C., USA, sediment fed to mute swans (Cygnus olor)
Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.
2000-01-01
Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. We did not study all potential toxic effects, but, on the basis of those that we did consider, we concluded that the treated swans were basically healthy after a chronic exposure to the sediment.
Bioelectrical Perchlorate Remediation
NASA Astrophysics Data System (ADS)
Thrash, C.; Achenbach, L. A.; Coates, J. D.
2007-12-01
Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated low-level perchlorate (100 μg.L-1) influent as well as mixed-waste influents more typically found in the environment containing both nitrate and perchlorate. Through extended periods of operation (>70 days), no loss in treatment efficiency was noted and no measurable growth in biomass was observed. Gas phase analysis indicated that low levels of H2 produced at the cathode surface through electrolysis can provide enough reducing equivalents to mediate this metabolism. The results of these studies demonstrate that perchlorate remediation can be facilitated through the use of a cathode as the primary electron donor, and that continuous treatment in such a system approaches current industry standards. This has important implications for the continuous treatment of this critical contaminant in industrial waste streams and drinking water. Such a process has the advantage of long-term, low-maintenance operation with ease of online monitoring and control while limiting the injection of additional chemicals into the water treatment process and outgrowth of the microbial populations. This would negate the need for the continual removal and disposal of biomass produced during treatment and also the downstream issues associated with corrosion and biofouling of distribution systems and the production of toxic disinfection byproducts.
Zhang, Chao; Chen, Yin-Guang
2013-07-01
As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza
2017-07-31
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum.
Botta, Lívia Silva; Ratti, Regiane Priscila; Sakamoto, Isabel Kimiko; Ramos, Lucas Rodrigues; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2016-12-01
In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H 2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H 2 yields were 5.51, 4.65, and 3.96 mmol H 2 /g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H 2 -producing strain in addition to ethanol and n-butanol which were also detected in the reactors.
Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou
2018-05-18
Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto
2017-07-01
This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R
2010-01-01
This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less
Reichenberger, Michael A.; Patel, Vishal K.; Roberts, Jeremy A.; ...
2017-03-03
Here, Micro-Pocket Fission Detectors (MPFDs) are under development for in-core neutron flux measurements at the Transient REActor Test facility (TREAT) and in other experiments at Idaho National Laboratory (INL). The sensitivity of MPFDs to the energy dependent neutron flux at TREAT has been determined for 0.0300-μm thick active material coatings of 242Pu, 232Th, natural uranium, and 93% enriched 235U. Self-shielding effects in the active material of the MPFD was also confirmed to be negligible. Finally, fission fragment energy deposition was found to be in conformance with previously reported results.
Ziegler, D.L.
1975-12-01
A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.
Bio-electrochemical removal of nitrate from water and wastewater--a review.
Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine
2008-07-01
Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
Måge, Ingrid; Knutsen, Svein Halvor; Rud, Ida; Hetland, Ragna Bogen; Paulsen, Jan Erik
2016-01-01
Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile. PMID:27196124
Aceti, Arianna; Gori, Davide; Barone, Giovanni; Callegari, Maria Luisa; Fantini, Maria Pia; Indrio, Flavia; Maggio, Luca; Meneghin, Fabio; Morelli, Lorenzo; Zuccotti, Gianvincenzo; Corvaglia, Luigi
2016-01-01
Probiotics have been linked to a reduction in the incidence of necrotizing enterocolitis and late-onset sepsis in preterm infants. Recently, probiotics have also proved to reduce time to achieve full enteral feeding (FEF). However, the relationship between FEF achievement and type of feeding in infants treated with probiotics has not been explored yet. The aim of this systematic review and meta-analysis was to evaluate the effect of probiotics in reducing time to achieve FEF in preterm infants, according to type of feeding (exclusive human milk (HM) vs. formula). Randomized-controlled trials involving preterm infants receiving probiotics, and reporting on time to reach FEF were included in the systematic review. Trials reporting on outcome according to type of feeding (exclusive HM vs. formula) were included in the meta-analysis. Fixed-effect or random-effects models were used as appropriate. Results were expressed as mean difference (MD) with 95% confidence interval (CI). Twenty-five studies were included in the systematic review. In the five studies recruiting exclusively HM-fed preterm infants, those treated with probiotics reached FEF approximately 3 days before controls (MD −3.15 days (95% CI −5.25/−1.05), p = 0.003). None of the two studies reporting on exclusively formula-fed infants showed any difference between infants receiving probiotics and controls in terms of FEF achievement. The limited number of included studies did not allow testing for other subgroup differences between HM and formula-fed infants. However, if confirmed in further studies, the 3-days reduction in time to achieve FEF in exclusively HM-fed preterm infants might have significant implications for their clinical management. PMID:27483319
Aceti, Arianna; Gori, Davide; Barone, Giovanni; Callegari, Maria Luisa; Fantini, Maria Pia; Indrio, Flavia; Maggio, Luca; Meneghin, Fabio; Morelli, Lorenzo; Zuccotti, Gianvincenzo; Corvaglia, Luigi
2016-07-30
Probiotics have been linked to a reduction in the incidence of necrotizing enterocolitis and late-onset sepsis in preterm infants. Recently, probiotics have also proved to reduce time to achieve full enteral feeding (FEF). However, the relationship between FEF achievement and type of feeding in infants treated with probiotics has not been explored yet. The aim of this systematic review and meta-analysis was to evaluate the effect of probiotics in reducing time to achieve FEF in preterm infants, according to type of feeding (exclusive human milk (HM) vs. formula). Randomized-controlled trials involving preterm infants receiving probiotics, and reporting on time to reach FEF were included in the systematic review. Trials reporting on outcome according to type of feeding (exclusive HM vs. formula) were included in the meta-analysis. Fixed-effect or random-effects models were used as appropriate. Results were expressed as mean difference (MD) with 95% confidence interval (CI). Twenty-five studies were included in the systematic review. In the five studies recruiting exclusively HM-fed preterm infants, those treated with probiotics reached FEF approximately 3 days before controls (MD -3.15 days (95% CI -5.25/-1.05), p = 0.003). None of the two studies reporting on exclusively formula-fed infants showed any difference between infants receiving probiotics and controls in terms of FEF achievement. The limited number of included studies did not allow testing for other subgroup differences between HM and formula-fed infants. However, if confirmed in further studies, the 3-days reduction in time to achieve FEF in exclusively HM-fed preterm infants might have significant implications for their clinical management.
Yasui, M; Kihira, T; Tsujimoto, M; Ota, K
1992-11-01
Reduction of calcium intake leads to the mobilization of calcium and magnesium from the bone pool and to calcium deposition in the soft tissues, especially in the central nervous system (CNS). The effects of 10 alpha-methoxy-1,6-dimethylergoline-8 beta-methanol 5-bromonicotinate (nicergoline), an ameliorator of cerebral circulation and metabolism, on the deposition of calcium and magnesium in the CNS, heart, liver, kidney, muscle, abdominal aorta and bones were studied in rats maintained on standard and low-calcium diets. Rats were fed the following diets for 90 days: standard calcium (12.5 g/kg); standard calcium with 60 mg/kg nicergoline; low-calcium (30 mg/kg); and low-calcium with 60 mg/kg nicergoline. The presence of nicergoline did not affect blood chemistry but magnesium concentrations in the liver were significantly (P < 0.05) higher in rats fed standard diet with nicergoline. Magnesium concentrations in the occipital cortex, pons, cerebellum, liver, kidney, muscle and femur of nicergoline-treated rats fed low-calcium diet were significantly (P < 0.01-0.05) higher compared with those in the corresponding controls, whereas the calcium concentrations in the femur of nicergoline-treated rats fed both standard and low-calcium diets were significantly (P < 0.05) higher than those in the corresponding controls. In general, nicergoline tended to preserve the calcium content in the bone of rats fed a standard diet. Nicergoline may be implicated in calcium metabolism in rats fed low-calcium diets and may activate cerebral metabolism through the maintenance of magnesium concentrations in the CNS and soft tissues.
Microbial aggregates in anaerobic wastewater treatment.
Kosaric, N; Blaszczyk, R
1990-01-01
The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected.
DEMONSTRATION BULLETIN: FLAME REACTOR - HORSEHEAD RESOURCE DEVELOPMENT COMPANY, INC.
The Horsehead Resource Development Company, Inc. (HRD) Flame Reactor is a patented and proven high temperature thermal process designed to safely treat industrial residues and wastes containing metals. During processing, the waste material is introduced into the hottest portio...
NASA Astrophysics Data System (ADS)
Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.
2014-06-01
The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.
Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.
2014-01-01
The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064
Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S
2014-05-20
Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.
Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H
2014-03-30
The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
Vapor-fed bio-hybrid fuel cell.
Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M
2017-01-01
Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small operations and should be generalizable to other biofuels and waste-to-energy systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Baoting; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854; Gallo, Michael A.
We studied the effect of administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by i.p. injection once every 2 weeks in combination with a high-fat (HF) diet for 8 or 16 weeks on the body and organ weight changes as well as on the hepatic enzyme activity for estrogen metabolism in C3H/HeN female mice. Administration of TCDD at 100 {mu}g/kg b.w. once every 2 weeks for 8 weeks increased the body weight by 46% in the HF diet-fed animals, but not in the regular diet-fed animals. This is the first observation suggesting that TCDD at a high dose (100 {mu}g/kg b.w.), but not atmore » lower doses (1 or 10 {mu}g/kg b.w.), may have a strong obesity-inducing effect in C3H/HeN mice fed an HF diet. While TCDD increased liver weight and decreased thymus weight in animals, these effects were enhanced by feeding animals an HF diet. Metabolism studies showed that TCDD administration for 8 or 16 weeks increased the liver microsomal activity for the 2- and 4-hydroxylation of 17{beta}-estradiol in animals fed a control diet, but surprisingly not in animals fed an HF diet. Treatment with TCDD dose-dependently increased the hepatic activity for the O-methylation of catechol estrogens in both control and HF diet-fed animals, and it also decreased the levels of liver microsomal sulfatase activity for hydrolysis of estrone-3-sulfate. TCDD did not significantly affect the hepatic enzyme activity for the glucuronidation or esterification of endogenous estrogens. It is suggested that enhanced metabolic inactivation of endogenous estrogens by hepatic estrogen-metabolizing enzymes in TCDD-treated, control diet-fed animals contributes importantly to the reduced incidence of estrogen-associated tumors in animals treated with TCDD.« less
Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice.
Niemiec, T; Sikorska, J; Harrison, A; Szmidt, M; Sawosz, E; Wirth-Dzieciolowska, E; Wilczak, J; Pierzynowski, S
2011-02-01
The objective of this study was to evaluate the effect of α-ketoglutarate on redox state parameters and arterial elasticity in elderly mice. Mice in the control group were fed with standard diet, while the experimental animals received the diet supplemented either with calcium (Ca-AKG) or sodium salt of α-ketoglutarate (Na-AKG). The experimental animals were divided into 4 groups with 10 individuals in each: control I (12 months old), control II (2 months old), experimental group I fed with Ca-AKG (12 months old) and experimental group II fed with Na-AKG (12 months old). Mice treated with Ca-AKG as well as the control II animals demonstrated significantly higher level of total antioxidant status (TAS), comparing to the control I animals and those treated with Ca-AKG. Thiobarbituric acid reactive substances (TBARS) level in blood plasma was found significantly lower in young and Ca-AKG treated mice. TBARS liver concentration was significantly different in each examined group. The study also demonstrates the decrease in TBARS level in Ca-AKG treated animals. Treatment with Na-AKG significantly increased glutathione peroxidase activity and decreased the activity of superoxide dismutase. The presented results suggest that Ca-AKG protects the organism against the free radicals related elderly processes. The study presents also the effect of Ca-AKG treatment on arterial elastic characteristics in elderly mice. The beneficial effect of Ca-AKG on ageing organisms was confirmed via redox state stabilization and blood vessel elasticity improvement.
Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun
2013-01-01
Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395
Detoxification of kraft pulp ECF bleaching effluents by catalytic hydrotreatment.
Calvo, L; Gilarranz, M A; Casas, J A; Mohedano, A F; Rodríguez, J J
2007-02-01
Two different effluents from the D(1) and E(1) stages of the ECF bleaching of Eucalyptus globulus kraft pulp were treated by catalytic hydrogenation in a trickle bed reactor using commercial and homemade Pd/AC catalysts. The reactor was fed with the bleaching effluent and a H(2)/N(2) gas stream. The variables studied were space-time (1.4-5g(cat)min/mL), gas to liquid flow ratio (286-1000vol.), gas feed concentration (H(2):N(2), 1:1-1:7.3vol.), temperature (25-100 degrees C) and pressure (1-11bar). Hydrotreatment performance was evaluated in terms of ecotoxicity, adsorbable organic halogen (AOX), chemical oxygen demand (COD), biological oxygen demand (BOD(5)) and colour removal. In all the runs, the ecotoxicity of the effluents decreased as a result of the treatment, achieving reductions that ranged from 70% to 98%. Simultaneously to the reduction of toxicity, the hydrotreatment led to a decrease of the colour of the effluents, being the decrease significantly higher in the case of E(1) effluent. The AOX content was reduced by 85% and 23% for E(1) and D(1) effluents, respectively. In the case of D(1) effluent the removal of ecotoxicity was significantly higher than that of AOX, which indicates that much of the toxicity of the effluent must be associated to non-chlorinated organics. In spite of the important reduction of ecotoxicity, the biodegradability of the effluents only increased slightly. The homemade catalysts, prepared from activated carbons with a high external or non-microporous surface area and mesopore volume and a convenient surface chemistry showed a higher efficiency than the commercial one.
Elmitwalli, T A; Sayed, S; Groendijk, L; van Lier, J; Zeeman, G; Lettinga, G
2003-01-01
The decentralised treatment of concentrated sewage (about 3,600 mgCOD/l) at low temperature was investigated in a two-step anaerobic system: two-anaerobic hybrid (AH) septic tanks (each 0.575 m3). The two reactors were placed in a temperature controlled-room and the HRT was 2.5 days for each reactor. The system was fed with concentrated domestic sewage, mainly black water from about 40 toilets flushed with only 4 litre of water and a limited amount of grey water. The system showed high removal efficiency for the different COD fractions. Mean removal efficiencies in the two-step AH-septic tank at 5 days HRT and 13 degrees C were 94, 98, 74 and 78% for total COD, suspended COD, colloidal COD and dissolved COD respectively. The results of short run experiments indicated that the presence of reticulated polyurethane foam (RPF) media in the AH-septic tank improved the removal of suspended COD by 22%. The first AH-septic tank was full of sludge after 4 months of operation due to the high removal of particulate COD and the limited hydrolysis at low temperature conditions. Therefore, a simple mathematical model was developed based on ADM1 (the IWA model in 2002). Based on the experimental results and the mathematical model, only a one-step AH septic tank is required. An HRT of 5.5-7.5 days is needed for that one-step AH septic tank to treat concentrated sewage at a low temperature of 13 degrees C. Such a system can provide a total COD removal as high as 87% and will be full of sludge after a period of more than a year.
The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...
Cömert, Muazzez; Şayan, Yılmaz; Özelçam, Hülya; Baykal, Gülşah Yeğenoğlu
2015-01-01
The effects of Saccharomyces cerevisiae supplementation (6.6×108 cfu) and anhydrous ammonia treatment (3%) of wheat straw (WS) were investigated on in-situ dry matter (DM) degradability, and on rumen fermentation and growth performance of lambs. Rumen-fistulated Menemen sheep fed a diet with and without live yeast were used to assess the DM degradability characteristics of WS and ammonia-treated wheat straw (WSNH3). Twenty-six yearling Menemen male lambs were fed in four groups. Lambs of control group (WS) received untreated WS without supplemental yeast, whereas other three groups were fed WS treated with anhydrous ammonia (WSNH3 group), untreated WS and yeast (WS+YEAST group) or WS treated with anhydrous ammonia and yeast (WSNH3+YEAST group). Supplemented live yeast (4 g/d) was added in the diet. Lambs were offered untreated or ammonia treated WS ad-libitum and concentrate was fed at 1% of live body weight. The degradability of the water-insoluble (fraction B) was significantly increased by all of the treatment groups. Potential degradability (A+B), effective DM degradability’s (pe2, pe5, and pe8) and average daily weight gain increased only in WSNH3+YEAST group (p<0.05). Voluntary DM intake was not increased by the treatments (p>0.05), but voluntary metabolizable energy and crude protein intake were increased by WSNH3 and by WSNH3+YEAST (p<0.05). Average daily rumen pH was not affected by any of the treatments, but average daily NH3-N was significantly higher in the WSNH3 and WSNH3+YEAST groups, and total volatile fatty acids were significantly higher in the WS+YEAST and WSNH3+YEAST groups. In conclusion, the improvement of feed value of WS was better by the combination of ammonia-treatment and yeast supplementation compared to either treatment alone. PMID:25656177
Peng, I C; Larsen, J E; Stadelman, W J; Jones, D J; Tonkinson, L V
1987-08-01
Processed yields (percent hot carcass) and cooked meat flavor of broilers fed 100 ppm of an anticoccidial agent (a mixture of 50 ppm narasin and 50 ppm nicarbazin) were compared with yields of birds fed a ration without the anticoccidial agent. Broilers were processed at 7 wk of age (49 days) after a 4-day withdrawal from the anticoccidial agent for the treated birds. The flavor of meat was evaluated by a 12-member sensory panel. Meat was either deep fat-fried or oven roasted. Sensory evaluations were made on freshly cooked samples and on cooked meat refrigerated for 24 h and reheated. The anticoccidial agent did not produce a difference (P greater than .05) in the hot carcass yields of the broilers as compared with control birds fed the nonmedicated diet. Analyses of triangle test data for flavor evaluations by two statistical methods indicated that there were no detectable differences (P greater than .05) in flavor between broilers fed the anticoccidial agent in the diet and those fed the control diet.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1961-02-01
Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)
Kobayashi, Tsutomu; Tang, Yueqin; Urakami, Toyoshi; Morimura, Shigeru; Kida, Kenji
2014-02-01
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
Effect of reactor radiation on the thermal conductivity of TREAT fuel
NASA Astrophysics Data System (ADS)
Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.
2017-04-01
The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO2 particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO2 particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.
Attainable region analysis for continuous production of second generation bioethanol
2013-01-01
Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate. PMID:24286451
Attainable region analysis for continuous production of second generation bioethanol.
Scott, Felipe; Conejeros, Raúl; Aroca, Germán
2013-11-29
Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.
The effect of carbon crystal structure on treat reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, R.W.; Harrison, L.J.
1988-01-01
The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory-West (ANL-W) is fueled with urania in a graphite and carbon mixture. This fuel was fabricated from a mixture of graphite flour, thermax (a thermatomic carbon produced by ''cracking'' natural gas), coal-tar resin and U/sub 3/O/sub 8/. During the fabrication process, the fuel was baked to dissociate the resin, but the high temperature necessary to graphitize the carbon in the thermax and in the resin was avoided. Therefore, the carbon crystal structure is a complex mixture of graphite particles in a nongraphitized elemental carbon matrix. Results of calculations using macroscopic carbonmore » cross sections obtained by mixing bound-kernel graphite cross sections for the graphitized carbon and free-gas carbon cross sections for the remainder of the carbon and calculations using only bound-kernel graphite cross sections are compared to experimental data. It is shown that the use of the hybridized cross sections which reflect the allotropic mixture of the carbon in the TREAT fuel results in a significant improvement in the accuracy of calculated neutronics parameters for the TREAT reactor. 6 refs., 2 figs., 3 tabs.« less
Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F
2013-01-01
In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Feng; Hidaka, Taira; Tsuno, Hiroshi; Tsubota, Jun
2012-05-01
Two series of two-phase anaerobic systems, consisting of a hyperthermophilic (80°C) reactor and a thermophilic (55°C) reactor, fed with a mixture of kitchen garbage (KG) and polylactide (PLA), was compared with a single-phase thermophilic reactor for the overall performance. The result indicated that ammonia addition under hyperthermophilic condition promoted the transformation of PLA particles to lactic acid. The systems with hyperthermophilic treatment had advantages on PLA transformation and methane conversion ratio to the control system. Under the organic loading rate (OLR) of 10.3 g COD/(L day), the PLA transformation ratios of the two-phase systems were 82.0% and 85.2%, respectively, higher than that of the control system (63.5%). The methane conversion ratios of the two-phase systems were 82.9% and 80.8%, respectively, higher than 70.1% of the control system. The microbial community analysis indicated that hyperthermophilic treatment is easily installed to traditional thermophilic anaerobic digestion plants without inoculation of special bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hodges, Alan; Fica, Zachary; Wanlass, Jordan; VanDarlin, Jessica; Sims, Ronald
2017-05-01
Wastewater derived from petroleum refining currently accounts for 33.6 million barrels per day globally. Few wastewater treatment strategies exist to produce value-added products from petroleum refining wastewater. In this study, mixed culture microalgal biofilm-based treatment of petroleum refining wastewater using rotating algae biofilm reactors (RABRs) was compared with suspended-growth open pond lagoon reactors for removal of nutrients and suspended solids. Triplicate reactors were operated for 12 weeks and were continuously fed with petroleum refining wastewater. Effluent wastewater was monitored for nitrogen, phosphorus, total suspended solids (TSS), and chemical oxygen demand (COD). RABR treatment demonstrated a statistically significant increase in removal of nutrients and suspended solids, and increase in biomass productivity, compared to the open pond lagoon treatment. These trends translate to a greater potential for the production of biomass-based fuels, feed, and fertilizer as value-added products. This study is the first demonstration of the cultivation of mixed culture biofilm microalgae on petroleum refining wastewater for the dual purposes of treatment and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.
Almendariz, F J; Meraz, M; Olmos, A D; Monroy, O
2005-01-01
Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L(-1) d(-1). The mixture SC/SWco2 added to the phenol load, was step increased from 0.10 to 0.87 gCODL(-1) d(-1) maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.
A dense cell retention culture system using stirred ceramic membrane reactor.
Suzuki, T; Sato, T; Kominami, M
1994-11-20
A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.
TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR
The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...
APPLICATION ANALYSIS REPORT: HORSEHEAD RESOURCE DEVELOPMENT COMPANY INC., FLAME REACTOR TECHNOLOGY
A SITE demonstration of the Horsehead Resource Development (HRD) company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. For this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclabl...
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C
2001-01-01
Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Gould, R. K.; Srivastava, R.
1979-01-01
Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.
pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors
NASA Astrophysics Data System (ADS)
Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós
2015-06-01
The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.
van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M
2009-04-01
Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.
Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo
2013-01-01
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aquino, Sergio F; Gloria, Roberto M; Silva, Silvana Q; Chernicharo, Carlos A L
2009-06-01
This paper investigates the production of soluble microbial products (SMPs) in demonstration-scale upflow anaerobic sludge blanket reactors operated under different conditions and fed with raw wastewater. The results showed that 9.2 +/- 1.3% of the influent soluble chemical oxygen demand (COD) could be considered inert to anaerobic treatment and that the amount of COD produced by biomass varied from 30 to 70 mg x L(-1), accounting for 45 to 63% of the soluble effluent COD. The accumulation of SMP appeared to be dependent on the hydraulic retention time (HRT) applied to the reactors, with a larger accumulation of SMP observed at the lowest HRT (5 hours); this may have been due to stress conditions caused by high upflow velocity (1.1 m x h(-1)). In terms of residual COD characterization, ultrafiltration results showed that higher amounts of high molecular weight compounds were found when HRT was the lowest (5 hours), and that the molecular weight distribution depended on the operational condition of the reactors. Biodegradability tests showed that the low and high molecular weight SMPs were only partially degraded anaerobically (10 to 60%) and that the high molecular weight SMPs were difficult to degrade aerobically.
Zhang, Shihai; Tian, Min; Song, Hanqing; Shi, Kui; Wang, Yijiang; Guan, Wutai
2018-05-29
Recent studies have shown that L-carnitine supplementation of sows during pregnancy and lactation enhances their reproductive performance, but the underlying mechanisms are still needed to be further confirmed. This study was conducted to investigate the function of L-carnitine on placental development, milk nutrient content and release of hormones in sows. In this experiment, 40 multiparous crossbred sows (Yorkshire × Landrace) were allotted to two groups fed diets with or without a supplemental 50 mg/kg L-carnitine. The experimental diets were fed from d 1 post-coitus until d 21 post-partum. L-carnitine-treated sow had fewer weak piglets (p < 0.05) and a greater percentage of oestrus by 5 after 5-d post-partum (p < 0.05) than control sows. The percentage fat from colostrum was greater in L-carnitine-treated sow than control sows (p < 0.05). L-carnitine-treated sows had greater plasma concentrations of triglyceride and insulin-like growth factor (IGF)-1 and lesser plasma concentrations of glucose and IGF-binding protein (IGFBP-3) on day 60 of pregnancy (p < 0.05). A clearer structure of chorions, better-developed capillaries and absence of necrosis were observed in L-carnitine-treated sows compared with control sows. The protein abundance of IGF-1 and IGF-2 in placental chorions was greater in L-carnitine-treated sows compared with control sows (p < 0.05). This study suggests that sows fed an L-carnitine supplemented diet during pregnancy improved reproductive performance through enhancement of placental development and by increasing IGF concentrations in blood plasma and placental chorions.
Yang, P; Fang, Z; Shi, Y
2001-01-01
A comparative performance between porous polymer carriers (HP) and granular activated carbon carriers (GAC) in anaerobic fluidied-bed reactors was undertaken to evaluate their characters. The results showed that the COD removal and the biogas volume yield rate were 84% and 16.5 m3/(m3.d) respectively when HP was used as carrier to treat synthetic wastewater, at the top COD organic load rate of 65.5 kg/(m3.d), however those were 74.2% and 14.5% respectively for GAC carrier at the top load rate of 63.25 kg/(m3.d). The COD removal and biogas volume yield rate were 64.7%-54.5% and 1.89-2.7 m3/(m3.d) respectively when HP was used as carriers to treat straw pulping wastewater, at the load rate of 14.5-36.15 kg/(m3.d), and those were 61.0%-52.1% and 0.73-2.0 m3/(m3.d) respectively for GAC carriers at the load rate 9.16-19.06 kg/(m3.d). The study revealed that the HP carriers reactor is more efficient than the GAC carriers reactor in microbial immobilization and the wastewater treatment.
Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth
2016-11-01
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.
Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C
2011-01-01
To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.
Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration.
Sinno, Maria Hamze; Coquerel, Quentin; Boukhettala, Nabile; Coëffier, Moïse; Gallas, Syrine; Terashi, Mutsumi; Ibrahim, Ayman; Breuillé, Denis; Déchelotte, Pierre; Fetissov, Sergueï O
2010-12-02
Cancer chemotherapy is accompanied by anorexia and mucositis. To clarify the mechanisms of chemotherapy-induced anorexia, we studied the expression of c-fos and appetite-regulating neuropeptidergic and inflammatory mediators in the hypothalamus of rats treated with methotrexate (MTX). Sprague-Dawley rats received MTX (2.5mg/kg, subcutaneously) on three consecutive days and were compared with ad libitum- and pair-fed control rats five days after the first injection. MTX administration inhibited food and water intake and induced lean and fat mass losses. MTX also induced mucositis and diarrhea without changes in plasma osmolality. Pair-fed rats lost a similar amount of body weight but had no mucositis or diarrhea. Increased number of c-fos positive hypothalamic vasopressin neurosecretory neurons as well as numerous c-fos positive cells in the subfornical organ and in the organum vasculosum of the lamina terminalis were found in MTX-treated as compared to control or pair-fed rats. In both MTX and pair-fed rats, a decrease of hypothalamic proopiomelanocortin mRNA expression and low plasma levels of interleukin-1β (IL-1β) were found reflecting probably the energy deficit. No significant changes of IL-1β mRNA expression and intensity of microglial staining in the hypothalamus were found in MTX-treated rats. The pattern of c-fos expression in the hypothalamus during MTX treatment is similar to that seen with systemic dehydration, which is known to cause anorexia. No evidence of inflammatory origin of anorexia was found, suggesting that chemotherapy accompanied by mucositis and diarrhea may cause anorexia associated with systemic dehydration. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Azhar, Noor Amiza; Abdullah, Aminah
2015-09-01
This research was conducted to investigate the effect of chicken feed additives (antibiotic, Lacto-lase® and probiotic) on protein and fat content of chicken meat. Chicken fed with control diet (corn-soy based diet) served as a control. The treated diets were added with zinc bacitracin (antibiotic), different amount of Lacto-lase® (a mixture of probiotic and enzyme) and probiotic. Chicken were slaughtered at the age of 43-48 days. Each chicken was divided into thigh, breast, drumstick, drumette and wing. Protein content in chicken meat was determined by using macro-Kjeldahl method meanwhile Soxhlet method was used to analyse fat content. The result of the study showed that the protein content of chicken breast was significantly higher (p≤0.05) while thigh had the lowest protein content (p≤0.05). Antibiotic fed chicken was found to have the highest protein content among the treated chickens but there was no significant different with 2g/kg Lacto-lase® fed chicken (p>0.05). All thighs were significantly higher (p≤0.05) in fat content except for drumette of control chicken while breast contained the lowest fat content compared to other chicken parts studied. The control chicken meat contained significantly higher (p≤0.05) amount of fat compared to the other treated chickens. Chicken fed with 2g/kg Lacto-lase® had the lowest (p≤0.05) fat content. The result of this study indicated that the addition of Lacto-lase® as a replacement of antibiotic in chicken feed will not affect the content of protein and fat of chicken meat.
Shih, Chun-Ching; Lin, Cheng-Hsiu; Lin, Yih-Jiun; Wu, Jin-Bin
2013-01-01
Since with the increased use of antidiabetic and antihyperlipidemic effect of phytonutrients for daily supplement has gained considerable attention worldwide, we examine the effect and molecular mechanism of Crataegus pinnatifida Bge. var. major N.E. Br. (hawthorn) by quantifying the expression of hepatic gluconeogenesis and lipogenesis on diabetes and dyslipidemia in high-fat (HF)-fed C57BL/6J mice. Firstly, mice were divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was given orally hawthorn extract (including 0.2, 0.5, 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks afterward. Diabetic mice showed an increase in plasma glucose and insulin. Glucose lowering was comparable with Rosi-treated mice. This study demonstrated that hawthorn was effective in ameliorating the HF diet-induced hyperglycemia, hypertriglyceridemia and hypercholesterolaemia. Hawthorn extract significantly increases the hepatic protein contents of AMP-activated protein kinase (AMPK) phosphorylation and reduces expression of phosphenol pyruvate carboxykinase (PEPCK) and glucose production. Furthermore, hawthorn decreased in hepatic triacylglycerol and cholesterol synthesis (including sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), SREBP2). An increase in expressions of apoA-I gene and high-density lipoprotein cholesterol (HDL-C) was detected in HF-fed mice treated with high dose hawthorn. Our data suggest that hawthorn extract are capable of decreasing glucose production and triacylglycerol synthesis by inducing AMPK-phosphorylation and hawthorn is a candidate source of antidiabetic and antihyperlipidemic phytonutrients factors.
Shih, Chun-Ching; Lin, Cheng-Hsiu; Lin, Yih-Jiun; Wu, Jin-Bin
2013-01-01
Since with the increased use of antidiabetic and antihyperlipidemic effect of phytonutrients for daily supplement has gained considerable attention worldwide, we examine the effect and molecular mechanism of Crataegus pinnatifida Bge. var. major N.E. Br. (hawthorn) by quantifying the expression of hepatic gluconeogenesis and lipogenesis on diabetes and dyslipidemia in high-fat (HF)-fed C57BL/6J mice. Firstly, mice were divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was given orally hawthorn extract (including 0.2, 0.5, 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks afterward. Diabetic mice showed an increase in plasma glucose and insulin. Glucose lowering was comparable with Rosi-treated mice. This study demonstrated that hawthorn was effective in ameliorating the HF diet-induced hyperglycemia, hypertriglyceridemia and hypercholesterolaemia. Hawthorn extract significantly increases the hepatic protein contents of AMP-activated protein kinase (AMPK) phosphorylation and reduces expression of phosphenol pyruvate carboxykinase (PEPCK) and glucose production. Furthermore, hawthorn decreased in hepatic triacylglycerol and cholesterol synthesis (including sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), SREBP2). An increase in expressions of apoA-I gene and high-density lipoprotein cholesterol (HDL-C) was detected in HF-fed mice treated with high dose hawthorn. Our data suggest that hawthorn extract are capable of decreasing glucose production and triacylglycerol synthesis by inducing AMPK-phosphorylation and hawthorn is a candidate source of antidiabetic and antihyperlipidemic phytonutrients factors. PMID:23690849
Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M
2013-01-01
The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santidrian, S.; Cuevillas, F.; Goena, M.
1986-03-01
In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showedmore » that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.« less
Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P
2014-06-01
Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.
Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit
2015-12-01
High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.
Accelerated In-vessel Composting for Household Waste
NASA Astrophysics Data System (ADS)
Bhave, Prashant P.; Joshi, Yadnyeshwar S.
2017-12-01
Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.
Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi
2015-01-01
We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585
Enzyme-treated wheat bran alters gut microbiota and liver metabolome in mice fed a high fat diet
USDA-ARS?s Scientific Manuscript database
Enzyme-treated wheat bran (ETWB) is a fermentable dietary fiber that has been shown to decrease body fat and modify the gut microbiome. However, it is not clear how these microbiome changes impact peripheral tissue metabolism. We hypothesized that supplementation with ETWB would change gut-derived...
Bruin, Jennifer E.; Saber, Nelly; Braun, Natalie; Fox, Jessica K.; Mojibian, Majid; Asadi, Ali; Drohan, Campbell; O’Dwyer, Shannon; Rosman-Balzer, Diana S.; Swiss, Victoria A.; Rezania, Alireza; Kieffer, Timothy J.
2015-01-01
Summary Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs. PMID:25801507
Lack of relay toxicity in ferret hybrids fed carbaryl-treated prairie dogs.
Orsted, K M; Dubay, S A; Raisbeck, M F; Siemion, R S; Sanchez, D A; Williams, E S
1998-04-01
Carbaryl (1-napthol methylcarbamate) is being considered for control of fleas on prairie dogs (Cynomys spp.) used in black-footed ferret (Mustela nigripes) recovery in the western United States. The potential for relay toxicity in ferrets was determined by feeding carbaryl treated prairie dogs to black-footed ferret x Siberian polecat (M. eversmanni) hybrids. Adult prairie dogs were treated topically with 2.5 g of commercial 5% carbaryl dust sold as flea powder. After 14 days prairie dogs were killed and fed to ferrets. Potential for relay toxicity was evaluated by analyzing ferret blood cholinesterase (CHe), prairie dog brain Che, and hepatic carbamate concentration. There was no difference between pre- and post-exposure blood CHe activity, nor did treated prairie dog brain CHe differ significantly from controls. Post-exposure blood CHe did not exhibit reactivation after dilution in aqueous buffer. Hepatic carbaryl concentrations were less than detection limits (50 ppb). Based on these results, we conclude that short-term use of carbaryl for flea control on prairie dogs does not pose a hazard of relay toxicity in black-footed ferrets.
Young, Jette F; Steffensen, Charlotte L; Nielsen, Jacob H; Jensen, Søren K; Stagsted, Jan
2002-08-28
A chicken model for studying the effects of antioxidants in the diet on oxidative status was set up. Chickens fed a semi-synthetic diet low in antioxidants showed a remarkable decrease in erythrocyte stability toward H(2)O(2) or 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), but increases in catalase activity in liver, carbonyls in insoluble muscle proteins, and enhanced lipid oxidation in heat-treated liver samples compared to that of conventionally fed chickens. Thus, this chicken model proved to be more susceptible to oxidative changes than conventionally fed chickens, reflecting a low antioxidative defense. Supplementing this low antioxidant diet with 10% apple/broccoli mixture counteracted these changes, except for activity of catalase in the liver and AAPH-induced lysis of erythrocytes. Supplementation with 10% sweet corn only reduced the carbonyl content in insoluble proteins. However, neither low antioxidant diet nor vegetable supplements affected selected antioxidative enzymes or oxidative stability of lipids in heat-treated muscle tissue.
Systemic Imidacloprid Affects Intraguild Parasitoids Differently
Roe, R. Michael; Bacheler, Jack S.
2015-01-01
Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011–2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches. PMID:26658677
Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Lee, C. H.
The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less
Arriaga, Sonia; Muñoz, Raúl; Hernández, Sergio; Guieysse, Benoit; Revah, Sergio
2006-04-01
Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g x m(-3)(reactor) x h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g x m(-3)(reactor) x h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g x m(-3)(reactor) x h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g x m(-3)(reactor) x h(-1) (> 90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.
Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan
2014-09-01
The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.
van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M
2007-10-01
The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.
A SITE demonstration of the Horsehead Resource Development (HRD) Company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. or this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclable...
Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J
2015-02-01
Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P < 0.01) was noted for final BW, ADG, G:F, and HCW. Greater final BW was observed for treated stover (4.6%) and straw (5.6%) compared with NT residues; however, AT and NT cobs were similar. Treated straw (9.7%) and stover (12.5%) resulted in greater ADG (P < 0.01) and improved G:F (10.7% and 5.0%, respectively; P < 0.01) compared with NT forms. In Exp. 2, ruminally fistulated steers (n = 5) were used in an unbalanced 5 × 7 incomplete Latin square design with a 2 × 3 + 1 factorial arrangement of treatments. Factors were crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P < 0.01), OM (77.0% vs. 68.5%; P < 0.01), fat (89.2 vs. 85.2; P = 0.02), and NDF (66.8% vs. 51.5%; P < 0.01) digestibilities were noted for AT than for NT. However, no difference (P > 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data suggest that 15% replacement of corn and 10% untreated residue with treated forage result in a nutrient supply of OM similar to that of the control. The improvements in total tract fiber digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets.
Changes in environmental temperature influence leptin responsiveness in low- and high-fat-fed mice.
Harris, Ruth B S; Mitchell, Tiffany D; Kelso, Emily W; Flatt, W P
2007-07-01
Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18 degrees C, 23 degrees C, 27 degrees C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23 degrees C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.
Said, Mahmoud M; Hassan, Nahla S; Schlicht, Michael J; Bosland, Maarten C
2015-01-01
Benign prostatic hyperplasia (BPH), a disease occurring frequently among elderly males, is a slow progressive enlargement of the fibromuscular and epithelial structures of the prostate gland. Dietary factors may influence the prostate and exert an influence on prostatic growth and disease. The current study was undertaken to investigate the protective effect of dietary flaxseed supplementation against testosterone-induced prostatic hyperplasia in male rats. Forty male Wistar rats were divided into 5 groups: (1) untreated control; (2) treatment with testosterone propionate (TP) to induce prostate enlargement; (3) TP-treated group fed a diet containing 5% milled flaxseed; (4) TP-treated group fed a diet containing 10% milled flaxseed; and (5) TP-treated group fed a diet containing 20 ppm finasteride. Treatment with TP significantly increased the absolute and relative weights of different prostatic lobes, serum testosterone (T), and testosterone/estradiol ratio, as well as prostatic vascular endothelial growth factor (VEGF) expression, RNA synthesis per cell, and epithelial cell proliferation, detected as Ki67 labeling. Histopathological examination did not reveal marked differences in acinar morphology in ventral prostate, whereas morphometric analysis showed significantly increased epithelial cell height. Co-administration of flaxseed or finasteride with TP significantly reduced prostatic VEFG, epithelial cell proliferation, and RNA/DNA ratio, along with a significant increase in serum T and testosterone/estradiol ratio compared with TP-only-treated rats. Our results indicate that flaxseed, similar to the 5α-reductase inhibitor finasteride, blocked TP-induced prostate enlargement in a rat model of BPH, likely through suppression of prostatic VEFG and cellular proliferation.
Ramírez, Natalia Medina; Toledo, Renata C Lopes; Moreira, Maria E Castro; Martino, Hércia Stampini Duarte; Benjamin, Laércio Dos Anjos; de Queiroz, José H; Ribeiro, Andréia Queiroz; Ribeiro, Sônia Machado Rocha
2017-07-01
Due to the high content of bioactive compounds, herbal teas are being investigated as adjuvant in chronic disease management. Studies have shown that mango leaf tea contain mangiferin, total phenolics and antioxidants, compounds with many functional properties. Therefore, this study aims to evaluate the anti-obesity effects of tea from Mangifera indica L. leaves, Ubá variety (TML), in obese rats fed a high-fat diet (HFD). For this, adult male Wistar rats were divided into three groups (n=8): the control group (fed AIN-93 diet), obese group (fed a HFD) and treated group (fed a HFD and supplemented with TML for 8 weeks). We analysed biometric measures and serum biochemical parameters of metabolic control, inflammation and oxidative stress biomarkers, histomorphometry of visceral adipose tissue and mRNA expression of peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PPAR-γ), lipoprotein lipase (LPL) and fatty acid synthase (FAS). The consumption of TML (24.7±2.1mL/day) exerted antioxidant and anti-inflammatory effects, increasing total antioxidant capacity and interleukin-10 serum concentrations, reduced abdominal fat accumulation, upregulated PPAR-γ and LPL and downregulated FAS expression. Our data suggest that TML has therapeutic potential in treating obesity and related diseases through regulating the expression of transcriptional factors and enzymes associated with adipogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lin, Shuo; Chen, Yixin; Bai, Yan; Cai, Hongjiao; Wei, Hui; Tian, Houjun; Zhao, Jianwei; Chen, Yong; Yang, Guang; Gu, Xiaojun; Murugan, Kadarkarai
2018-06-06
Tea saponin (TS) is extracted from the seeds of the tea plant and is generally regarded as a safe compound that has insecticidal properties and can act synergistically with other compounds. In this study, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and the levels of malondialdehyde (MDA) were compared in midgut tissues of third instar larvae of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae). The larvae were fed on three different host plants, cabbage (Brassica oleracea L. var. capitata [Capparales: Brassicaceae]), radish (Raphanus sativus L. var. radiculus Persi [Capparales: Brassicaceae]), or rape (Brassica campestris L. [Capparales: Brassicaceae]), that had been treated with TS. Higher SOD, POD, and CAT activities were found in DBM larvae fed on cabbage after LC20 (concentration that induced 20% larval mortality) or LC50 (concentration that induced 50% larval mortality) treatment than on the control. On rape, TS treatments led to lower SOD and CAT activities than in the control and to higher POD activities after 24 h. MDA content increased in larvae fed on rape but decreased in larvae fed on radish after 12 h. Our results indicated that DBM larvae are more susceptible to TS on rape than on cabbage and radish, suggesting that this treatment may be an economic and effective means of controlling DBM on rape.